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We investigate the perturbative expansion in SUð3Þ Yang-Mills theory compactified on R2 × T 2 where
the compact space is a torus T2 ¼ S1β × S1L, with S1β being a thermal circle with period β ¼ 1=T (T is the

temperature) while S1L is a circle with finite length L ¼ 1=M, where M is an energy scale. A Linde-type
analysis indicates that perturbative calculations for the pressure in this theory break down already at order

Oðg2Þ due to the presence of a nonperturbative scale ∼g
ffiffiffiffiffiffiffiffi
TM

p
. We conjecture that a similar result should

hold if the torus is replaced by any other compact surface of genus one.
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I. INTRODUCTION

Although finite-temperature field theory provides the
natural framework to describe thermodynamic properties
and phase transitions in plasmas involving gauge fields, its
perturbative realization faces dreadful obstacles produced
by severe infrared divergences in the gauge sector [1].
In the case of quantum chromodynamics (QCD) at finite

temperature T, where the theory is defined in R3 × S1β and
the compact direction in S1β lies along the Euclidean time
with period β ¼ 1=T, one can say that the domain of
validity of the naive, plain perturbation expansion is
tremendously restricted [2–7] (see also Refs. [8,9]).
Over the years, this difficulty stimulated the development

of techniques that reorganize the perturbative series, improv-
ing significantly the weak-coupling expansion (for reviews,
see Refs. [10–12]). In particular, one can build an effective
theory by using the separation of scales provided by T, gT,
and g2T, which is known as dimensionally reduced effective
theory, or electrostatic QCD (EQCD) [13–15]. The pressure,
for instance, is currently known up to Oðg6 ln gÞ at high
temperatures and at most moderate chemical potentials
μB ≤ 10T [16–18]. Alternatively, one can resort to the hard
thermal loop (HTL) framework [19–21] (see Ref. [22] for
recent results).1

Nevertheless, at order Oðg6Þ in the gauge coupling of a
non-Abelian gauge theory at finite temperature, it is well
known that perturbation theory breaks down due to infrared
divergences in the magnetic sector, the notorious Linde
problem [24,25]. Therefore, to implement EQCDone is then

obliged to match the coefficients of the order Oðg6Þ to
computations in latticeQCD in three dimensions [18,26–28].
The compactification brought about by the finite-

temperature framework is the key ingredient responsible
for the Linde problem since the static large distance behavior
of the gauge theory at high T is the same as in three-
dimensional gauge theory, which confines at the scale∼g2T.
On the other hand, at zero temperature and finite density the
Fermi sea does not produce dimensional reduction and this
infrared problem is absent [29,30]. Therefore, it is interesting
to investigate how Linde’s analysis may be modified when
thermalYang-Mills (YM) theory is subjected to an additional
compactification along a spatial direction.
In this article we investigate the case of a pure glue

SUð3Þ plasma on a torus given by R2 × S1β × S1L, with
L ¼ 1=M being the length of the compactified spatial
direction. By construction, this system is symmetric under
the mapping T → M and M → T, which we denominate
radius exchange symmetry. Here we show that in this
theory Linde’s problem is much more severe and any
perturbative calculation breaks down already at orderOðg2Þ
due to the presence of a nonperturbative scale ∼g

ffiffiffiffiffiffiffiffi
TM

p
.

Therefore, observables in this theory (such as the pressure
or screening masses) can only be computed nonperturba-
tively even when the gauge coupling is arbitrarily small.
Such a setup may be useful to study some aspects of

deconfinement and, in fact, a double trace deformation [31]
of this theory in the limit of large number of colors was
used in [32] to understand the interplay between the color
electric and magnetic sectors in the deconfinement
phase transition [33,34]. Also, additional motivation to
consider thermal non-Abelian gauge theories in spacetimes
of different topology comes from the well-known
study performed in [35], which considered large N
four-dimensional thermal gauge theories in S3 × S1.

1In a very recent development [23], these two approaches are
combined in the treatment of cool quark matter: the zero
Matsubara mode sector is treated via EQCD while the soft
nonzero modes are resummed using HTL.
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We see in the following that the severe infrared issues found
here do not appear in that case.
This paper is organized as follows. In Sec. II we

summarize the main aspects behind Linde’s original argu-
ment. In Sec. III we discuss the relevant properties of the
perturbative Yang-Mills plasma on R2 × S1β × S1L and the
different regimes of the theory including the full breakdown
of perturbation theory in this context. In Sec. IV we present
our final remarks and outlook.

