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In this paper we consider double-parton distribution functions (dPDFs), which are the main non-
perturbative ingredients appearing in the double-parton scattering cross section formula in hadronic
collisions. By using recent calculation of dPDFs by means of constituent quark models within the so-called
light-front approach, we investigate the role of relativistic effects on dPDFs. We find, in particular, that the
so-called Melosh operators, which allow us to properly convert the LF spin into the canonical one and
incorporate a proper treatment of boosts, produce sizeable effects on dPDFs. We discuss specific partonic
correlations induced by these operators in the transverse plane which are relevant to the proton structure,
and we study under which conditions these results are stable against variations in the choice of the proton
wave function.
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I. INTRODUCTION

A proper description of final states in hadronic collisions
requires the inclusion of multiple-partonic interactions
(MPIs) [1–3]—i.e., a mechanism which takes into account
the possibility that more than one pair of partons may
interact in a given hadronic collision. This possibility
emerges naturally, since both colliding hadrons are
extended objects in the transverse plane, at variance with
processes involving pointlike probes, as in deep inelastic
scattering where, to date, no MPI effects have been
reported. Multiple-parton interactions enhance particle
yields at low transverse momenta, affecting multiplicities
and energy flows. MPIs play an important role also in
events characterized by a hard scale, where they may
contaminate the primary event with the production of
secondaries which contribute to the so-called underlying
event. In recent years, given the LHC operation, renewed
interest has been paid to double-parton scattering (DPS), in
which a couple of partons from each hadron interact with
each other. If both interactions are hard enough, perturba-
tive techniques can be applied and, as such, this class of
processes need to be well controlled, since they might
represent a background to New Physics searches. At the
same time, DPS has its own physical interest, being
sensitive to the nucleon structure. In particular, the cross
section for this process depends on nonperturbative quan-
tities, the so-called double-parton distribution functions
(dPDFs). The latter encode the probability of finding two
interacting partons, with a longitudinal momentum fraction
with respect to the proton one, x, and the relative transverse

distance ~b⊥, offering the opportunity to investigate parton

momentum and spin correlations in the nucleon, unveiling
new information on its structure; see Ref. [4]. Since dPDFs
are two-body distributions, this knowledge is complemen-
tary to that encoded in other types of (one-body) distribu-
tions, such as generalized parton distributions (GPDs) and
transverse-momentum-dependent distributions (TMDs). To
date, dPDFs are very poorly known objects. Little guidance
on their structure comes from sum rules, which relate them
to ordinary PDFs—see Refs. [5,6]—while their perturba-
tive QCD evolution is still debated due to the presence of
the so-called inhomogeneous term in the evolution equa-
tions—see Refs. [7–10]. In this situation, it is clear that a
proper theoretical modelization of a DPS signal is quite
challenging. This problem has been circumvented phe-
nomenologically by expressing the DPS cross section σDPS
with the final state Aþ B by the following ratio; see e.g.
Ref. [11]:

σAþB
DPS ¼ m

2

σASPSσ
B
SPS

σeff
; ð1Þ

where m is a combinatorial factor depending on the final
states A and B (m ¼ 1 for A ¼ B or m ¼ 2 for A ≠ B), and

σAðBÞSPS is the single-parton scattering cross section with the
final state AðBÞ. Expressing the σDPS cross section in
Eq. (1) in terms of the product of σSPS, one assumes that as
a first approximation, the two hard scatterings can be
factorized, and that double-parton distributions can be
written as

Fabðx1; x2; b⊥; Q2Þ ∼ faðx1; Q2Þfbðx2; Q2ÞTðb⊥Þ; ð2Þ
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where faðx1; Q2Þ and fbðx2; Q2Þ are the standard PDFs
evaluated at the scale Q2. The function Tðb⊥Þ captures
parton correlations in the transverse plane. This ansatz for
dPDFs exploits the idea that, for decreasing parton frac-
tional momenta x, the parton population in the nucleon
increases, resulting in a substantial longitudinal decorrela-
tion of the joint distribution Fab. The double-parton
interaction rate is then totally encapsulated in the function
Tðb⊥Þ. In such a factorized approach, the effective cross
section appearing in Eq. (1) is simply given by

