
Strong coupling from hadronic τ decays: A critical appraisal

Diogo Boito,1 Maarten Golterman,2 Kim Maltman,3,4 and Santiago Peris5
1Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13570-970, São Carlos, SP, Brazil

2Department of Physics and Astronomy, San Francisco State University,
San Francisco, California 94132, USA

3Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, Canada
4CSSM, University of Adelaide, Adelaide, South Australia 5005, Australia

5Department of Physics and IFAE-BIST, Universitat Autònoma de Barcelona,
E-08193 Bellaterra, Barcelona, Spain

(Received 21 November 2016; published 22 February 2017)

Several different analysis methods have been developed to determine the strong coupling via finite-
energy sum-rule analyses of hadronic τ decay data. While most methods agree on the existence of the well-
known ambiguity in the choice of a resummation scheme due to the slow convergence of QCD perturbation
theory at the τ mass, there is an ongoing controversy over how to deal properly with nonperturbative
effects. These are small, but not negligible, and include quark-hadron “duality violations” (i.e., resonance
effects) which are not described by the operator product expansion (OPE). In one approach, an attempt is
made to suppress duality violations enough that they might become negligible. The number of OPE
parameters to be fit, however, then exceeds the number of available sum rules, necessitating an uncontrolled
OPE truncation, in which a number of higher-dimension OPE contributions in general present in QCD are
set to zero by hand. In the second approach, truncation of the OPE is avoided by construction, and duality
violations are taken into account explicitly, using a physically motivated model. In this article, we provide a
critical appraisal of a recent analysis employing the first approach and demonstrate that it fails to properly
account for nonperturbative effects, making the resulting determination of the strong coupling unreliable.
The second approach, in contrast, passes all self-consistency tests, and provides a competitive
determination of the strong coupling from τ decays.
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I. INTRODUCTION

A precise determination of the strong coupling αs is
important, both because it is one of the fundamental
parameters of the Standard Model, and because it is an
important input to precision studies of potential discrep-
ancies between experiment and theory, relevant to searches
for beyond-the-Standard-Model physics. Moreover, deter-
minations over a wide range of energies provide an
important test of the running of the coupling as predicted
by QCD.
Experimental data for hadronic τ decays provide an

opportunity for a determination at quite low energy scales,
of the order of the τmass. Because of the long running from
the τ mass to the Z mass, even a modestly accurate
determination translates into a high-precision value at the
Z mass, and, as such, provides a stringent test of QCD.
However, αs is, of course, defined in perturbation theory,
and it is thus imperative to have a quantitative under-
standing of nonperturbative effects that may “contaminate”
determinations at lower scales such as that at the τ mass,
where resonance effects are clearly visible in the QCD
spectral functions extracted from differential τ decay
distributions. Such resonance effects, which are described
neither by perturbation theory nor by the operator product
expansion (OPE), are referred to generically in the literature

as “violating quark-hadron duality.”1 A quantitative study
of the impact of duality violations (DVs) is unavoidable if
one aims to fully understand the possible systematics
affecting the extraction of αsðm2

τÞ from τ decays.
Two basic strategies have been developed to extract

αsðm2
τÞ from hadronic τ decay data. Both are based on the

use of finite-energy sum rules (FESRs), in which weighted
integrals of the vector (V) and axial-vector (A) hadronic
spectral functions (or their sum) are related to the integral
on a circle around the origin in the complex plane over a
theoretical representation of the V or A current two-point
function. Choosing the radius s0 of this circle to be large
makes it possible to use perturbation theory, augmented by
the OPE and possibly also with a model for residual DVs,
for the theoretical representation, allowing for the extrac-
tion of αsðs0Þ. Of course, in the application of FESRs to τ
decays, the maximum radius is s0 ¼ m2

τ .
In the first strategy, the weights in the spectral integrals

are chosen with the hope of suppressing DVs enough to

1The term “quark-hadron duality” is shorthand for the quali-
tative expectation that QCD spectral functions, at least in some
average sense, can be equally well understood in terms of quarks
and gluons (the perturbative picture) as in terms of a tower of
resonances (the nonperturbative picture).
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justify omitting them from the analysis, and, in this spirit,
s0 is always chosen equal to its maximum kinematically
allowed value, m2

τ . As we will see, in order to keep the
number of the resulting sum rules greater than the number
of parameters to be fit, this choice forces a truncation of the
OPE at a dimension lower than a complete QCD analysis
would generally require. We will refer to this strategy as the
“truncated-OPE-model” or “truncated-OPE” strategy. The
most recent implementations of this strategy can be found
in Refs. [1,2].
In the second strategy, weights are chosen such that only

low orders in the OPE need to be included. It turns out that
this is incompatible with the desired complete suppression
of DVs, and an explicit model of how they affect the
spectral functions needs to be introduced in order to carry
out the analysis. The value of s0 is varied between
approximately 1.5 GeV2 and m2

τ . This approach has
been followed in Refs. [3–5], and we will refer to it as
the “DV-model strategy”.
Both strategies are based on assumptions, and these

assumptions have to be tested. This is not an academic
issue, because the values of αsðm2

τÞ obtained by applying
the two different strategies to the same data set differ
significantly, the DV-model result being lower by about
8%. This difference is a factor of 2 larger than the 4% (or
less) errors produced using the individual strategies.
The goal of this article is to present a critical analysis of

the truncated-OPE-model strategy, starting from the exten-
sive analysis recently presented in Ref. [2]. In Ref. [2] a
large number of tests of this strategy were carried out,
leading to the claim that the strategy is robust, even if there
is no good a priori physical motivation for the truncation of
the OPE employed. Here we will demonstrate that despite
these tests, this strategy does not, in fact, hold up, and that
consequently the final result for αsðm2

