PHYSICAL REVIEW D 95, 034025 (2017)

Quark correlations in the color glass condensate:
Pauli blocking and the ridge

Tolga Altinoluk,'? Néstor Armesto,” Guillaume Beuf,* Alex Kovner,” and Michael Lublinsky®”
'CENTRA, Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
Laboratério de Instrumentagdo e Fisica Experimental de Particulas - LIP, 1000-149 Lisbon, Portugal
3Departamento de Fisica de Particulas and IGFAE, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Galicia-Spain
4Eumpean Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT*) and
Fondazione Bruno Kessler, Strada delle Tabarelle 286, 1-38123 Villazzano (TN), Italy
5Physics Department, University of Connecticut, 2152 Hillside Road, Storrs, Connecticut 06269, USA

6Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(Received 25 October 2016; published 22 February 2017)

We consider, for the first time, correlations between quarks produced in p-A collisions in the framework
of the color glass condensate. We find a quark-quark ridge that shows a dip at Ay ~ 2 relative to the gluon-
gluon ridge. The origin of this dip is the short-range (in rapidity) Pauli blocking experienced by quarks in
the wave function of the incoming projectile. We observe that these correlations, present in the initial state,
survive the scattering process. We suggest that this effect may be observable in open charm—open charm

correlations at the Large Hadron Collider.
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I. INTRODUCTION

The ridge correlation observed in p-p collisions at the
Large Hadron Collider (LHC) has been the center of
interest of the heavy-ion community for several years.
First seen in high-multiplicity collisions by the CMS [1]
and ATLAS [2] collaborations at the LHC, similar corre-
lations have subsequently been observed by all four large
LHC experiments in p-Pb collisions [3], and much more
detailed studies of the properties of these correlations are
available today. Even more exciting, recently data by
ATLAS [4] and CMS [5] suggest the existence of the
ridge in p-p events with multiplicities close to those in
minimum bias collisions, both at /s = 2.76 and 13 TeV.

Two main lines of explanation are discussed at present.
One is based on a collective (hydrodynamic?) behavior of
the system produced in the collision [6] in an analogous
manner as in heavy-ion collisions. The other one is based
on the color glass condensate (CGC) [7-9] framework to
describe high-energy quantum chromodynamics in a weak
coupling but nonperturbative regime. Within the latter, a
quantitative description of the data is achieved [10] in the
“glasma graph” approach [11,12] which ascribes the origin
of the correlations entirely to the structure of the initial state.
Other mechanisms within the CGC framework [13,14] exist
as well (see also other proposals in Ref. [15]). Though it is
likely that both mechanisms, corresponding to final and
initial state effects, are contributing to the correlations
(probably in different transverse momentum ranges), the
new p-p data mentioned above make the hydrodynamical
description somewhat questionable and the possible initial
state origin of the correlations more credible.
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Within the glasma graph approach, we recently showed
[16] that the physics underlying this contribution is the
Bose enhancement of gluons in the projectile wave func-
tion. The effect is long range in rapidity since the CGC
wave function is dominated by the rapidity integrated mode
of the soft gluon field.

A natural question to ask, never addressed in detail before,
is whether quarks (or antiquarks) in the CGC are also subject
to correlations. One expects quarks to experience Pauli
blocking, and thus the probability to find two identical
quarks with the same quantum numbers in the CGC state
should be suppressed. Such suppression, if it exists, should
be observable experimentally. One anticipates this effect to
be significantly smaller than for gluons, since quarks in the
CGC wave function are generated only via gluon splitting,
and thus their number is O(a,) suppressed. This makes
quark pair correlation an O(a?) effect. Nevertheless, since
the relevant coupling constant is not very small, the effect
may be observable and is thus a worthwhile subject of study.
This is the aim of the present work.

An interesting question is, in particular, whether the
Pauli blocking effect is long range in rapidity or not. The
answer is not obvious a priori, since although the quarks
themselves are produced via splitting off rapidity invariant
gluons, the splitting probability itself depends on the
rapidity of the quark and the antiquark. This is one of
the questions we want to study in this paper. As we will
show, the Pauli blocking effect is indeed present, but it is
short range in rapidity. Another interesting, albeit some-
what technical point is what is the relevant N, dependence.
We find that the suppression of Pauli blocking with respect
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to Bose enhancement is not O(a?) but rather O(a?N.),
which is quite moderate for a; ~ 0.2 and N. = 3.

A natural candidate for the observation of such effects is
open charm—open charm correlations that are expected to
be less gluon dominated than light hadrons.' Data from the
LHCb Collaboration [17-19] exist in such processes.
LHCb provides the cross sections but in the forward
rapidity region—while our approach is suitable for the
central rapidity region, and correlations have not been
analyzed until now. These data are currently discussed in
the context of single versus multiple parton interactions in
collinear and ky factorization; see, e.g., Refs. [20,21] and
[22], respectively. Another interesting possibility would be
the contribution of quark-quark correlations to the differ-
ence between the azimuthal correlations of equal and
opposite sign charged particles, which have been measured
to be of similar magnitude in p-Pb and Pb-Pb collisions at
the LHC [23]. Naturally, one would expect Pauli blocking
to contribute only to the equal sign charged particle
correlations, and to decrease them at A¢ = 0.

The paper is organized as follows. In Sec. II, we derive
the expression for the number of quark pairs in the CGC
wave function to lowest order in a,. We show that it
contains a correlated part which suppresses the number of
pairs at like values of transverse momenta—the Pauli
blocking contribution. This contribution is short range,
in the sense that it decreases as a function of the rapidity
difference between the two quarks. However, the natural
exponential decrease is tempered by a rather high power of
rapidity difference. As a result, this contribution can be
sizable even for significant rapidity separations. In Sec. III,
we consider the double inclusive quark production in a
scattering process. We concentrate on the kinematic regime
where the saturation momentum of the target is relatively
small, so that the initial state correlations have the best
chance of being reflected in the spectrum of particles
produced in the final state. We show that the basic features
of quark pair correlations in the wave function are indeed
preserved by the production process. There are, however,
some important differences, which we comment on.
Finally, Sec. IV contains a short discussion of our results.
Details of the calculations are presented in the appendixes.

II. PAULI BLOCKING IN THE PROJECTILE
WAVE FUNCTION

Throughout this paper we will be working in the
standard CGC framework, following the conventions in
[24]. We consider a left-moving target that is described
by the Weizsicker-Williams field a?(x), and its saturation
scale is denoted by Q7. On the other hand, the saturation

"The heavy quark mass needs to be included in the calculation
for open charm—open charm correlations. This effect adds
technical complexity to the calculation. Therefore, it is neglected
in this exploratory work and left for future studies.
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scale of the right-moving projectile whose wave function
describes the distribution of the soft Weizsdcker-Williams
gluons accompanying the valence color charge density
p®(x) is denoted as Q,. The production of soft gluons
from the valence charges is treated eikonally. The sea
quarks are produced in this wave function from the soft
gluons by perturbative splitting. This splitting is not
eikonal, and full perturbative kinematics is retained in
the calculation.

The distribution of the color charge densities will be, for
simplicity, taken from the McLerran-Venugopalan [25]
model. Again for simplicity, we will assume translational
invariance of the projectile wave function in the transverse
space. This, as always, will lead to a spurious §-function
structure of some of the correlated cross section, which in a
realistic case is smeared by the inverse size of the projectile.
Additionally, we will be working in the leading N,
approximation.

A. Quark contribution to the wave function

Let d' and d denote quark creation and annihilation
operators, while d' and d are those of the antiquark.
Perturbatively the quarks and antiquarks appear in the
light-cone wave function of a valence charge either via
instantaneous interaction or via splitting of a soft gluon; see
details in Appendix A. The quark-antiquark component of
the light-cone wave function of a “dressed” color charge
density is given by2

dktdad’ pd®q
08 = (1= giele) + o7 [ FEEE

x [0, (K", p.q.@)dY (g*. )dR (p*. p)]|v).
(2.1)

where |v) denotes a valence state, g is the Yang-Mills
coupling, k4 is a constant (virtual correction) ensuring the
correct normalization of the dressed state, and y, 6 are color
indices. The value of x, is unimportant for us in this paper.
We define the longitudinal momentum fraction a as

pt=ak", gt =ak", a=1-a, (2.2)
with k£ the momentum of the parent gluon that splits
into a quark and an antiquark. The splitting amplitude ¢
is given by

d’k
5 a a .
gjs/lsz(k+’ P, qva) = Tyé/(zﬂ)zp (k)¢s152(kv p, q’a)’

(2.3)

’In addition, the state to this order in perturbation theory
contains one-gluon and two-gluon components. We do not
indicate those explicitly, as they do not contribute to correlated
quark production.
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where 7¢ are the generators of SU(N,) in the fundamental

representation. Here,

b=+ (24)
where
(1) 2aa
bon (ke g:0) = =B o s (27)?6%) (k= p - q)
(2.5)
and
2 k . 2aak? — (ak- k-
¢5152( ,P.q;a ) kz[ap +aq ]{ aa ((Z p+a q)
+2ic’kx p}(27)*8%) (k—p—q).
(2.6)

Thus,
|
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bs,s, (k. p gz a) =@, (k. p;a) 27)26PD (k—p—q)  (2.7)

with
1
lap® + a(k - p)?|
x {=[ak - p+ ak- (k= p)] + 2ic*k x p}.
(2.8)

by, (k. psa) =

The ¢! term comes from the instantaneous interaction,
while ¢®) comes from the soft gluon splitting. To probe
quark-quark correlations, we are interested in the two
quark—two antiquark component of the dressed state. We
will adopt the same strategy as was used in the glasma
graph calculation. That is, we focus on terms enhanced by
the charge density in the wave function. Thus, at the lowest
order it is given by

dictdad? p'd*p' dk+dpd*q d*q
|0)? —V1rtua1+— 3
(27) (27)3
x (gt (K p' Pl a)in (KT g @ P (ak ™ p)d) (ak ™. p)dyY (BR*., ¢ )y} (PR, @) |0). (2.9)

B. Pauli blocking

Our first order of business is to calculate correlations between the quarks in the CGC wave function. In the next section,
we will see how these correlations translate into correlations between particles produced in a collision.
Our aim is to calculate the average of the number of quark pairs in the wave function that is formally defined (see, e.g.,

Ref. [26]) as
dN 1
dp*d*pdq*d®q (271')

s (P(vldls, (p*, p)d) (aF, 9)dp.,(a", @)das, (P, P)0)D) s

(2.10)

i.e., first, we need to calculate the expectation value of the “number of quark pairs” in our dressed state |v)?, and then, we

average over the color charge densities in the projectile.
The final result, derived in Appendix B, reads

aN
dnd®pdn,d*q  (2x)
x {tr(z%z")tr(¢7¢

ot [ PRI 0 (B (D D)

)@ (k, L p) @y (k. I q) —

tr(z97P e\ D, (k, 1, k, I; p, q)}, (2.11)

where p?(k) and p” (k) are the color charge densities in the amplitude and p¢({) and p?(1) are the color charge densities in the

complex conjugate amplitude. The rapidities are defined as #; = In(p

§/p")andn, = In(p/q"), with pj some reference

+-momentum. The functions ®, and ®, are defined, respectively, as

2/
D, (k, I p) = /da/d 5 Y sk p. ), (L p. Pl @)

5152

and

&, (k, Lk, I;p,q) =

(2.12)

51,82,51,52

dzp/ dz ! B _ B .
X/ 2¢s1s2( ’pﬂp/;a)¢§1§2(k’q’q/;ﬂ)¢s1§2( P, q ﬂ) slsz( /a)'

(27)* (27)

da dp
Z / ﬂ + ﬂem 172 (a + aeﬂz—m)

(2.13)
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The integrals represent “inclusiveness’ over the antiquarks. The integrals over p, g reduce the number of §-functions to two,

so that, in general, we can write

dadp

- 1
q)4(k, l?k, l,P7Q) - Z_ A (ﬁ+Beﬂ1—ﬂ2)(a+aeﬂ2—7]1)
$152,51,82
X ¢, (k+q = p,q;a0) 22?6 (1 =k — g + p)(22)*6D (I =k + g = p).