σ−1eff ¼
Z

d2b⊥½Tðb⊥Þ�2 ð3Þ

and, by construction, does not show any dependence on
parton fractional momenta, hard scales, or parton species.
Due to the rather easy technical implementation of Eq. (1)
and the almost total inclusiveness of the experimental
analyses performed so far, all the present knowledge on
DPS cross sections has been condensed in the experimental
and model-dependent extraction of σeff [11–18]. To date, the
corresponding number determined so far (σeff ≃ 15 mb) is
compatible, within errors, with a constant, irrespective of the
center-of-mass energy of the hadronic collisions and final
state (Aþ B) considered. Given this situation, many features
of dPDFs are essentially unconstrained. It is therefore clear
that nonperturbative methods may give access to some
relevant properties on these distributions [19–24], allowing
us, for example, to establish to what extent such dPDFs
models may correctly reproduce the magnitude of the
transverse correlation encoded in σeff ; see, for instance,
the results of Refs. [25,26] on this point.
In thiswork, starting from the results obtained inRef. [21],

where dPDFs have been calculated in the valence region
within a fully relativistic covariant treatment, the so-called
light-front (LF) approach, we identify model-independent
effects induced on dPDFs by the relativistic treatment—in
particular, the violation of the factorized ansatz and the
effects of parton correlation in the transverse plane in the
proton structure. We also try to quantify the corresponding
impact on observable-related quantities.
The paper is organized as follows: In Sec. II, we outline

the structure of dPDFs and relativistic operators. In Sec. III,
we describe the details of the hadronic models used in the
analysis. In Sec. IV, we discuss the relevant issue of dPDF
factorization in longitudinal and transverse space and the
impact of the correct treatment of relativistic effects on
dPDFs. We finally draw our conclusions in Sec. V.

II. THE LIGHT-FRONT APPROACH AND
RELATIVISTIC EFFECTS

Following Ref. [21], dPDFs have been calculated start-
ing from their light-cone correlator, which formally defines
them in QCD. A suitable expression for dPDFs has been
presented in Ref. [21]:

Fðx1; x2; ~k⊥Þ ∝
Z

d~k1d~k2Ψ
�
~k1 þ

~k⊥
2
; ~k2 −

~k⊥
2

�

× Ψ†
�
~k1 −

~k⊥
2
; ~k2 þ

~k⊥
2

�

× δ

�
x1 −

kþ1
M0

�
δ

�
x1 −

kþ1
M0

�

× hSUð6ÞjD†
1D1D

†
2D2jSUð6Þi; ð4Þ

where ~ki is the intrinsic three-momentumof the i parton,k⊥ is
the relative transversemomentumof one of the partons in the
amplitude and in its complex conjugate,Ψ is the protonwave
function in momentum space, and jSUð6Þi is the spin-flavor
state evaluated according to the commonly adopted SUð6Þ
symmetry. Here, as in Ref. [21], a factorization between the
spin and the spatial part of the proton wave function is
assumed. Let us remark that, thanks to this rigorous
approach, the correct support of dPDFs is fulfilled—i.e.,
the dPDFs vanish in unphysical regions, i.e. x1 þ x2 > 1.
A proper inclusion of relativistic effects is obtained via the
so-called light-front (LF) approach. This is a common
procedure, largely used for the calculation of nonperturbative
distributions; see e.g. Refs. [27–32]. It should be noted that
dPDFs, calculated in momentum space, describe a system
where two partons have a relative transverse momentum

(�~k⊥). This unbalance physically arises since the difference
of parton transverse momenta is not conserved between the
amplitude and its complex conjugate [33,34]. Due to this
unbalance, the dPDFs are not densities in this representation,
and they cannot be interpreted as probabilistic distributions.
In order to deal with distributions which admit a probabilistic
interpretation, we consider the Fourier transform of Eq. (4)

with respect to ~k⊥, which reads

Fðx1; x2; ~b⊥Þ ¼
Z

d~k⊥
ð2πÞ2 e

i~k⊥·~b⊥Fðx1; x2; ~k⊥Þ; ð5Þ

with ~b⊥ being the relative transverse distance between the
two partons. In this paper, we only consider the distribution
of two unpolarized quarks of flavor u (cf. Refs. [20,21,35]),

so that Fðx1; x2; ~k⊥Þ≡ Fuuðx1; x2; k⊥Þ depends only on

k⊥ ¼ j~k⊥j. Due to rotational invariance of Fuu in the case
of unpolarized quarks, the Fourier transform reduces to

