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We examine the phase shifts and inelasticities associated with the N�ð1440Þ Roper resonance, and we
connect these infinite-volume observables to the finite-volume spectrum of lattice QCD using Hamiltonian
effective field theory. We explore three hypotheses for the structure of the Roper resonance. All three
hypotheses are able to describe the scattering data well. In the third hypothesis the Roper resonance couples
the low-lying bare basis-state component associated with the ground-state nucleon with the virtual meson-
baryon contributions. Here the nontrivial superpositions of the meson-baryon scattering states are
complemented by bare basis-state components, explaining their observation in contemporary lattice
QCD calculations. The merit of this scenario lies in its ability to not only describe the observed nucleon
energy levels in large-volume lattice QCD simulations but also explain why other low-lying states have
been missed in today’s lattice QCD results for the nucleon spectrum.
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I. INTRODUCTION

Understanding the nature and structure of the excited
states of the nucleon is a key contemporary problem in
QCD. The Roper resonance, N�ð1440Þ, was first deduced
from the analysis of πN phase shifts in 1963 [1]. However,
its structure and nature have aroused interest ever since
[2,3]; it is lighter than the first odd-parity nucleon excita-
tion, N�ð1535Þ, and has a significant branching ratio into
Nππ. Although it is recognized as a well-established
resonance (four-star ranking in the Review of Particle
Physics) [4], the properties of the Roper, such as the mass,
width, and decay branching ratios, still suffer large exper-
imental uncertainties [5–7].
On the theoretical side, there are widely varying models

describing the Roper resonance, such as early classical quark
models [8–12], and bag [13] and Skyrme models [14],
dynamically generated by meson-nucleon interactions
[15–20], or a monopole gluonic excitation [21–23].
However, these descriptions do encounter challenges. For
example, predictions of the mass are often too large, or
predictions for its width are too small. Difficulties are also
encountered in explaining its electromagnetic coupling [24].
One expects that lattice QCD simulations will provide

unique information concerning the Roper in a finite
volume [25–32]. Current simulation results near the physi-
cal quark masses on lattices with spatial length L≃ 3 fm
[25,26,29,31] reveal a 2S-like radial excitation [27,28] of
the nucleon near 1800 MeV, much higher than the infinite
volume mass of 1440MeV. The main task of this paper is to

examine the physical phase shifts, inelasticities, and pole
position associated with theN�ð1440ÞRoper resonance and
connect these infinite-volume observables to the finite-
volume spectrum of lattice QCD. We use the formalism of
Hamiltonian effective field theory (HEFT) to achieve this
goal and seek an understanding of the observed finite-
volume spectrum in the context of empirical scattering
observables.
The investigations of recent papers [33,34] have shown

how to relate the eigenvalues of a finite-volume
Hamiltonian matrix to the spectrum of states observed in
lattice QCD. These two papers explored the spectrum of
states with the quantum numbers of the Δð1232Þ resonance
[33] and the ππ-KK̄ system [34] via solutions of the
eigenequation of a finite-volume Hamiltonian matrix.
Both papers showed that this Hamiltonian matrix approach
is equivalent to the well-known Lüscher formulation
[35,36]. Furthermore, Ref. [34] showed that this method
is sufficient for the multichannel scattering case, where the
Lüscher method is more difficult to apply because it needs
the phase shifts and inelastic factors in every channel. In
contrast, the parameters of the Hamiltonian can be con-
strained by the empirical phase shifts and inelasticities.
As a result, the spectrum is easily obtained in HEFT.
This work is a direct application of HEFT in the N1

2
þ

multichannel case, including three channels, πN, πΔ, and
σN. The parameters of the Hamiltonian are fitted to describe
the phase shifts and inelasticities of πN scattering up to
1800MeV.Then, in the finitevolume relevant to latticeQCD,
the energy eigenvalues and their associated eigenvectors
(describing the wave functions of the eigenstates) are
obtained from the Hamiltonian matrix. Both the energy*zhan‑wei.liu@adelaide.edu.au
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eigenvalues and the eigenstate wave functions are important
in understanding the spectrum of theRoper channel obtained
in today’s lattice QCD simulations.
The framework of HEFT is described in Sec. II. We

illustrate how the phase shifts and inelasticities in the
infinite volume of nature are obtained and the manner in
which the finite-volume energy eigenstates are calculated.
The numerical results and associated discussion are pre-
sented in Sec. III. Here we present results for three different
hypotheses for the internal structure of the Roper.
In the first case, the Roper is postulated to have a

triquarklike bare or core component with a mass exceeding
the resonance mass. This component mixes with attractive
virtual meson-baryon contributions, including the πN, πΔ,
and σN channels, to reproduce the observed pole position. In
the second hypothesis, the Roper resonance is dynamically
generated purely from the πN, πΔ, and σN channels. In the
third hypothesis, the Roper resonance is coupled to the low-
lying bare component associated with the ground-state
nucleon. Through coupling with the virtual meson-baryon
contributions, the scattering data and pole position are
reproduced. The merit of this third approach lies in its ability
to not only describe the observed nucleon energy levels in
large-volume lattice QCD simulations but also explain why
other low-lying states have been missed in today’s lattice
QCD results. Finally, a short summary is given in Sec. IV.

II. FRAMEWORK

In this section we provide a short introduction to HEFT
and illustrate how it is used in both infinite and finite
volumes. The Hamiltonian interactions associated with
the N1

2
þ resonance channel are described in Sec. II A.

In Sec. II B the phase shifts and inelasticities are derived
from theHamiltonianmodel, and the pole positions of states
are easily obtained via theT matrix. TheHamiltonian is then
momentum discretized for the finite volume of the lattice in
Sec. II C, and the spectrum of energy eigenstates is obtained
by solving the Hamiltonian eigenequation.