The quark pair density has two contributions. One
contribution is proPonional to @,, and the other is propor-
tional to <I>2d>2.3’ However, in the large N, limit the
interesting part of the contribution is given by ®,. The
diagrams that correspond to ®,®, yield an uncorrelated
contribution, which is O(N¢), and correlated terms O(N?).
On the other hand, the leading ®, term is O(N?), and, thus,
it dominates the correlations. The N, counting of the
diagrams originating from ®,®, is illustrated in Figs. 1-3.

We will, from now on, concentrate solely on the leading
N, contribution and will only consider the diagrams
containing ®, (see Fig. 4). The leading N, contribution
to the correlated quark pair density in the projectile wave
function is given by

{dNP(p,q;m,nz)}
aapdzqd'? ldrlZ correlated
8
g 7 7/ Aa c(T 7
— - [ PRI W R 00
x @, (k, 1k, I; p, q)tr{zcbze 74},

(2.15)

From this point on, we assume the McLerran-Venugopalan
(MV) model [25] for averaging over color charge den-
sities.” Within this model the correlators of p factorize a la
Wick into two-point correlators. Additionally, we assume
translational invariance of the CGC wave function. This is
not an entirely realistic assumption since such invariance is
certainly broken on the scales of the size of the hadron.
However, for relatively large transverse momenta, the error

The contribution proportional to ®, comes with a minus sign
due to the anticommutation relations between the quark and
antiquark creation and annihilation operators. Therefore, it is due
to Pauli blocking. This fact will also be apparent in that it results
from an odd number of quark loops, in contrast to the ®,®,
contribution.

*We would like to emphasize, at this point, that the @&,
contribution has rapidity dependence while the @, contribution
is independent of rapidity. These rapidity-dependent denomina-
tors stem from the integrations over the longitudinal momenta.
The fact that @, is rapidity dependent is simply because @,
mixes the longitudinal momenta of the quarks and antiquarks
between the two different gg pairs in the wave function, as
opposed to the factorized (®,)? contribution. This is the origin of
the short range rapidity nature of the quark pair density.

Note that we have also assumed the MV model for the
averaging over the color charge densities in the (®,)? contribu-
tion to discuss its N, counting.

bs,5, (k. psa)ps s, (k. q; By 5, (k — g + p. p: )

(2.14)

introduced by this assumption should not be important.
Within this framework, the basic contraction is given by

(p(k)p"(p))p = (22)p* (k)6** 6@ (k + p).  (2.16)

pL |

kj_ kJ_

ki —p1

FIG. 1. The uncorrelated contribution originating from (®,)?.
We work at large N, where gluons are represented as double
lines, and the short vertical lines correspond to an observed
particle. Arrows indicated the color flux, while momenta flow
from left to right.

pL |
—)—r | L—
ki l , ki
ki —p1
qL A
r I ~N
El EL
];L —qL

FIG.2. The first correlated contribution of order N originating
from (®,)2.
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In the following we take 4% (k) to be approximately constant
for large momenta, p*(k) = u? for k* > Q2, with Q, the
saturation momentum, and vanishing at small momenta,
#?(0) = 0. The latter condition is equivalent to requiring
that only globally color neutral configurations contribute to
the hadronic ensemble. The spatial scale of the color
neutralization in our ensemble is Q7'. We assume that
this vanishing is fast enough to regulate, at least, quad-
ratically divergent integrals by cutting them off at Q.
There are two contractions of p that contribute at large
N, (x O(N?)) (see Figs. 5 and 6), and a third subleading
one (x O(N,.)) that is shown in Fig. 7. The two leading
contractions, to which we restrict ourselves hereafter,
produce two distinct transverse momentum dependences:

4 « 5@ (p — q)8?)(0).
@8 x 6% (k—k— g+ p)s?(0).

pL A

ki

1

ki —py1

qL A

*

—

h*(u

(2.17)

FIG. 3. The second correlated contribution of order N2 origi- ~ We now consider these two contributions,
nating from (®,)2.

/ dadf
51,52,51,5 V] —|—ﬁe'71 ) (a4 @e )

X by, 5, (k. pr @) s 5, (k. p: B) i 5, (k. p: B3, (k. p:a)

@ (k. k; p.q) (27)* 42 (k)2 (k)8 (p — q)5(0)

(2.18)

and

@ (k.k: p. q) (k)P (k + g = p)6® (k- k — g + p)s®(0)

dadp
Z / ﬂ + ﬁem 1 (a + aeﬂz—’h) (2”

$1,52,51,5
J(k+q—=p.q: P 5, (k. p: B3 s, (k + g = p.q: ).

X ¢y, (k, Py )5, 5 (2.19)

In both cases the spin structure becomes simple, and the trace over the spin indices can be taken explicitly. Thus,

S ~ ! da dp (27)* 24 (k) (k)

q)f(k, kip,q) = 5(2)(17 Q)5(2)(0)/) (B —l—/_}e’“_’h)(a + aemm) k4l_<4[5tp2 + a(k - p)Z]Z[ﬁpZ +ﬂ(l_€ _ p)2]2
x{[ak - p +ak- (k= p)P? +4[k*p> = (k- p)’IH{[Bk-p + pk- (k= p)]* +4[k*p* = (k- p)’]}  (2.20)

and

B(} 7 SO (F—k— @) ! _ da df (2z)* 2u* (k) (k + g — p)
ilkip.a) =0k ponO) /o (B+ pen =) (a+ aem ) K}k + q = p)*lap® + a(k = p)?]
1 . -

B B VTP T A= yIad T ath—py] P T =)+ pa ek p o+ aiy
+(@=a)(B—p) =4k p)*Haplk+q—p)* +[a(p-p) +pa-a)k+q-p)Pk+qg-p)-q

—4|[(k+q-p)-q}. (2.21)

+4(k+q-p)d*+[(@a-a)(p-p)

The correlated contribution clearly does not vanish. We
will not calculate the integrals involved exactly. However, it
is possible in a relatively simple way to estimate the result
in the following kinematics. We will take the rapidity

difference between the two quarks to be relatively large,
n —np > 1, and the two transverse momenta to be of the
same order and much larger than the saturation momentum,
|p| ~ |gq| > Q. This estimate will answer the two basic
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(10+ + %Qﬂh —4qL +p¢>
QLU L

(¢ +2pT kL —pL+qu)

FIG. 4. The basic graph contributing to the correlated quark production in the CGC.

pL
1
kL _
ki —qu+pL
ki —py
]
qL ki—pi+aqu
ki
ki—qu
(
FIG. 5. The leading order in N, source contraction that

corresponds to the contribution @.

pL |

ki _

ki —q1+pL
ki —p1

]
q ki —pL+aqL

ki —qL

FIG. 6. The leading order in N, source contraction that
corresponds to the contribution ®%.

questions: what is the sign of the correlation, and how far in
rapidity difference does it extend?

The calculation is presented in Appendix C. The final
result is

d* pdz qdnidny | comelated

S ut N3
~ 12— _ 2 g§''c
a7 (m =) priivy

2577 p*1?
S {T(f [’71 =1+ lﬂ@] 5(2>(CI - P)

3(p*+4?)
" ﬂ{ (p-q)*

-(p—9q)p- q}lnLq)er (m —nz)p'q} }

{5[p*¢* — (p- q)*]

05
(2.22)

where S = (27)26?(0) is proportional to the transverse
area of the hadron.

yan |
A
ki .
ki —qu+pL
ki —py
]
a ki —pr+aqL
ki
ki — qL
FIG.7. The subleading in N source contraction not considered

in this paper.
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The first thing to note is that the correlated contribution  target. However, as we will see and briefly discuss in the
is negative, which conforms to our expectation based onthe ~ next section, this turns out not to be the case.
physics of the Pauli blocking. Second, the correlation is
formally short range in rapidity since it decreases expo- III. PAULI BLOCKING AND PARTICLE
nentially as a function of the rapidity difference. However, PRODUCTION
the rate of this decrease is tampered by the fourth power of
N1 — M, so in practical terms the correlation may extend
fairly far in rapidity. Lastly, we note that the first term in
Eq. (2.22) is proportional to 8% (p — q). The technical
reason for this is our assumption of translational invariance
of the projectile wave function. The actual width of this
o-function-like contribution should be of the order of the
transverse size of the projectile. One may, in principle,
expect that in the double inclusive quark production the The formal expression for the inclusive quark pair
o-function is smeared by the saturation momentum of the  production emission reads

|

In this section, we calculate the double inclusive quark
production in the CGC approach. We concentrate on the
linearized approximation which is appropriate to p-p
scattering and is the direct analog of the so-called glasma
graph calculation for gluon production.

A. Production cross section

do _ 1
dp*d*pdq*d*q  (2x)°

(v]Q8TQ1[dls, (P, p)dj, (aF. @)dp, (qF, @)duy, (P, P)IQSQ ). (3.1)

Here S is the eikonal S-matrix operator and Q is the unitary operator which (perturbatively) diagonalizes the QCD
Hamiltonian, in the CGC approximation, to the order in o, in which the ground state contains two quarks as in Eq. (2.9).
The explicit form of the operator € can be found in Appendix D. Note that in Eq. (3.1), the averaging over the projectile
color charge densities and the averaging over the target fields are implicit.