Fðx1; x2; b⊥Þ ¼
1

2π

Z
dk⊥k⊥J0ðb⊥k⊥ÞFðx1; x2; k⊥Þ; ð6Þ

with J0 being the Bessel function of the first kind and

b⊥ ¼ j~b⊥j. Anticipating some results discussed in the next
sections, we present in Fig. 1 the b⊥ dependence of dPDFs
at x1 ¼ 0.2, x2 ¼ 0.3. The plots show the probability of
finding two partons with a given longitudinal momentum
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fraction and relative transverse distance, a unique set of
information which is only accessible with such distribu-
tions. The same distribution for dPDFs with longitudinal
and transversally polarized quarks is likely to show
departure from this symmetric structure, giving access to
new details of the proton structure. These spin effects on
dPDFs are presently under investigation and will be
reported in a separate paper. In Eq. (4), the canonical

proton wave function is calculated by means of constituent
quarkmodels (CQM). The LF protonwave function, which
naturally arises in the LF approach—see e.g. Ref. [27]—is
related to the canonical one thanks to the introduction of the
Melosh rotations [36], which appear in the last line of
Eq. (4). The latter quantities are related to LF boosts,
which, in such an approach, are kinematical operators.
Formally, they are defined as

FIG. 1. Distribution evaluated via Eq. (6) by using different hadronic models presented in Sec. III—in particular, the NR (top), RL
(middle), and HOrel (bottom) models at x1 ¼ 0.2, x2 ¼ 0.3.
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D̂i ¼
mþ xiM0 þ iðkixσy − kiyσxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþ xiM0Þ2 þ k2ix þ k2iy
q ; ð7Þ

wherem is the constituent quarkmass; xi is the longitudinal
momentum fraction carried by the i quark; σx and σy are
Pauli sigma matrices; andM0 is the energy that the proton

would have if quarks were free, and it depends on ~ki⊥ and
xi. In particular, theMelosh operators are rotations between
the rest frame of the system reached through the light-front
boost or canonical boost and allow us to rotate the light-
front spin into the canonical one. For example, a light-front
state with momentum k and spin σ, jk; σiLF, can be written
in terms of a canonical one, jk; μiIF, as follows:

jk; σiLF ∝
X
μ

hμjD̂jσijk; μiIF: ð8Þ

Thanks to this property, as pointed out in Ref. [27], one can
convert the light-front proton wave function into the
canonical one. This procedure is suitable for the calculation
of nonperturbative quantities, such as parton distributions,
since the proton wave function is usually evaluated by
using the canonical instant form approach.
From Eq. (7), it is clear that the structure of such

operators induces nontrivial correlations between the rel-
evant variables at any energy scale. In order to visualize the
effects produced by the term introduced in the last line of
Eq. (4), one can analytically evaluate

DD†ð~k⊥; x1; x2; ~k1⊥; ~k2⊥Þ
¼ hSUð6ÞjD†

1D1D
†
2D2jSUð6Þi: ð9Þ

However, since the dependence of the Melosh rotation
with respect to all the variables expressed in Eq. (9) is quite
complicated to visualize, we find it useful to show, as a
representative case, such a dependence in the limit

DD†ð~k⊥; x1; x2; ~k1⊥ ¼ 0; ~k2⊥ ¼ 0Þ.
For this calculation, the allowed phase space x1 þ x2 ≤ 1,

here and in the following sections, is sampled in three
different pairs of points, which we found to be representative
for the effects we wish to discuss. In particular, we consider
two fast partons (FF) with x1 ¼ 0.2, x2 ¼ 0.3; one slow and
one fast parton (SF) with x1 ¼ 0.04, x2 ¼ 0.3; and two slow
partons (SS) with x1 ¼ 0.04, x2 ¼ 0.03. The calculation of
Eq. (9) with these kinematic settings is presented in Fig. 2,
where onemay identify three distinct regions as a function of
k⊥. For k⊥ → 0, the Melosh operators in all kinematic
configurations reduce to unity. In an intermediate region
of k⊥, the curves show a dip whose depth depends on the
chosen kinematic configuration, and in particular, it becomes
negative in the SF configuration. At larger k⊥, the curves
flattens out with different asymptotics. This complicated
pattern, generated by the Melosh rotations, affects the
calculation of dPDFs, which, in general, are distributions