τÞ obtained in
Refs. [1,2] is unreliable. In particular, while the tests
carried out in Ref. [2] are certainly necessary, they are
not sufficient to be confident that the systematic errors
quoted in Ref. [2], following from the use of this strategy,
are under control. In what follows, we will show explicitly
that they are not.
Of course, the DV-model strategy requires similar

scrutiny, and numerous self-consistency tests have already
been carried out in Refs. [3–5]. The details of these tests
will not be repeated here, but may be found in those
references. As we will argue below, the deficiencies of the
truncated-OPE-model strategy in fact naturally lead one to
adopt the DV-model strategy, a point already made in some
detail in Ref. [3]. We will also show that the criticism of the
DV-model strategy in Ref. [2] is misleading, and in fact in
no way invalidates the DV-model strategy approach.
This article is organized as follows. In the next section,

we collect elements of the theory of FESRs needed for our
purposes. Then, in Sec. III, we begin by reproducing the
results of Ref. [2], and end with a discussion of hints of

instabilities already visible in these results. In Sec. IV, we
carry out a numerical experiment using fake data which are
compatible with the experimental spectral functions, and
which have been generated from a model of the V and A
spectral functions with fixed input αsðm2

τÞ and, by con-
struction, non-negligible DVs. We show that fits extracting
αsðm2

τÞ from these data employing the truncated-OPE
strategy fail to reproduce the exactly known model value
of αsðm2

τÞ by an amount comparable to the difference found
when the two strategies are applied to the real data. In
Sec. V we refute the critique of the DV-model strategy
contained in Ref. [2]. Section VI contains our conclusions.

II. THEORY

The sum-rule analysis underlying both strategies starts
from the current-current two-point functions

ΠμνðqÞ ¼ i
Z

d4xeiqxh0jTfJμðxÞJ†νð0Þgj0i

¼ ðqμqν − q2gμνÞΠð1Þðq2Þ þ qμqνΠð0Þðq2Þ
¼ ðqμqν − q2gμνÞΠð1þ0Þðq2Þ þ q2gμνΠð0Þðq2Þ;

ð2:1Þ

where Jμ is the nonstrange Vμ ¼ ūγμd or Aμ ¼ ūγμγ5d
current, and the superscripts (0) and (1) label spin. The
combinations Πð1þ0Þðq2Þ and q2Πð0Þðq2Þ are free of
kinematic singularities. Defining s ¼ q2 ¼ −Q2 and the
spectral function

ρð1þ0ÞðsÞ ¼ 1

π
ImΠð1þ0ÞðsÞ; ð2:2Þ

Cauchy’s theorem applied to the contour in Fig. 1 and the
analytical properties of Πð1þ0ÞðsÞ imply the FESR

FIG. 1. Analytic structure of Πð1þ0Þðq2Þ in the complex s ¼ q2

plane. There is a cut on the positive real axis starting at s ¼
q2 ¼ 4m2

π (a pole at s ¼ q2 ¼ m2
π and a cut starting at s ¼ 9m2

π)
for the V (A) case. The solid curve shows the contour used
in Eq. (2.3).
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1

s0

Z
s0

0

dswðs=s0Þρð1þ0Þ
V=A ðsÞ

¼ −
1

2πis0

I
jsj¼s0

dswðs=s0ÞΠð1þ0Þ
V=A ðsÞ: ð2:3Þ

This FESR is valid for any s0 > 0 and any weight wðsÞ
analytic inside and on the contour [6–8]. It holds for the V
and A cases separately, and as a consequence also
for V þ A.
Experimental results for the flavor ud V and A spectral

functions have been made available by ALEPH and OPAL
in Refs. [1,9,10]. Apart from the pion-pole contribution,

ρð0ÞV=A;udðsÞ ¼ O½ðmd ∓ muÞ2� is chirally suppressed, and

the continuum part of ρð0ÞV=AðsÞ is thus numerically
negligible.
For large jsj ¼ s0, and far enough away from the positive

real axis, Πð1þ0ÞðsÞ can be approximated by the OPE

Πð1þ0Þ
OPE ðsÞ ¼

X∞
k¼0

C2kðsÞ
ð−sÞk : ð2:4Þ

We will omit the labels V, A or V þ A on the OPE
coefficients, because we will only encounter the case
V þ A in this article. TheC2k are logarithmically dependent
on s through perturbative corrections. The term with k ¼ 0
corresponds to the purely perturbative, mass-independent
contributions, which have been calculated to order α4s in
Ref. [11], and are the same for the V and A channels. Values
quoted for αsðm2

τÞ are in the MS scheme. We will consider
both FOPT and CIPT [12] resummation schemes in
evaluating the truncated perturbative series (see for instance
Refs. [13,14] for a discussion of these two resummation
schemes). The C2k with k ≥ 1 are different for the V and A
channels, and, for k > 1, contain nonperturbative D ¼ 2k
condensate contributions. As in Refs. [1–5], we will neglect
purely perturbative quark-mass contributions to C2 and C4,
as they are numerically very small for the nonstrange
FESRs under consideration. We will also neglect the
s-dependence of the coefficients C2k for k > 1, because
they are αs suppressed. With this choice, we have that

1

2πis0

I
jsj¼s0

ds

�
s
s0

�
n C2k

ð−sÞk ¼ ð−1Þnþ1
C2ðnþ1Þ
snþ1
0

δk;nþ1;

ð2:5Þ

implying that an nth degree monomial in the weight
wðs=s0Þ selects the D ¼ 2k ¼ 2ðnþ 1Þ term in the OPE.
All fit results for the 1=s4 term in the OPE will be given

in terms of C4, while Ref. [2] chose to use the gluon
condensate, hαsπ GGi, instead. For the V þ A case, these two
parameters are related by