Let us define the coordinate space amplitudes (see Figs. 8 and 9):

¢S1’S2 (x’ Z,Z;a) = /{ ) eilc.)ﬁLip-eriﬁ‘z¢Sl,Sz(k7 p, [_7;0), (32)
p.p

1 .k

Dy (x,y; 21, 223 23 k) E/) day gy, 5, (x. 20, Z OB, 5, (3. 22 T @) e R 72) (3.3)
5152
and
1 dadf
Dy (x, ¥, X, 9521205 21, 223 2. W3 &, emiklamza)gmin Z’)/ 7
(X, 9, %, 5321, 22,210 22 p) Z o (B+penm)(a+ aehnm)

51,52,51,52

X ¢Sl,52 ()C, 21, Z a)(p?] 5 (y7 22, W’ﬂ)¢§1§2 ()_C7 Zl ’ W’/)))¢?] .5 (.}_]7 22’ Z Ct'). (34)
In terms of these amplitudes, the quark pair production cross section can be written as

do / / 1 b el e _ o
= (P (x)p” (X)p ()P (¥)) p(P2(X, Y3 21, 22, 5 )P (X, I3 215 22, Wi @
T Fpdnda " R Lo WP @R OO (@olr iz 22 B PIRAE 52 T i)

x tr{[t* = S (x)Sp(21)T"SE(2)][2¢ = SE () SF(2)7° Sk (22)]}

x trf[e? — B (%)Sp(20)2" SE(W)] [ — S49(3)Sp(W)7?S}(22)]} — @a(x, ¥, X, 35 21, 220 21, 223 % W5 . q)
x tr{[t* — S (x)Sp(21)T*SH(2)][e¢ — SE () Sp ()77 S} (22)]

x [t =SBV (%)SF(21) e SE(W)][2? = S44(5)Sr(2)2/S ()] }) 1 (3.5)

where each of the S-matrices is defined in terms of the color field of the target as S(x) = exp{igr“a®(x)}, with ¢ the color
matrices in the corresponding representation. Note that the color field of the target can be written in terms of its color charge
density as

T

T

@ () = g3 (0 1)040). 3.9
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Z1 )

18]

N
¢91 So (y7 22, Z; a)

z1 zZ92
p'(z) ()
@ ]
~ ~
(/)5152(‘%7217&);/6) ¢§152(Z7»527@;/3)
FIG. 8. The graph for the (d,)?> contribution in coordinate
space.

22

—

W
=

o
—
<
=

Gsys0(T,21, 25 )

A —
%6, (U, 22, 25 )
.

45:,52(%227@%/3)

P’ (@)

€l

Q
—
<

¢5§1§2 (ffz 21, W; /3)

FIG. 9. The graph for the ®, contribution in coordinate space.

A certain disclaimer is due here. Equation (3.5) is not
complete. It does not contain terms associated with the
fragmentation of two physical projectile gluons that scatter
and split into gg pairs in the final state, corresponding
to 6H%% and Q. , (see Appendixes A and D). Including
such terms would make the final expressions cumbersome
and not very illuminating. We do not believe that these
fragmentation contributions can produce correlated pairs,
and we will thus work with the simplified expression
Eq. (3.5).

To get a rough idea of the actual magnitude of the
correlations predicted by Eq. (3.5), we now expand the
scattering matrices to leading order in the target color charge
density. This approximation is formally the same as that
employed in the glasma graph calculation of gluon pro-
duction. Although it misses some effects, in particular, due
to a possible domainlike structure of the target fields, it does
include correlated production due to correlations in the
projectile wave function.

PHYSICAL REVIEW D 95, 034025 (2017)

The large N, counting in Eq. (3.5) is identical to that
discussed in the previous section. We thus concentrate only
on the @, term as before. We define A as

Ahd — (tr{[t% — §9(x)Sp(z1)T* S} (Z)]
x [2¢ = ST (y)Sp(W)7° ST (22)]
[ Sbb(

(w
Sp(21)7" S} ()]
x [t = S{(3) Sk (

SF(2)7'Sp(22)1})r-

Expanding each of the S-dependent factors in terms of the
target color field a defined as S(x) = exp{igr“a“(x)}, with
t* the color matrices in the corresponding representation,
we obtain

)
) (3.7)

x {27 [0 (v) —a (22)] =22 o (v) —a' ()]}

x {2 [ (%)~ ()] - 2 2o (2) —a (2,)]}

x (et [ (3) —a (2,)] =7 T[a (3) —a ()]} ]}
(3.8)

We now consider the projectile and target color charge
density contractions. The term A%“*? that enters Eq. (3.5) is
the sum of two different contractions that can be written as

Adchd — gadgeb (A ) 4 5955 (Ag) . (3.9)

The type-A graph in the wave function calculation was
obtained by contracting p® with p? and p” with p¢. In order
to obtain the leading N, contribution to the production
cross section with this contraction on the projectile side, we
have to contract the color indices with 6% 8¢, This
structure arises from the contractions of the target color
fields and reads, at leading N,

by = L {al) - a(2)] - 465)  a2)
+ alx) - a(z1)] - [aG) — a1}
< {{[a®) - a(®)] - [aly) - a()]
0@ - o)) —al@)y). (3.10)

Analogously, for the type-B contribution we have a = ¢

and b = d, and therefore we need @’ = ¢’ and b’ = d' at
large N,.. At leading N, this gives
4775
(Ap)r = L2 () - a(2)] - [aly) - ()
+ la(x) —a(z1)] - [a(y) - a(z2)])r}
x {{[a(x) —a(w)] - [a(y) - a(Z)]
+ [a(x) —a(zi)] - [a(y) - a(z2)])7r} (3.11)
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The expressions for (A,); and (Ag); have a fairly
simple structure. In particular, we can combine the
factors (Ag); and (A,), that come from the expansion
|
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of the S-matrix with the rest of the expression. This can
be done by inspection. Let us define the following
quantities:

Y(k,1, p;a) = [p(k+ L, p;a) — (k, p = L;a)],
W(k.L p.p:a) =Y(k.l.p:a)s?(p —k—1+ p).
W(k, 1, p;a) = [p(k + 1, p;a) — p(k, p; )],
(k.1 p,psa) =Pk, p;a)d?(p—k—1+p). (3.12)
We can write the A-type contribution to the cross section as
12N5 1 [ dad, IR 22 (R) 2 ()22 (1
A=— / _ adf — /dzkdzkdzldzldzl_)dzc_](Zﬂ)S'u (k)u (4)_4 (Da*(1)
6 n)'Jo (B + e ) (at aen ) i
th{[ (k.1 p, p;a)¥* (k. 1. q, p;a) + P(k. L, p, p;a)¥* (k.. q, p; )]
x [W(k,1,q.q; )V (k.1 p.q: ) + (k. 1, q,3; p)¥* (k. 1, p. G )]}
2N (1 dad o PR (R (022
= —5(2)(0)5(2)(p_q)g C/ _ — a ‘B - — (2”)4/d2kd2kd21d21ﬂ ( )//l (4)_4 () ()
16 Jo (f+ pen™)(a+ aemm) I
x tr{[P(k. 1. p; @)W (k. L. p;a) + W(k. L p:a)¥* (k.1 p; @) |[¥(k. 1. p: )¥* (k. 1. p; ) + P(k. 1, p: )¥* (k. 1. p: §)]}.
(3.13)
Analogously, for the B-type contribution we have
ZNY 11 dad, - 2002 (k)22 (1
B — _g c 4/ _ - a ﬂ . - /dzkdzkdzldzldzl_?dzc_](2ﬂ)8'u ( ):u (4)_4 () ()
16 (27)* Jo (B+ Pe"™™)(a+ ae™™) 'l
x tr{[W(k, L, p. p; &)W (k, L, p.q: B) + Y(k, L p. p;a)¥* (k. L, p.G: B)]
x [P(k,1,q.q;8)¥ (k,1,q. p;a) + P(k,1,q,3;8)¥* (k,1,q, p; )]},
12775 2 207N12(1\92(7
— —5)(0) S / e (27)* / PrkaiaT? P (’?_i (AW
16 Jo (B+ peh™)(a+ aeh™n) 1*1
O(k+1=p—k=1+qr{[P(k.1, p;a)¥*(k, 1, p; ) + (k. 1, p;a)¥* (k. I, p; p)]
x [P(k,1,q; )P (k. 1, ;) +¥(k, 1, q; )¥* (k. L, q; )]} (3.14)

In both equations tr denotes the spin trace. In addition, we
have used Eq. (3.6) in order to write the target color field in
terms of the color charge density of the target, and we have
used

(p1(K)Ph ()7 = (21)222 (k)66 (k + p)

which corresponds to the McLerran-Venugolapan model to
contract the color charge densities of the target.

Note that the A-type contribution to the pair production
cross section has the 82)(p — ¢) structure, just like the
quark pair density in the wave function. This is somewhat
surprising since one may expect any sharp maximum in a
distribution in the projectile wave function to be smeared
by a momentum transfer from the target. However, in the
present case one is dealing with a wave function and final

(3.15)

states with four particles—two quarks and two antiquarks.
It is possible to produce the two quarks without changing
their momenta by scattering the antiquarks out of the
incoming wave function. We believe that this is the reason
why the §-function is not smeared in the scattering process.
Of course, as stressed above, if we take into account the
finite size of the incoming projectile, this 6-function will be
smeared on the scale of the inverse proton radius. Note that
this contribution is not due to the Hanbury-Brown—Twiss
(HBT) effect, so the radius of the proton would be reflected
in the final state radiation without the HBT effect.

B. Estimates

Like in the previous section, we now estimate the
correlated contribution to production for n; —#n, > 1.

034025-9
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We will consider the situation when the saturation momentum
of the target is smaller than that of the projectile, Q7 < Q.
This is the regime where the correlations existing in the wave
function of the projectile are not strongly distorted by the
momentum transfer from the target. We thus expect these
correlations to be reflected in quark pair production.

|

PHYSICAL REVIEW D 95, 034025 (2017)

The calculations are performed in Appendix E. There is
one interesting element in these calculations which was not
present in the calculations in the previous section. To
understand it, consider the explicit expressions for the
amplitudes which enter Eqgs. (3.13) and (3.14) at large
rapidity separations:

T Y

rusp - - { )
R )
T

These expressions have several poles which give significant
contributions upon momentum integrations. The poles at
k = 0 and [ = 0 are regulated by the vanishing of 4*>(0) and
22(0), respectively. However, clearly the divergence at k +
[ = 0 cannot be regulated by prescribing the behavior of x>
or /2. The reason for the appearance of this divergence is
quite clear. As explained above, requiring the vanishing of
u?(k*> < Q?) is equivalent to a condition of global color
neutrality of the projectile on transverse distance scales
larger than Q5'. The same goes for the target. However, our
eikonal scattering process is equivalent to double gluon
exchange in the amplitude without restriction of color
neutrality. Thus, after the scattering, the valence charge of
the wave function is not color neutral anymore. Such a

|

5079 NG ut 2* 0307
16 oio; pt

A =-S(2x)?

Lemmm (i —np)? In = In—=

[
scattered colored projectile, when reconstituting its dressed
wave function, emits gluons with the perturbative spectrum
in the infrared (IR) which does not know about the color
neutrality of the original projectile. This perturbative
Weiszicker-Williams field of the colored outgoing projec-
tile is the origin of the pole at k+/=0. It is clear,
therefore, that the existence of finite Q, cannot regulate this
divergence, and it can only be regulated by genuine
nonperturbative effects at the nonperturbative IR scale
A~ Agcp- Since the divergence is only logarithmic, the
sensitivity to the IR is not too bad, and we will simply cut
off this divergence at A by hand.

