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We consider the gauge invariant Drell-Yan hadron tensor which includes the standard and nonstandard
diagram contributions. The nonstandard diagram contribution appeared owing to the complexity of the
twist three BVðx1; x2Þ-function where the gluon pole manifests. We use the contour gauge conception
which allows us to fix easily the spurious uncertainties in the gluon propagator. The contour gauge
condition is generated by the corresponding Wilson lines in both the standard and nonstandard diagrams.
We demonstrate the substantial role of the nonstandard diagram for forming of the relevant contour in the
Wilson path-ordered exponential that leads to the spurious singularity fixing.
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I. INTRODUCTION

The investigation of the nucleon (hadron) composite
structure is still the most important subject of hadron
physics. From the experimental point of view, one of the
widespread and useful instruments for such studies is the
single spin asymmetry (SSA). Especially, the single trans-
verse spin asymmetry opens access to the three-
dimensional nucleon structure thanks to the nontrivial
connection between the transverse spin and the parton
transversemomentumdependence (see, for example, [1–5]).
In QCD, the SSA related to the Drell-Yan (DY) process

was first considered in the case of the longitudinally
polarized hadron [6,7]. This SSA is especially interesting
provided the second hadron is a pion. This is because of the
sensitivity [8,9] to the shape of pion distribution amplitude,
being currently the object of major interest [10,11] (see also
[12] and the references therein). It was shown that the
imaginary phase in the SSA which is associated with
the longitudinally polarized nucleon appears due to either
the hard perturbative gluon loops [6,7] or twist four
contribution of the pion distribution amplitude [8,9].
For the single transverse spin asymmetry in the trans-

verse-polarized DY process, the imaginary part has
previously been extracted from the quark propagator in
the so-called standard [see Fig. 1 (left panel)] diagram with
quark-gluon twist three correlator only (it leads to the gluon
pole contribution to SSA, see [13,14]). The reason was that
the ambiguity in the boundary conditions provides the
purely real quark-gluon function BVðx1; x2Þ which para-
metrizes the hψγþA⊥ψimatrix element. On the other hand,
the real BVðx1; x2Þ-function kills the contribution from the
nonstandard [see Fig. 1 (right panel)] diagram which

however is absolutely necessary to ensure the QED gauge
invariance of the DY hadron tensor. This situation has been
discussed in detail in a series of papers [15] where, with the
help of the contour gauge conception, the twist three
BVðx1; x2Þ-function has been proven to be in fact the
complex function. In turn, this leads to the nonzero
contribution from the nonstandard diagram which produces
the imaginary phase required to have the SSA. This
additional contribution also leads to an extra factor of 2
for SSA.
Recently, the problem of the spurious singularity fixing

in the (local) axial gauge has attracted attention again (see,
for example, [3,16,17]).
The light-cone axial gauge condition imposed on the

non-Abelian gluon field, Aþ ¼ 0, naturally enables the
parton number (probability) interpretation of parton density
functions in the tree level [18,19]. However, perturbative
calculations beyond the tree approximation demand careful
treatment of the so-called spurious uncertainties in the
gluon propagator DμνðkÞ in the light-cone gauge [20–23].
The latter arise as ill-defined pole singularities of the form
∼ðkþÞ−1 and are associated, putting the same issue a bit
different, with the residual gauge freedom due to incom-
plete gauge fixing by Aþ ¼ 0. For this reason calculations
in the axial (light-cone) gauge in higher perturbative orders
are cumbersome and sometimes even contradictory
[24,25]. One can attempt to overcome this difficulty by
working in the well-defined general covariant gauge setting
the gauge parameter to ξ ¼ −3þ 0ðαsÞ, which is known to
effectively “imitate” noncovariant gauges [25,26]. Another
approach is to keep working in the light-cone gauge and to
get rid of the residual gauge freedom by an appropriate
extra gauge-fixing condition. The latter can be obtained in
terms of the various boundary conditions for the gluon
fields and/or their spatial derivatives [3,16,17].
In the present work, we investigate an alternative

approach to formulation of the more general gauge-fixing
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condition from the very beginning which is supposed to
entail the “right” pole prescriptions for the gluon propa-
gator. We continue to explore the contour gauge conception
and demonstrate how the spurious uncertainties in the
gluon propagator can ultimately be fixed in the nonlocal
axial gauges. Working within the collinear factorization
procedure, we emphasize the substantial role of the
nonstandard diagram to get the relevant contour in the
Wilson path-ordered exponential needed to fix ultimately
the spurious singularity in the gluon propagator.

II. GETTING STARTED: KINEMATICS

We begin with the kinematics of Drell-Yan process. As in
[15], we study the Drell-Yan process with the transversely
polarized hadron:

Nð↑↓Þðp1Þ þ Nðp2Þ → γ�ðqÞ þ XðPXÞ
→ lðl1Þ þ lðl2Þ þ XðPXÞ; ð1Þ

where the virtual photon producing the lepton pair
(l1 þ l2 ¼ q) has a large mass squared (q2 ¼ Q2) while
the transverse momenta are small and integrated out. This
kinematics (anticipating the collinear factorization pro-
cedure) suggests a convenient frame with fixed dominant
light-cone directions [15]:

p1 ≈
Q

xB
ffiffiffi
2

p n�; p2 ≈
Q

yB
ffiffiffi
2

p n;

n�μ ¼
�

1ffiffiffi
2

p ; ~0⊥;
1ffiffiffi
2

p
�

¼ ð1þ; 0−; ~0⊥Þ;

nμ ¼
�

1ffiffiffi
2

p ; ~0⊥;
−1ffiffiffi
2

p
�

¼ ð0þ; 1−; ~0⊥Þ;

n� · n ¼ n�þn− ¼ 1: ð2Þ

It is also instructive to introduce the dimensionful analogs
of n, n� as

~n− ¼ p−
2

p1p2

; n̆þ ¼ pþ
1

p1p2

: ð3Þ

With the above vectors as a basis, an arbitrary vector can be
(Sudakov) decomposed as

aμ ¼ aþn�μ þ a−nμ þ aμ⊥;

aμ;þ¼defaþn�μ; aμ;−¼defa−nμ: ð4Þ
In what follows we will not be so precise about writing the
covariant and contravariant vectors in any kinds of sum-
mations over the four-dimensional vectors, except the cases
where this trick may lead to misunderstanding.

III. DRELL-YAN HADRON TENSOR:
DERIVATION OF WILSON LINES

The polarized DY process is a very convenient process to
study the role of twist three by exploring different kinds of
SSAs. For example, one can study the left-right asymmetry
which means the transverse momenta of the leptons are
correlated with the direction S × ez where Sμ implies the
transverse polarization vector of the nucleon and ez is a
beam direction [27].
Generally speaking, any single spin asymmetries can be

presented in the symbolical form as

A ∼ dσð↑Þ − dσð↓Þ ∼ LμνWμν; ð5Þ
where Lμν is an unpolarized leptonic tensor andWμν stands
for the hadronic tensor. At the moment, we do not specify
the phase space in Eq. (5) because the exact expression for
SSA is irrelevant for our discussion. Instead, we mainly pay
attention to the hadron tensor which can be presented as

Wμν ¼ Wð0Þ
μν þWð1Þ

μν ðgjAÞ þWð2Þ
μν ðgjAÞ

þ ðgn-termsjn ≥ 2Þ
¼ Wð0Þ

μν ðA�Þ þWð1Þ
μν ðgjA⊥Þ þWð2Þ

μν ðgjA⊥Þ þ � � � ;
ð6Þ

FIG. 1. The Feynman diagrams which contribute to the polarized Drell-Yan hadron tensor: the standard (left panel) and nonstandard
diagrams (right panel).
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where g denotes the strong interaction coupling constant
and

Wð0Þ
μν ðA�Þ ¼ Wð0Þ

μν þWð1Þ
μν ðgjAþÞ þWð2Þ

μν ðgjA−Þ þ � � � :
ð7Þ

The hadron tensor representations can be found below.
In our case, the single transverse spin asymmetry is

only generated by the hadron tensors Wð1Þ
μν ðgjA⊥Þ and

Wð2Þ
μν ðgjA⊥Þ where the twist three contributions related to

hψγþA⊥ψi have been extracted. As shown below, the

hψγþA�ψi-correlators in the hadron tensors Wð1;2Þ
μν ðgjAÞ

participate in forming the corresponding Wilson lines
which appear in the quark-antiquark correlators of the

hadron tensor Wð0Þ
μν ðA�Þ. In the frame of usual axial gauge

(Aþ ¼ 0), this kind of contribution can be discarded.
However, we work in the contour gauge which is, first,
a nonlocal generalization of the well-known axial gauge.
Second, the contour gauge contains the important and
unique additional information (needed to fix the prescrip-
tion in the gluon poles) which is invisible in the case of
usual (local) axial gauge. From this point of view, before
we discard the terms with Aþ, we have to determine the
relevant fixed path in the restored Wilson line with Aþ
which eventually leads to certain prescriptions in the gluon
poles (for further explanations, see [15]).