II. LINDE’S ARGUMENT FOR THERMAL
YANG-MILLS THEORY

In his seminal 1980 paper [24], Linde argued that the
perturbative study of Yang-Mills theory defined in R3 × S1β
is extremely problematic due to severe infrared divergen-
ces. Notably, perturbation theory for the pressure breaks
down at order Oðg6Þ. For completeness, we briefly review
Linde’s argument in the sequel.
Let us consider the contribution to the pressure from the

ðlþ 1Þ-loop diagram depicted in Fig. 1. The leading
infrared (IR) behavior comes from taking the Matsubara
zero mode for every line; all other modes act as effective IR
regulators. For the argument, it is sufficient to estimate its
contribution to the pressure using a simple power counting
strategy [24]. In this spirit, we can neglect its tensorial
structure and write this zero mode contribution schemati-
cally in the form

g2l
�
T
Z

d3k

�
lþ1 k2l

ðk2Þ3l ; ð1Þ

where Kμ ¼ ðωn; ~kÞ is the gluon 4-momentum and ωn ¼
2πTn is the Matsubara frequency. The origin of each factor
is easy to trace: vertices contribute with g × k, lines with a
propagator ðk2Þ−1, and loops with an integral.
In order to estimate the contribution from this diagram,

we take T as an ultraviolet cutoff since it would naturally
arise if we were to sum over all Matsubara frequencies due
to the presence of statistical factors. Also, as the diagrams
are potentially IR divergent, one cannot take arbitrarily soft
modes into account; we only integrate over momentum
above a lower threshold a.
The diagrams are IR regular for l < 3 and divergent for

l ≥ 3. Namely, the dominant behavior for different values
of l are [1,24]

∼g2lT4 for l < 3; ð2aÞ

∼g6T4 log
T
a

for l ¼ 3; ð2bÞ

∼g6T4

�
g2T
a

�
l−3

for l > 3. ð2cÞ

In perturbation theory, the coupling g and the scale T
provide a natural hierarchy of energy scales: T > gT >
g2T > � � �. Using such hierarchy as a guideline, one can
push a deeper and deeper towards the IR region.
Equation (2c) shows that when a reaches g2T all diagrams
with l > 3 contribute at Oðg6Þ. In other words, perturba-
tion theory breaks down since infinitely many diagrams
have to be considered at a finite order, even if g is taken to
be arbitrarily small.
The reasoning above ignores the possibility of screening

masses being dynamically generated and, as a matter of
fact, they are present in thermal Yang-Mills theory [1].
In this context, a screening mass would work as a natural
IR regulator, essentially playing the role of a in Eq. (2).
In the color electric sector, IR modes are screened as
a ¼ mel ∼ gT. On the other hand, from Eq. (2c) one can
see that a color magnetic mass a ¼ mmag ∼ g2T makes all
loops l > 3 contribute to Oðg6Þ, which is interpreted as
the breakdown of the perturbative expansion. This is the
so-called Linde problem of thermal Yang-Mills theory.

III. LINDE PROBLEM ON THE TORUS

Now we consider pure glue SUð3Þ Yang-Mills theory
in R2 × S1β × S1L. We define our coordinates as xμ ¼
ðx; y; τ; ξÞ where ðx; yÞ corresponds to R2 and τ ∈ ½0; β ¼
1=T� and ξ ¼ ½0; L ¼ 1=M� parametrize the torus. We note
that the partition function is periodic in τ and ξ and all
observables in this theory should be invariant under radius
exchange symmetry, i.e., M⇔T. The Fourier decomposi-
tion of the Yang-Mills field is given by