The results of the explicit calculation in Appendix E are
the following: for the A-type contribution,

1S 50(g - p). (3.17)

AZ Q2 AZ

The calculation for the B-type contribution is much more lengthy. In Appendix E we present the calculation of all four
terms keeping the leading logarithmic contributions, and our final result for the B-type terms reads

or [2(p*+¢)+p’¢, [(p=a)?| 1[ (4 r’ 07 _
=~5Ca)'s lzng“q“{ (r—a)° ln{ o ] {1 (QZ) o (Q2>]}Q21 <A2> ern )
(3.18)
Thus, our final result in the regime p~g~p—qg> Q,> Or > A is
do utat 0\ 7 50z ot
- - = —S(27)%¢"*N? ] - 1 Z 8" S _16@) (g —
[dzpdzqdﬂldﬂjcomlmed (YN gy " (= m)” “(A2> 4{ 16 (Q%AZ =
9 2 2 2 2.2 _ 9 2 2 2
e e B W R |

If we define, in the standard way, Q? = g*u?, Q% = ¢*1%

, our final result can be written as
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|: :| (]
a la qa ;1‘“;2 correlated

202
= _5(27[)21\72 % e (,71 —
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03\ 7° (507 o4
ool @) ()

q* (p-q)*

The 5-function in the first term is an artefact of our use of
the translationally invariant approximation for the projectile
proton wave function. In a more careful treatment we expect
it to be smeared over the scale of the inverse proton size.

Our result for particle production, Eq. (3.19), has a
similar structure to the pair density in the projectile wave
function Eq. (2.22). However, it has some significant
differences. The first thing to note is that, although
Eq. (2.22) at large Ay = n; — 11, has an enhancement factor
(An)*, the production cross section Eq. (3.19) only has a
factor (An)2. The second important difference is that the
decrease at large transverse momentum is faster for the
production cross section. The second contribution in
Eq. (3.19) has the overall power p~8, as opposed to p—®
in Eq. (2.22). The first §-function term has the same power
dependence p~*, but the prefactor in Eq. (3.19) is propor-
tional to 4?42, as opposed to x* in Eq. (2.22). These general
features are quite expected since the number of correlated
pairs produced in the final state has to be smaller than the
number of pairs present in the incoming wave function.
Recall that, similarly, the single inclusive particle produc-
tion decreases at large momentum as p~*, while the number
of partons in the wave function decreases only as p~2. In
this sense, our results are consistent with expectations.

IV. CONCLUSIONS

In this paper we calculate, for the first time, quark-quark
correlated production in the CGC approach. We find that
there is a depletion of pair production at like transverse
momenta due to the Pauli blocking effect. A parallel
quantum statistics effect for gluons, the Bose enhancement,
was discussed previously in connection to the ridge
correlation.

In contradistinction with the Bose enhancement for
gluons, Pauli blocking is short range in rapidity. The effect
decays exponentially with the rapidity difference between
the two produced quarks. This exponential decrease,
however, is tempered somewhat by a factor quadratic in
the rapidity difference, resulting in a dip at Ay ~2. In
addition, the effect turns out to be parametrically O(a2N..)
relative to gluon-gluon correlations, which for realistic
values of a;, ~ 0.2 and N. = 3, results in a mild suppression
factor. Thus, it is possible that the effect is big enough to be
observable.

It would be extremely interesting to devise a measure-
ment that could separate the part of the particle production

|nfi=2) 32

(3.20)

Q? 24*

(&) ()]}

which originates predominantly from the quarks in the
wave function. One possibility that comes to mind would
be to measure open charm—open charm correlations. The
two charmed hadrons in the final state are more likely to
originate from the charm component in the incoming
hadron wave function rather than from hadronization of
gluons. It is thus likely that the weight of the Pauli blocking
effect in such an observable is more significant than for
unidentified charged particles. Whether it is possible to
separate this short-range-in-rapidity effect from the jet
fragmentation contribution is another important question.
Although the nature of the two effects is very distinct, it
may be experimentally challenging to distinguish between
the two. Similar considerations hold for the difference
between the azimuthal correlations of equal and opposite
sign charged particles.

Even though the measurement of the Pauli correlations
may require considerable effort, to us this effort is well
worth making. Given that our knowledge of the hadronic
wave function is rather rudimentary, this seems to be a very
interesting opportunity to probe its structure well beyond
the average observables that determine parton density
functions, transverse momentum distributions, and gener-
alized parton densities.

ACKNOWLEDGMENTS

N. A. thanks the Department of Physics of the University
of Connecticut for warm hospitality during stays when part
of this work was done. The research was supported by the
EU FP7 IRSES network “High-Energy QCD for Heavy
Ions” under REA Grant Agreement No. 318921; the NSF
Grant No. 1614640 (A. K.); the Israeli Science Foundation
Grants No. 1635/16 and No. 147/12 (M. L.) and the BSF
Grants No. 2012124 and No. 2014707 (A. K. and M. L.);
the European Research Council Grant No. HotLHC ERC-
2011-StG-279579, Ministerio de Ciencia e Innovacion of
Spain under Project No. FPA2014-58293-C2-1-P, and
Xunta de Galicia (Conselleria de Educacion) within the
Strategic Unit AGRUP2015/11 (N.A.); and Fundacio
para a Ciéncia e a Tecnologia (Portugal) under Projects
No. CERN/FIS-NUC/0049/2015 and No. SFRH/BPD/
112655/2015 (T. A.).

APPENDIX A: LIGHT-CONE HAMILTONIAN

In this appendix we present the light-cone Hamiltonian
(LCH) calculation of the dressed perturbative state used in
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Sec. II. In our notation (see [24]) the light-cone components
of four-vectors read p* = (p*, p~, p), so p represents the
transverse momentum.

The free part of the LCH (see [27]) is

/ dkt dk k? ia
07 Jerso 27 (2m)22kT “
dp*d’p p*

* Z/ (27) 3 2p*
+das(19 ,P)das(P 7p)]7

(k™ k)ad (k™. k)

—[dis(p*. p)dus (Pt p)
(A1)

where a, a' are gluon annihilation and creation operators, a
and «a are color indices in the adjoint and fundamental
representations, respectively, and i and s are polarization
and helicity. This defines the standard free dispersion
relations:

i .

E =k =— E =p =
P=5

g 2k+ ’ q (AZ)

To zeroth order the vacuum of the LCH is simply the
zero energy Fock space vacuum of the operators a, d and d:

a0y =0,  d,J0)=0, d,0)=0,  E,=0.

The normalized one-particle states to zeroth order are

ot — [
0

dk+Jlkdp+d2p 7
SHP4 — Z/ 2 ot

dkt &Pk gk

Ta(p+ a
g(zﬂ_)z \/§|k+|3/2 [ai (k ’k)p (_k)+

[dl.” (p+’ p)Taﬁd;s(kJr
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1
|k k,a,i)= a®t (k*,k)|0),

(227"
(ki k. ailkg ko, b.j) =886 (k —ky)S(k{ — k7).
P pis)= i adia 0.
(Pl p1.aus1|Ps P2 P52) = 8upbs, s, 0 (P1=p2)3(P — P53 ).
(A3)
The full Hamiltonian contains several types of

perturbations,
6H = 6H” + 6H91 + . ..

By - - - we denote terms that include the soft gluon sector,
which is of no relevance for the present work. Here p
denotes the color density of the background field.

1. Interaction with the background field

Recall that we are interested in approximate eigenstates
of the Hamiltonian in the presence of the background color
charge density due to valence partons. The interaction with
the background charge is comprised of three terms,

SH? = 6HPY + 6HP91 + SHPYI, (A4)
The last term is of no interest to us since it does not involve
quarks. The remaining ones are

ai (k% k)p* (k)] (AS)

—pt k= p)p*(=k) + Hcl]. (A6)

Here p is a charge density operator, corresponding to the valence or hard degrees of freedom and depending only on
transverse coordinates, and 7y are the color matrices in the fundamental representation. These charges satisfy the SU (N)

algebra:

[ (x), p" ()] = if P pe(x)51

J(x—y).

(k). p?(p)] = if**p°(k + p). (A7)

2. Quark-gluon interaction

The quark-gluon interaction responsible for quark production reads

dp*d®pdk*d*k
OHY991 —= gTaﬁZ/23/2 27[ k+ /2 9(

$1,52

with the vertex I defined as

=PI, (K ko p p)lag (K K)das, (p* . p)dj,
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ki o-p . _o-(k—p)
i P i p
L5, (K ko p*op) = 1, [sz_pT" 4 W])(sl

Lk pi  ki—p; . Pm kn—p
o i i i i im 3 m m m
=Pt () e (G-

ki Di kz im [ Pm km — Pm
:55”2{2k—+_<p++k+—p >+2’S€ (p‘L_k*—p* ’ (A9)
and the spinors y,_;» = (1,0) and y,__;/, = (0, 1) satistying
It =60, xhoixs, = 2518, (A10)
3. Matrix elements
In order to calculate the perturbative wave function, one needs the following matrix elements:
) (0la% (k™. k)SH9|0) gk;
<g|5H/g|0> = (271_)3/2 47T3/2|k+‘3/2p ( k)
) (Oldus, (a7, )dps, (pT. )SH910) 7oy
<qq|5Hpqq|0> : pa(_p - q)ésls ’
(27)* ottty :
(qalstsma]g) — Odas (P P)dp (g .q)8H a]" (k. k)[0)
(2”)9/2
Ty, (K7 K p™ p)
:gTaﬁ ]82 3/2(k+)1/2 5( )(p+q_k)5(p++q+_k+) (All)
[
With these matrix elements, using the standard perturbation Let us start with the formal definition of the pair density

theory we obtain the wave functions, Egs. (2.1) and (2.9). which is given in Eq. (2.10). Here, p*™ and ¢* are the

longitudinal momenta, and p and ¢ are the transverse
APPENDIX B: DERIVATION OF THE momenta of the quark pair in the wave function. First, we

PAIR DENSITY need to calculate the action of two quark annihilation

In this appendix we present the derivation of the pair ¢
density and show how we define ®, and ®,, which areused 10 Eq. (2.9):
in the calculations.

|

1 dktd?p'd®p  dktdrq' d*q
d~ +, 4o +’ D _ _ 4 / d e
sz(q CI) K (p p)|U>4 29 (271_)3 (27.[)3 5185

We use the anticommutation relations for the quark creation and annihilation operators,
{dg, (k" k). d55 (7. @)} = (22)°8%5,,,6(k* — )6 (k = q),

in order to simplify Eq. (B1), and we get

1, / adk+d2p’d2p/ dktd?q'd*gq

dEZ( )dw (p p)| > Eg (27;)3 dp (2”)3 ?1‘[2 (kJr )gﬁ r (k+v q/’ q/;ﬂ)

x {(22)*676,,,6(p™ = ak*)s?) (p — p')(22)*87 5., 8(q" — pk)6P (g — ¢')

— (27)256,, 8(q" — ak )5 (q — p') (27)*6°1 5, 8(pT = k)6 (p - ¢)}
x dff (ak*, p')d); (Pk*. )| v).
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operators on the dressed state, which is given explicitly
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(B2)