A. The standard hadron tensor (direct process)

In this section, we analyze the part of the DY hadron
tensor which is generated by the diagram in Fig. 1 (left
panel). This is the standard hadron tensor which can be
written in nonfactorized form as

Wð1Þ
μν ðgjAÞ

¼
Z

d4k1d4k2δð4Þðk1 þ k2 − qÞΦ½γ−�ðk2Þ

×
Z

d4lΦðAÞ½γþ�
α ðk1;lÞtr

�
γμγ

−γνγ
þγα

×
ðlþ − kþ2 Þγ− þ ðl− − k−2 Þγþ − ð~l⊥ − ~k2⊥Þ~γ⊥

ðl − k2Þ2 þ iε

�
; ð8Þ

where

ΦðAÞ½γþ�
α ðk1;lÞ¼F 2hp1; ST jψðη1ÞγþgAαðzÞψð0ÞjST; p1i; ð9Þ

Φ½γ−�ðk2Þ¼F 1hp2jψðη2Þγ−ψð0Þjp2i: ð10Þ

In Eqs. (9) and (10), F 1 and F 2 denote the Fourier
transformation with the measures defined as

d4η2eik2·η2 and d4η1d4ze−ik1·η1−il·z; ð11Þ

respectively. For the sake of shortness, we will omit ST in
the hadron states which indicates the transverse polariza-
tion of hadron.
We now analyze the tensor structure of the trace in Eq. (8).

We can see that the first term of the quark propagator,
lþ − kþ2 Þγ−, singles out only the transverse components of
gluon field in the quark-gluon correlator, see Eq. (9). At the
same time, the second term of the quark propagator,
ðl− − k−2 Þγþ, separates out only the longitudinal component
Aþ in the quark-gluon correlator. This second term is very
important for derivation of the corresponding Wilson line
which defines in our approach the contour gauge. The third
term of the quark propagator gives us the quark-gluon
correlator with both indices α ¼ ðþ;⊥Þ.
The collinear factorization procedure for the process

under consideration can be introduced by the following
steps (for details see, e.g., Refs. [28,29]):
(a) the decomposition of loop integration momenta

around the corresponding dominant direction:

ki ¼ xipþ ðki · pÞnþ kT
within the certain light cone basis formed by the
vectors p and n (in our case, n� and n);

(b) the replacement:

d4ki ⇒ d4kidxiδðxi − ki · nÞ
that introduces the fractions with the appropriated
spectral properties;

(c) the decomposition of the corresponding propagator
products, which will finally form the hard part, around
the dominant direction. It is necessary to notice that in
the DY process case the corresponding δ-functions
which appeared in the hadron tensor and expressed the
momentum conservation law should be also referred to
the hard parts. This statement was argued in [30] in the
context of the so-called factorization links;

(d) the use of the collinear Ward identity if it is necessary
within the given accuracy level;

(e) performing the Fierz decomposition for ψαðzÞψβð0Þ in
the corresponding space up to the needed projections.

Let us first dwell on the second term, ðl− − k−2 Þγþ,
contribution. This term is responsible for forming the
Wilson line in the gauge-invariant quark-antiquark string
operator. Indeed, making used the collinear factorization
(l− ≈ 0, ðl − k2Þ2 ≈ −2lþk−2 ), the above-mentioned term
contributes in the hadron tensor as

W
ð1Þ½k−

2
�

μν ðgjAþÞ ¼
Z

dμðki; x1; yÞΦ½γ−�ðk2Þ
1

2

×
Z

dz−tr½γμγ−γνγþγ−γþ�

×
Z

dlþ e−il
þz−

lþ − iε

Z
d4η1e−ik1·η1

× hp1jψðη1ÞγþgAþð0þ; z−; ~0⊥Þψð0Þjp1i;
ð12Þ
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where the integration measure reads

dμðki; x1; yÞ ¼ dx1d4k1δ

�
x1 −

kþ1
pþ
1

�
dyd4k2δ

�
y −

k−2
p−
2

�

× ½δð4Þðx1p1 þ yp2 − qÞ�: ð13Þ

The prescription −iε in the denominator of (12) directly
follows from the standard causal prescription for the
massless quark propagator in (8) (cf. [31]).
Integration over lþ in (12), using the well-known

integral representation

θð�xÞ ¼ �i
2π

Z þ∞

−∞
dk

e−ikx

k� iε
; ð14Þ

leads to the following expression:

W
ð1Þ½k−

2
�

μν ðgjAþÞ

¼
Z

dμðki; x1; yÞtr½γμγ−γνγþ�Φ½γ−�ðk2Þ
Z

d4η1e−ik1·η1

× hp1jψðη1Þγþig
Z

0−

−∞−
dz−Aþð0þ; z−; ~0⊥Þψð0Þjp1i;

ð15Þ

where we use

1

2
γþγ−γþ ¼ γþ: ð16Þ

It is important to stress that the leading order hadron tensor

Wð0Þ
μν ðg0Þ differs from the hadron tensor (8) by overall sign:

the leading hadron tensor has a prefactor i2 due to two
photon vertices, while the hadron tensor (8) is accompanied
by a prefactor i4 thanks to two photon and one gluon
vertices together with the prefactor from the massless quark
propagator ð−1Þ=i (we use the convention as in [32]).
Thus, if we include all gluon emissions from the

antiquark going from the upper blob in Fig. 1 (left panel)
(the so-called initial state interactions), we are able to get
the corresponding P-exponential in ΦðAÞ½γþ�

α ðk1;lÞ. The
latter is now represented by the following matrix element:

Z
d4η1e−ik1·η1hp1jψðη1Þγþ½−∞−; 0−�Aþψð0Þjp1i; ð17Þ

where

½−∞−; 0−�Aþ ≡ ½0þ;−∞−; ~0⊥; 0þ; 0−; ~0⊥�Aþ

¼ P exp

�
ig
Z

−∞−

0−
dz−Aþð0þ; z−; ~0⊥Þ

�
:

ð18Þ

The collinear twist (t ¼ d − sa) of Aþ is equal to zero,
therefore the Wilson line which is summing up all these
components does not affect the twist expansion within the
collinear factorization.
If now we include in our consideration the gluon

emission from the incoming antiquark (the mirror contri-
butions), we will obtain the Wilson line ½η−1 ;−∞−� which
will ultimately give us, together with (18), the Wilson line

connecting the points 0 and η1 in (17) contributing toW
ð0Þ
μν .

This is exactly what happens, say, in the spin-averaged DY
process [33]. However, for the SSA, these two diagrams
should be considered individually. Indeed, their contribu-
tions to SSAs, contrary to the spin-averaged case, differ in
sign and the dependence on the boundary point at −∞−

does not cancel.
For the pedagogical reason, we want to show the

exponentiation of the transverse gluon field (here, we
mainly follow to [16]), although we are restricted by the
twist three case and the inclusion of all degrees of the
transverse gluon field exceeds our accuracy. Let us consider
the third term, ð~l⊥ − ~k2⊥Þ~γ⊥, contribution which helps us
to demonstrate the exponentiation of the transverse gluon
fields. The corresponding hadron tensor part takes the
following form:

Wð1Þ½~l⊥�
μν ðgjA⊥Þ

¼
Z

dμðki; x1; yÞΦ½γ−�ðk2Þtr½γμγ−γνγþγ⊥α ~γ⊥i �

×
Z

d4l
ð~l⊥ − ~k⊥2 Þi

2lþk−2 þ ~l2
⊥ − iε

ΦðA⊥Þ½γþ�
α ðk1;lÞ

≡
Z

dμðki; x1; yÞΦ½γ−�ðk2Þtr½γμγ−γνγþγ⊥α ~γ⊥i �Li;α; ð19Þ

where we assume that ~k2⊥ ≈ 0. In Eq. (15) let us focus on
the l-integration, we have

Li;α ¼
Z

dlþdl−d2~l⊥
~l⊥
i

2lþk−2 þ ~l2
⊥ − iε

×
Z

d4η1d4ze−ik1η1−ilzhp1jψðη1ÞγþgA⊥
α ðzÞψð0Þjp1i:

ð20Þ

We now use the α-representation for the denominator that
stems from the quark propagator:

1

2lþk−2 þ ~l2
⊥ − iε

¼ i
Z

∞

0

dαe−iα½2lþk−2þ~l2⊥−iε�: ð21Þ

Next, in Eq. (20) we perform the integrations over dl−

and dlþ which give δðzþÞ and δðz− þ 2αk−2 Þ, respectively.
We remind that the variables α in (21) are dimensionful
and dimM½α� ¼ −2.
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Therefore, the integral L takes the following form
(cf. [16]):