C4 ¼
1

6

�
1 −

11

18

αs
π

��
αs
π
GG

�

þ 2

�
1 −

23

27

αs
π

�
hðmu þmdÞq̄qi: ð2:6Þ

If we employ, as in Ref. [2], the value hðmu þmdÞq̄qi ≈
−m2

πf2π ≈ −1.6 × 10−4 GeV4 with αs ≈ 0.325, Eq. (2.6)
translates into

C4 ¼ 0.156

�
αs
π
GG

�
− 0.000292 GeV4: ð2:7Þ

Perturbation theory, and, more generally, the OPE,
breaks down near the positive real axis [15]. In
order to account for this, we replace the right-hand side
of Eq. (2.3) by

−
1

2πis0

I
jsj¼s0

dswðs=s0ÞðΠð1þ0Þ
OPE ðsÞ þ ΔðsÞÞ; ð2:8Þ

with

ΔðsÞ≡ Πð1þ0ÞðsÞ − Πð1þ0Þ
OPE ðsÞ; ð2:9Þ

where the difference ΔðsÞ represents, by definition, the
quark-hadron duality violating contribution to Πð1þ0ÞðsÞ.
As shown in Ref. [16], the integral over wðs=s0ÞΔðsÞ in
Eq. (2.8) can be rewritten such that the FESR takes the form

1

s0

Z
s0

0

dswðs=s0Þρð1þ0Þ
V=A ðsÞ

¼ −
1

2πis0

I
jsj¼s0

dswðs=s0ÞΠð1þ0Þ
OPE;V=AðsÞ

−
1

s0

Z
∞

s0

dswðs=s0Þ
1

π
ImΔV=AðsÞ; ð2:10Þ

if ΔðsÞ is assumed to decay fast enough as s → ∞. The
imaginary parts 1

π ImΔV=AðsÞ can thus be interpreted as
the duality-violating parts, ρDVV=AðsÞ, of the V=A spectral
functions.
We need to resort to a model in order to account for DVs,

because the functional form of ΔðsÞ is not known, even for
large s. As in Refs. [16–18],2 our model is based on large-
Nc and Regge considerations, parametrizing ρDVV=AðsÞ as

ρDVV=AðsÞ ¼ e−δV=A−γV=As sin ðαV=A þ βV=AsÞ; s ≥ smin:

ð2:11Þ

2See also Refs. [19,20].
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This introduces four new parameters in each channel, in
addition to αs and the D ≥ 4 OPE coefficients.3 Our ansatz
(2.11) is assumed to hold only for s ≥ smin, with smin to be
determined from fits to the data. We emphasize that, since
DVs represent resonance effects, the DV parameters will be
different in the V and A channels, reflecting the different
resonance structure in these two channels.
One way the general structure of the ansatz proposed in

Eq. (2.11) can be understood is as follows. The OPE itself
diverges as an expansion in 1=s, because it has zero radius
of convergence around 1=s ¼ 0. It is thus itself, like the
perturbative series in the D ¼ 0 term [23], at best an
asymptotic expansion, with coefficients C2k that must
eventually grow rapidly with k. This then leads to the
expectation that an exponential correction suppressed in
terms of the inverse of this expansion parameter, “takes over”
where the OPE starts to diverge. The form given in Eq. (2.11)
is consistent with this expectation. Moreover, following this
line of reasoning, it would be natural to expect that the
prefactor of the form (2.11) is itself an expansion in powers
of 1=s. In ansatz (2.11) only the leading (constant) term was
kept in this prefactor expansion.

III. THE TRUNCATED-OPE-MODEL STRATEGY

In this section, we will first summarize the truncated-OPE
strategy of Ref. [2]. We will then, after reproducing the
results of Ref. [2] in Sec. III A, start a critical discussion of
both these results and the underlying strategy in Sec. III B.
The orginal version [24] of the truncated-OPE strategy

employed five different FESRs, corresponding to five
different polynomial choices for the weight function
wðxÞ in the FESR (2.3). We will denote these weights as
wkl, with ðklÞ ∈ fð00Þ; ð10Þ; ð11Þ; ð12Þ; ð13Þg, and

wklðxÞ ¼ ð1 − xÞkþ2xlð1þ 2xÞ: ð3:1Þ

These weights have a double or triple zero at s ¼ s0 (i.e.,
x ¼ 1), and the hope was that this would be sufficient to
suppress DVs enough that they could be neglected.4 In
other words, in all the fits of Ref. [2] all weighted integrals
of the functions ρDVV=AðsÞ of Eq. (2.11) are set equal to zero.
In practice, this is equivalent to choosing a model in which
ρDVV=AðsÞ ¼ 0, i.e., δV=A ¼ ∞, from the outset, regardless of
the oscillations clearly visible in Fig. 2. The value of s0 was
chosen equal to m2

τ , again with the hope that this would
maximize the suppression of nonperturbative effects rep-
resented by the D ¼ 2k > 0 terms in the OPE, Eq. (2.4),
and ΔðsÞ, Eq. (2.9). Prima facie, this is not an implausible
assumption, as perturbation theory should provide an

approximation to the right-hand side of Eq. (2.3) that
becomes more accurate as s0 increases.
These choices imply that one has five data points, and

one thus needs to limit the number of parameters in the fit to
four (or less). This leads to the necessity of truncating the
OPE. Since C2 is negligibly small for the nonstrange
channels considered here, the choice was made to take
αsðm2