(B3)



TOLGA ALTINOLUK et al. PHYSICAL REVIEW D 95, 034025 (2017)

It is now straightforward to calculate the quark pair density by simply calculating the overlap of Eq. (B3) with its Hermitian
conjugate, which gives

dN 1 1 N / P dk+d2p/d21—7/ d]'(+d2q/d2q/ B dl+d2p//d21—7// dﬂ” dz+d2q//d2q//
= — o
dptd®pdq*d®q (27:)649 (2r)3 (2r)3 (27)3 (27)3
% Cel (k+,p/ Bl )‘:rlrz(k 7.7 p) *Ie/‘z”(lJr "op ”)C*Z‘Z(ﬁ,q” 1. ﬁ”)(Zﬂ)
x {678, 8(p™ — ak )P (p — p')87,,,, 8(q" — pk)6@ (g - ¢')
- 5K€5523’]5(q - ak+> (q V4 )5&)}/5&1”5( ﬂk+) (p q )}
X {878, 08(p* = a'17)6@) (p = p")57 8,,18(q" = B'17)6@) (¢ — ¢")
— 5 6,u8(qT = a"17)8 (q = p")87 8,,w8(pT = BT (p - q")}
x (vld2, (BT q")d}y (1%, p")d (ak™, ') (PR, )| v). (B4)
2 °2 “2

Using the anticommutation relations for the antiquark creation and annihilation operators, we get another set of 5-functions
from the last line of Eq. (B4). Hence, the quark pair density reads

dN RN / dk' dp'dp  dkdqdq L dldp A 5 dl*d?q" d*g"
dp*d®pdgtd’q (2z)%4 (27)3 (27)3 (2x)3 (27)3

x §t o (K. p P )i (KT 4 @5 B (1. " s ”)C*Z‘Z(l* ".q"p")(2x)"

x {878, 6(p™ — k)5 (p — p)85,,,,8(q" = pkT)6W (g - ¢)

— 58,4 0(q" — ak")s® (g - p')8”"5,,,,8(pT = k)P (p - ¢')}

x {678, g6(pT = a'1)8P (p = p")57'8,,48(q+ = P'T7)6) (¢ - ¢)

— 86,u8(qT = a"'17)5 (q = p")87 8,,w8(pT =PI (p - q")}

X {88, 8(a" 1" — ak* )5 (' = p")87%8,1,,8(8"T" - pk)6) (7 — ")

= 88, 8(I" = pk+)8 (G — p")5' 5,5, 8('T" — ak )6 (p' ~ 7")}. (BS)

We now substitute the definition of the {-functions that is given in Eq. (2.3) and integrate over all the longitudinal momenta,
the longitudinal momentum fractions &’ and 4", and all the transverse momenta except p’ and g'. After all of this, the quark
pair density reads

d*p'd*q'p* (k)p" (k)p* (D)p* (1)

dN / dadp &k d*k &Pl dA
dp*dpdq*diq (27) (27)* (27)* (27)*
11 1 )

X4 —= tr(z9z¢ 515, (K, )b, ,, ws, (Lo, Pha)gy ., (1.q.q';
{aﬂp+<1+;>q+<1+g> (@2 0PN (. 5, (o, T3 (1 )1, 0.9.75)

1 1
apq"+5p" pt+bq

ap* Bq*
X7, <l q, P,W)¢s1m< p-q ,m>} (B6)

At this point one should note that the momentum fractions that appear in the second term can be further simplified by
realizing that

+ tI’(T TLTth)Qbslsz (k7 p> p/;a)¢r| ) (/_C, q, q/;ﬂ)

-

_a o
q ag +apt 04 B7
=+ ap* - +? ( )
e p— ap
aq"+ap

which simply shows that the momentum fraction between the pairs is indeed a. A similar argument is also true for the
other momentum fraction that appears in the last line of Eq. (B6). Then, we can write the quark pair density in the wave
function as
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dN 1 1 _ _ _ _
et e [ iy @ 0p0)

{[trf 7° /da/ a’lpzd)w ;a) f;,sz(l,p,ﬁ’;a)}
«[oteret) [ a / T ,q';mqs;:rz(i,q,qeﬁ)}

_ c b d dadp aap d2 l k a:
tr(T Tt )/(a+agi)(ﬂ+ﬁzi)/(2ﬂ') (271.)2 ¢S1S2( )¢r1r2(k ’ﬂ)

. ¢;:s2<z,q,p;a>¢;r2<i,p,z];ﬂ>}. (B8)

After defining #, = In(pi/p ") and 7, = In(p{ /q"), and using Egs. (2.12) and (2.13) for the definitions of @, and @,
respectively, one gets Eq. (2.11).

APPENDIX C: ESTIMATE OF THE PAIR DENSITY IN THE WAVE FUNCTION

In this appendix we present the details of the calculation of the quark pair density in the CGC wave function discussed
in Sec. IL.

Consider first @

tdadp [ d*k d*k (27)*u*(k)(27)*u?(k)
@ (p,q) =5 (p—q)5?(0)enrm / _
4(P Q) (P C]) ( )e 0 (Xﬁ (271_)2 (277:)2 k4k4
2{(k-p)* +4[K*p* — (k- p)*]H{[k - (k- p)]* + 4[k*p* — (k- p)’]}
X i 7 : (C1)
p*(k—p)
Naively, the integral is quite badly divergent. Let us k = 0 is regulated by the vanishing of ?(0) and is
understand what regulates the divergencies: cut off at k2 = Q2. In the UV the integral is cut off at
(i) The a integral. This logarithmically divergent in- k* ~ p2. Then this pole contributes
tegral is clearly regulated at o~ ¢, Thus, it
yields a factor n; — 5. B , Sm u>  p?
(i) The S integral is clearly regulated at f ~ ¢t and Iz 7;1 Qz ’
results in an identical factor 1, — 1,.
(iii) The k integral so the total result is
2
_ 27 H (k> 571 ﬂ2 2
It /dk]—(4(k_p)4 1122?— m-—mn+hn—
< {lk- (k= p)]* +4[k*p? - (k- p)*]}.

This diverges logarithmically at k = p and k = 0. (iv) The k integral

As it is clear from Eq. (2.20), the divergence at

k = p is regulated at (k— p)*> ~Bp*~en™M p?. It is /d2k 4(k4) {(k-p)? +4[k2p> = (k- p)*]}.

cut off in the ultraviolet (UV) by the values k

(k— p)> ~ p?. Thus, the “pole” at k—p =0 in

This diverges at k — 0 and k — oo. The IR diver-
actual fact gives the contribution to the integral of

gence is again regulated by Q,, while the UV

order divergence, as is clear from Eq. (2.20), is regulated
| Sau P su at k* ~1p?~en=np? With the same angular in-
I P j?ln o 2 = 2 (’7 — 1), tegral as before, we find
2 »?
where the numerical factor follows from the angular I, = 5_” ”_2 < —n +1n 2)
integration in the terms involving & - p. The pole at 2p 0
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Overall, we find that, to leading logarithmic accu-
racy at large iy — 15,

A 7 o) ) p
Dy (p.q)= 50 (p—q)8'?(0)em ’“p—(n —n,)?
172 2
«n-m+mL ) )

Interestingly, although the correlation decreases with
rapidity, the exponential decrease is dampened by
the fourth power of the rapidity difference. It there-
fore could be numerically quite significant up to
relatively large rapidity differences.

Now let us consider the ®% term. In the same kinematic

regime, we have
d*k d’*k

@ (p.q)~26%0) [ 5555
5 / dadp (27)*u? (k) (27)°p (k+ g — p)
af  k'(k+q-p)(k-p)p*q
x [k (k- p+4p*) =5(k- p)*]
x{(k+q—p)*[(k+q—p)-q+44°]
=5[(k+q—p)-q]*}.

(2)(]_( f— k —_ q _|_ p)e’h—n]

(C3)

The difference now is that there is only one integral over k.
This integral gets contributions from three poles: k = 0,
p — g, p. The first two are regulated by the appropriate u?,
while the last one, as before, is regulated by the denom-
inator at (k — p)? ~ e max(p?, ¢*). In the UV all the
integrals are regulated by a scale of order p —¢. The
contributions of the first two poles give

43
me M (i) — ’72)211—61 Ei +q()] ){5[
(p—q)
o;

- (p-9)

-(p—q)*p-qtn

The third pole gives
u
me (g =) p - q.
pPq
Thus, finally,

aut

E(p. q) =63 (0)e™ (5, —n,)* e
3 2 2
x ﬁ{ﬂpw—mm
—(n—a)n. M _ )
(P—¢q)’p-q}In 0 +(m=m)p-q|.
(C4)

Putting together Egs. (C2) and (C4) gives Eq. (2.22).
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APPENDIX D: DIAGONALIZING OPERATOR @

To calculate particle production in the CGC approach,
one requires the knowledge of the operator Q, which
diagonalizes the LCH to a given order in perturbation theory
[28]. The operator Q in our case can be represented as

Q=QQ Q

9=7997"9499°

(D1)

where Q, and Q,, come from the diagonalization of the
perturbations 6H”Y and §H"14, respectively:

Q, =ex { i/dsz"()c)/L[a“(k+ X)
g p i \/§ﬂ|k+|l/2 i )

ot (02)

and
S L e
x [dhs, (ak*.2)d}, (ak*.Z)—H.c] } (D3)

In these expressions, the integration over the 4+-momenta
has to be done in a region [kpe'0, kge'] [28] with kg
some cutoff that separates soft from fast modes, and the
“classical” field b; is the Weizsdker-Williams field of the
color charge density p“:

b0 =g g3 (R b= [ ),

(D4)

Since the perturbations H”Y and H”99 involve different
degrees of freedom, and to leading order these degrees of
freedom do not interact, at this level the diagonalizing
operator is simply the product of the two.

Finally, the operator € ,, diagonalizes the gluon-quark
interaction. This is performed perturbatively with the result

. [dptdpdktdk . Ti
ngqexp{gfaﬂ/23/2(2ﬂ)6(k+)1/29(k -p )Ep+Ek—]7

[t R (0. 9) (6 = p) 1]
(D)

As explained in the text, we do not take into account, in the
production cross section, the contributions from two gluons
splitting into two quark-antiquark pairs after scattering
from the target. For that reason, we do not need to include
the perturbations H”% and the entire gluon sector in the
diagonalization process.
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APPENDIX E: ESTIMATE FOR PAIR
PRODUCTION CROSS SECTION

In this appendix we present the calculation of the pair
production cross section discussed in Sec. III. As indicated
before, our estimates are valid in the kinematics #; > n,,
lg| ~ |p| ~ g — p| > Q; > Qr > A, with A some non-
perturbative scale.

PHYSICAL REVIEW D 95, 034025 (2017)

1. A-term

It is simplest to look at the A-term, Eq. (3.13). There are
four integrals involved, and each one factorizes into the
product of (k,I) and (k, ) integrals. Let us consider them
separately.