A. Hamiltonian in channels with IðJPÞ= 1
2 ð12þÞ

The main channels strongly coupled to the Roper are
the πN, πΔ, and σN channels. In the rest frame, the
Hamiltonian of the system with IðJPÞ ¼ 1

2
ð1
2
þÞ has the

following energy-independent form [17–19,37],

H ¼ H0 þHI: ð1Þ
The noninteracting part is

H0 ¼
X
B0

jB0im0
BhB0j

þ
X
α

Z
d3~kjαð~kÞi

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α1 þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α2 þ ~k2
q �

hαð~kÞj; ð2Þ

where B0 is the bare baryon (including a bare nucleonN0 or
a bare Roper R0) with mass m0

B, and α denotes the included
channels πN, πΔ, and σN. The masses mα1 and mα2 are the
masses of the meson and baryon in the channel α,
respectively.
The interaction Hamiltonian of this system includes two

parts:

HI ¼ gþ v; ð3Þ

where g describes the vertex interaction between the bare
particle and the two-particle channels α,

g ¼
X
αB0

Z
d3~kfjαð~kÞiG†

α;B0
ðkÞhB0jþjB0iGα;B0

ðkÞhαð~kÞjg;

ð4Þ

while the direct two-to-two particle interaction is defined
by

v ¼
X
α;β

Z
d3~kd3~k0jαð~kÞiVS

α;βðk; k0Þhβð~k0Þj: ð5Þ

For the vertex interaction between the bare baryon and
two-particle channels, the following form is used:

G2
πN;B0

ðkÞ ¼ 3g2B0πN

4π2f2
k2u2πNðkÞ
ωπðkÞ

; ð6Þ

G2
πΔ;B0

ðkÞ ¼ g2B0πΔ

3π2f2
k2u2πΔðkÞ
ωπðkÞ

; ð7Þ

G2
σN;B0

ðkÞ ¼ g2B0σN

4π2
u2σNðkÞ
ωσðkÞ

; ð8Þ

where f ¼ 92.4 MeV is the pion decay constant, ωXðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

X

p
is the corresponding energy, and uαðkÞ is the

regulator [38,39]. We consider the exponential form

uαðkÞ ¼ exp
�
−
k2

Λ2
α

�
; ð9Þ

where Λα is the regularization scale. Although we adopt the
exponential form, our main conclusions are not affected if
other form factors are used. We have explicitly checked the
selection of a dipole form factor uαðkÞ ¼ ð1þ k2=Λ2

αÞ−2.
The phase shifts and inelasticities are fit well, and we obtain
similar finite-volume results for the three scenarios con-
sidered in Sec. III.
For the two-to-two particle interaction, we introduce the

separable potentials for the following five channels:
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VS
πN;πNðk; k0Þ ¼ gSπN

ḠπNðkÞffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p ḠπNðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωπðk0Þ

p ; ð10Þ

VS
πΔ;πΔðk; k0Þ ¼ gSπΔ

ḠπΔðkÞffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p ḠπΔðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωπðk0Þ

p ; ð11Þ

VS
πN;πΔðk; k0Þ ¼ gSπN;πΔ

ḠπNðkÞffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p ḠπΔðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωπðk0Þ

p ; ð12Þ

VS
σN;σNðk; k0Þ ¼ gSσN;σN

ḠσNðkÞffiffiffiffiffiffiffiffiffiffiffiffi
ωσðkÞ

p ḠσNðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωσðk0Þ

p ; ð13Þ

VS
πN;σNðk; k0Þ ¼ gSπN;σN

ḠπNðkÞffiffiffiffiffiffiffiffiffiffiffiffi
ωπðkÞ

p ḠσNðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffi
ωσðk0Þ

p ; ð14Þ

where ḠαðkÞ ¼ Gα;B0
ðkÞ=gB0α.

B. Phase shift and inelasticity

The T matrices for two-particle scattering can be
obtained by solving a three-dimensional reduction of the
coupled-channel Bethe-Salpeter equations for each partial
wave,

Tα;βðk; k0;EÞ ¼ Vα;βðk; k0;EÞ þ
X
γ

Z
q2dq

×Vα;γðk;q;EÞ
1

E−ωγðqÞ þ iϵ
Tγ;βðq;k0;EÞ;

ð15Þ
where ωαðkÞ is the center-of-mass energy of channel α,

ωαðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α1 þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α2 þ k2
q

; ð16Þ

and the coupled-channel potential can be calculated from
the interaction Hamiltonian

Vα;βðk; k0Þ ¼
X
B0

G†
α;B0

ðkÞ 1

E −m0
B
Gβ;B0

ðk0Þ

þ VS
α;βðk; k0Þ: ð17Þ

With the normalization hαð~kÞjβð~k0Þi ¼ δα;βδð~k − ~k0Þ, the S
matrix for πN → πN is related to the T matrix by

SπNðEcmÞ ¼ 1 − 2iπ
ωπðkcmÞωNðkcmÞ

Ecm
kcm

× TπN;πNðkcm; kcm;EcmÞ; ð18Þ

where kcm satisfies the on-shell condition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N þ k2cm
p

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2cm
p

¼ Ecm. One can obtain phase shifts δ and
inelasticities η with SπNðEcmÞ ¼ η expð2iδÞ.
In addition to the phase shifts and inelasticities, the pole

positions of bound states or resonances can also be
obtained by searching for the poles of the T matrix.

C. Finite-volume matrix Hamiltonian model

We present the formalism of the finite-volume matrix
Hamiltonian model by following Refs. [33,40]. The
Hamiltonian H at finite volume is the momentum
discretization of the Hamiltonian H at infinite volume.
It can also be written as a sum of free and interacting
Hamiltonians H ¼ H0 þHI.
In the center-of-mass frame, the meson and the baryon in

the two-particle states carry the same magnitude of
momentum with back-to-back orientation, while the bare
baryon is at rest. In the finite periodic volume of the lattice
with length L, the momentum of a particle is restricted
to kn ¼ 2π

ffiffiffi
n

p
=L, with n ¼ n2x þ n2y þ n2z such that n ¼

0; 1; 2;…
In the finite volume, it is convenient to express the

Hamiltonian H as a matrix. Note that H0 is a diagonal
matrix

H0 ¼ diagfm0
B;ωσNðk0Þ;ωπNðk1Þ;ωπΔðk1Þ;ωσNðk1Þ;…g:

ð19Þ

The corresponding symmetric matrix HI is

HI ¼

0
BBBBBBBBBBBBB@

0 GσN;B0
ðk0Þ GπN;B0

ðk1Þ GπΔ;B0
ðk1Þ GσN;B0

ðk1Þ GπN;B0
ðk2Þ …

GσN;B0
ðk0Þ VS

σN;σNðk0; k0Þ VS
σN;πNðk0; k1Þ VS

σN;πΔðk0; k1Þ VS
σN;σNðk0; k1Þ VS

σN;πNðk0; k2Þ …

GπN;B0
ðk1Þ VS

πN;σNðk1; k0Þ VS
πN;πNðk1; k1Þ VS

πN;πΔðk1; k1Þ VS
πN;σNðk1; k1Þ VS

πN;πNðk1; k2Þ …

GπΔ;B0
ðk1Þ VS

πΔ;σNðk1; k0Þ VS
πΔ;πNðk1; k1Þ VS

πΔ;πΔðk1; k1Þ VS
πΔ;σNðk1; k1Þ VS

πN;πΔðk1; k2Þ …

GσN;B0
ðk1Þ VS

σN;σNðk1; k0Þ VS
σN;πNðk1; k1Þ VS

σN;πΔðk1; k1Þ VS
σN;σNðk1; k1Þ VS

σN;πNðk1; k2Þ …

GπN;B0
ðk2Þ VS

πN;σNðk2; k0Þ VS
πN;πNðk2; k1Þ VS

πN;πΔðk2; k1Þ VS
πN;σNðk2; k1Þ VS

πN;πNðk2; k2Þ …

..