Li;α ¼ i
Z

d2~l⊥~l
⊥
i

Z
∞

0

dαe−iα½~l
2
⊥−iε�

×
Z

d4η1d2~z⊥e−ik1η1þi~l⊥~z⊥

× hp1jψðη1ÞγþgA⊥
α ð0þ;−∞−; ~z⊥Þψð0Þjp1i: ð22Þ

In Eq. (22) the transverse gluon field operator can be
presented as

A⊥
α ð0þ;−∞−; ~z⊥Þ ¼

∂
∂z⊥α

Z
z⊥

C
dω⊥

β A
⊥
β ð0þ;−∞−; ~ω⊥Þ;

ð23Þ

where we fix the arbitrary constant C to be − ~∞⊥.
By making use of the representation (23), after integration
over α we arrive at

Li;α ¼ i
Z

d2~l⊥
~l⊥
i l⊥

α

~l2
⊥− iε

Z
d4η1d2~z⊥e−ik1η1þi~l⊥~z⊥

×hp1jψðη1Þγþg
Z

z⊥

−∞⊥
dω⊥

β A
⊥
β ð0þ;−∞−; ~ω⊥Þψð0Þjp1i:

ð24Þ

We insert the obtained expression for Li;α, see Eq. (24), into
the expression for hadron tensor (15). After integration over

d2~l⊥ and, then, after integration over d2~z⊥ we get the

following expression for the ~l⊥-term of the hadron tensor:

Wð1Þ½~l⊥�
μν ðgjA⊥Þ

¼
Z

dμðki; x1; yÞΦ½γ−�ðk2Þtr½γμγ−γνγþ�
Z

d4η1e−ik1η1

× hp1jψðη1Þγþig
Z

0⊥

−∞⊥
dω⊥

β A
⊥
β ð0þ;−∞−; ~ω⊥Þψð0Þjp1i:

ð25Þ

As well as for the case of longitudinal gluons, if we now
include all gluon emissions from the antiquark going from
the upper blob in Fig. 1(left panel), we reproduce the
corresponding P-exponential with the transverse gluons in

ΦðAÞ½γþ�
α ðk1;lÞ. Together with the result obtained above for

the Aþ-fields, we finally have

Z
d4η1e−ik1·η1hp1jψð0þ; η−1 ; ~0⊥Þγþ

× ½0þ;−∞−; ~0⊥; 0þ; 0−; ~0⊥�Aþ

× ½0þ;−∞−;− ~∞⊥; 0þ;−∞−; ~0⊥�A⊥ψð0Þjp1i; ð26Þ

where

½0þ;−∞−;− ~∞⊥; 0þ;−∞−; ~0⊥�A⊥

¼ P exp

�
ig
Z

−∞⊥

0⊥
dω⊥

β A
⊥
β ð0þ;−∞−; ~ω⊥Þ

�
: ð27Þ

The transverse components of gluon fields, A⊥, have the
collinear twist which equals 1. Therefore, the Wilson line in
Eq. (27) represents the infinite amount of the subdominant
contributions. Within our frame, it is enough to be limited
by the collinear twist three contributions only. In other
words, we leave only the terms which include the first order
of A⊥.

B. The nonstandard hadron tensor (direct process)

The next step of our consideration is the contribution of
the nonstandard diagram, depicted in Fig. 1 (the right
panel). The DY hadron tensor receives the contribution
from the nonstandard diagram as (before factorization)

Wð2Þ
μν ðgjAÞ ¼

Z
d4k1d4k2δð4Þðk1 þ k2 − qÞ

× tr½γμF ðk1ÞγνΦðk2Þ�; ð28Þ

where the function F ðk1Þ reads

F ðk1Þ ¼ Sðk1Þγα
Z

d4η1e−ik1·η1

× hp1jψðη1ÞgAαð0Þψð0Þjp1i: ð29Þ

Performing the above-described factorization procedure,
the nonstandard hadron tensor takes the following form:

Wð2Þ
μν ðgjAÞ ¼

Z
dx1dy½δðx1 − xBÞδðy − yBÞ�qðyÞ

× tr

�
γμ

�Z
d4k1δðx1pþ

1 − kþ1 ÞF ðk1Þ
�
γνp̂2

�

≡
Z

dx1dy½δðx1 − xBÞδðy − yBÞ�

× qðyÞp−
2N

þ
μνðx1Þ: ð30Þ

We now consider the integral over k1 in (30), we write

Nþ
μν ¼

Z
d4k1δðx1pþ

1 − kþ1 Þ

× tr

�
γμ

kþ1 γ
− þ k−1 γ

þ − ~k1⊥~γ⊥
2kþ1 k

−
1 − ~k21⊥ þ iε

γαγ
−γνγ

þ
�

×
Z

d4η1e−ik1·η1hp1jψðη1ÞγþgAαð0Þψð0Þjp1i:

ð31Þ
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Technically, derivation of the longitudinal Wilson line for
this case differs from the derivation we implemented for the
standard hadron tensor. We notice that for the nonstandard
hadron tensor the quark propagator has been included in the
soft part.
Let us consider the first term, kþ1 γ

−, in the quark
propagator, see Eq. (31). Thanks to the γ-structure, this
term singles out the A−-field in the corresponding corre-
lator. Moreover, the Fourier image of the quark-gluon
correlator can be presented in the equivalent form as

Z
d4η1e−ik1·η1−ik1zhp1jψðη1Þγþ

× g
∂

∂zþ
Z

zþ

−∞þ
dωþA−ðωþ; 0−; ~0⊥Þjz¼0ψð0Þjp1i; ð32Þ

where the derivative with respect to zþ can be shifted to the
exponential function e−ik

−
1
zþ . As a result, we have

ik−1

Z
d4η1e−ik1·η1

× hp1jψðη1Þγþg
Z

0þ

−∞þ
dωþA−ðωþ; 0−; ~0⊥Þψð0Þjp1i:

ð33Þ

Using Eq. (33), the tensor Nμν takes the form of (~k21⊥ ≈ 0)

Nþ
μν ¼

Z
d4k1δðx1pþ

1 − kþ1 Þtr½γμγ−γνγþ�

×
Z

d4η1e−ik1·η1

× hp1jψðη1Þγþig
Z

0þ

−∞þ
dωþA−ðωþ; 0−; ~0⊥Þψð0Þjp1i:

ð34Þ

Thus, the first term finally contributes to the nonstandard
part of the hadron tensor as

Wð0Þ
μν ðA−Þ

¼
Z

dx1dy½δðx1 − xBÞδðy − yBÞ�qðyÞ

×
Z

d4k1δðx1pþ
1 − kþ1 Þtr½γμγ−γνγþ�

Z
d4η1e−ik1·η1

× hp1jψðη1Þγþ½−∞þ; 0−; ~0⊥; 0þ; 0−; ~0⊥�A−ψð0Þjp1i:
ð35Þ

The exponentiation of A− has been presented in
Appendix A.
Despite the minus component, A−, has formally the

collinear twist 2 (the so-called sub-sub-dominant compo-
nent), the Wilson line with A− in Eq. (35) will play the

substantial role for the residual gauge fixing, see the
discussion in the next section.
To conclude the section, we restore all the longitudinal

Wilson lines which emanate from both the standard and
nonstandard hadron tensors, see Fig. 2.

IV. CONTOUR GAUGE: ELIMINATION OF
LONGITUDINAL WILSON LINES

The axial gauge Aþ ¼ 0 (as well as the Fock-Schwinger
gauges) is in fact a particular case of the most general
nonlocal contour gauge determined by a Wilson line with a
fixed path. Indeed, the straightforward line in the Wilson
exponential which connects �∞ with x gives us the axial
gauge, while the straightforward line connecting x0 with x
leads to the Fock-Schwinger gauge. Notice that two
different contour gauges can correspond to the same local
axial gauge. Meanwhile, to distinguish different contour
gauge is very crucial to fix the prescriptions in the gluon
poles [15].
In the past, the contour gauge was a very popular subject

of intense studies (see, for example, [34]). One of the
advantages of using the contour gauge is that the quantum
gauge theory becomes free from the Gribov ambiguities.
On the other hand, the contour gauge gives the simplest
way to fix the gauge including the residual gauge freedom.
In contrast to the usual axial gauge, in the contour gauge we
first fix an arbitrary point ðx0;gðx0ÞÞ in the fiber. Then, we
define two directions: one of them in the base, the other in
the fiber. The direction in the base R4 is nothing else than
the tangent vector of a curve which goes through the given
point x0. The fiber direction can be uniquely determined
as the tangent subspace related to the parallel transport.