τÞ, C4, C6 and C8 as free parameters in the fit.
However, because of Eq. (2.5), this amounts to the addi-
tional assumption that C10 ¼ C12 ¼ C14 ¼ C16 ¼ 0, since
the set Eq. (3.1) contains polynomials with degree up to
seven. While such an assumption is necessary to implement
the chosen fit strategy, it has no basis in QCD.
In addition to the set of weights in Eq. (3.1), Ref. [2]

considered several other sets of polynomials in x, in order
to test this strategy.
In one set, which we refer to as the “reduced set,”

denoted wred
kl ðxÞ, the factor 1þ 2x was removed from the

wkl. The form of the weights wred
kl ðxÞ is then

wred
kl ðxÞ ¼ ð1 − xÞkþ2xl: ð3:2Þ

Again, the pair ðklÞ was chosen in the set
fð00Þ; ð10Þ; ð11Þ; ð12Þ; ð13Þg. The motivation for this
choice is that it “reduces” the number of assumptions
associated with the chosen OPE truncation; one needs only
assume C10 ¼ C12 ¼ C14 ¼ 0, since C16 is not probed by
this modified set. Other sets of weights can be chosen from
among the “optimal” weights wopt

m;nðxÞ, where

wopt
m;n ¼ ð1 − xÞ1þm

�
d
dx

�
mXn

k¼0

xmþk;

m ¼ 0; 1; n ¼ 1;…; 5: ð3:3Þ

For m ¼ 0 each of these weights selects only one D > 0
term in the OPE, and for m ¼ 1 each of these weights
selects only two D > 0 terms. The m ¼ 0 optimal
weights are singly pinched and the m ¼ 1 optimal
weights are doubly pinched. The most important of
these weights are those with m ¼ 1, because they are
doubly pinched, and, for n ≥ 1 the two OPE terms
probed by these weights have D ≥ 6, thus avoiding a
contribution from the nominally dominant D ¼ 4 term.
The m ¼ 0 weights probe only one term in the OPE, but
are expected to be less effective in suppressing DVs
because they are only singly pinched.5 For the set with
m ¼ 1 and 1 ≤ n ≤ 5, the truncation assumption
amounts to setting C12 ¼ C14 ¼ C16 ¼ 0.
Yet another set of weights considered was the four-

weight set, wnðxÞ, n ¼ 0;…; 3, with3An ansatz of the form (2.11) was used by the authors of
Ref. [2] to model DVs in the V − A spectral function [21]. The
difference ρDVV ðsÞ − ρDVA ðsÞ was used instead in Ref. [22].

4We will refer to a weight with an n-fold zero at s ¼ s0
as n-fold pinched [25,26].

5One should bear in mind, however, that a higher degree of
pinching does not always guarantee a stronger suppression of
DVs, when one is considering only a single value of s0 [27].
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wnðxÞ ¼ ð1 − xÞn: ð3:4Þ

For this set, the parameters αsðm2
τÞ, C4 and C6 were fit,

while the OPE was truncated by setting C8 ¼ 0 in order to
have 1 degree of freedom in the fit, even though C8 is
probed by w3. This set is a little different in nature,
because w0 is unpinched, and w1 is only singly pinched.
Therefore, the effects from DVs are potentially more
severe.
The truncation assumption affects the higher-degree

weights more. For example, w00 ¼ wopt
1;1 is not affected,

because it only probes OPE terms withD ≤ 8, w10 and w
opt
1;2

only probe in addition the D ¼ 10 term, etc. This could
lead one to hope that, despite the fact that the assumed
truncation has no ground in QCD, the determination of αs
might be less severely affected. This could, for example,
happen if the spectral moments involving lower-degree
weights are relatively more important in fixing D ¼ 0
contributions than are those involving higher-degree
weights. Any such speculation should, of course, be
explicitly tested. While Ref. [2] carried out a number of
such tests (which we will also consider below), we will
nevertheless see that the truncation assumption employed
in the truncated-OPE strategy has a significant impact on
the value of αs obtained from this collection of fits. In other
words, though the many tests in Ref. [2] can be considered
as necessary, they turn out not to be sufficient.

A. Reproduction of the fits of Ref. [2]

Before we investigate the validity of the truncated-
OPE strategy, we first reproduce the fits of Ref. [2]
based on this strategy. We will only consider fits to
moments computed from the sum of the V and A
nonstrange spectral functions, as Ref. [2] advocates that
this is the most reliable choice. We primarily consider
fits using the four sets of weights specified above, and
our version of the results is reported in Tables I–IV.
These are all good fits, and the results agree with those

found in Ref. [2], within our statistical errors. Since our
goal is not to obtain final results for αs from these fits, we
do not repeat the estimates of systematic errors carried out
in Ref. [2]. We note that the central values are slightly
different. This is most likely due to a slightly different
treatment of the data, including a small rescaling performed
in Ref. [5].6 Using Eq. (2.7), it is straightforward to verify
that our values for C4 are consistent with the values for
hαsπ GGi given in Ref. [2]. We verified the results found in
Table Vof Ref. [2] as well, with similar accuracy. We do not

show these here, since they are less central to the final value
for αsðm2

τÞ quoted in Ref. [2].

B. Critique

We will now turn to a discussion of observations on the
basic assumptions underlying the truncated-OPE-model
strategy, based on the data. First, we consider the OPE
truncation itself, then investigate the other key assumption
that, at the τ scale, double (or triple) pinching produces a
suppression of DV contributions strong enough to allow
them to be ignored.