. ..
. ..

. ..
. ..

. ..
. . .

.

1
CCCCCCCCCCCCCA

;

ð20Þ

HAMILTONIAN EFFECTIVE FIELD THEORY STUDY OF … PHYSICAL REVIEW D 95, 034034 (2017)

034034-3



where

Gα;B0
ðknÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞ
4π

r �
2π

L

�
3=2

Gα;B0
ðknÞ; ð21Þ

VS
α;βðkn; kmÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ðnÞC3ðmÞp

4π

�
2π

L

�
3

VS
α;βðkn; kmÞ: ð22Þ

Here C3ðnÞ represents the degeneracy factor for summing
the squares of three integers to equal n.
One can obtain the eigenstate energy levels on the lattice

and analyze the corresponding eigenvector wave functions
describing the constituents of the eigenstates with the above
Hamiltonian H.
In addition to the results at physical pion mass, we can

also extend the formalism to unphysical pion masses. Using
m2

π as a measure of the light quark masses, we consider the
variation of the bare mass and σ-meson mass as

m0
Bðm2

πÞ ¼ m0
Bjphy þ α0Bðm2

π −m2
πjphyÞ; ð23Þ

m2
σðm2

πÞ ¼ m2
σjphy þ α0σðm2

π −m2
πjphyÞ; ð24Þ

where the slope parameter α0B is constrained by lattice QCD
data from the CSSM. In the large quark mass regime where
constituent quark degrees of freedom become relevant, one
expects mσ ∼mσjphy þ ð2=3Þα0Nðm2

π −m2
πjphyÞ [41] provid-

ing α0σ ≃ 4
3
mσjphyα0N . The nucleon and Delta masses away

from the physical point,mNðm2
πÞ andmΔðm2

πÞ, are obtained
via linear interpolation between the corresponding data of
lattice QCD. With α0N ¼ 1.00 GeV−1, α0σ ≃ 0.67. In the
following results, we find that the σN channel couples
weakly, and therefore our conclusions are not sensitive to
this value.
For the other parameters constrained by experimental

data, it is difficult to predict their quark-mass dependence.
However, Refs. [33,42] show examples where lattice data
can be described well without a quark-mass dependence for
the couplings. A similar approach has been employed
successfully in chiral effective field theory, where one
expands in small momenta and masses about the chiral
limit. Using fixed couplings, lattice data are described over
a wide range of pion masses. In any event, the lightest pion
mass considered herein is very close to the physical pion
mass. The couplings should not change significantly over
this small change in pion mass.

III. NUMERICAL RESULTS AND DISCUSSION

A. Fitting the phase shift and inelasticity

Here we examine the phase shifts and inelasticities
associated with the N�ð1440Þ Roper resonance and connect
these infinite-volume observables to the finite-volume
spectrum of lattice QCD using HEFT. It is natural to think

that the Roper resonance might be dominated by a bare
state dressed by meson-baryon states, like the nucleon, but
some authors also propose that the Roper may be a
dynamically generated molecular state arising purely from
multiparticle meson-baryon interactions. These consider-
ations lead us to explore three hypotheses for the structure
of the Roper resonance.
In the first case, the Roper is postulated to have a

triquarklike bare or core component with a mass exceeding
the resonance mass. This component mixes with virtual
meson-baryon contributions, including the πN, πΔ, and σN
channels, to reproduce the observed pole position. We refer
to this first scenario (scenario I) as the “bare Roper”
scenario.
In the second hypothesis, the Roper resonance is

dynamically generated purely from the πN, πΔ, and σN
channels. We refer to this second scenario (scenario II) as
the “without bare baryon” scenario.
In the third hypothesis, the Roper resonance is composed

of the low-lying bare component associated with the
ground-state nucleon. Through coupling with the virtual
meson-baryon contributions, the scattering data and pole
position are reproduced. We refer to this third scenario
(scenario III) as the “bare nucleon” scenario.
We fit the experimental data up to center-of-mass

energies of 1800 MeV. Since the σ meson has a large
width and the NðππÞS-wave plays an important role for the
inelasticities of the πN channel up to 1450 MeV, we fix
the σ mass to a small value of 350 MeV to describe the
threshold behavior well. In this way we have included
the threshold effects of the NðππÞS-wave channel in an
effective manner. The contributions of both NðππÞS-wave
and Nσ are included in a single effective channel.
Similar difficulties are encountered in lattice QCD. Here

one needs to include both five-quark momentum-projected
Nσ and seven-quark momentum-projected Nππ interpolat-
ing fields to separate the NðππÞS-wave and Nσ contribu-
tions. In the absence of the seven-quark interpolating fields,
the Nππ and Nσ contributions will be treated in a similar
effective manner, where the combined contributions are
treated as a single state.
The fitted results for the phase shifts and inelasticities are

plotted in Fig. 1, for the three aforementioned scenarios.
The best-fit parameters and the pole positions for each
scenario are presented in Table I. It is interesting to observe
that a pole corresponding to the Roper resonance is
generated in all three scenarios, whether a bare state is
introduced or not. While the imaginary part in scenarios II
and III deviates from the Review of Particle Physics [4], we
note the model is in agreement with the phase shift and
inelasticity data.
With the parameters of the interactions constrained by

the experimental phase shifts and inelasticities, one can
proceed to compare the predictions of the matrix
Hamiltonian model in a finite volume with results from
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lattice QCD. Figure 2 summarizes world lattice QCD
results [43] for the positive parity nucleon spectrum
[25,26,29,31] for volumes with L≃ 2.9 fm. Here the
statistics of the CSSM results [25] have been increased
through the consideration of approximately 29,472 propa-
gators on the PACS-CS configurations [44]. The 2S orbital
structure of the CSSM’s first excited states of the nucleon
reported in Fig. 2 was established in Refs. [27,28].
It may be interesting to note that the CSSM

Collaboration performed a rather exhaustive search for a
low-lying Roper-like state in Ref. [26]. There, a broad
range of smeared-source interpolators were considered in
the hope that one could form a correlation matrix that
would reveal a low-lying Roper-like state. Instead, one
found that the first excitation energy was insensitive to the
basis of interpolating fields explored, and no state
approaching 1440 MeV could be found.