FIG. 2. The longitudinal Wilson lines related to the standard
(red lines, the exponentials with Aþ) and nonstandard (blue lines,
the exponentials with A−) Drell-Yan hadron tensor. The circles
single out the interception points which the continuity conditions
are defined for.
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Finally, we are able to define uniquely the point in the fiber
bundle.
We continue to work with the Drell-Yan hadron tensor

derived in [15]. As shown the standard (direct and mirror)
diagrams lead to the following Wilson lines in the quark-
antiquark nonlocal operator which forms the hadron tensor,
see Fig. 2:

½0þ; η−; ~0⊥; 0þ;−∞−; ~0⊥�Aþ ; and ð36Þ

½0þ;−∞−; ~0⊥; 0þ; 0−; ~0⊥�Aþ ; ð37Þ

i.e. the gauge invariant quark string operator takes the
form of

ψð0þ; η−; ~0⊥Þ½0þ; η−; ~0⊥; 0þ;−∞−; ~0⊥�AþΓ

× ½0þ;−∞−; ~0⊥; 0þ; 0−; ~0⊥�Aþψð0þ; 0−; ~0⊥Þ: ð38Þ

Here Γ implies a relevant combination of γ-matrices. The
Wilson line (36) is a result of summation in the mirror
diagram and the Wilson line (37) appears in the direct
diagram.
The sum of direct and mirror diagram contributions takes

place if we study the spin-average DY hadron tensor, while,
for the single transverse spin asymmetry, we deal indi-
vidually with only the direct (or mirror) diagram contri-
bution because the direct and mirror diagrams differ in sign
to construct the corresponding SSA. For our further
considerations in the context of contour gauge, it is not
so crucial what kind of hadron tensors we work with.
The nonstandard (direct and mirror) diagrams give us the

contributions with the Wilson lines

½−∞þ; η−; ~0⊥; 0þ; η−; ~0⊥�A− ; and

½0þ; 0−; ~0⊥;−∞þ; 0−; ~0⊥�A− ; ð39Þ

and, therefore, we have the string operator

ψð0þ; η−; ~0⊥Þ½−∞þ; η−; ~0⊥; 0þ; η−; ~0⊥�A−

× Γ½0þ; 0−; ~0⊥;−∞þ; 0−; ~0⊥�A−ψð0þ; 0−; ~0⊥Þ: ð40Þ

According to the contour gauge conception, we elimi-
nate all the Wilson lines with the longitudinal (unphysical)
gluon fields Aþ and A−. We note that the ideologically
similar approach can be found in [16].
We begin with the Wilson lines shown in Eqs. (36) and

(37); we write the following gauge fixing conditions:

½0þ; η−; ~0⊥; 0þ;−∞−; ~0⊥�Aþ ¼ 1;

½0þ;−∞−; ~0⊥; 0þ; 0−; ~0⊥�Aþ ¼ 1 ð41Þ

explicit solutions of which read

Aþð0þ;L0−;−∞− ; ~0⊥Þ ¼ 0; ð42Þ

Aþð0þ;L−∞−;η− ; ~0⊥Þ ¼ 0: ð43Þ

Here Lx;y denotes the straightforward line in the Minkowski
space connecting point x with point y. In the contour gauge
(41)–(43), the remaining gluon field components can be
represented as (with μ ¼ −, ⊥)

Aμ
Gð0þ; x−; ~0⊥Þjc:g:ð41Þ–ð43Þ
¼

Z
x−

−∞−
dzα

∂zβ
∂xμ G

αβðzjAμ
c:g:Þ

¼ ~n−
Z

∞

0

dse−εsGþμðx− − ~n−sjAμ
c:g:Þ ð44Þ

with the boundary condition

Aμ
b:c:ð0þ; x− − ~n−∞; ~0⊥Þjc:g:ð41Þ–ð43Þ ¼ 0: ð45Þ

In Eq. (44), we use the parametrization of L−∞−;x− as

zðsÞ ¼
�
0þ; x− − ~n−lim

ε→0

1 − e−εs

ε
; ~0⊥

�
;

dzαj−∞x ¼ ~nαdse−εsj∞0 : ð46Þ

We now dwell on the gauge conditions for A− gluon
component. We put the Wilson lines (39) to be equal to 1
too, i.e.

½−∞þ; η−; ~0⊥; 0þ; η−; ~0⊥�A− ¼ 1;

½0þ; 0−; ~0⊥;−∞þ; 0−; ~0⊥�A− ¼ 1: ð47Þ

These conditions yield

A−ðL0þ;−∞þ ; η−; ~0⊥Þ ¼ 0; ð48Þ

A−ðL−∞þ;0þ ; 0−; ~0⊥Þ ¼ 0: ð49Þ

As above, in the contour gauge (47)–(49), the remaining
gluon fields have the integral representations which read
(here μ ¼ þ, ⊥)

Aμ
Gðxþ; η−; ~0⊥Þjc:g:ð47Þ–ð49Þ
¼

Z
−∞þ

xþ
dzα

∂zβ
∂xμ G

αβðzjAμ
c:g:Þ

¼ −n̆þ
Z

∞

0

dte−εtG−μðxþ − n̆þtjAμ
c:g:Þ ð50Þ

with the boundary condition
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Aμ
b:c:ðxþ − n̆þ∞; η−; ~0⊥Þjc:g:ð47Þ–ð49Þ ¼ 0: ð51Þ

In Eq. (50) the path parametrization of Lx;−∞ is given by

zðsÞ ¼
�
xþ − n̆þlim

ε→0

1 − e−εt

ε
; η−; ~0⊥

�
;

dzαj−∞x ¼ −n̆þα dte−εtj∞0 : ð52Þ

Further, the gluon field A−
G of Eq. (44) has to be

compatible with the gluon field A− of Eq. (48). Also,
the same inference has to be valid for the gluon fields Aþ

G of
Eq. (50) and Aþ of Eq. (43). We thus require the analytical
continuity for these gluon fields at the interception points,
see Fig. 2, and we finally arrive at the following conditions
(here we omit the subscript G):

Aþð0þ; x− ¼ η−; ~0⊥Þ ¼ Aþðxþ ¼ 0þ; η−; ~0⊥Þ ¼ 0;

A−ðxþ ¼ 0þ; η−; ~0⊥Þ ¼ A−ð0þ; x− ¼ η−; ~0⊥Þ ¼ 0; ð53Þ

respectively. Having used these conditions, we stay with
the physical gluon fields A⊥ only.

V. GLUON PROPAGATOR

We now go over to consideration of the gluon propa-
gator. In the case of local axial gauge Aþ ¼ 0, the gluon
propagator is still not a well-defined object because of the
spurious singularity related to the residual gauge trans-
formations. In other words, the axial gauge cannot fix
completely the unique element of each orbit defined on the
gauge group. In Appendix B, we present the handbook
material regarding the gauge and residual gauge fixing.
It is clear that if, in the local axial gauge Aþ ¼ 0, we fix

the residual gauge by requiring θa0ðk−; ~k⊥Þ ¼ 0 [see
Eqs. (B32)–(B37)] we immediately get that A− ¼ 0 as
well. The same inference can be reached in the simplest
way if we use the contour gauge conception [see Eq. (53)].
Notice that the maximal gauge fixing which is based on the
contour gauge conception does not relate technically to the
problem of finding the inverse kinematical operator
[see Eqs. (B45)–(B50)]. The contour gauge approach is,
therefore, an alternative method of gauge fixing compared
to the “classical” approaches based on the corresponding
effective Lagrangian (see, for example, [17]).
So, we perform our calculation in the contour gauge

defined by Eqs. (41) and/or (47) together with the con-
ditions of Eq. (53) where the only physical gluons are
presented. In the framework of collinear factorization under
our consideration, the gluon momentum has the plus
dominant components.
Having used the Wilson lines from the standard and

nonstandard diagrams, we calculate the gluon propagator
which reads

h0jTAμ
⊥ð0þ; x−; ~0⊥ÞAν⊥ð0þ; 0−; ~0⊥Þj0i ¼ Dμν

⊥ ðx−Þ: ð54Þ

Using the integral representation (44), the gluon propagator
takes the form of

Dμν
⊥ ðx−Þ ¼ nαnβ

Z
∞

0

dsds0e−εs−εs0

× h0jTGμαðx− − ~n−sÞGνβð0− − ~n−s0Þj0i

¼
Z

ðd4lÞe−ilþx− 1

l2 þ i0
ðlþÞ2dμν⊥ ðlÞ

ðlþ þ iεÞðlþ − iεÞ :

ð55Þ

In Eq. (55), we have explicitly performed the integration
over dsðds0Þ:

Z
∞

0

dse�isðlþ�iεÞ ¼ �i
lþ � iε

ð56Þ

which emanates from the path parametrization. It is worth
emphasizing the gluon pole prescription can be traced from
this kind of integrations (see [15]). The transverse tensor
dμν⊥ has been constructed as

dμν⊥ ðlÞ ¼ gμν −
lμ;þnν þ lν;þnμ

½lþ�reg
; ð57Þ

where the spurious singularity ½lþ�reg has to be regularized.
We consider the combination

ðlþÞ2
ðlþ þ iεÞðlþ − iεÞ d

μν
⊥ ðlÞ: ð58Þ

The first term of Eq. (58) includes the combination

gμνlþ lþ

ðlþ þ iεÞðlþ − iεÞ ð59Þ

which has to be treated only as

gμν
lþ

2

�
1

lþ þ iε
þ 1

lþ − iε

�
¼ gμνlþ P

lþ ¼ gμν: ð60Þ

On the other hand, for x− > 0 [see the momentum
integral (55)], the integration contour has to be closed in
the lower semiplane, ℑmlþ < 0. Hence, for the gμν-term,
we obtain the integrand

gμν
lþ

lþ þ iε
; ð61Þ

where the denominator lþ − iε has been canceled by one
of lþ in the numerator. It is clear that the remaining
combination in Eq. (61) yields gμν [cf. Eq. (60)].
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Regarding the second term of Eq. (58), we propose two
ways of reasoning.