evaluated also at k⊥ ≠ 0. It is worth noting that such
complicated behavior is due to the mixed combination of
the four Melosh operators combined with the proton spin
structure described by its wave function. Furthermore, due to
the different kinematics between the proton wave function
and its complex conjugate, the Melosh operators introduce
kinematical breaking of the SUð6Þ symmetry, which gen-
erates nontrivial correlations already in the unpolarized case.
These kinds of effects cannot be observed in known
quantities such as standard PDFs, or, e.g., in momentum
distributions, given that all these distributions depend on
diagonal matrix elements (i.e., evaluated at k⊥ ¼ 0). In this
case, in fact, the product of two Melosh operators reduces to
unity. However, important effects due to theMelosh rotations
can be observed in model calculations of polarized PDFs.
A crucial consequence of the presence of such operators is
the difference between the longitudinal and transversely
polarized PDFs. In fact, since boosts commutewith rotations
in the nonrelativistic limit, the latter two distributions
are identical in this framework—see details in Ref. [30].
Moreover, important effects are also found in the calculations
of GPDs; see e.g. Refs. [27,28,30], where some distributions
do not vanish due to the presence of the Melosh rotations.
Conclusions along these lines are also found in the analyses
of TMDs in light-front CQM calculations of Ref. [31].
Let us mention that Melosh effects can be appreciated in
the calculation of nuclear spectral functions and structure
functions of the 3He within the light-front approach; see
Refs. [37,38].
It should be noted, however, that the quantitative impact of

Melosh rotations on dPDFs is weighted by the chosen proton
wave function and, in particular, by its behavior at large
parton momenta. We address this issue in the next section.

III. HADRONIC MODELS

The calculation of dPDFs via Eq. (4) involves, besides
the relativistic boosts just described, the modeling of the
(canonical) proton wave function which is obtained by

FIG. 2. The quantity Eq. (9), as a function of kT ¼ k⊥,
evaluated in different regions of x1 and x2, with ~k1⊥ ¼ ~k2⊥ ¼ 0.
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means of CQM. The parameters of these models are fixed
by comparison with a subset of available data—e.g., the
hadronic spectrum or the proton electromagnetic form
factor at small momentum transfer. Since the aim of the
present analysis is to identify potential model-independent
effects on dPDFs, we consider a variety of proton wave
functions. The first model is the so-called hypercentral
quark model in both its relativistic (RL, Ref. [39]) and
nonrelativistic (NR, Ref. [40]) versions. The quark momen-
tum distributions, nðkÞ, defined in terms of the proton wave
function as

nðkÞ ¼ 3

Z
d~k1d~k2δð~k − ~k1 − ~k2ÞjΨð~k1; ~k2Þj2; ð10Þ

are shown for the considered models in Fig. 3. The RL
version (solid black) shows a broad tail extending at high
momentum (hence relativistic), while the NR version (dot-
dashed blue line) drops far more quickly at large momen-
tum (hence nonrelativistic). Since both versions assume a
similar potential, we also consider a modified version of the
harmonic oscillator (HO); see details on the proton wave
function calculated in such model in Ref. [20]. In its
original version, the width of the Gaussian structure of the
proton wave function is α2 ¼ 1.35 fm−2, where the value of
the parameter is fixed by requesting that the model
reproduces the slope of the proton charge form factor at
zero momentum transfer. As one can see in Fig. 3, the
corresponding momentum distribution (red, long dashed

line) decreases rather quickly with respect to j~kj, the quark
momentum, showing a rather extreme nonrelativistic
behavior, not suitable for the estimate of relativistic effects.
Given the relative mathematical simplicity of such a model,
we may construct a class of models of this type by just
varying the tunable parameter α in order to reproduce a
momentum distribution which can have either a relativistic

or nonrelativistic behavior. As shown in Fig. 3, we find that
with the choice α2 ¼ α2nrel ¼ 6 fm−2, we can simulate a
nonrelativistic model (HOnrel), while with the choice
α2 ¼ 25 fm−2, the model (HOrel) develops a quite broad
relativistic tail. Let us stress that for these values of the
parameter α2, the agreement between HO model predic-
tions and available experimental data is inevitably lost.
We emphasize that the behavior of the CQM models at
large parton momentum determines the behavior at small x
of the corresponding parton distribution functions. This
feature is easily explained by considering the definition of
the longitudinal momentum fraction carried by a quark in
the LF approach:

x1 ¼
kþ1

kþ1 þ kþ2 þ kþ3
; ð11Þ

where the light-cone notation has been introduced:
aþ ¼ a0 þ a3, with aμ being a generic four-vector. Since
in Eq. (11) it is always kþ ≥ m, the extreme small-x region
can be achieved only if e.g. kþ2 ≫ m—i.e., one parton has a

very high momentum. Indeed, kþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~k2

q
þ j~kj cos θ,

with θ being the angle between the momentum vector and
the z axis. Therefore, a fast drop of quark momentum

distributions at large j~kj—that is, a nonrelativistic behavior,
determines a smooth vanishing of PDFs as x → 0. On the
contrary, PDFs corresponding to relativistic models still
vanish in the limit x → 0, but with a much harder behavior.
All these results are summarized in Fig. 4, where the
u-quark distributions, obtained from all the considered
models, are compared together. With this selection of
models, based on different potentials and showing different
relativistic behavior, we now turn to the evaluation and
discussion of dPDFs.

FIG. 3. Quark momentum distributions [Eq. (10)] from
different models used in this analysis: RL (full black line), NR
(dot-dashed blue line), original HO (dashed red line), modified
HOnrel (gold dotted line), and modified HOrel (orange dashed
line). The orange band corresponds to variation of the parameter
6 < α2 < 25 fm−2.

FIG. 4. Single-parton distributions calculated with the different
models used in this analysis: RL (full black line), NR (dot-dashed
blue line), original HO (dashed red line), modified HOnrel (gold
dotted line), and modified HOrel (orange dashed line).
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IV. CALCULATIONS OF dPDFs

A. Breaking the factorized ansatz

As already mentioned in the previous sections, to date,
the experimental knowledge on the DPS cross section is
limited to inclusive observables extracted by using Eqs. (1)
and (3), and the corresponding assumptions. It is therefore
clear that investigating dPDF modelization beyond the
assumptions in Eq. (2) will require more differential DPS
measurements. In order to fill this lack of knowledge, a
fully factorized form for dPDFs in all the relevant variables,
as indicated in Eq. (2), is often assumed, which aims to
maximally exploit the current knowledge on the proton
structure.
On the other hand, in the moderate large values of

fractional momenta, x, natural domain of CQM with
realistic potentials, as discussed in Refs. [20,21,35], cal-
culations show that both the factorization of dPDFs as a
product of single-parton distributions and, perhaps more
interestingly, the ðx1; x2Þ − k⊥ factorization are violated.
For recent results on the breaking of the factorization on the
x1 and x2 dependence, see Ref. [41]. Furthermore, the
breaking of the ðx1; x2Þ − k⊥ factorization might be gen-
erated both by the specific form of the proton wave function
and by relativistic effects induced by Melosh operators.
The purpose of this section is to investigate in more

detail the latter effect. Within this context, the harmonic
oscillator model appears to be particularly suitable to
quantify to what extent such factorization breaking is
due to relativistic effects alone. Within this model, in fact,
the ðx1; x2Þ − k⊥ dependences are entirely factorized; see
Ref. [20]. In order to estimate these effects quantitatively,
we evaluate the ratio

RNðx1; x2; b⊥Þ ¼
Fðx1; x2; b⊥ÞR
d~b⊥Fðx1; x2; b⊥Þ

: ð12Þ

It is worth noting that, according to Eq. (5),R
d~b⊥Fðx1; x2; b⊥Þ ¼ Fðx1; x2; k⊥ ¼ 0Þ, so the denomina-

tor in Eq. (12) does not depend on the Melosh rotations
which reduce to unity in the k⊥ → 0 limit; see Fig. 2. The
ratio given in Eq. (12), calculated by using HOrel, is
presented in Fig. 5. The ratio RN with dPDFs evaluated
without the Melosh rotations gives identical (superim-
posed) results in the three kinematic regions of x1 and
x2, as expected. On the contrary, if Melosh rotations are
taken into account, we observe a significant reduction of
the magnitude of dDPFs and a progressive broadening of
the b⊥ dependence with respect to the distribution without
Melosh, depending on the partonal fractional momenta xi.
This effect is sizeable, especially in the SF configuration.
This observation leads us to conclude that for dPDFs
evaluated through models [which themselves may or
may not show a ðx1; x2Þ − k⊥ factorization] via Eq. (4),
at the hadronic scale, relativistic effects induce significant

factorization-breaking effects. This result suggests that
future model building of dPDFs may take into account
the possibility of modulating the dPDFs b⊥ dependence as
a function of parton fractional momenta.