1. Truncation of the OPE

To obtain the results reported in Tables I–IV above, two
major assumptions have been made. The first is that setting
to zero by hand higher-dimension OPE contributions in
principle present in the analysis (unavoidable if one wishes

TABLE I. Reproduction of the V þ A fits of Table I of Ref. [2],
based on the weights of Eq. (3.1). By assumption,
C10 ¼ C12 ¼ C14 ¼ C16 ¼ 0. Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.316(3) −0.0006ð3Þ 0.0012(3) −0.0008ð3Þ 1.38=1
CIPT 0.336(4) −0.0026ð4Þ 0.0009(3) −0.0010ð4Þ 0.89=1

TABLE II. Reproduction of the V þ A fits of Table III of
Ref. [2], based on the reduced weights (3.2). By assumption,
C10 ¼ C12 ¼ C14 ¼ 0. Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.316(2) −0.0005ð1Þ 0.0011(1) −0.0005ð1Þ 1.57=1
CIPT 0.336(4) −0.0025ð3Þ 0.0008(2) −0.0008ð2Þ 0.98=1

TABLE III. Reproduction of the V þ A fits of Table VII of
Ref. [2], based on the optimal weights (3.3) with m ¼ 1 and
n ¼ 1;…5. By assumption, C12 ¼ C14 ¼ C16 ¼ 0. Errors are
statistical only.

αsðm2
τ Þ C6 (GeV6) C8 (GeV8) C10 (GeV10) χ2=dof

FOPT 0.317(3) 0.0014(4) −0.0010ð5Þ 0.0004(3) 1.26=1
CIPT 0.336(4) 0.0010(4) −0.0011ð5Þ 0.0003(3) 0.83=1

TABLE IV. Reproduction of the V þ A fits of Table VI of
Ref. [2], based on the weights of Eq. (3.4) with n ¼ 0;…3. By
assumption, C8 ¼ 0. Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) χ2=dof

FOPT 0.320(8) −0.001ð1Þ 0.002(2) 1.25=1
CIPT 0.339(11) −0.003ð3Þ 0.001(2) 1.15=1

6This rescaling was required in order to restore the correct total
nonstrange normalization, fixed by the electron, muon and total
strange branching fractions, after the larger-error experimental τ
decay π pole strength was replaced by the more precise value
implied by πμ2 and the Standard Model. For details of our
treatment of the data, see Ref. [5].
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to have at least 1 degree of freedom in the fit) has no
significant impact on the resulting αsðm2

τÞ. This assumption
was tested in Ref. [2] by relaxing this constraint on the
coefficient CD with D equal to the lowest dimension of the
OPE term neglected in the fits described in Sec. III A. For
the fits of Tables I and II this means that now also C10 is left
as a free parameter, while for Table III the corresponding
new free parameter is C12. Of course, now we have no
degrees of freedom left, the minimal value of χ2 is zero, and
these tests are not proper fits. Nonetheless, errors on the
free parameters can still be found through linear error
propagation, and these results can thus be compared with
the results reported in Sec. III A.
Here, let us reproduce the first example of these tests. We

again carry out a “fit” to the spectral-function integrals with
weights ([9]), but now use these to determine the param-
eters αs, C4;6;8 and C10. Our results are reported in Table V.
These results are in agreement with Table II of Ref. [2],

within errors. They are also in agreement within errors with
Table I. Reference [2] takes this as a sign of stability of the
fits of Table I, and thus as a validation of the truncation of
the OPE beyond theD ¼ 8 term. However, while the errors
on the coefficients C6 and C8 are large, so that there is no
inconsistency between the values of these parameters
obtained in Tables I and V, one notes that their central
values in Table V are roughly 5 times as large as those of
Table I. We also note that the central values of αsðm2

τÞ in
Table Vare larger than in Tables I–IV. Similar observations
hold for similar fits with no degrees of freedom with
reduced and optimal weights, cf. Tables IV and VIII in
Ref. [2].7 This suggests that the OPE coefficients may
“want” to be larger, but that just adding one more term in
the fit, while still truncating the remaining terms, does not
allow the OPE the “room” to do this. As we will see below,
reasonable values for the OPE condensates exist which are
compatible with the data, but which lead to significantly
lower values of αs. The tests carried out in Ref. [2], and
given in their Tables II, IV and VIII, are thus, in fact,
inconclusive.
Interestingly, no such test was carried out for the fits of

Table VI in Ref. [2], which we reproduce here in Table IV.
Such a test can, of course, be performed by leaving C8 as a

free parameter. We carried out this test, and find the values
in Table VI below. We note that there is a very dramatic
shift in the central value of αsðm2

τÞ, of about 24%, while
also the errors increase dramatically. Taken all together, we
conclude that tests based on fits with zero degrees of
freedom add no information, and are certainly not a
demonstration of stability of the truncated-OPE strategy.
We now will consider an exercise which shows that the

whole collection of fits carried out in Ref. [2] admits a very
different solution. This will serve to demonstrate that the
argument of Ref. [2], that the consistency of the results
obtained from all the tests performed there establishes the
robustness of the determination of αs, is false.
Let us return to the fits of Tables I–IV. Since the choice of

setting any of the OPE coefficients equal to zero is arbitrary,
one might consider a different set, which, at this point, may
also seem rather arbitrary:

C8 ¼ 0.0349 GeV8;

C10 ¼ −0.0832 GeV10;

C12 ¼ 0.161 GeV12;

C14 ¼ −0.17 GeV14;

C16 ¼ −0.55 GeV16: ð3:5Þ

Even if arbitrary, this choice for CD with 8 ≤ D ≤ 16 is a
reasonable one. The values are of the order or magnitude
one might expect in QCD, with its typical hadronic scale of
about 1 GeV. Measured in units of 1 GeV, they increase
with D, but also this is not excluded or unnatural, if indeed
the OPE is an asymptotic series (cf. Sec. II).
Redoing the fits of Tables I–IV, but now with Eq. (3.5) as

input, we find the results presented in Tables VII–X.
The fits of Tables VII–IX are all very good fits, as

measured by their χ2 values, certainly at least as good as

TABLE VI. Test of the V þ A fits of Table VI of Ref. [2], based
on the weights of Eq. (3.4), to be compared with Table IV. C8 is
now left as a free parameter. Errors are obtained through linear
error propagation.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8)