A. The first way

We do not specify explicitly the tensor structure of this
term. The second term of Eq. (58) can be written in the
following form (here the momentum flux direction is not
fixed):

ðlþÞ2
ðlþ þ iεÞðlþ − iεÞ

Lμνðl; nÞ
½lþ�reg

¼ lþ P
lþ

Lμνðl; nÞ
½lþ�reg

; ð62Þ

where we use

P
lþ ¼ lþ

ðlþ þ iεÞðlþ − iεÞ : ð63Þ

To well-define the product of two generalized functions
the pole 1=½lþ�reg must be treated only as

1

½lþ�reg
¼ P

lþ : ð64Þ

Indeed, we have

P
lþ lþ P

lþ ¼ P
lþ : ð65Þ

On the other hand, if we let 1=½lþ�reg be equal to
1=ðlþ � iεÞ, we will face on the wrong-defined product
of two generalized functions [35]:

P
lþ lþ 1

lþ � iε
¼ P

lþ lþ
�
P
lþ ∓ iπδðlþÞ

�

⇒
P
lþ lþδðlþÞ

—wrong-defined product: ð66Þ

B. The second way

We take into account that the tensor structure includes
the plus component of the gluon momentum. Hence, the
second term of Eq. (58) reads

ðlþÞ2
ðlþ þ iεÞðlþ − iεÞ

lμ;þnν þ lν;þnμ

½lþ�reg
: ð67Þ

Here, as shown above, for the first factor, we can again use
that

ðlþÞ2
ðlþ þ iεÞðlþ − iεÞ ¼ lþ P

lþ ¼ 1 ð68Þ

and, for the second factor, we have

lμ;þnν þ lν;þnμ

½lþ�reg
¼ lþ

½lþ�reg
ðn�μnν þ n�νnμÞ: ð69Þ

Based on this expression, it is clear that the only possibility
is to define 1=½lþ�reg through the principle value, see
Eq. (64).
Thus, in the contour gauge generated by both the

standard and nonstandard diagrams, the gluon propagator
reads

Dμν
⊥ ðx−Þ

¼
Z

ðd4lÞe−ilþx− 1

l2 þ i0

�
gμν −

P
lþ ðlμ;þnν þ lν;þnμÞ

�

ð70Þ

or, using Eq. (68), we obtain

Dμν
⊥ ðx−Þ ¼

Z
ðd4lÞe−ilþx− gμν⊥

l2 þ i0
; ð71Þ

where gμν⊥ ¼ gμν − n�μnν − n�νnμ.
We notice that the gluon propagator presented in Eq. (71)

takes place for the very specific case of the polarized
DY hadron tensor under our consideration. In the case of
deep-inelastic scattering process, where the corresponding
Wilson lines are different, the gluon propagator derived in
the contour gauge frame has the form similar to Eq. (73),
see below. We also stress that, in Eqs. (70) and (71), the
gluon momentum flux is not important and is not specified.
We now consider a particular case wherein only the

standard diagram exists. For example, this can be achieved
if we neglect the higher twist correlators hψA−ψi which
appear in the nonstandard diagram. Moreover, the gluon
field coordinates are not necessarily on the minus direction
and the gluon momentum flux is fixed in the positive
direction from the ν-vertex to μ-vertex. In this case, the
gluon propagator reads

DμνðxÞjstand: dia:fixed flux

¼
Z

ðd4lÞe−ilx 1

l2 þ i0

×

�
gμν −

P
lþ ðlμnνθðlþÞ þ lνnμθð−lþÞÞ

�
; ð72Þ

where the corresponding θ-functions specify the momen-
tum flux. Using the Cauchy theorem in Eq. (72), we finally
arrive at

DμνðxÞjstand:dia:fixed flux ¼
Z

ðd4lÞ e−ilx

l2 þ i0

×

�
gμν −

lμnν

lþ − iε
−

lνnμ

lþ þ iε

�
ð73Þ
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which coincides with the results in [16,17]. This expression
is sensitive to the definition of the positive (negative) flux
direction [see Eq. (72)]. Hence, the symmetry over μ ↔ ν
takes place only together with the simultaneous replace-
ment lþ ↔ −lþ in the second and third terms of Eq. (73).

VI. CONCLUSIONS AND DISCUSSIONS

In the contour gauge, from the technical viewpoint, the
maximal gauge fixing is not associated with the problem
of finding the inverse kinematical operator. Hence, the
contour gauge approach has to be considered as the
alternative method of gauge fixing in comparison with
the classical approaches based on the corresponding
effective Lagrangians. It is necessary to stress that the
contour gauge contains the important and unique additional
information (needed to fix the prescription in the gluon
poles) which is invisible in the case of usual (local) axial
gauge. From this point of view, before we discard the terms
with Aþ, we have to determine the relevant fixed path in the
corresponding Wilson line with Aþ which finally leads to
certain prescriptions in the gluon poles. Moreover, the
corresponding Wilson line with A− in the nonstandard
diagram, which contributes to the polarized DY hadron
tensor, prompts the way of residual gauge fixing.
We thus advocate the preponderance of the contour

gauge use which allows to fix completely the gauge
freedom by the most illustrative and simplest way. We
demonstrate that the nonstandard diagram plays the impor-
tant role in forming the relevant contour in the correspond-
ing Wilson line. Hence, from the viewpoint of contour
gauge, there is no way to neglect the additional nonstandard
diagram.
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APPENDIX A: EXPONENTIATION OF
COMPONENT A−

In this Appendix, we demonstrate the method of the A−

component exponentiation. In fact, there are several meth-
ods how to exponentiate the gluon fields, see e.g. [36–38].
Here, we present an alternative frame-independent and
most efficient method mainly based on the approach
described in [32], see Sec. 46.

1. Some conventional notations

Before going further, we remind of several conventions
regarding how the gauge transformations match the

Wilson lines. Taking, for the sake of simplicity, the
Abelian gauge theory (in the case of interest the distinction
betweenAbelian and non-Abelian groups is irrelevant), let us
assume that the fermion and gauge fields are transformed as

ψωðxÞ ¼ e�iθðxÞψðxÞ; ðA1Þ

Aω
μ ðxÞ ¼ AμðxÞ � ∂μθðxÞ; ðA2Þ

whereω stands here for the gauge transformation. Generally
speaking, the signs at the gauge function θ in Eqs. (A1) and
(A2) are conventional. If we fix the transformations as in
Eqs. (A1) and (A2), i.e. the same signs in both expressions,
then we can readily see that the covariant derivative and the
gauge-invariant fermion string operator become

iDμ ¼ i∂μ þ gAμðxÞ;
Og:-inv:ðx; yÞ ¼ ψðyÞ½y; x�AψðxÞ; ðA3Þ

where the Wilson line is given by

½y; x�A¼defP exp

�
þig

Z
y

x
dzμAμðzÞ

�

¼ lim
N→∞

½y; xN �A½xN ; xN−1�A � � � ½x1; x�A
¼ lim

N→∞
½1þ igAðxNÞ · ðy − xNÞ�

� � � ½1þ igAðxÞ · ðx1 − xÞ�: ðA4Þ

In Eq. (A4), the starting point x and final point y are
connected by the certain path P ∈ R4 which allows the
arrangement by pounding fxNgyx.
However, if the signs in both fermion and gauge boson

transformations differ from each other, i.e.