B. Relativistic effects

It appears from the previous section that Melosh rotations
do not allowus, in general, to factorize dPDFs in longitudinal
and transverse distributions. More importantly, they cause a
significant reduction of the distributions, which, in turn,
induces substantial variation of the correspondingDPS cross
section. In order to further investigate these effects, in this
section we calculate dPDFs in b⊥ space via Eq. (6) with and
without Melosh rotations. We note that in the latter case, we
basically reduce to the results presented inRefs. [19–21]. The
results of these calculations are shown in Fig. 6, where
predictions from different models are presented in columns
and different kinematical configurations in rows. The b⊥
spectrawithoutMelosh rotation (NM) show a great variety in
magnitude and width, reflecting the differences in the used
proton wave functions. In all cases, the distributions are
peaked at b⊥ ¼ 0 and show a finite behavior in the short-
distance limit. If Melosh rotations are included (red dotted
lines), we observe a significant reduction of themagnitude of
the distributions. In particular, in the SF kinematics, the
magnitude of the suppression is more pronounced, and for
the RLmodels (left panel, middle row), the distribution tends
to decrease as b⊥ → 0, and it does show a maximum shifted
to a nonvanishing value of b⊥. We conclude that for
relativistic models, in the SF region, these operators dis-
courage the partons from being close to each other. This
model-dependent behavior results from the combined effect

FIG. 5. The ratio (12) evaluated using the HOrel model in three

different regions of x1 and x2 as a function of b⊥ ¼ j~b⊥j. In the
legend, the acronym “NM” specifies the calculation in which the
Melosh rotations are neglected.
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of the negative contributions of the Melosh rotations in

Eq. (6) and the large j~kj tail of the RL model. The amount of
the suppression, induced by the Melosh operators, is again
conveniently quantified by studying the ratio

Rðx1; x2; ~b⊥Þ ¼
Fðx1; x2; b⊥Þ

FNMðx1; x2; b⊥Þ
; ð13Þ

where FNMðx1; x2; b⊥Þ is the distribution in Eq. (4) once the
Melosh rotations are neglected. The corresponding results
are reported in Fig. 7, where it is shown that the suppression
slightly depends on the kinematical configurations, being
smaller in the FF case, and on average, around 0.5 in the FS
and SS regions. Moreover, such suppression is rather model
independent, as can be inferred by the relatively contained
spread of the orange band. In all the previous sections, the

FIG. 6. The distribution Eq. (6) as a function of j~b⊥j evaluated in three different kinematical configurations (from top to bottom, FF,
SF, and SS) using the relativistic model, the NR one and the HOrel one (from left to right). Lines correspond to the evaluation of Eq. (6)
with (black) and without (red) the Melosh rotations.

FIG. 7. The ratio in Eq. (13) evaluated as a function of jb⊥j in different kinematic regions: x1 ¼ 0.2, x2 ¼ 0.3 (left panel); x1 ¼ 0.04,
x2 ¼ 0.3 (middle panel); and x1 ¼ 0.04, x2 ¼ 0.03 (right panel): RL (full black line), NR (dot-dashed blue line), original HO (dashed
red line), modified HOnrel (gold dotted line), and modified HOrel (orange dashed line). The orange band corresponds to variation of the
parameter 6 < α2 < 25 fm−2.
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main effects of the Melosh rotations have been analyzed
directly on the dPDFs, either in momentum or in coordinate
space. It is worth remarking, however, that dPDFs appear in
the DPS cross section in a convolution-like formula which
reads [1]