It is important to note that these lattice QCD results have
been obtained through the use of local three-quark inter-
polating fields. This approach will make it difficult to
access multiparticle scattering states. If there is little
attraction to localize the multiparticle state in a finite
volume V, then the overlap of the interpolator is volume
suppressed by a factor of 1=V; i.e., the probability of
finding the second hadron at the position of the first is 1=V.
As a consequence, it may be that only the states composed

TABLE I. Best-fit parameters and resultant pole positions in the
three scenarios: I, the system with the bare Roper; II, the system
without a bare state; and III, the system with a bare nucleon.
Underlined parameters were fixed in the fitting of that scenario.
The experimental pole position for the Roper resonance is
ð1365� 15Þ − ð95� 15Þi MeV [4].

Parameter I II III

gSπN 0.161 0.489 0.213
gSπΔ −0.046 −1.183 −1.633
gSπN;πΔ 0.006 −1.008 −0.640
gSπN;σN 0 2.176 2.401

gSσN 0 9.898 9.343
gB0πN 0.640 0 −0.586
gB0πΔ 1.044 0 1.012
gB0σN 2.172 0 2.739
m0

B=GeV 2.033 ∞ 1.170
ΛπN=GeV 0.700 0.562 0.562
ΛπΔ=GeV 0.700 0.654 0.654
ΛσN=GeV 0.700 1.353 1.353
Pole (MeV) 1380 − 87i 1361 − 39i 1357 − 36i

FIG. 2. The lowest-lying IðJPÞ ¼ 1
2
ð1
2
þÞ baryon states observed

in lattice QCD simulations with length L≃ 2.90 fm, as a
function of the input quark mass (∝ m2

π). The data with filled
symbols are from the CSSM group [25,26,31] updated to high
statistics herein. Those with hollow symbols are from the Cyprus
group [29]. The noninteracting energies of the low-lying two-
particle meson-baryon channels for this lattice are also illustrated.

FIG. 1. Phase shifts (upper) and inelasticities (lower) for πN
scattering with IðJPÞ ¼ 1

2
ð1
2
þÞ. The dot-dashed, dotted, and

dashed lines represent our best fits for scenario I with the bare
Roper, scenario II without a bare baryon, and scenario III with the
bare nucleon, respectively.
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of a significant bare-state component in the Hamiltonian
model will be excited by the three-quark interpolating
fields. We will examine this possibility in detail in the
following.
The noninteracting energies of the two-particle meson-

baryon channels considered herein for L ¼ 2.90 fm are
also illustrated in Fig. 2. The predictions of the three
scenarios for the finite-volume spectra of lattice QCD are
presented in Secs. III B–III D.

B. System with the bare Roper basis state

In the traditional quark model, the nucleon is thought to
be made up of three constituent quarks with small five-
quark components [9]. In the view of effective field theory,
the nucleon is a mixed state of a bare nucleon component,
dressed by attractive πN, πΔ, etc. components, with the
bare component dominating. As a simple analogy, the
Roper is popularly treated as a state dominated by a bare
Roper component with a mass above the Roper resonance
position, dressed by attractive πN, πΔ, etc. components.
The bare Roper component is thought to coincide with a
three-quark core, while other components like πN contain
states with at least five quarks.
Our first scenario follows this picture. In this scenario the

Roper is composed of a large-mass bare Roper state dressed
by πN, πΔ, and σN channels. Fits to the phase shifts and
inelasticities in this model are plotted as the red dot-dashed

lines in Fig. 1, and the associated parameters are listed in
the column labeled I in Table I. In this fit, two of the
separable potentials are removed via gSσN;σN ¼ 0 and
gSπN;σN ¼ 0 because their effect on the fits is accommodated
by other interactions.
These fit parameters enable the determination of the

eigenenergy spectra in a finite volume at the physical pion
mass. To obtain the spectrum at higher quark masses, we
proceed to determine the quark mass dependence of the
bare mass, m0

Rðm2
πÞ, governed by the slope parameter α0R.

To do this, we consider the lowest-lying excitation
energies observed by the CSSM at the largest two quark
masses considered, illustrated by the filled blue-square
markers in Fig. 2. We assume that these lattice results,
obtained with three-quark operators, correspond to
Hamiltonian-model states in which the bare state plays
an important role. The parameter α0R is then constrained
via a standard χ2 measure between the first Hamiltonian-
model excitation with a significant bare state eigenvector
component, the aforementioned lattice QCD results. The
remainder of the spectra are then a prediction. Our best fit
gives α0R ¼ 2.14 GeV−1.
The energy levels of the Hamiltonian model for the

lattice with L ¼ 2.90 fm are illustrated in Fig. 3. In this
case, the lowest-lying excitation in the Hamiltonian model
is almost pure σN. The second excitation has a bare state

FIG. 3. The pion mass dependence of the L ¼ 2.90 fm finite-
volume energy eigenstates for the Hamiltonian-model scenario
with a bare Roper basis state. The different line types and colors
used in illustrating the energy levels indicate the strength of the
bare basis state in the Hamiltonian-model eigenvector describing
the composition of the state. The thick-solid (red), dashed (blue),
and dotted (green) lines correspond to the states having the first,
second, and third largest bare-state contributions. Since three-
quark operators are used to excite the states observed in lattice
QCD, we label these states as the first, second, and third most
probable states to be seen in the lattice QCD simulations.