FOPT 0.39(6) −0.02ð3Þ 0.07(8) −0.2ð2Þ
CIPT 0.43(10) −0.03ð3Þ 0.06(6) −0.2ð2Þ

TABLE V. Reproduction of the V þ A “fits” of Table II of Ref. [2], based on the weights of Eq. (3.1), to be
compared with Table I. By assumption, C12 ¼ C14 ¼ C16 ¼ 0, while C10 is now left as a free parameter. Errors are
obtained through linear error propagation.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) C10 (GeV10)

FOPT 0.329(12) −0.0014ð8Þ 0.005(4) −0.004ð3Þ 0.010(8)
CIPT 0.350(15) −0.0036ð12Þ 0.004(3) −0.004ð3Þ 0.007(8)

7In some cases, the factor is closer to 10 than to 5. We have
reproduced the V þ A results of these tables.
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those of Tables I–III.8 The implication of this exercise is
that there could be at least two solutions, depending on
what one assumes for the values of higher-dimension OPE
coefficients. The existence of these two (and possibly
more) solutions reveals a fundamental problem of the
truncated-OPE strategy: the solution found by this strategy
depends on the choice of the values of the OPE coefficients
not included in the fits. In addition, the strategy does not
provide a physics argument, either a priori or a posteriori,
for what choice to make. The solution with Eq. (3.5) as
input leads to values of αsðm2

τÞ that are about 0.025, or 8%,
lower than those obtained using the alternate input set in
which the relevant higher-dimension CD are set to zero by
hand. We note that the values for C10 in Table IX, and C8 in
Tables VII–IX, for which these coefficients are not input,
agree well with the value in Eq. (3.5). Likewise, if one
explores tests like those of Table V, the results are internally
consistent as well as consistent with the values in Eq. (3.5).
Without further information, it is not possible to claim that
one solution is better than the other. To summarize, the
internal consistency among all fits cannot be used as a
reliable test for judging the robustness of the result for
αsðm2

τÞ, in contrast to what is advocated in Ref. [2], because
the solution described in this subsection passes all the same
consistency tests.
We also considered the “secondary” tests of Tables Vand

IX of Ref. [2].9 In Table Vof Ref. [2] the twelve moments
with weights (3.3) were employed choosing m ¼ 0, 1,
n ¼ 0;…; 5, and s0 ¼ 2.8 GeV2. For each moment a value
of αsðm2

τÞ was extracted ignoring all nonperturbative
contributions, i.e., setting all CD≥2 ¼ 0 and ignoring
DVs. While the results appeared to suggest self-consistency

and consistency with all other fits, we found that this is
only the case because Ref. [2] limits itself to the single
choice s0 ¼ 2.8 GeV2.
Since s0 ¼ 2.6 GeV2 corresponds to the bin immediately

before s0 ¼ 2.8 GeV2, we have varied s0 in the range
s0 ¼ 2.6 GeV2 to s0 ¼ m2

τ , and considered the differences
in the values of αsðm2

τÞ obtained from these twelvemoments.
In computing these differences, it is important to take
correlations into account, since the integrated data, and thus
the fits, are highly correlated. Of course, such differences
should be consistent with zero, within errors. Instead, we
find that these differences are often inconsistent with zero at
the 2 to 4σ level, depending on which pair of moments one
considers. Thus, instead of confirming the robustness
claimed in Ref. [2], the results obtained using thesemoments
actually point to potential internal inconsistency problems.
Since some of these moments are only singly pinched,

and since also all CD≥2 were set equal to zero, one might
argue that it is these shortcomings which are the source of
the nonzero differences noted above. Even if this is the
case, the conclusion remains that the results of Table V of
Ref. [2] cannot be taken as providing any additional
evidence for the validity of the truncated-OPE strategy.

2. The omission of duality violations

We now turn to the second assumption made in the
truncated-OPE-model strategy. While the previous subsec-
tion revealed a major problem with the truncation of the
OPE itself, one might still think that the use of weights
that are at least doubly pinched makes it safe to ignore
DVs. Before we carry out another exercise to probe this
assumption quantitatively, let us consider this assumption
in the light of the data. In Fig. 2 we show the large-s region
of the nonstrange, V þ A spectral-function obtained from
ALEPH data [1]. We have plotted 2π2ρVþA − 1, rather than
2π2ρVþA, in order to remove the free-quark (or parton-
model) contribution, which is independent of QCD dynam-
ics; 2π2ρVþA − 1 thus represents the dynamical QCD
contribution to the spectral distribution. The difference

TABLE VII. Fits as in Table I, but with C10,C12,C14 andC16 as
given in Eq. (3.5). Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.295(3) 0.0043(3) −0.0128ð3Þ 0.0355(3) 0.99=1
CIPT 0.308(4) 0.0031(3) −0.0129ð3Þ 0.0354(3) 0.74=1

TABLE VIII. Fits as in Table II, but with C10, C12 and C14 as
given in Eq. (3.5). Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.296(3) 0.0042(2) −0.0127ð2Þ 0.0352(2) 0.84=1
CIPT 0.309(4) 0.0030(3) −0.0128ð2Þ 0.0351(2) 0.60=1

TABLE IX. Fits as in Table III, but with C12, C14 and C16 as
given in Eq. (3.5). Errors are statistical only.