σAþB
DPS ∝

X
abcd

Z
d~b⊥Facðb⊥ÞFcdðb⊥Þσ̂Aabσ̂Bcd; ð14Þ

where we have suppressed the dependences on longitudinal
fractional momenta, and σ̂ are the elementary partonic cross
sections for the process abðcdÞ → AðBÞX. It is therefore
clear that the details of the b⊥ dependence of the dPDFs get
obscured by the convolution, and it is intertwined with the
dependences on longitudinal fractional momenta. In this
respect, we notice that a more direct access to the transverse
structure of dPDFs may be provided by analyzing the DPS
component in multijet photoproduction in ep or pp colli-
sions. In this case, the quasireal photon, emitted either by the
electron or the proton and fluctuating in qq dipoles, probes
the parton pair in the nucleon at a relative transverse distance
of the order b⊥ ∼ 1=Q [42–44], while its low virtualityQ can
be controlled experimentally. In the present context, a proper
calculation of σeff via Eq. (14) requires the selection of a
definite final state Aþ B, the evaluation of corresponding
partonic cross sections, and the perturbative evolution of
dPDFs from the hadronic scale (in the present work
μ0 ¼ 0.1 GeV2, where only three valence quarks carry the
protonmomentum) to the scales μA and μB characterizing the
hard processes. We will report on these results in a separate
publication. In the present work, in order to get a quantitative
estimate of the possible role of the Melosh on observable-
related quantities, following the lines of Refs. [25,26], we
define the ratio

Rσðx1; x2Þ ¼
R
d~b⊥FNMðx1; x2; b⊥Þ2R
d~b⊥Fðx1; x2; b⊥Þ2

; ð15Þ

where the square is taken to mimic the analytic structure of
the DPS cross section in Eqs. (14) and (3). The ratio in
Eq. (15) hasbeen calculated byusing the addressedmodels in
the three kinematics configurations. The results are presented
in Table I. One should notice that in regions where the three
CQMs are completely different, the effects of theMelosh are
rather independent on the choice of the detailed proton
structure considered. For the sake of transparency, some

differences are found when small x are involved in the
calculation. This feature can be seen as a limit of the present
analysis. In fact, as already mentioned, the low-x region is
associated with high momenta, where the three CQMs
substantially differ from each other, and details of themodels
cannot be totally separated by those of the relativistic
treatment. As shown in Fig. 8, the spread of Rσ calculated
within different models increases for decreasing x2. This
reflects different modelizations of the proton wave function
at high quarkmomenta; see Fig. 4. Nevertheless, it should be
noted that the value of the ratio and its spread, induced by
different models, become constant for approximately
x2 > 0.1. Therefore, we may conclude that, in the valence
region, the suppression factor (a factor around 2) induced by
Melosh rotations is quite a model-independent effect.

V. CONCLUSIONS

In this work, we have presented a quantitative analysis of
relativistic effects on dPDFs. This analysis has been
provided thanks to the correct treatment of dPDF in a
relativistic framework due to the LF approach, which
implies the introduction of the so-called Melosh rotations
in order to achieve a full Poincarè covariant description of
dPDFs. We have discussed to what extent the Melosh
rotations alone may affect the often assumed factorization
in ðx1; x2Þ − k⊥ space, which is commonly adopted in
experimental analyses to extract the DPS cross section. We
have found that once relativistic effects are included, the
dPDFs spectrum in b⊥ space does depend on the parton
fractional momenta, an effect beyond the assumptions in
Eq. (2). For example, for relativistic models in the low-x
region with a large unbalance of longitudinal momenta,
relativistic effects prevent the two partons from being close
to each other in transverse space.
Furthermore, we have found that the main effect of the

relativistic treatment is to produce a strong reduction of the
size of the dPDFs with respect to the same calculation
where such operators are omitted. By employing appro-
priate ratios, we have shown that these results only mildly

TABLE I. The ratio Rσðx1; x2Þ calculated for different
kinematical configurations and adopted models.

RL NR HOrel HOnrel

Rσðx1 ¼ 0.03; x2 ¼ 0.04Þ 4.83 2.80 4.12 2.36
Rσðx1 ¼ 0.04; x2 ¼ 0.3Þ 4.33 2.27 3.66 2.05
Rσðx1 ¼ 0.2; x2 ¼ 0.3Þ 1.85 1.50 1.73 1.73

FIG. 8. The ratio Rσðx1; x2Þ calculated for fixed values x1 as a
function of x2 within all the adopted models.
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depend on the assumed proton wave function and that such
a suppression ranges from a factor of 2 in the FF
configuration to 4 in the SS one. On general grounds,
we may expect that the perturbative evolution of dPDFs,
performed at a fixed value of b⊥, will propagate these
correlations, found at low-scale and moderate values of x,
to higher scales and lower values of x. However, their
quantitative impact on observables can be only properly
assessed with dedicated analyses of selected DPS proc-
esses. In closing, we have found that relativistic effects on
dPDFs are sizeable and that they should be always taken
into account in these kinds of model calculations.
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