Aμðx; y; τ; ξÞ ¼
X∞

m;n¼−∞
Aðm;nÞ
μ ðx; yÞeinτ=βeimξ=L ð3Þ

and, due to the presence of two compact dimensions,
this system can be formally seen as a Kaluza-Klein-like
tower of two-dimensional Yang-Mills theories coupled to
two adjoint scalars for each one of the winding modes

on the torus. We denote Aðm;nÞ
τ ðx; yÞ ¼ ϕðm;nÞðx; yÞ and

Aðm;nÞ
ξ ðx; yÞ ¼ Φðm;nÞðx; yÞ, where ϕ and Φ represent these

two adjoint scalars. As discussed in [32], this system has
global ðZ3Þβ × ðZ3ÞL center symmetry and two order
parameters given by the Wilson lines on the torus.
One may consider the behavior of this theory in certain

limits of the energy scales T and M.FIG. 1. (lþ 1)-loop diagram for pure Yang-Mills theory.
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(i) T;M → ∞ (dimensional reduction): the adjoint
scalars acquire a large mass and decouple from
the low-energy effective theory, which becomes the
exactly solvable two-dimensional Yang-Mills theory
for the massless gluons along the two noncompact
directions [36];

(ii) T → 0, M finite (or M → 0, T finite): One of the
compact dimensions unwinds and the low-energy
effective theory becomes three-dimensional Yang-
Mills theory coupled to an adjoint scalar of mass
∼gT (or ∼gM).

These scenarios are illustrated in Fig. 2. When M → 0,
T ≠ 0 the two-point function of the color field tensor
TrFμνFμν with components along the noncompact directions
exhibits the usual screening for large spatial separations
while when M;T → ∞ this correlator becomes nonpropa-
gating as in two-dimensional Yang-Mills theory [36].
Now we can address Linde’s problem in R2 × S1β × S1L.

As before, we estimate in a power counting scheme the
dominant IR contribution of the Linde diagrams, shown in
Fig. 1. In the present case there is not one but two
compactified dimensions and, thus, in order to get the
leading IR contribution we must take the zero modes
associated with each circle for every line in the loop
diagram. The equivalent of Eq. (1) is then

g2l
�
MT

Z
d2k

�
lþ1 k2l

ðk2Þ3l : ð4Þ

As inSec. II, ifwewere to sumover allmodes a naturalUV
cutoff would arise. Such a hard scale is given as a function of
the two energy scales related to the two compact directions,
which we denote by fðT;MÞ. Its exact dependence on M
andT is not important for our argument though itmust satisfy
the radius exchange symmetry, i.e., fðM;TÞ ¼ fðT;MÞ.
Once again, due to the potential IR divergences of the

Linde diagrams, we only integrate over modes above a
certain IR scale a. The dominant IR behavior for different
values of l can be readily estimated,

∼g2M2T2 log
fðM;TÞ

a
for l ¼ 1; ð5aÞ

∼g2M2T2

�
g

ffiffiffiffiffiffiffiffi
MT

p

a

�2l−2
for l > 1. ð5bÞ

As the problem now has two typical scales, one can no
longer build a unique hierarchy of energy scales with the
aid of the coupling constant. In fact, there are infinitely
many hierarchies at our disposal, one for each possible
combination of M and T with the proper dimension.
Nevertheless, for scales where a ∼ g

ffiffiffiffiffiffiffiffi
MT

p
, all Linde

diagrams with three or more loops contribute at Oðg2Þ,
which indicates the breakdown of perturbation theory.
Thus, the presence of a second compactified dimension
renders the Linde problem in gauge theories even more
severe. The only analytically computable case is the Stefan-
Boltzmann (ideal gas) limit, which gives the following
result for the pressure using standard finite-temperature
techniques [1] (and N ¼ 3):

PSB ¼ 2π2

15
ðT4 þM4Þ þ 2π2

9
T2M2 þ 16T2M2

×
X∞
n¼1

1

n2

�
e2nπβM

ðe2nπβM − 1Þ2 þ
e2nπ=ðβMÞ

ðe2nπ=ðβMÞ − 1Þ2
�
; ð6Þ

where radius exchange symmetry is manifest [also, note
that (6) reduces to the well-known result 8π2T4=45
when M → 0].
The fact that IR fluctuations have become stronger

should be expected given the particular type of compact
space we considered and the presence of an additional zero
mode2 in the torus in comparison to the usual case of YM in
R3 × S1β. Also, we note that the zero modes in the compact
directions, though constant, have nontrivial commutators.
A thorough discussion about these modes is, however,
beyond the scope of the present article.
In this regard, we point out that there is an important

difference between the case considered by Aharony et al. in
Ref. [35] and the one we address in this paper: the
eigenmodes of the Laplacian operator. In our case,
R2 × S1β × S1L, the eigenmodes are, along all four direc-
tions, Fourier modes (plane waves) and the corresponding
eigenvalues are simply the square of arbitrary real numbers
and the square of the Matsubara frequencies for the
noncompact and compactified directions, respectively.
Therefore, the propagator is bound to diverge when the
modes with vanishing eigenvalues are considered, which
introduces IR divergences in the computation of Feynman
diagrams. On the other hand, when embedding the theory
in S3 × S1 as in [35], the eigenmodes are one Fourier mode
along the time direction and the three-dimensional

FIG. 2. Behavior of the theory in the M − T plane.