αsðm2
τ Þ C6 (GeV6) C8 (GeV8) C10 (GeV10) χ2=dof

FOPT 0.295(4) −0.0130ð4Þ 0.0356(5) −0.0836ð3Þ 1.09=1
CIPT 0.308(5) −0.0130ð4Þ 0.0355(5) −0.0836ð3Þ 0.84=1

TABLE X. Fits as in Table IV, but with C8 as given in Eq. (3.5).
Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) χ2=dof

FOPT 0.308(8) 0.0023(12) −0.009ð2Þ 1.73=1
CIPT 0.322(11) 0.0009(15) −0.010ð2Þ 1.63=1

8Table X shows some tension for the C4;6 coefficients relative
to the values shown in Tables VII–X. This is because DVs have
not yet been taken into account, as will be seen in Table XIV
below. Recall that the set (3.4) contains twoweights which are not
doubly or triply pinched.

9For Table IX, see Sec. III B 2 below.
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between the dashed curve and the horizontal axis in Fig. 2
represents the perturbative part of the dynamics from which
αs is extracted. It is clear that DVs, represented by the
oscillations of the data around the dashed curve, are not a
small part of the dynamical QCD contribution to the
spectral function in this region. This is especially evident
in the region below s ¼ 2.3 GeV2, where the data errors are
small. In addition, there is no sign in this region of a strong
damping of these oscillations. Therefore, even though
above s ¼ 2.3 GeV2 the errors are large enough for the
data to be in rough agreement with the dashed curve, it is
not safe to assume that DVs are small enough to be
irrelevant in the region up to s ¼ m2

τ .
We can study the effects of DVs quantitatively. As a first

exercise, we consider how a quantitatively reasonable
representation of the duality-violating part of the spectral
function, ρDVVþAðsÞ ¼ ρDVV ðsÞ þ ρDVA ðsÞ, affects the results of
the truncated-OPE strategy. We take our representation of
DVs fromone of the fits ofRef. [5], and assumevalues for the
OPE coefficients C10 through C16 which are consistent with
FESRs that account for these DVs. From Ref. [5], we take10

δV ¼ 3.35; δA ¼ 1.59;

γV ¼ 0.70; γA ¼ 1.44;

αV ¼ 4.00; αA ¼ 5.37;

βV ¼ 4.23; βA ¼ 2.03 ð3:6Þ
(with γV;A and βV;A inGeV−2). In Sec.VII ofRef. [5] we used
the results of this fit to estimate the values for all OPE
coefficients CD, D ¼ 4;…; 16. For the CIPT case, the
estimates we need here are

C8 ¼ 0.0349 GeV8;

C10 ¼ −0.0832 GeV10;

C12 ¼ 0.161 GeV12;

C14 ¼ −0.191 GeV14;

C16 ¼ −0.233 GeV16: ð3:7Þ

For the exercise below, whose purpose is to illustrate the
sensitivity of the outputαs to the input values assumed for the
higher dimensionCD, it suffices to use these same values for
the FOPT exploration as well.
Assuming the values given in Eq. (3.7) for C8 through

C16, and keeping the second term on the right-hand side
of Eq. (2.10), using the DV parameters of Eq. (3.6), we
find the results shown in Tables XI–XIV by applying
the strategy of Ref. [2] using the weights in Eq. (3.6), the
reduced weights (3.2), the optimal weights (3.3), or the
weights (3.4).
Again, these fits are good fits, and they are consistent

with each other. We note that the fits of Table XIVare more
susceptible to DVs, because the weights (3.4) include
polynomials which are less pinched than the weights of
the other sets. We also note that including DVs changes
the results of Table X into those shown in Table XIV,
which are in excellent agreement with the results in the

TABLE XI. Fits as in Table I, but with C10, C12, C14 and C16 as
given in Eq. (3.7), and including the DV parameters of Eq. (3.6).
Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.297(3) 0.0042(3) −0.0126ð3Þ 0.0353(3) 1.30=1
CIPT 0.310(4) 0.0029(4) −0.0124ð3Þ 0.0352(3) 1.00=1

TABLE XII. Fits as in Table II, but with C10, C12 and C14 as
given in Eq. (3.7), and including the DV parameters of Eq. (3.6).
Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

FOPT 0.297(3) 0.0041(2) −0.0126ð2Þ 0.0352(2) 1.20=1
CIPT 0.310(3) 0.0028(2) −0.0126ð2Þ 0.0351(1) 0.90=1

TABLE XIII. Fits as in Table III, but with C12, C14 and C16 as
given in Eq. (3.7), and including the DV parameters of Eq. (3.6).
Errors are statistical only.

αsðm2
τ Þ C6 (GeV6) C8 (GeV8) C10 (GeV10) χ2=dof

FOPT 0.296(4) −0.0127ð4Þ 0.0354(5) −0.0834ð3Þ 1.36=1
CIPT 0.310(5) −0.0128ð4Þ 0.0353(5) −0.0834ð3Þ 1.06=1
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FIG. 2. Blowup of the ALEPH data (red data points) in the
large-s region of the V þ A nonstrange spectral function (s in
GeV2). What is shown is 2π2ρVþA − 1, i.e., the dynamical QCD
contribution to the spectral distribution. Black dashed line:
perturbation theory (CIPT) representation of the model, also
with the parton-model contribution subtracted.