ψωðxÞ ¼ e�iθðxÞψðxÞ; ðA5Þ

Aω
μ ðxÞ ¼ AμðxÞ ∓ ∂μθðxÞ; ðA6Þ

the covariant derivative takes the form of

iDμ ¼ i∂μ − gAμðxÞ; ðA7Þ

while the gauge-invariant fermion string operator, in this
case, reads (see, for example, [16])

Og:-inv:ðx; yÞ ¼ ψðyÞ½x; y�AψðxÞ ðA8Þ

or

Og:-inv:ðx; yÞ ¼ ψðyÞ½y; x�−1A ψðxÞ ðA9Þ

with the Wilson line defined as in Eq. (A4).
In our paper, we adhere to the conventions as in

Eq. (A3).
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2. Description of the method

We begin with the most illustrative subject which is the
Green function in the external field. The gluon radiation
from the proper spinor line as shown in Fig. 1 (right panel)
is actually relevant to the Green function in the external
field.
Consider the differential equation for the Green function

½i∂̂ þ gÂðxÞ�Sðx; yÞ ¼ −δð4Þðx − yÞ; ðA10Þ

where the wide hat denotes the convolution with γ-matrices
as Â ¼ γ · A etc.
We emphasize that the Green function defined by

Eq. (A10) is not a gauge-invariant subject (see, for
example, [36,37]). As one can see below, namely the
gauge-noninvariant Green function ensures the appearance
of the gauge-invariant fermion string operator in the
corresponding hadron matrix element.
For the sake of simplicity and without the loss of

generality, we assume that ∂μ ¼ ð0þ; ∂−; ~0⊥Þ, Aμ ¼
ð0þ; A−; ~0⊥Þ and we, therefore, study the tensor combina-

tion as S½γþ�ðx; yÞ¼defγþSðx; yÞ. That is, instead of Eq. (A10)
we deal with the following differential equation:

½i∂− þ gA−ðxÞ�S½γþ�ðx; yÞ ¼ −δð4Þðx − yÞ: ðA11Þ

Hence, in the operator forms, the Green function takes the
form of

S½γþ�ðx; yÞ ¼ −
1

½i∂̂− þ gÂ−ðxÞ� δ
ð4Þðx − yÞ; ðA12Þ

where the small hat now denotes the corresponding
operators. From the mathematical point of view, the inverse
operator is defined via the integral representation as

i

½i∂̂− þ gÂ−ðxÞ� ¼ lim
ε→0

Z
∞

0

dνeiν½i∂̂−þgÂ−ðxÞþiε�: ðA13Þ

Hence, we can write the Green function as

S½γþ�ðx; yÞ ¼ i
Z

∞

0

dνeiν½i∂̂−þgÂ−ðxÞþiε�δð4Þðx − yÞ

≡ i
Z

∞

0

dνUðνÞ: ðA14Þ

Here and in what follows the limit symbol has been
omitted. In the momentum representation, UðνÞ takes the
form of

UðνÞ ¼
Z

ðd4pÞe−ipðx−yÞþiνp̂þiKðx;νÞ−εν; ðA15Þ

where the integration measure ðd4pÞ includes all needed
normalization constants and we use

e−ν∂̂−e−ipðx−yÞ ¼ e−ipðx−yÞeiνp̂− ðA16Þ

which defines how the operator acts. In Eq. (A15), the
function Kðx; νÞ is an unknown function which we have to
derive.
Since the function UðνÞ obeys (we can check that by

straightforward calculations)

−i
∂UðνÞ
∂ν ¼ ½i∂̂− þ gÂ−ðxÞ þ iε�UðνÞ; ðA17Þ

the function Kðx; νÞ has to satisfy the following differential
equation:

∂Kðx; νÞ
∂ν ¼ −∂−Kðx; νÞ þ gA−ðxÞ ðA18Þ

provided Kðx; ν ¼ 0Þ ¼ 0. A solution of Eq. (A18) can be
easily found (see [32]); it reads

Kðx; νÞ ¼ g
Z

ν

0

ds
Z

ðd4kÞe−ikðx−sn̆þÞA−ðkÞ

¼ g
Z

ν

0

dsA−ðx − sn̆þÞ: ðA19Þ

Using Eq. (A19), the corresponding Green function takes
the form of

S½γþ�ðx; yÞ ¼ i
Z

∞

0

dνe−ενδð4Þðx − y − νn̆þÞ

× exp

�
−ig

Z
y

x
dzþA−ðzþÞ

�
; ðA20Þ

where the standard integral representation for δ-function
has been used,

δð4Þðx − y − νn̆þÞ ¼
Z

ðd4pÞe−ipðx−yÞþiνp; ðA21Þ

and we trade x − νn̆þ (see the upper integral limit in
integration over dzþ) for y thanks to the argument of
δ-function.
The final stage is to write the integration of the

δ-function as

i
Z

∞

0

dνe−ενδð4Þðx − y − νn̆þÞ

¼ i
Z

∞

0

dνe−ν∂̂−−ενδð4Þðx − yÞ

¼ −
1

½i∂̂− þ iε� δ
ð4Þðx − yÞ≡ Sc½γþ�ðx − yÞ: ðA22Þ

Thus, we derive that
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S½γþ�ðx; yÞ ¼ Sc½γþ�ðx − yÞ½x; y�A− ; ðA23Þ

where Scðx − yÞ is defined through h0jTψðxÞψðyÞj0i and
we use the obvious property ½x; y�A ¼ ½y; x�−1A .
The extension to the non-Abelian gauge group is

straightforward.
From Eq. (A23), we can conclude that the fermion field

operator in the external field reads

ΨðxþjAÞ ¼ ψðxþÞ exp
�
ig
Z

xþ

C
dzþA−ðzþÞ

�
; ðA24Þ

where C is, in principle, an arbitrary point which however
we choose to be equal to −∞þ.
We stress that the fermion in the external field differs

from the gauge-invariant fermion field which appears in the
string operator, see Eq. (A3). Indeed, as is well known (see,
for example, [37,38]) in order to get the gauge-invariant
string operator it is necessary to include the gauge boson
(gluon) radiations from the fermions after the interaction of
them with photons (or other gauge bosons) as shown in
Fig. 1 (left panel). Otherwise, we deal with the fermions in
the external fields which are not gauge invariant [see Fig. 1
(right panel)].
To illustrate the last statement, let us consider the

simplest case of Compton-like amplitude (see also [38]).
We have

Tμν ¼
Z

ðd4xÞe−iq·xhpjTJμðxÞJνð0Þjpi: ðA25Þ

On the handbag diagram level, we have

Tμν ¼
Z

ðd4xÞe−iq·x

× hpj∶ψðxÞγμψðxÞψð0Þγνψð0Þ∶jpi: ðA26Þ

In order to include all gauge boson radiations from the
fermion propagator given by the fermion contraction, we
merely make a substitution (modulo the conventional
normalizations which are now irrelevant):

ψðxÞψð0Þ ¼ ScðxÞ ⇒ Sðx; 0Þ ðA27Þ
with Sðx; 0Þ being a gauge-noninvariant Green function,
see Eq. (A23). Using the relation which is similar to
Eq. (A23), we can obtain that

Tμν ¼
Z

ðd4xÞe−iq·x

× hpj∶ψðxÞγμScðxÞ½x; 0�Aγνψð0Þ∶jpi: ðA28Þ
After the factorization procedure, the matrix combination
γμScγν refers to the so-called hard part, while the

nonperturbative hadron matrix element involves the
gauge-invariant string operator defined as

hpj∶ψðxÞ½x; 0�Aψð0Þ∶jpi: ðA29Þ

APPENDIX B: GAUGE AND RESIDUAL
GAUGE SYMMETRIES

In this Appendix, we remind of some subtleties related to
the residual gauge transformations in different gauge
theories.