FIG. 4. The fraction of the bare Roper basis state, jm0i, in the
Hamiltonian energy eigenstates jEii for the three states having
the largest bare-state contribution. States are labeled by the
energy-eigenstate integers i, and these state labels are indicated
next to the curves. For example, at light quark masses, the second
energy eigenstate has the largest bare Roper component, and
therefore the second excitation energy in Fig. 3 is highlighted
with a thick red line. The dark-green dots plotted at y ¼ 0.25
indicate the positions of the five quark masses considered in the
CSSM results. While the line type and color scheme match that of
Fig. 3, the thick and thin lines alternate to indicate a change in the
energy eigenstate associated with that value.
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component exceeding 10%, and therefore this state is
constrained to the lowest-lying excitation energies at the
largest two quark masses considered, illustrated by the
filled blue-square markers in Fig. 2, in determining α0R.
The (colored) thick-solid, dashed, and dotted line types

of the Hamiltonian-model eigenstates in Fig. 3 reflect the
magnitude of the bare-state contribution to the eigenstates.
Denoting jEii as the ith energy eigenstate from the matrix
Hamiltonianmodel, the structure of jEii is obtained through
the overlap of the eigenvector with each of the basis states.
For example, the proportion of the bare state jm0i in jEii is
jhm0jEiij2. For the meson-baryon basis states, we sum over
all the back-to-back momenta considered when reporting
their contributions to the energy eigenstates.
Since three-quark operators are used to excite the states

observed in lattice QCD, Hamiltonian-model states with a
large proportion of the bare Roper basis state are more
likely to be observed in the lattice QCD calculations. To
identify these states, we seek the first three eigenstates,
jEii, among the first 20 lowest-lying excitations, which
contain the largest bare Roper basis-state contributions.
This is done at each pion mass considered in generating the
curves. We label these states in Fig. 3 as the first, second,
and third most probable states to be seen in the lattice QCD
simulations.
Figure 4 reports the bare Roper fraction, jhm0jEiij2, for

these three states. The integer next to each section of the
curves indicates the ith energy eigenstate associated with
the fraction plotted. We see that the bare Roper basis-state
strength is spread across many energy eigenstates. None of
the first 20 eigenstates contains more than 30% of the state
in the bare Roper basis state. This situation contrasts that
for the nucleon ground state, where more than 80% of the
energy eigenstate is composed of the bare-nucleon
basis state.
To further illustrate the composition of the energy

eigenstates created in this scenario, Fig. 5 reports the
fractions of the bare-state and meson-baryon channels
composing the energy eigenvectors as a function of the
squared pion mass for the first four low-lying states in the
finite volume with L ¼ 2.90 fm. The first panel, Fig. 5(a),
shows that the first state is nearly a pure jσNi scattering
state associated with NðππÞS-wave contributions.
Figure 5(b) reveals that the second lowest state is

dominated by the jπNi basis state, as argued in the
original publications reporting this state [25,26]. Away
from the avoided level crossing at the largest quark mass
considered, the state is typically 60% jπNi, 20% bare
Roper, 10% jπΔi, and 10% jσNi. The presence of a
significant bare-state contribution explains the ability of
the three-quark interpolating fields used in the lattice
QCD calculations to excite this state. Similarly, the
absence of a significant bare-state contribution to the first
excitation explains the omission of this state in present-
day lattice QCD simulations.

Of particular note is the prediction of a very significant
bare Roper contribution to the second energy eigenstate at
light quark masses. The bare-state contribution exceeds
15% for the three lightest quark masses considered by the
CSSM, i.e., 0 ≤ m2

π ≤ 0.15 GeV2. Therefore, this scenario
predicts that these low-lying states should be readily
observed in the lattice QCD calculations. However, neither
the CSSM nor the Cyprus groups have observed these
states. Therefore, this scenario in inconsistent with lattice
QCD. Thus, the popular notion of the Roper resonance
being described by a large bare Roper mass dressed by
attractive meson-baryon scattering channels is not sup-
ported by lattice QCD.

C. System without a bare-baryon basis state

In light of the discrepancy between the first scenario and
the results of lattice QCD, we proceed to explore the
possibility that Roper resonance is a pure molecular state.
In this scenario, the Roper is assumed to be void of any
triquark core, and therefore we do not introduce a bare-
baryon basis state. If this model can describe the exper-
imental data, then it can also explain the void of low-lying
states in lattice QCD, as the overlap of three-quark
operators with multiparticle states is volume suppressed.

(a)
 

(b)
 

(c) (d)

FIG. 5. The pion-mass evolution of the Hamiltonian eigenvec-
tor components for the scenario with the bare Roper on the lattice
volume with L ¼ 2.90 fm. The fractions of the bare state,

jhm0jEiij2, and meson-baryon channels,
P

~kjhαð~kÞjEiij2, com-
posing the energy eigenvectors are illustrated for the first four
states observed in the model. Here all momenta for a particular
meson-baryon channel have been summed to report the relative
importance of the α ¼ m0, πN, πΔ, and σN channels. The (green)
dots plotted horizontally at y ¼ 0.45 indicate the positions of the
five pion masses considered by the CSSM.
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The fitted phase shifts and inelasticities are plotted as
dotted lines in Fig. 1, indicating that the scattering data can
be fit in the absence of a bare-baryon contribution. The
corresponding fit parameters are reported in the middle
column of Table I. Figure 6 displays the energy levels in the
finite-volume lattice. The high density of eigenstate levels
from the Hamiltonian model provides easy overlap with
the lattice QCD results.
The fractional meson-baryon components for the eight

lowest-lying eigenstates of this scenario are plotted in
Fig. 7. Again, the lowest-lying state is predominantly
jσNi. Noting that the second and third eigenstates are
associated with the low-lying lattice QCD results at large
pion masses, Figs. 7(b) and 7(c) indicate that these states
are dominated by jπNi and jσNi basis states. After an
avoided level crossing at large pion masses, the composi-
tion of these two states is exchanged.
The fifth and sixth states of Figs. 7(e) and 7(f) are more

interesting. At light pion masses these states are a nontrivial
superposition of all three basis states, jπNi, jπΔi, and jσNi.
These states appear to be more than weakly mixed
scattering states, and it is interesting that these are the
levels consistent with the lattice QCD results at light pion
masses.
While only a few of the eigenstates illustrated in Fig. 6

have been seen on the lattice, one should, in principle, be
able to observe all of these states in future lattice QCD
calculations. The key is to move beyond local three-quark
operators. Five-quark operators [31] have successfully
revealed low-lying scattering states in the odd-parity
nucleon channel that were missed with three-quark oper-
ators. Moreover, five-quark multiparticle operators where
the momentum of both the meson and the baryon are
projected at the source are particularly efficient at exciting
the lowest-lying scattering states [45]. Future lattice QCD

simulations will draw on these techniques to fill in the
missing states predicted by our Hamiltonian model.
In summary, scenario II describes the experimental

scattering data and also the lattice QCD results as nontrivial
mixings of the basis states. More trivial mixings of the basis
states are not seen on the large-volume lattice simulations
because the overlap of weakly mixed two-particle scatter-
ing states with local three-quark operators is suppressed by
the spatial volume of the lattice.