2We thank R. Pisarski for pointing this out to us.
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generalization of the vector spherical harmonics over the
3-sphere. The eigenvalues related to the Fourier mode are,
once more, the square of the Matsubara frequencies but the
one related to the spherical harmonics, which the authors
of Ref. [35] call Δ2, can be shown to be a positive integer.
In other words, the eigenvalues related to the eigenmodes
living on S3 never vanish and, thus, work as a natural IR
regulator—the propagator never diverges even when the
zero-Matsubara mode is taken into account. Thus, one can
see that there is a link between the topology of the
spacetime within which thermal gauge theories are
embedded and the fate of perturbation theory.
In the dimensional reduction limit, i.e., T;M → ∞, the

system becomes effectively Yang-Mills theory in two
dimensions [36]. In this case, one can write the partition
function purely in terms of the field strengths Fμν

(Bianchi’s constraint is trivial in two dimensions) [37],
with a simple quadratic action ∼1=g2 whose field strengths
fluctuate on the plane independently from one another. The
pressure of this system can be solved exactly [36] and it
contains a term that goes as ∼1=g2 and, thus, it cannot be
simply expanded in perturbative powers of g at weak
coupling. We believe this may be the root behind the
failure of naive perturbation theory already at order g2

found here for Yang-Mills theory on R2 × S1β × S1L.
Additionally, we remark that two-dimensional Yang-

Mills theory also appears as a limit of the original four-
dimensional theory if the torus is replaced by any compact
surface with genus 1, though the explicit construction of the
Linde problem in this case is beyond the scope of this paper.

IV. CONCLUSION AND OUTLOOK

Perturbative expansions at finite temperature are plagued
with IR divergences whenever massless bosonic fields are
present [1]. This situation is even more problematic in the
case of thermal Yang-Mills theory since the Linde problem
essentially makes naive perturbation theory meaningless
beyond Oðg6Þ.
Thermal field theories, in the imaginary-time formalism,

are set in a Euclidean spacetime with a compact time
direction and, in this context, all thermal effects are ulti-
mately encoded in the structure of the underlying spacetime
(e.g., R3 × S1β). In order to better understand the role played

by compactification in IR problems of non-Abelian gauge
theories, we included a second compact dimension and
analyzed the behavior of Yang-Mills theory, providing an
extension of Linde’s argument for the case where the
compact part of spacetime is the torus T2 ¼ S1β × S1L.
Our study shows that the Linde problem in this case

becomes much more severe, as it already emerges at Oðg2Þ
for the pressure. This indicates that the perturbative expan-
sion in Yang-Mills theory on R2 × S1β × S1L faces important
limitations since the lowest order correction to any physical
observable necessarily has a nonperturbative contribution
even at arbitrarily small coupling. However, this system
could be readily studied on the lattice and it would be
interesting to investigate the phase diagram of this theory,
depicted in Fig. 2. One could compute on the lattice the
glueball correlator and see its behavior changing from the
well-known description in terms of screening masses when
L → ∞ to the finite L scenario addressed in this paper.
Finally, it would be interesting to see if the breakdown of

perturbation theory induced by IR divergences in Yang-
Mills theory indeed has a topological character. One could
check if other compact surfaces with genus 1 (which are
then topologically equivalent to the torus considered here)
produce the same qualitative results for the pressure. While
we cannot rigorously prove it at this time, we conjecture
that this is going to be the case because the dimensional
reduction argument discussed here, which leads to two-
dimensional Yang-Mills theory, should also hold.
Additionally, compactifications of Yang-Mills theory on
R2 ×M2, where M2 is a compact surface with genus > 1,
may yet reveal other features that are not present in the
simple torus example considered here.
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