First, we consider

= M (k.1 p.0))2
_ / u%k)ﬂz(l)g{[(k +0)-pP  (k-p? l(k+1D)-plk-p)
k1l l4 p4 (k + l)4 k4 kz(k + 1)2
(k+02p> = [(k+1)-p*  K*p*—(k-p)* _[(k+1)-Kp*—[(k+1)-pl(k-p)
+4{ (k+1)* K -2 K*(k +1)? ]} (E1)

The integral is dominated by the “poles” at k =0,
[=0 and k+[/=0. The first two divergences are
regulated, as before, by the vanishing of x> and A°
below their respective saturation momenta. The third pole
is quite interesting. Its origin is explained in the text. This
|

[
divergence is regulated by the genuine nonperturbative
scale A.

Let us first integrate over the part of the phase space

I> < Q2. In this regime we can expand the integrand in //k.
We have

_ (Lp)?  (kpPk-0)?  (kp)(k-D(p-0)  (Uxp)?  (kxp)*(k-1>  (Ixp)(kxp)(k-1)
|T<k,l7p,0)|2=2{ p4k4 +4 p4k8 -4 p4k6 +4 p4k4 +16 p4k8 —-16 p4k6 ’
(E2)
20 g Sei2. Q2 | .
/Qz <P<g? JZ |lP<k, [, P,O)|2 = —2k41 —% (E3) Thus, we find
| L Sm () se? OF
and 111>Q,x = / I =""""In=5. (E6)
20192 2 202 5 P~ Jiso, 1 A“Q5 p0; A
PR SR g
Wk L p )P == —In = Allin all,
/k /Q§,<ZZ<Q§ I | ( p )| Q? p2 Q% ma
. = (E7)

In the rest of the phase space we perform the k integral
first. It is saturated by the two poles, k =0 and k = —[.
Each one of the terms is also formally UV divergent, but
this divergence cancels between all the terms. We approxi-

mate the integrals by
k+1-pl? 2 m=m p2
[rew ST 2, L
X pHk+1) 2p A
k- p)? 2 =z p2
/Mz(k)( 4p4) zﬂz ne 2p ’
k pikT 2p 05

k+10)-pllk-p] mu* en~mp?
2 k [( ~
Aﬂ ( ) p4(k+l)2k2 2p2 n 2

(ES)

®In the rest of the appendix we introduce a shorthand notation:

[, = | k.

———1In .
prO? 07N’
Now let us consider the second integral,

2 2
u=(k)A=(1
b [ PO pop

w22, [[(k+1)-p)*  [k-(p=D)?

:/d 14 2{[p4<k+l>‘]‘+[<p—l>4k‘]*
k1) pllk-(p=1D)] {(k+l)2p2—[(k+l)-p]2
P(p=12k(k+1)? pHk+1)*

(p=1>=[k-(p=D)?
VEDNS
_2[(k+l)‘k][P'(P—l)]—[(k+l)'(P—l)][k'l’]]}_
p(p—=17k*(k+1)*

_|_

(E8)
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Again, first we consider /> < Q2. The algebra is longer, but
the final result is the same:

(l)|‘P( PO = 572Ut 1 Q?

PHYSICAL REVIEW D 95, 034025 (2017)

Since the integral is dominated by [~ Q; < p, the
difference between [, and [, is negligible, and we
obtain

—In—=.
//QZ<ZZ<Q2 0 p* 0% 52222 O
(E9) J R L ’;fQ? "3 (E11)
In the rest of the integral, integrating over k we obtain
Thus,
2 = p?2 1 eh= p?
179 ~5 2/ ﬂ(D[Lle p 1 p 5y 2 .
’ o F A T @ =1 =20, & (E12)
- p Qs QTA
(p=1), en n p?
PP, ] (E10)
p(p=1y r Now we turn to
|
2(k)2%(1)
b= [ PO D pe
:/ wO2W k1) -kt 1=p)I? k- (k=p) [kt 1) (k+1=p]lk-(k=p)]
Kl I (k+1=p)Y*k+1)* (k= p)*K* (k+1—p)*(k+1)*k*(k — p)*
+4[<k+l)2(k+l—p)2—[(k+l)-(k+l—p)}2 k(k—=p)* k- (k=p)P
(k+1=p)*(k+1)* (k= p)*K
DM =p) o pl =D k1)K E13)
(k+1—p)*(k— p)*k*(k+1)?

We see that I; does not have a term proportional to 1/Q%,
which means that the integral over / did not receive a large
contribution from the region [ ~ Q despite the factor 1//*
in the integrand. The reason for this is that the rest of the
integrand vanishes at / = 0. The integral /5 superficially
has the same property. However, one has to be more
careful. Expanding the integrand of /; in powers of [
was justified for / < Q, since it was equivalent to ex-
pansion in //k and, by definition, k > Q.. However, in I3
this is not the case since k — p is not bounded from below
by Q, but instead by A. Thus, even if / ~ Q7 and Q7 < O,

|

can change variables k — k + [, and this does not affect y
for values of k close to p that dominate the integral. These
two integrals in k are logarithmic in the whole range
|k — p| > A. On the other hand, the last integral in line
three is only logarithmic for |k — p| > Qr, assuming that
[ ~ Qr. Thus, Q7 provides a UV cutoff on the logarithmic
integral in the first two terms. Therefore, the region / ~ Q7
does give the leading contribution in this integral. The same
is true for the last two lines in Eq. (E13) since the integrals
are very similar. We thus obtain

we cannot formally expand the integrand of /5 in powers of Sau2(l) . Q% 10#°u*2*, Q%
. L= | — 2Ih-—=—5—>—In=—.. (El4)
[. We have to examine the range [ ~ Qr separately. ;o pA A2 pZQ% A2
Let us consider the second and third lines in Eq. (E13).
The first and second terms are equal to each other since one Finally, the last integral is
|
2(k)A2(1
L= [ SO D p
kil
:/ wRAED) kD) (kt1=p)P [k (kt+1=pP ,[(k+])-(kt1=p)lk-(k+1=p)]
o (k41— p)*(k+1)* (k+1—p)*k* (k+1—p)*(k + 1)%k?
+4 (k+0*k+1=p)P=[k+1)-(k+1-p)* Kk+l-p)—[k-(k+1-p)]?
(k+1—p)*(k+1)* (k+1—p)*k*
[(k+0)-k(k+1=p)—[(k+1)-(k+1-p)]l(k+1-p) K
-2 ) 5 . (E15)
(k41— p)*k*(k+1)
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In this expression, clearly the pole at k + [ — p = 0 does
not give a contribution when [~ Qr, since in this case
k + [ = k, and the three terms in the second and third lines

PHYSICAL REVIEW D 95, 034025 (2017)

factor 1/Q%. It is thus parametrically smaller than /3 and
can be neglected,

of Eq. (E15) cancel each other. The contribution will be Iy < 1. (El6)
proportional to /2, which means the result will not have a Thus, for the A-contribution we get
|
S 507[4912N5. ﬂ4 /14 QzQ% 2 Q4
A=——s— T - =° () —1p)? In =L 1n 5 E17
(2”)2 16 0? 4} I e (m —m) A2 Q2A2 (q p). ( )
2. B-term

Now let us analyze the B-term, Eq. (3.14). This calculation is more cumbersome. We need to analyze all four terms
in Eq. (3.14).
a. B,

The first term to be estimated reads

/ W (k)u
-

(k)2 (D2 (1)
ﬂﬁ
(K212 (1) o

Ji 52

l4 *

SOk+1-p-k-1+q)

(k+1)-

) p _k-p

f
<{

k+l)22 k22

+0)xp k><p

}{(kﬂ)-(k—kl—p)

(k+1)?(k+1-p)?

k+1)x(k+1-p)

k- (k- p)]
k2 (k= p)?

g
g

l)2p2 k2 2:|

(
[(k+l)2(k+l— p)?

(k+1-q)

e

(k+1-q)*

+1)-
+1)?
+D)x (k+1-q)

£
k*(k = q)?
kx (k—q)

+ 1) (k+1-q)
+ 1) x (k+1-p)

T Rk-

)’ >

+ 0k +1-p)?

kx (k- p)]
k*(k = p)?

K (k= p)
+1) x (k+1-q)

(k+1)?p?

k- (k P)} [(k+l) X_p_/_;;pr
kx (k-

[(l_c—f—Z)Z(k-i—l—q)z

e R
QN’Q
—_ 1

e (k — q)qz)]

S R(k- g2 L (k+ 1)

First, one can see that this contains no leading contribu-
tion from [, I ~ Q7. Consider, for example, the first factor:

(k+0D)-p k-pl[k+0)-(k+l=p) k-(k—p)
{<k+1>2 2 k2p2} {<k+z>2<k+z—p>2‘k2<k—p>2]'
(E19)

For [ ~ Q7, we can expand in [/k. The first factor then is
immediately proportional to /. To this orderin //k we can also
take k + [ = k in the first factor of the first term in the
brackets. In the remainder of the terms, as long as k is far

(k- 61)} {(kH)Xq k;kqu}'

(E18)

I
from the pole at p, we can set k = p, since the only
contribution can come from the pole at k = p. The factor

then becomes

{(k#—l)-p_k-p}{(k%—l)-(k—l—l—p)_k-(k—p)}
(k+10)?*p> Kp*| [(k+D)*(k+1-p)> K (k-p)?
2l-_p{p'(k+l—17)_19~(k—p)]
p* prk+1-p)?* p*k=p)]

(E20)

~ —

The same can be done with the 1, l_c-dependent factor
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(k+D)-q k-q|[(k+D)-(k+1=q) k-(k—q)
{(13”)2 s 2] [(7<+7)2(7<+7—CI)2 1}2(12—61)2]
lq (k+1-p) gq-(k+1-1-p)
ey @

where we have used the constraint imposed by the o-function.
We can shift the integration variable k — k — [, and the
k-integral then becomes

4 l_ﬂ_[ ~(k=p) p-(k—l—pq
v gt p(k p? prk=1-p)y
{ (k= q-(k=1-p )}
(k- > Fk—1-p)
NP 4 ;’) In <mm{Alz’l }). (E22)

In this symmetric form, it is clear that the logarithmic
behavior of the integrand at k = p is cut off in the UV by
the smallest of / and /. However, the subsequent integral over
[ and [ vanishes because, apart from the explicit factor
(I- p)(I-q), the rest of the integrand is invariant under
|

PHYSICAL REVIEW D 95, 034025 (2017)

independent rotations of / and 1. This, of course, does not
mean that no contribution at all comes from the region 12,
1> < Q2. To obtain such a contribution one needs to expand
one order furtherin //k and 1 / k, which can therefore result, at
most, in a logarithmic dependence on Q7. Nevertheless,
there is still a possibility that [ > Q,, but [ ~ Oy, which
would contribute to order 1/Q%. In fact, these are exactly the
terms that are interesting to us, since they give a contribution
comparable to those from the A-term.

Now we integrate over k first and k second. The first
integral is trivial—it just realizes the §-function. Then, we
are left with integrals that, as before, have poles. The poles
for the k integration are

i) Pi: k=0,

(1)) Py k+1=0,

(iii)) Py: k+1—-p =0,

(V) Py k+l=k+1-p+q=0,

(V) Pssk=k+1-1-p+q=0.
Let us be very schematic.