FIG. 6. The pion mass dependence of the L ¼ 2.90 fm finite-
volume energy eigenstates for the Hamiltonian-model scenario
without a bare-baryon basis state.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 7. The pion-mass evolution of the Hamiltonian eigenvec-
tor components for the first eight states observed in the scenario
without a bare-baryon state on the lattice volume with
L ¼ 2.90 fm. The fifth and sixth states display a nontrivial
superposition of all three basis states, jπNi, jπΔi, and jσNi at
light pion masses.
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D. System with a bare mucleon basis state

In light of the success of our second scenario describing
the Roper resonance as a pure molecular meson-baryon
state, we proceed to a third scenario in which these
channels have an opportunity to mix with the bare-baryon
state associated with the ground-state nucleon. There is
a priori no reason to omit such couplings.
We find fits to the phase shifts and inelasticities to be

rather insensitive to the couplings and mass of the bare
nucleon state jN0i. Thus, to constrain the couplings and the
bare mass, we fit the CSSM lattice QCD results simulta-
neously with the experimental phase shifts and inelastic-
ities. We restrict the cutoffsΛα of the exponential regulators
to be the same as those in the second scenario. In addition,
we restrict the nucleon pole to be 939 MeV at infinite
volume. We plot the best-fit results for the scattering data as
dashed lines in Fig. 1 and summarize the parameters in the
right-hand column of Table I labeled III.
To obtain the eigenenergy spectrum at finite volume, we

need the nucleon mass as a function of the squared pion
mass, mNðm2

πÞ. In the previous two scenarios, we used a
linear interpolation between the nucleon lattice results
from the CSSM. Here, we obtain mNðm2

πÞ via iteration,
where the lowest eigenenergy of the Hamiltonian-model
output is used as the input for mNðm2

πÞ in the next
iteration. Convergence is obtained without difficulty.
The slope of the bare nucleon mass as a function of m2

π

is found to be

α0N ¼ 0.995 GeV−1: ð25Þ

The energy levels predicted by the Hamiltonian model
and the proportion of the bare nucleon basis state in the
excited states are illustrated in Figs. 8 and 9, respectively.
The CSSM ground-state nucleon data are fit well by the
Hamiltonian model, and those from the Cyprus group are
clustered near the ground-state curve in Fig. 8. We obtain
the nucleon mass on the L≃ 2.90 fm volume at the
physical pion mass of 0.140 GeV to be

mNðm2
πjphyÞL≃2.90 fm ¼ 0.957 GeV; ð26Þ

revealing that the finite volume of the lattice increases the
nucleon mass by nearly 20 MeV. The nucleon ground state
on the 3-fm lattice contains 80%–90% of the bare nucleon
basis state.
As in the first scenario, we anticipate that excited states

having a large bare-state component will have a more
significant coupling with the three-quark operators used to
excite the states in contemporary lattice QCD calculations.
Figure 9 identifies excited states having the largest bare-
state components and thus the most probable states to be
seen on the lattice.
For example, at the lightest quark mass, the sixth energy

eigenstate has the largest bare-nucleon component and is the
most likely state to be observed in current lattice QCD
calculations. Correspondingly, the sixth excitation energy

FIG. 8. The pion mass dependence of the L ¼ 2.90 fm finite-
volume energy eigenstates for the Hamiltonian-model scenario
with a bare nucleon basis state. As in Fig. 3, the different line
types and colors used in illustrating the energy levels indicate the
strength of the bare basis state in the Hamiltonian-model
eigenvector. The thick-solid (red), dashed (blue), and dotted
(green) lines correspond to the states having the first, second,
and third largest bare-state contributions and therefore represent
the most probable states to be observed in the lattice QCD
simulations.

FIG. 9. The fraction of the bare nucleon basis state, jm0i, in the
Hamiltonian energy eigenstates jEii for the three states having
the largest bare-state contribution. As in Fig. 4, states are labeled
by the energy-eigenstate integers i. The dark-green dots plotted at
y ¼ 0.015 indicate the positions of the five quark masses
considered in the CSSM lattice results. While the line type
and color scheme matches that of Fig. 8, the thick and thin lines
alternate to indicate a change in the energy eigenstate associated
with that value.
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in Fig. 8 is highlighted with a thick red line. Both the CSSM
and Cyprus lattice calculations produce an excited state
consistent with the sixth energy level. Remarkably, the
second most probable state to be seen in lattice QCD
simulations lies even higher in energy at approximately
2 GeV.
For m2

π lying in the range 0.07–0.27 GeV2, the seventh
eigenstate is predicted to be the most easily seen with the
proportion of bare nucleon basis state at 2.5%–5%. The
second most probable state to be seen in this regime is state
10 at 2.1 to 2.3 GeV. For m2

π > 0.27 GeV2 states 7 and 10
contain roughly equal amounts of bare state contributions.
The lattice QCD results are consistent with the lower-lying
state of these two most probable states to be seen in lattice
QCD. We do not analyze the lattice QCD results near the
tenth eigenenergy level, as this energy regime surpasses the
realm of our model constraints.
While the lattice QCD simulations reveal a low-lying

state at the largest two quark masses considered (blue filled
squares in Fig. 8), the trend does not continue into the
lighter quark mass regime. Figure 9 provides an explan-
ation for this observation. For the second and third lightest
quark masses at m2

π ≃ 0.08 and 0.15 GeV2, the bare-state
contribution to the low-lying (green curve) state is 3 to 5
times smaller than that for the states having the largest
contribution. This reduced bare-state component is
expected to coincide with a reduced coupling of the state
to three-quark operators. Thus, a possible explanation for
the omission of the lower-lying state at light quark masses
in current lattice QCD simulations is that its relatively small
coupling to three-quark interpolators is insufficient for it to
be seen in the correlation matrix analysis with current levels
of statistical accuracy.
The components of the eigenstate vectors are illus-

trated for this scenario in Fig. 10. At the physical pion
mass, Fig. 10(a) indicates the ground-state nucleon is
80% bare nucleon dressed with 20% meson-baryon states
spread evenly over the three meson-baryon channels
considered.
As this analysis now includes the ground-state nucleon

as the first state, the state labels have changed in scenario
III, being one larger than in scenarios I and II. Once again
the first excitation is predominantly jσNi.
Noting that the second and third excitations (states 3

and 4) are in the realm of the low-lying lattice QCD results
at large pion masses, Figs. 10(c) and 10(d) indicate that
these states are dominated by jπNi and jσNi basis states.
As in scenario II an avoided level crossing at large pion
masses causes the composition of these two states to be
exchanged. However, state 3 has the largest bare state
component at the two largest quark masses considered,
and it is this state that has most likely been produced in the
lattice simulations.
The next excitation, state 5, resembles state 4 of scenario

II being predominantly jπNi.