1. Classical Uð1Þ-gauge theory (Abelian theory)

The Uð1Þ-gauge theory, where the gauge transformation

AΛ
μ ðxÞ ¼ AμðxÞ þ ∂μΛðxÞ; ðB1Þ

defines an orbit on the Uð1Þ-group. In the Abelian case, the
strength tensor Fμν is gauge invariant and, therefore, only
the longitudinal (unphysical) components of the field, AL

μ ,
can be gauge transformed. Indeed, in the classical gauge
theory for both k2 ¼ 0 and k2 ≠ 0, the solution of the
Maxwell equation in vacuum, ∂μFμν ¼ 0, reads (modulo
the complex conjugated terms) (see, e.g., [39])

AμðxÞ ¼ AL
μ ðxÞ þ A⊥

μ ðxÞ

¼
Z

ðd4kÞeikxkμaLðkÞ

þ
Z

ðd4kÞeikxδðk2Þe⊥ðαÞ
μ aðαÞ⊥ ðkÞ; ðB2Þ

where ðd4kÞ stands for the corresponding integration
measure with an appropriate normalization, α ¼ ð1; 2Þ
and k · e⊥ðαÞ ¼ 0. With this expression, we can easily
derive the gauge transformations in p-space (¼ the
momentum representation)

kμaΛLðkÞ þ e⊥μ aΛ⊥ðkÞ ¼ kμaLðkÞ þ e⊥μ a⊥ðkÞ þ kμ ~ΛðkÞ;ðB3Þ

where the imaginary factor i is absorbed in the definition of
~Λ. In what follows summation over α and dimensionful
normalizations are not shown explicitly unless it leads to
misunderstanding.
Since k · e⊥ðαÞ ¼ 0, we conclude that

aΛLðkÞ ¼ aLðkÞ þ ~ΛðkÞ; aΛ⊥ðkÞ ¼ a⊥ðkÞ; ðB4Þ

or, equivalently,

AL;Λ
μ ðkÞ ¼ AL

μ ðkÞ þ kμ ~ΛðkÞ;
A⊥;Λ
μ ðkÞ ¼ A⊥

μ ðkÞ: ðB5Þ

Moreover, it is easy to demonstrate that
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AL;Λ
μ ðxÞ ¼ −i∂μαðxÞ; ðB6Þ

where αðxÞ is a scalar function which is related to aLðkÞ via
the Fourier transformation, αðxÞ¼F aLðkÞ, and aLðkÞ ¼
ξðkÞ=k2 with ξðkÞ¼defk · ALðkÞ ≠ 0 for k2 ≠ 0. Notice that
if k2 ¼ 0, the Maxwell equation takes the simplest form,
k · AðkÞ ¼ 0, in the p-space and, therefore, k · ALðkÞ ¼
k2aLðkÞ ¼ 0 or, in other words, aLðkÞ ¼ ξðkÞ=k2 ∼ 0=0.
As is well known, to fix the certain representative on the

group orbit we have to impose a gauge condition FðAΛÞ ¼
0 on the gauge-transformed fields in order to find a solution
with respect to the gauge parameter Λ. Here, we do not
discuss the appearance of Gribov’s ambiguity.

a. The Lorentz gauge

As the first example, we consider the Lorentz (covariant)
condition which states

∂μAΛ
μ ðxÞ ¼ ∂μAμ þ ∂2ΛðxÞ ¼ 0: ðB7Þ

In p-space, condition (B7) takes the following form:

kμAL
μ ðkÞ þ k2 ~ΛðkÞ ¼ 0 ðB8Þ

which gives us the relation aLðkÞ ¼ − ~ΛðkÞ for the case of
k2 ≠ 0. Notice that if k2 ¼ 0, then the functions aLðkÞ and
~ΛðkÞ in the combination aLðkÞ þ ~ΛðkÞ are free functions
and they are independent of each other.
However, the gauge condition (B7) [or (B8)] cannot

fix the orbit representative uniquely. Indeed, there is
still the so-called residual gauge freedom defined by
FðAΛÞ ¼ FðAÞ ¼ 0. For the Lorentz condition, two simul-
taneous conditions,

∂μAΛ
μ ðxÞ ¼ 0 and ∂μAμðxÞ ¼ 0; ðB9Þ

lead to

∂2Λ0ðxÞ ¼ 0; ðB10Þ

where the gauge function (parameter) Λ0 defines the
residual gauge freedom. That is, the residual gauge trans-
formation with the function Λ0 keeps the gauge condition,
FðAÞ ¼ 0, gauge invariant. Hence, the gauge freedom
fixing means that one fixes all gauge freedom including
the residual gauge. In other words, if there is no residual
gauge transformation, the given gauge condition fixes the
gauge freedom completely and we deal with one repre-
sentative on a gauge orbit.
Let us consider the second gauge condition in Eq. (B9).

In p-space, it leads to the following possibilities
(k · a⊥ ¼ 0 by definition):

k2aLðkÞ ¼ 0 ⇒

�
k2 ¼ 0; aLð~kÞ − arbitrary

k2 ≠ 0; aLðkÞ ¼ 0.
ðB11Þ

Hence, we can see that the gauge condition (B9) cannot
eliminate the unphysical field AL

μ for the case of k2 ¼ 0.
Working with Eq. (B10), in the same manner, we conclude

that the gauge function ~Λ0ð~kÞ is not fixed and generates the
residual gauge transformation provided k2 ¼ 0.
It is instructive to consider the condition (B10) in the

coordinate representation (x-space). Solution (B10) can be
easily found and represented, for instance, in the following
form:

Λ0ðxÞ ¼
8<
:

const

1=x2; for x2 ≠ 0

C0eiðx0−~x
~NÞ with; j ~Nj ¼ 1:

ðB12Þ

Notice that the scalar function αðxÞ in Eq. (B6) which
obeys the second condition in Eq. (B9), i.e. ∂2αðxÞ ¼ 0,
has formally the same form as (B12).
For k2 ≠ 0, the scalar gauge function Λ gives also the

longitudinal (unphysical) field AL
μ , see (B8). Therefore, the

first two solutions of (B12) are irrelevant for our study.
In order to get matched with the corresponding condition
(B11) in the momentum representation, we have to put C0

equal to zero, C0 ¼ 0. However, for the case of k2 ¼ 0, as
mentioned above, the functions αðxÞ and Λ0ðxÞ are
independent and arbitrary due to the different free constant
prefactors in the plane wave solution.
We can also consider the Lorentz gauge condition (B7)

as an inhomogeneous differential equation with respect to
ΛðxÞ, i.e.

∂2ΛðxÞ ¼ ηðxÞ; ðB13Þ

where ηðxÞ¼def − ∂μAμðxÞ. Solving (B13), we obtain that

ΛðxÞ ¼ Λ0ðxÞ þ
Z

d4yGðx − yÞηðyÞ; ðB14Þ

where the Green function GðxÞ is defined as

GðxÞ ¼ 1

½∂2�reg
δð4ÞðxÞ ðB15Þ

with the suitable regularization of operator stemmed from
the corresponding boundary conditions, see [32].

B. The Coulomb gauge

Using the condition AΛ
0 ðxÞ ¼ 0 to amplify the Lorentz

condition (B7), we can get the Coulomb gauge condition
which reads
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~∂ ~AΛðxÞ ¼ ~∂ ~AðxÞ þ ΔΛðxÞ ¼ 0: ðB16Þ

In p-space, the condition (B16) is transformed to (recall

that ~∂ ~A⊥ ¼ 0 by construction)

~k2aLðkÞ þ ~k2 ~ΛðkÞ ¼ 0: ðB17Þ

Again, let us study the corresponding residual gauge
freedom:

~∂ ~AðxÞ ¼ 0 and ΔΛðxÞ ¼ 0: ðB18Þ

For the sake of simplicity, we dwell on the case of k2 ¼ 0

which leads to ~k2 ≠ 0. With this, instead of (B17), it is
enough to stop on the equation

~k2 ~Λð~kÞ ¼ 0: ðB19Þ

Hence, the only solution of (B19) is ~Λ ¼ 0 which means
that there is no residual freedom at all.
Therefore, in the Coulomb gauge there are no longi-

tudinal field components and we deal with the physical
gauge field A⊥

μ only.

c. The Hamilton and axial gauges

In a similar manner, we can study the residual gauge
symmetries in the Hamilton (AΛ

0 ¼ 0) and axial (Aþ;Λ ¼ 0)
gauges. The residual gauge transformations are given by
the corresponding free (unfixed) gauge function ~ΛðkÞ
provided k0 ¼ 0 or kþ ¼ 0.

2. Classical SUð3Þ-gauge theory (non-Abelian theory)

The next subject of our discussion is a non-Abelian
gauge theory with SUð3Þ gauge group. In this case, the
gauge transformation is given by

Aω
μ ðxÞ ¼ ωðxÞAμðxÞω−1ðxÞ þ i

g
ωðxÞ∂μω

−1ðxÞ ðB20Þ

which gives in the infinitesimal form

Aa;ω
μ ðxÞ ¼ Aa

μðxÞ þ fabcAb
μðxÞθcðxÞ þ

1

g
∂μθ

aðxÞ; ðB21Þ

where ωðxÞ ¼ expðiθaðxÞtaÞ. The decomposition of field
components in the longitudinal and transverse components
is similar to the Abelian case, see above. In contrast to the
Uð1Þ gauge group, the strength tensor Gμν is gauge
covariant. It means that all field components may change
under gauge transformations.

a. The Lorentz gauge

We again begin with the Lorentz gauge condition:

∂μA
a;ω
μ ðxÞ ¼ ∂μAa

μðxÞ þ fabc∂μðAb
μðxÞθcðxÞÞ þ

1

g
∂2θaðxÞ

¼ 0: ðB22Þ

As mentioned above, the gauge condition is invariant under
the residual gauge transformation:

∂μA
a;ω
μ ðxÞ ¼ ∂μAa

μðxÞ ¼ 0 ðB23Þ

or, equivalently,

Dac
μ ∂μθ

cðxÞ ¼ 0; ðB24Þ

where Dac
μ ¼ ∂μδ

ac þ gfabcAb
μðxÞ.