(1) The k = 0 pole

Computing the coefficient of the k = 0 pole (as usual
assuming k;k; — "—226,»]»), we get

_ 31 1 (1\ [[U=-p+q)-q (I-I-p+q) -q|[l-p+q)-(-p) (-I-p+q)-(I-1-p)
PI_LJZZI“Z“IDZ <k2>z{{(l—p+q)2q2 (I-1-p+49)q 2} {( -p+aq)(-p)? (1—7—p+q)2(l—7—p)2]
_4[(l—p+q)><61_(l—7—p+q>< Hl—p+q (I-p)_(-l-p+qx(-I- )H
(l-p+arq (-l-p+qP¢]l(I-p+q?(U-p)? (I-1-p+qP(-I1-p)
91 1 /1
- k,l,lzzﬁﬁ(p>l{[l_l7+qz} +{l—l—p+q)]}' (E23)

Here, the subscript denotes the scale of the integrand at
which the logarithmic integral is cut off in the UV.
The k integral yields

1 12

p — xln Q2
The integral over [ now picks the two poles in the
parentheses in Eq. (E23). The result reads

[N ==, 5l

(E24)

1
v [p qw < > (E25)
(p—a)t
The last integral over [ yields
1 72 Q2
I~ In E26
/ A 02 ( A2> (E26)

I
There is an additional contribution to the / integral, coming
from [/ ~ Q,. However, this contribution is of order 12 as is
obvious from the first line in Eq. (E23); therefore, it is not
going to yield any 1/Q% term. We will ignore similar
contributions in the following.

Finally,
3 1 1 — )2 1 2
P, ngi 5> 41n[(p 2q> }—ﬂn(%)
2 p'q°(p—q) o5 J0r \A

(E27)

Note that we get no contribution of order 1/(Q?Q%), but
only 1/Q%. On the other hand, for p = g our calculation
yields a strong peak. We have assumed here that
lp—q|~|p|~|q|, and thus the exact form of the
contribution at Q, is beyond the present
accuracy.

(1) The k+ 1 = 0 pole
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The corresponding coefficient reads

_ 311/ 1 (¢-p)-qa (a=p=1-q][la=p)-(=p) (qg=p-1-(=p=1])
F2= Az,z 22102 11 ((k + l)2> 1{ {(61 -p)*¢ (q—p- 7)2612] [ (a=p)?p*  (q-p-D*(p+1)?
_4[(q—p)><Q_(q—p—7_)><q][(q—p)X(—p)_(q—p—f)_X(—p_—Z)H
(a-p)d* (g—p-0D*¢*|1 (g—p)*p? (g—p-1*p+1)?

9 1 1 ( 1 ) ( 1 )
. 22 L _ , (E28)
ki Aprt PP \(k+D?) \(I+p—-q)? 0,.p—q

where the lower limit in the second integral is Q, since the pole is in k, which is limited by x?(k). Here the [ integral is
pinned to the pole and not to [ = 0; however, the [ integral is free to wander all the way down to Q. Thus, we get for P, the
result up to a factor of 1/2 identical to Py,

P2:—P1. (E29)

(iii) The k+1— p =0 pole
This pole is a little different, since the contribution comes from different terms. Recall that this also corresponds to
k41— g =0. It reads

_ 1 [/1 (p=0O-p\p-(k+tl-p)  Ixp px(k+l-p)
P2 Kp P (- z>2> PUri=p)? -1y p2<k+z—p>2}
Ki_(q—f)-q>q-(k+l—p)_4 Ixq qX(k+l—p)}

7 g-1?%) ¢Fk+1-p)? G(-q)* ¢ k+1-p)>

1 (p=0-p\px(k+l-p) Ixp p-(k+l-p)
+4[< ) prk+1—-p)*  p*p-1)7? pz(k+l—p)2}

p* p(p=1)7
X{(L_(q—f)-q>q><(k+l—p)+ Ixq q-(k+l—p)}
@ qq-1?) @k+1-p)?  Fl-q*¢(k+1-p)

~2 /m% ((k — p>2)p E g { {1 - <l()p‘ _l>l)-2p} {1 _ <?q—_z)z)-2q] e ]l) e (; . g)zH. (E30)

This expression has the following redeeming feature: It is clear that it does not bring any factors of the form 1/Q% or even
1/Q?, since, forany I < p, [ < g, the integrand is proportional to />/>. Thus, this contribution can be neglected relative to P,
and P 2,

Py < P,.P,. (E31)

(iv) The k = 0 and k + 1 = 0 poles
The contribution of these poles is, by symmetry, identical to P, and P,, respectively.
Thus, our result for J; is

96 1 —g? 1 2
=T 7 (p-q) ln[(p Q?q) } " (ig)m« (E32)
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b. B,
The second term in the B-type contribution reads
2(k)u?(k)A*(1)2%(1 - _ . - .
A :/ £ (u (14)74 () ()5<2)(k+l—p—k—l+q)tr{‘P(k,l,p;O)‘P*(k,l,p;1)‘P(k,l,q ¥ (k,1,q;0)}
kLT

o RRmR0RD o (k+0)-p kp|[(ktD)-(k+i=p) k- (k=p)
_Zlm PP 5(2>(k+l_p_k_HQ){([(kHsz_kzpz} [(k+l)2(k+l—p)2 K2 (k — p)>?

_4[(%/{7—:1)Xp kxPHkJrz < (k+1-p )_kx(k—p)D
-

l k+0)*(k+1-p)> K (k—p)?
X({( 1 q_ ZHk+1) (k+l—q)_/‘<-(/}+i—q)]
(k+1)2q* /22(q D2 [(k+ D)2 k+1—-q)* kK(k+1-q)?
_4[( —l—i)xq_l_cx( —l)][(k—l—l) (k+7—q)_l_cx(l_<+7—q)]>
2 (k+0)*k+1-q)? K (k+1-q)?
(k+0)-p k- (k+1)x (k+1-p) kx(k—p)
(v [ e P

+{(k+l)-(k+l—p)_k'(k p)H(kH)Xp kxPD
(k+ 02k +1-p)?  Kk-p* || (k+12p?  K2p?

)-q )H(’?H) (k+1-q) k><(7<+7—qq

2l k+D*k+1-¢q)? K (k+1-q)?

(k+0)-(k+1-q) k-(k+1=q)][(k+D)xq kx(g=1)

| | 7))} 2

(k+1)2(k+1-q)? Rk+1-q?] [(k+12¢* F(q-1)

We first integrate over k and then over k. The first integral is trivial to perform by using the 5-function. In the s_econd
integral, the leading contribution comes from four different poles: P1:k =0, P,:k+ 1 =0, Py:k+[=0and P,:k = 0.
The contribution arising from the first pole reads

_ 31 11\ ([(U=-p+q)-q (-I-p+q)-(g=D][(-p+q)-(I-p) (=I-p+q)-(I-p)
P'_241.7214741?2<k2>z“(l—p+q)2q2 (I-1-p+q)*(q- )ZH(l—%ch)(—p)2 (1—7—p+C1)2(l—p)2}

JJu=p+q)xq (1=T-p+q)x(g=D]|[U-p+q)x(=p) (=1-p+q)x(I-p)
4[(l‘l”Jffl)zclz (I-1-p+4q)(qg- )H(l—PﬂLq)(l— p)’ (l—Z—p+q)2(l—p)2]}' (E34)

The integration over k is given by Eq. (E24). On the other hand, the integration over [/ picks up two poles:

Fr=2n /,z‘%%l“%ln ((12_22> {% [(l - p1+ Q)ZL " —1 1)? {(1 -1 —lp + q)z]z}' (E33)

Finally, the integration over [ gives

a2 [ 11 (p—q)} <12> /91 1 [(p—qql 1 (ﬁ)
Py =2z £4p2q2(p—q)4ln[ o l41 A2 + 27% 15 (p—q)41n 0 74(7_61)21n ) (E36)

The integration over [ for the first term is exactly the same as Eq. (E26). However, in the second term, the integration over
picks up the pole at [ = g and gets an extra factor g> instead of Q2 in the denominator. Thus, it is suppressed with respect to
the first term and can be neglected at the accuracy that we perform the calculation. Then, the P; contribution to the B,-type

terms reads
A3 1 1 (p—q) 07
Py~ 2 4p’q* (p - Q)“ln{ 0? ] Q21 <A2) (E37)
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The contribution from the pole at k 4+ [ = 0 to B,-type terms is very similar to the contribution of the same pole to the
B -type terms, and it reads

_ 31 1 [ 1 (¢=p)-qa (q=p=-D-(g=D][(g=p)-(=p) (¢g=p-1)-(-p)
Pz_zl,zﬂl“?“pz {(kﬂ)z}z{{(q—p)zqz (g=p-1*(g- )2H (¢=p)p’ (g—p=07*p?
_Jla=-pr)xq (g=p-1)x(q=1) (q—p)X(—p)_(q—p—l) (=p)
4[(q—p)2612 (q—p—7)2(q—7)2H (g=p)*p® (g—p—1)7p? H (E38)
Integration over [ picks up a pole at (I + p — g) = 0, and one gets
91 1 1 1
F2= Auz?l? [(kH)] [(7+p—q)2]gyp_q
a9t v T(p-g) 07
=2 4p4(p—q)41 [ 0} }QQI (A2> (E39)

For the B,-type terms the poles P,:k + [ = 0 and P5:k + [ = 0 are symmetric under the exchange p <> ¢. Thus, we can
immediately write the P; contribution to these terms as

1 1 -9 1 z
Py=200 L ln[(p ) ]—zln (Q—§> (E40)
449 (p—q)* o7 107 \A
The last pole that contributes to the B,-type terms is P,:k = 0, and it reads
[ 31 1 (1N [[U=q+p)p (I=q=l+p)p|[U-g+p)-(I-q) (-g=I+p)-(I-q-1])
Py=2 7474 72 2,27 (7 2,2 7 273
L2 (g =12 \k (I=q+pPp* (I-q=1+pPp*|(I-q+p)(-q)* (I-g=1+p)*(I-q=I)

_4[(1_—q+p)><p (l— —l+P)><pH(l_ a+p)x(1-q) (l_—q—l+p)><_(7—q—l)]}
(I—q+p)*p* (I-q-1+p?p*|(I-q+p)*(1-q)?* (I-q—1+p)*(I-q-1)*]])

(E41)

After integrating over k and renaming [ <> I, one realizes that the integration over [ picks up three poles:

P4:2”Kz§%1“<%>{ [ﬁ]f%g l)hl—i—lqwﬂ, _
O

Note that after integrating over [ and /, the leading contribution will come from the terms where there are no extra poles in
the integration over /. Thus, the leading contribution of P, comes from the pole at / + p — ¢ = 0 and the pole at [ — g = 0,

91 1 — 1 N1, (B
Py~ 272 / { £In [(” ) } +—In <q2) } —In <—2> (E43)
4p* L(p—q) 05 gt \g:)J I \A
Finally, the integration over [ is straightforward to perform, and the P, contribution to the B-type terms reads
391 1 1 2 z
Py~ 21 ——{ [(p —a) } +—n (‘%)} Sl (Qz) (E44)
4p* Up—aq)t o gt \Q:/ ) 0F \A
Adding all contributions, we get
off 1 2 1 1 (r—9q) 1 'S 07
J Nﬂ3—{|:—+—+—:| ln[ + In| = | p =51n ptat. (E45)
S U e N R N % pqt \Q? Q2 A2
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c. B;
The third term in the B-type contribution reads
_ [ w2 0)2()
J3= 474
kELT Il
2 2(7V22(1)22(7 o k . k-(p— k k4 ]— . -
f W OPOPD oy g [([EDp B (=D] [(kt)-(kti=p) ke(k+1=p)
kk1I Il (k+0)2p* k*(p=0*] | (k+1)*(k+1—p)* k*(k+1-p)
[(k—f—l)xp kx(p l)] [(k—H) (k41— p)_kx(k+l—p)})
(k+07p? R(p—02| [+ D2 (kv 1=p) Kk +1=p)?
(it

1)?