The sixth and seventh eigenstates (corresponding to the
fifth and sixth eigenstates in scenario II) continue to show a
nontrivial mixing of the meson-baryon basis states near the
lightest two quark masses considered by the CSSM. It is
precisely in this region of nontrivial mixing that the bare
state component becomes manifest. At the lightest quark
mass, Fig. 10(f) illustrates that the sixth eigenstate is 50%
jπNi, 45% jπΔi, and 5% bare nucleon. At the second
lightest quark mass considered by the CSSM, the seventh

(a) (b)

(c) (d)

(g) (h)

(f)

FIG. 10. The pion-mass evolution of the Hamiltonian eigen-
vector components for the first eight states (including the ground
state) observed in the scenario with a bare nucleon basis state on
the lattice volume with L ¼ 2.90 fm. Of all the excited states, the
sixth and seventh states have the largest bare-state component at
light quark masses. This component is accompanied by a non-
trivial superposition of meson-baryon basis states.
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state in Fig. 10(g) has the largest bare-state component with
40% jπΔi, 40% jσNi, 15% jπNi, and 5% bare nucleon. It is
precisely these excited states having the largest bare state
component that correspond to the states seen in lattice QCD
simulations at light quark masses.

E. Comparison of the three scenarios

We have studied the phase shifts and inelasticities at
infinite volume and the finite-volume eigenstates on the
lattice in three scenarios—a bare Roper basis state in the
first, no bare-baryon basis state in the second, and a bare
nucleon basis state in the third scenario. As illustrated in
Fig. 1, there are differences in the phase shifts and
inelasticities among the three scenarios. Within the con-
straints of these models, it is not possible to find sets of fit
parameters which can make the phase shifts and inelastic-
ities of the three scenarios overlap everywhere. Moreover,
the fits cannot give the same phase shifts and inelasticities
in each of the πN, πΔ, and σN channels. This will directly
lead to different eigenenergy spectra on the lattice, based on
Lüscher’s theorem.
In performing a direct comparison of the energy levels

predicted in our three scenarios, the pion mass dependence
of the ground-state nucleon mass mNðm2

πÞ obtained in
scenario III is used in all three scenarios. The energy levels
for the L ¼ 2.90 fm lattice are compared in Fig. 11.
We can see a significant difference between cases with

and without the bare Roper basis state in Fig. 11. However,
differences between scenarios III and II, with and without a
bare nucleon basis state, respectively, are subtle. The main
feature provided by the inclusion of a bare nucleon basis
state is a clear understanding of the states to be observed in
contemporary lattice QCD calculations.

F. Results for a volume with L≃ 1.98 fm

In this section, we consider the smaller spatial lattice
volume with L≃ 1.98 fm considered by the Hadron
Spectrum Collaboration (HSC) [30]. Drawing on the fit
results to the experimental data summarized in Table I, one
can proceed to explore the predictions of the Hamiltonian
model on this very small volume lattice.
First we consider scenario I with the bare Roper basis

state. The finite-volume spectrum of states is compared
with the HSC results in Fig. 12(a), while the proportion of
the bare Roper basis state is illustrated in Fig. 12(b). The
HSC results sit near the energy levels of the matrix
Hamiltonian model. However, the same problem encoun-
tered in the L ¼ 2.90 fm volume case appears here. The
Hamiltonian model predicts states approaching 1.6 GeV in
the light quark-mass regime having a bare state component
exceeding 35% of the eigenvector. Such a state should be
easy to excite with the three-quark operators considered by
the HSC. The absence of such a state at the two lightest
quark masses considered by the HSC in the mass range
1.85 to 2.00 GeV provides further evidence that the Roper
resonance is not composed of a bare basis state with
mass ≃2.0 GeV.
As for the L ¼ 2.90 fm results, there is little difference

in the finite volume spectra of scenarios II and III, and
therefore we proceed directly to an illustration of the
results for scenario III. The results with the bare nucleon
basis state in the finite volume of L≃ 1.98 fm are
presented in Fig. 13. This time the HSC results do not
coincide with the finite-volume energy levels of the
Hamiltonian model illustrated in Fig. 13(a). There are
two finite-volume based concerns that can contribute to the
origin of this discrepancy.
One concern is the interference of the coarse infrared

momentum discretization induced by the small periodic

FIG. 11. Comparison of the excited-state energy levels for the
three scenarios at finite volume with L ¼ 2.90 fm. All scenarios
use mNðm2

πÞ obtained in the third scenario.

(a) (b)

FIG. 12. The pion mass dependence of the L ¼ 1.98 fm finite-
volume energy eigenstates (left) and the fraction of the bare
Roper basis state, jm0i, in the Hamiltonian energy eigenstates
jEii for the three states having the largest bare-state contribution
(right) for the Hamiltonian-model scenario with a bare Roper
basis state. The spectrum results with filled symbols (left) are
from the Hadron Spectrum Collaboration [30]. The dark-green
dots plotted at y ¼ 0.30 (right) indicate the positions of the three
quark masses considered in the HSC results. The line types and
color schemes match those of Figs. 3 and 4.
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volume and the ultraviolet regulators of the loop integrals
constrained by the experimental phase shifts and inelas-
ticities of Fig. 1. For P-wave meson-baryon dressings, the
zero-momentum contribution is absent and the finite
volume acts as an infrared regulator. The form factors in
the third scenario are constrained by experiment to have
small volume such that even the first momenta available on
the small value are already suppressed, almost rendering
the meson-baryon dressings negligible.
For example, for a finite volume with L ¼ 2 fm and

ki ¼ 2π=L,

uIIIπNðk1Þ ¼ 0.296; uIIIπNðk2Þ ¼ 0.088;

uIIIπNðk3Þ ¼ 0.026; ð27Þ

in scenario III. These form factors are small compared to
those of the first scenario on the same volume,

uIπNðk1Þ ¼ 0.456; uIπNðk2Þ ¼ 0.208;

uIπNðk3Þ ¼ 0.095: ð28Þ

They are also significantly smaller than those of the third
scenario with L ¼ 3 fm, where

uIIIπNðk1Þ ¼ 0.582; uIIIπNðk2Þ ¼ 0.339;

uIIIπNðk3Þ ¼ 0.197: ð29Þ

Another concern is that the effects of the small finite
volume may induce distortions that cannot be accounted for
by meson-baryon dressings alone. Figure 14, reproduced
from Ref. [28], illustrates the influence of the periodic
volume of the d-quark probability distribution in the first
excited state of the nucleon. This lattice QCD calculation
was carried out on lattice volumes with L≃ 2.90 fm. Even
at large quark masses corresponding to m2

π ¼ 0.27 GeV2,
distortions in the spherically symmetric 2S radial wave
function are readily observed. They become even more

severe as the value of the isovolume cut is lowered and the
tails of the wave function are considered [28]. Therefore,
we caution that an even smaller volume with L≃ 1.98 fm
is likely to have finite volume distortions that cannot be
described by effective field theory alone.