In p-space, condition (B24) takes the form of

−k2θaðkÞ þ igfabckμA
b;L
μ ðkÞθcðkÞ ¼ 0: ðB25Þ

If k2 ¼ 0 and, therefore, kμA
b;L
μ ðkÞ ¼ 0, then the gauge

function θðxÞ cannot be fixed and generates the residual
gauge transformation.

b. The Hamilton gauge

A similar situation occurs in the Hamilton gauge,
Aω
0 ¼ 0. The residual transformation is induced by the

gauge function which obeys

∂0θ
aðx0; ~xÞ ¼ 0: ðB26Þ

Hence, the solution of this equation is rather trivial:
θ-function is the time-independent function, θ0ð~xÞ.
In the momentum representation, condition (B26) gives

us the equation

Z
ðd4kÞeikxk0θaðk0; ~kÞ ¼ 0 ðB27Þ

which has a solution as

θa0ðkÞ ¼ δðk0Þθa0ð~kÞ: ðB28Þ

Therefore, we find in the coordinate representation

Z
ðd4kÞeikxδðk0Þθa0ð~kÞ ¼ θa0ð~xÞ ðB29Þ

which coincides with the results of the preceding paragraph.

c. The axial gauge

Working in the axial gauge, Aþ;ω ¼ 0, in a similar
manner we are able to find the gauge function that is
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responsible for the residual gauge symmetry. We impose
the condition

Aþ;ωðxÞ ¼ AþðxÞ ¼ 0 ðB30Þ

or, in the equivalent form,

∂þθaðxþ; x−; ~x⊥Þ ¼ 0 with ∂þ ¼ ∂− ¼ ∂
∂x− : ðB31Þ

The solution of this trivial differential equation is the
x−-independent function θa0ðxþ; ~x⊥Þ which has the follow-
ing form in p-space [cf. (B27) and (B28)]:

θa0ðkþ; k−; ~k⊥Þ ¼ δðkþÞθa0ðk−; ~k⊥Þ; ðB32Þ

where θa0ðk−; ~k⊥Þ is an arbitrary gauge function related to
the residual symmetry.
It is instructive to focus on the finite gauge trans-

formations and corresponding gauge condition, namely

Aþ;ωðxÞ ¼ ωðxÞAþðxÞω−1ðxÞ þ i
g
ωðxÞ∂þω−1ðxÞ

¼ 0: ðB33Þ

The solution of this equation can easy be found; it reads

ω0ðxÞ ¼ P exp

�
ig
Z

x−

C
dz−Aþðxþ; z−; ~x⊥Þ

�
; ðB34Þ

where, generally speaking, C is an arbitrary constant. We
stress that the solution ω0ðxÞ is valid for ∀ x ∈ R4. At the
same time, this function can be multiplied by an arbitrary
x−-independent gauge function to produce another solution
of Eq. (B33), i.e.

Wðxþ; x−; ~x⊥Þ ¼ ωðxþ; ~x⊥Þω0ðxþ; x−; ~x⊥Þ; ðB35Þ

where ωðxþ; ~x⊥Þ ¼ expðiθaðxþ; ~x⊥ÞtaÞ. Indeed, one can
demonstrate that Aþ;WðxÞ ¼ 0.
To study the residual symmetry, we have to demand that

AþðxÞ ¼ 0 for any x. Therefore, from (B35), we obtain that
the function

Wðxþ; x−; ~x⊥ÞjAþ¼0 ¼ ωðxþ; ~x⊥Þ ðB36Þ

generates the residual transformation we are interested in.
Let us now return to the gauge function presented by

(B32). The case of kþ ¼ 0 (which provides us the residual
symmetry) leads to the so-called spurious singularity in the
gluon propagator in the axial gauge, see the next sub-
section. If we adopt a procedure to regularize this singu-
larity with the help of some well-defined procedure,
½kþ�reg ≠ 0, then the existence condition for the residual

symmetry, see (B31), has to be given by (in the momentum
representation)

Z
ðd4kÞeikx½kþ�regδðkþÞθa0ðk−; ~k⊥Þ ¼ 0: ðB37Þ

Hence, the only possibility to satisfy this equation is to

demand that θa0ðk−; ~k⊥Þ ¼ 0 which means that we fix the
remaining residual symmetry. Thus, we conclude that the
spurious singularity is fixed if and only if we do not have
the residual gauge symmetry. On the other hand, we may
say that the residual gauge fixing is enough for the
elimination of spurious singularity.

3. Spurious singularity of gluon propagator

Let us return to the issue of the spurious singularity
which appears in the gluon propagator in the axial
gauge Aþ ¼ 0.
The generating functional for gluons (gluonodynamics)

in the most general gauge FðAθÞ ¼ 0,

Z ¼ N
Z

DAμeiS½A�

¼ ~N
Z

DAμΔc½A�δðFðAÞÞeiS½A�; ðB38Þ

where ~N involves the infinite gauge group volume,
R
dθ,

and we use

1 ¼
Z

dθΔc½A�δðFðAθÞÞ; Δc½Aθ� ¼ Δc½A�: ðB39Þ

Instead of solving the gauge condition FðAθÞ ¼ 0 with
respect to the group function θ within the generalized
Hamilton formalism, we separate out the infinite group
volume,

R
dθ, in the generating functional (the Faddeev-

Popov approach).
The next trick is related to the exponentiation of

δðFðAÞÞ. We introduce the generalized gauge condition
as FðAÞ ¼ C with δC=δAμ ¼ 0. The generalizing func-
tional Z must be independent on C. Therefore, to get the
C-independent functional we have to integrate out over this
parameter C. Using the integration measure defined as

dC exp

�
−

i
2ξ

Z
d4xC2ðxÞ

�
; ðB40Þ

we have

Z ¼ ~N
Z

dCeð−
i
2ξ

R
d4xC2ðxÞÞ

Z
DAμΔc½A�δðFðAÞ − CÞeiS½A�

¼ ~N
Z

DAμΔc½A�eiS½A�−
i
2ξ

R
d4xF2ðAÞ: ðB41Þ
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In (B41), the effective action with the gauge-fixing
term,

Sfix ¼ −
1

2ξ

Z
d4xF2ðAÞ; ðB42Þ

is now not gauge-invariant anymore. As a result of this
trick, we do not need to solve the gauge condition with
respect to the gauge function.
Let the gauge condition FðAÞ ¼ 0 be Aþ ¼ 0 with

n2 ¼ 0. In this case, the determinant Δc½A� is independent
on A and, therefore, we are able to include this determinant
in the normalization of functional. Thus, the effective
Lagrangian reads

Leff ¼ −
1

4
GμνGμν −

1

2ξ
ðn · AÞ2: ðB43Þ

This Lagrangian yields the effective action which can be
written as

Seff ¼
1

2

Z
d4xAμðxÞKμνðxÞAνðxÞ; ðB44Þ

where

KμνðxÞ ¼ gμν∂2 − ∂μ∂ν −
1

ξ
nμnν: ðB45Þ

In p-space, the operator Kμν has an inverse operator which,
in the limit of ξ → 0, is given by

K−1
μν ðkÞ ¼

dμνðk; nÞ
k2 þ i0

;

dμνðk; nÞ ¼ gμν −
kμnν þ kνnμ

kþ
: ðB46Þ

As we have demonstrated in the preceding subsection,
when we fix/regularize the spurious singularity ½kþ�reg it
means that we fix the residual gauge symmetry defined by

the gauge function θaðk−; ~k⊥Þ and vice versa.
We also remind that it is not possible to fix the residual

gauge simply by means of adding

1

2ξ2
ðn� · AÞ2 ðB47Þ

in Eq. (B43). In this case, the inverse kinematical operator
[see Eq. (B46)] does not exist due to the fact that the free
(without the coefficients) tensors nμnν and n�μn�ν present in
the corresponding equation to determine the coefficients.
Indeed, introducing the Lorentz parametrization (where the
coefficients have to be determined)

dνρðk; n; n�Þ ¼ gνρ þ a1kνkρ þ b2kνnρ þ b3nνkρ þ b4kνn�ρ
þ b5n�νkρ þ c6nνnρ þ c7n�νn�ρ; ðB48Þ

where

dimM½a1� ¼ −2; dimM½bi� ¼ −1; dimM½cj� ¼ 0;

ðB49Þ

the contraction equation on the coefficients (or, in other
words, the Green function equation)

Kμνdνρ ¼ gμρ ðB50Þ

involves the tensors nμnν and n�μn�ν which stay without
coefficients. It means that the inverse operator cannot be
derived.
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