X<{(k+l)q qu_ +0)-(k+1-q) _k-(_l?—q)}
(k+07%q* K q*| [(k+1)*(k+1-q)* k*(k-q)*
[(k+l)xq lfxq} {(/_f+z)xgl_c+_7—q)_l_fxgl_c—q)])
k+02¢> g2 [(k+1)>2(k+1-q)® K (k—q)?

k+1 k-(p=1)7 [(k+1

([ [ rar i R

+{(k D-(k+1=-p) k-(k+1-p) {(k—l—l)xp kex (p —z)D

(k+1)2(k+1—p)> K(k+1=p)*| [(k+1)2p* KE(p—1)>

I

8D (k+1—p—k—1+q)u{¥(k,1,p;0)¥* (k.1 p;1)P(k.1.q;1)P* (k.1.4;0)}

x (k+1-p) kx(k—l—l—p)]

SERRETAB
2] [(k+

(k+1)? (k+l q)? kK (k-q) (E46)

As in the case of B;-type and B,-type terms, we also integrate over k by using the 5-function to calculate the B;-type terms.
Then, the integration over k picks up four poles: P,:k =0, Py:k+1=0, Py:k+1=0and Py:k = 0.
The contribution from P; reads

_ 31 1 /1 (I-p+q9)-q (-p=l+q)-q|[(U=p+q)-(I-p) (=p=I+q)-(I-p=1])
Pl_zlzﬂl“l“(p 1) < >H(l—p+q)“ (l—p—7+q)2q2] [(l—p+q)2(l—p2) (I-p=1+q)(-p-17
4[(l—p+q)><q (I-p —l‘HI)XC]} [(1 p+aq)x (l—p)_(l—p—7+q)><(l—p—7)]}

(I-p+9Pq (I-p=1+9?¢@]LUI-p+q)?(-p*) (I-p-I+q)*(I-p-I)>

(E47)

The integration over k is straightforward to perform. On the other hand, integration over / picks up three poles:

he 2”/,7314%1“(5—23) {3 1 [(l—p%q)} %qi(l —lq)2 [(1_— P —12+ ?)2]7 _
N o (At et

Note that, as in the case of B,-type terms, the leading contribution will come from the terms with no extra poles for the /
integration. Thus, after performing the [ integration, the P; contribution reads

91 1 - 1 2 1 ?
P, ~ 27 / { 4ln[(p ar ] +—In <p2) } —In <—2> (E49)
44" L(p—q) 0y pt o\ S \A
Finally, the integration over [ is straightforward to perform, and the result is
91 1 —q)? 1 2 1 2
P, z27r3——4{ 41n[(” ) } +—1n (p2>}—21n(Q—Tz>. (E50)
49" ((p—q) 05 pt N0 07\ A
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Now, let us calculate the contribution from the pole at P,:k + [ = 0 to the Bs-type terms,

P:Z/ 31 { 1 }{[(q p)-a (g-p=1)-q H(q—l?)-(—l?)_(q—p—_)-(—pj7)
2T a2 PP p? [(k+ 02, (g - p)zq (g-p=0¢IL (a=p)pP  (a-p-D*p+I}
(g-p)xq (g-p-1)xgq H(q p)x(=p) (g=p=1)x(=p —)H
—4 - . E51
[(q—p)zq2 (¢-p=-1¢ p?r*  (g—=p=0*(p+1) (B30
The integration over / picks up one pole:
91 1 1 1
Pam2 A,,,ZWP%IZ [(k + 1)2} ; [(7 +p- 61)2] P (E2)
After performing all the integrals we get
~ 32 1 1 (p— Q) Q2
R R - Q)“ln{ 0: Q2 "\ (553

The contribution from the pole, P :k + [ = 0, can be obtained directly from the result of P, with the exchange of p <> ¢
due to symmetry. However, Eq. (E53) is symmetric under the exchange of p and g. Thus, the contribution from the pole P;
is equal to the contribution from the pole P,.

The last contribution to the B;-type terms comes from the pole P,:k = 0, and it reads

B 31 1/1 (I—q+p)-p (I-l-q+p)- (I-q+ (l—(]) (I-1-q+p)-(I-q)
P4_2/c 2P <k2>{[(7—61+19)2p2 (I=1—q+p)*( Hl g+pP(1-q? (I-i-q+p)I- q)z}
(U=q+p)xp (=l-g+p)x(p=D][(-g+p)x(-g (7—l—q+p) =
4{(7—q+p)2p2 (7—l—q+p)2(p—l)2][(l—qﬂ))(—) (I-1-q+p)* (1—4)2” (E54)

After performing the integration over k and renaming [ <> [, one can easily see that the integration over [ picks up two poles:

PZZ”/%#%){ T R 7 {<z—7—1q+p>2]1}' (E33)

The second term in the brackets picks up two poles when integrating over /, and it gives a suppressed contribution with
respect to the first term and thus can be neglected. Then, the leading contribution comes from the first term in the brackets,
and after integrating over / and [, we get

.39 1 1 (p—4q)? Q2>
Ry (r-q)* ln{ 0; Q%ln A? (E36)

Adding all contributions together, we get

9 3 1 1 p—q)* 1 p? 0
ham ”35{ L]zp2 +?} (p—q)* tn [( 0? : ] * gt " <Q2> } 0% " <A§>M # (E5T)
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d. B,
The fourth term in the B-type contribution reads

?vl
~I

141 4:0)}

:2/ (k) (k)2 (1D22(1) 52
kELT I

J, = / ) 7”2(")”2(’_‘)_’12(1)*2(7) 5Ok + 1= p—Fk=T1+qur{W(k, [, p:0)¥* (k, [, p: V(K. T, g; )W (R,
k.k,1,1

(k+1-p—k—1+q)

(k+1)-p NTk+1)-(k+1-=p) k-(k+1-p)
X{ {(k+l)2p2 )2Hk+l et l-p? KRlk+i- )2}
_4[(k+l)xp kx( )} {(k—kl)x(k—kl—p) kx(k+1-p )})

(k+0?*p*> K(p-=0D*||(k+0D*k+1-p)?* Kk (k+1-p)?

(k+0)-q k-(qg=D][k+1)-(k+1-¢q) k-(k+1-¢q)

g {<i‘<+i>2q2 (g - >2} {<k+l> 2(k+1- >2‘/22<1‘<+2—q>2]
_4[(I_<+7)xq kx —l) [(k—H x(k+1-gq )_IEX(IE—H—:])])
(k+1)%q? (k+D*k+1-q)* K(k+1-q)

A D -p k (p DI[k+)x(k+1-p) kx(k+1-p)
" ((k+l)2 2 K (p - )ZH(kH) 2(k+1- )z_kz(k+l—p)2]
(k+1-p) k-

(k+1)- (
j{ TNk I=p)? Rk+1-p)
({k+l q k- (q—_z)H(icH)

k+02q> K(g=12] | (k+1)>2(k+

(k+1) /_c+7—q) k-(k+1-¢q
{(12+7)2(7<+Z—q)2_122(7<+Z—q)2

)

(l_c—i—Z—q)_l_cx(l_c—i—Z—q)]
k+1-¢q)? Kk+1-gq)

(k+1)xq kx(qg-1)
[(HZW - k2<q—7>2]>}‘ (ES8)

There are again four pole contributions: P, :k =0, P,:k+ [ =0, Py:k+ [ =0 and P,:k = 0. However, B,-type terms
are symmetric under the exchange (k,1, p) <> (l_c, 1, q). Thus, for these terms we only need to calculate the P; and P,
contributions. So, let us start with the P; contribution:

_ 31 1 1\ (f[U=-p+q)-q (I-I-p+q)-(¢g-1]
Fi= 211,12 It (p—1)? <k2>1{ {(l -p+ q)2q C(-T1-p+q)’(g- 7)2]
{(l—p+Q)-(l—p)_(l—7—p+Q) Us )}_4[(Z—P+Q)X4_(l—7—P+Q)X(q—i)]
(I=p+q?(U-p)?* (-1-p+q)*(l-p)}? (I-p+q9P¢ (I-1-p+q)Pq-1)
(I-p+q)x(=p) (=1-p+q)x(-p)

{(Z—P‘FCDZ(Z—PV (1—7—p+q)2(l—p)2]} (E59)

The integration over / picks up two poles:

= 2”/31%1@_) {%L [<1—p1+ a7 } +%< 1734 [(z— i —lp+q>2u
2 g e () o0

Note that the second term in the brackets has a double pole when integrating over /, and it does not pick up a factor
of Q% in the denominator after the integration over [. Thus, it is suppressed with respect to the first term in the
brackets and can be neglected. Hence, the leading contribution comes from the first term, and after performing the [
integral, we get
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91 1 —q] 1 (0}
|~ 2 4ln[(p ) }—21n<Q—§>. (E61)
44" (p-q) 07 107 \A

As we have argued before, the P, contribution is identical
to P; when p and ¢ are exchanged. Thus, we can write the
result of P, as

PHYSICAL REVIEW D 95, 034025 (2017)

321 1 (r—-a) Q2
Fumon 4p4(p—q)4ln[ : erln A

(E62)

The contribution from the pole at k+ /=0 can be
written as

(q=1-p)-(-p)

(q—1-p)*p?

A2

et
q (q-1 l
q* 1

The integration over / picks up one pole:

p ~2/ 91 1 { 1 } { 1 ]
2 k,lj4l4z4p4 (k+l)2 ) (Z_q+p)2 th_q.

(E64)

Integrating over all the variables we get

P e e () e

g—1-p)x(q- )] [(Q—P)X(—P)_(Q(—Z_—ilj) jz(zp)}}.

(E63)
p

The contribution from P5 is identical to P, when p and ¢
are exchanged. Thus, P; reads

P2 1“{@537) [ g 62) (EGS)

Adding all contributions together, we get

322 2] 1 (P—Q)} <Q2>
J4Nﬂ2[q4+p}(p q)* ln[ a o)

(E67)
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