IV. CONCLUSION

We have studied the infinite-volume phase shifts and
inelasticities for scattering states with IðJPÞ ¼ 1

2
ð1
2
þÞ in

effective field theory. Through the consideration of a
finite-volume Hamiltonian matrix, we have explored the
corresponding finite-volume spectra of states relevant to
contemporary lattice QCD calculations of the spectrum.
In doing so we have explored three scenarios for the

underlying theory describing the available data. All three
scenarios are able to describe the scattering data well, and
all three create a pole position for Roper similar to that
reported by the PDG. However, the finite-volume spectrum
predicted by the scenarios has important differences.
In the first case, the Roper is postulated to have a

triquarklike bare or core component with a mass exceeding
the resonance mass. This component mixes with attractive
virtual meson-baryon contributions, including the πN, πΔ,
and σN channels, to reproduce the observed pole position.
With the advent of new insight from the Hamiltonian-

model and lattice QCD results, we have been able to
discard this popular description of including a bare Roper
basis state. This model predicts a low-lying state in the
finite volume having a very large bare-state component that
makes it accessible to current lattice QCD techniques. The
absence of this state in today’s lattice QCD calculations
exposes an inconsistency in the model predictions.
In the second hypothesis, the Roper resonance is

dynamically generated purely from the πN, πΔ, and σN
channels in the absence of a bare-baryon basis state. This
scenario identifies the lattice QCD results as nontrivial

(a) (b)

FIG. 13. The pion mass dependence of the L ¼ 1.98 fm finite-
volume energy eigenstates (left) and the fraction of the bare
Roper basis state, jm0i, in the Hamiltonian energy eigenstates
jEii for the three states having the largest bare-state contribution
(right) for the Hamiltonian-model scenario with a bare nucleon
basis state. The line types, symbols, and color schemes are as in
Figs. 12(a) and 12(b).

FIG. 14. Lattice QCD calculation of the d-quark probability
distribution in the first excited state of the proton, reproduced
from Ref. [28]. The CSSM’s lattice calculations at the (left)
lightest quark mass (state 6 in scenario III) and (right) second
heaviest quark mass (state 3 in scenario III) reveal the effect of the
finite periodic volume of the lattice with L≃ 2.90 fm. Here, two
u quarks are fixed at the origin at the center of the plot, and the
lattice spacing is approximately 0.09 fm.
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superpositions of the basis states that have a qualitative
difference from the weak mixing of basis states in the
scattering channels. However, given the presence of a bare
state associated with the ground-state nucleon, we proceed
to consider a third scenario incorporating the presence of
this basis state.
In the third scenario, the Roper resonance is composed of

the low-lying bare basis component associated with the
ground-state nucleon. The merit of this scenario lies in its
ability to not only identify and describe the finite-volume
energy levels to be observed in contemporary large-volume
lattice QCD simulations but also explain why other low-
lying states have been missed in today’s lattice QCD results
for the nucleon spectrum.
We conclude that the Roper resonance of nature is

predominantly a dynamically generated molecular meson-
baryon state with a weak coupling to a low-lying bare basis
state associated with the ground-state nucleon.
This conclusion is in sharp contrast to a conventional

state with a large three-quark core component like the
ground-state nucleon or even the Nð1535Þ resonance where
a significant bare-state contribution was manifest [42]. It
also suggests that relativistic three-quark bound-state
approaches [46] will fail, as these models do not have
the full influence of the meson-baryon sector required to
generate the full coupled-channel physics.
Future work should investigate the role of three-body

coupled channel effects in the structure of the Roper
resonance. Of particular interest is the role of the
NðππÞS-wave channel. While our consideration of the σN
channel does model the effects of the NðππÞS-wave channel,
the σ meson is a broad state with a large width, and it is
desirable to accommodate this important physics in a more
direct manner. For example, the imaginary part of the Roper
pole position is likely to be sensitive to this physics.
Similarly, it may be interesting to explore other models

of the Roper resonance and their finite-volume implemen-
tation. For example, one could further explore the nature of
the bare basis state and its impact on resonance structure.
It is also desirable to advance lattice QCD simulations to

include five-quark interpolating fields where the momen-
tum of each of the meson-baryon pairs can be defined at the
source. Not only does this approach address the volume
suppression of multiparticle states through a double sum in
the Fourier projection, it also enables the creation of a state
very similar to the scattering state in the finite volume of the
lattice. With this approach it should be possible to observe
all the states predicted by the Hamiltonian model and

eventually reverse the process such that the experimental
phase shifts and inelasticities are determined from the
finite-volume spectra of lattice QCD. Such developments
will be key in obtaining a full understanding of the Roper
resonance.
Recently, a very important lattice QCD simulation was

released by Lang et al. [47]. In addition to standard
three-quark operators, these authors included explicit
momentum-projected πN and σN interpolating fields in
a lattice QCD analysis of the Roper channel. The σN
operator was included to simulate the effect of the Nππ
channel. By comparing their energy levels with those
calculated here, they reached similar conclusions. Their
results provide strong support for the third scenario and
disfavor the first scenario considered herein. The success of
the Hamiltonian effective field theory in predicting the
position of these energy levels confirms that the consid-
eration of resonant two-body channels (such as the σN and
πΔ channels) is effective in linking lattice QCD results to
the Roper resonance of nature. We note that the inclusion of
the πΔ contributions is essential for describing the inelas-
ticity of the πN to πN amplitude. We anticipate that when
the πΔ channel is explored in future lattice QCD simu-
lations, a new low-lying energy level will be observed
consistent with our fifth state at 1.7 GeV for the lightest
quark mass.
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