10In more detail, we take these values from Table Vof Ref. [5],
smin ¼ 1.55 GeV2, CIPT. The FOPT values are the same within
errors.
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other tables. The FOPT values for αsðm2
τÞ are about 0.02

lower than those in Tables I–IV, while the CIPT values
are about 0.025 lower. Perhaps not surprisingly, they are
in good agreement with the values found in Ref. [5]. This
suggests that the OPE can possibly be trusted at s ≈ −m2

τ

up to D ¼ 16, even if it is an asymptotic expansion.
However, it is also clear that solutions to the truncated-
OPE fit strategy exist with OPE coefficients that cannot
be considered small enough to be set equal to zero
beyond C8 (or C10 for fits with optimal weights), and
with DVs that cannot be neglected.
We also redid the “Aωð21Þ

” fits of Table IX of Ref. [2].
What is done here is to take the moment with w00 of
Eq. (3.1) for values of s0 ranging from s0 ¼ 2.0 GeV2 to
s0 ¼ m2

τ , and fit these nine data points as a function of s0 to
a fit function that includes αsðm2

τÞ, C6 and C8, ignoring
DVs. We reproduced the values of Table IX of Ref. [2].
Redoing these fits with DVs, we find values consistent with
those of Tables XI–XIV, instead of Tables I–IV. Again, we
conclude that the test of Table IX of Ref. [2] does not
provide a proof of the stability of the results, in contrast to
what is suggested in Ref. [2].
Finally, Ref. [2] introduces yet another set of weights that

have an additional exponential suppression, similar in spirit
to the moments employed in the SVZ sum rules of Ref. [28].
Specifically, Ref. [2] considers a set of moments with
weights wBða; nÞ ¼ ð1 − xnþ1Þe−ax, with a ≥ 0. This type
of moment acquires contributions from OPE condensates of
all dimensions. In Ref. [2], αs was extracted from a single
sum rule at a time, ignoring all nonperturbative corrections,
for several values of s0 and the Borel parameter a. We have
reproduced their results11 and, in comparison to the plots of
Ref. [2], we find numerical agreement. The stability of the
results regarding nonperturbative physics can be investi-
gated by adding, successively, higher order terms in theOPE
as well as adding or removing the DV contribution to the
moments. For this exercise we employed the condensates of
Eq. (3.7), as well as

C4 ¼ 0.00268 GeV4;

C6 ¼ −0.0125 GeV6: ð3:8Þ

These values are again taken from Sec. VII of Ref. [5]. The
results thus obtained for αs start stabilizing with respect to the

OPE only after the term with D ¼ 14 is included. Together
with the addition of the DV contribution, the results for αs
become then fully consistent with those of Tables XI–XIV.
Values for αs are systematically lower than in Ref. [2] and in
good agreement with the ones found in Ref. [5]. In addition,
the remaining instabilitywith respect to theBorel parametera
observed in Ref. [2] (for CIPT) is eliminated when the
nonperturbative contributions areproperly taken into account.
We conclude that also this exploration does not validate the
solution claimed by Ref. [2].
In this section, we found that it is easy to find solutions to

fits based on the truncated-OPE strategy yielding signifi-
cantly different values for αsðm2

τÞ. Of course, at this point,
none of these explorations tells us which solution is closest
to the truth. Maybe none of them is; based on the exercises
in this section, we cannot exclude the existence of yet other
solutions to this collection of fits based on the truncated-
OPE strategy. Even if the solution found in Ref. [2] would
be the correct one, our results imply that it is impossible to
assign a reliable systematic error to the values found for
αsðm2

τÞ based on the truncated-OPE-model strategy.
However, a very different type of test can be performed,

in which we consider data constructed from a model
compatible with the experimental V þ A spectral function
and having a known value for αsðm2

τÞ and known DV
contributions. The question then becomes whether the
truncated-OPE strategy, applied to data constructed using
this model, is able to successfully reproduce the known
value of αsðm2

τÞ. We describe such a test in the next section.

IV. A NUMERICAL EXPERIMENT

In this section, we will carry out the “fake data” test. We
start from a model of the V þ A spectral function which
gives a good description of the real data from s ¼
1.55 GeV2 to m2

τ . The model value for the strong coupling
is taken to be αsðm2

τÞ ¼ 0.312 (using CIPT), and the model
has non-negligible DVs compatible with the real data; the
corresponding parameters are given in Eq. (3.6). A multi-
variate Gaussian distribution is defined with model values
at the ALEPH bin energies as central values, and with
fluctuations around it controlled by the real data covariance
matrix [1]. This distribution is used to generate, probabil-
istically, a fake data set. To this fake data set we apply the
truncated-OPE-model fits. We assess the reliability of the
truncated-OPE-model by comparing the resulting fit values
for αsðm2

τÞ to the underlying true model value.
The key point is the following. Essentially, Ref. [2]

claims that it is not necessary to take DVs explicitly
into account, i.e., that they can be neglected for fits
involving the (typically at least doubly pinched) weights
employed in previous implementations of the truncated-
OPE strategy, cf. Sec. III. For the model, we know the value
of αsðm2

τÞ explicitly, and also know that it has significant
DVs, by construction. It is also realistic, since it describes
the spectral function data very well. Therefore, the

TABLE XIV. Fits as in Table IV, but with C8 as given in
Eq. (3.7), and including the DV parameters of Eq. (3.6). Errors
are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) χ2=dof

FOPT 0.301(9) 0.004(1) −0.012ð2Þ 2.04=1
CIPT 0.313(11) 0.003(1) −0.012ð2Þ 1.95=1

11We restricted ourselves to CIPT.
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truncated-OPE strategy, if reliable, should recover the
model value of αsðm2

τÞ. If it does, the truncated-OPE
strategy would pass this nontrivial test. If it does not,
i.e., if it fails to recover the model value of αsðm2

τÞ within
statistical errors, the implication is that this strategy is
incapable, in general, of finding the correct value from the
real data with meaningful errors and is, thus, unreliable.

A. Fake data

We show the real data and the fake data in Fig. 3. These
fake data have been generated by amodel using CIPT for the
perturbative part with αsðm2

τÞ ¼ 0.312. Correspondingly, we
will carry out our test using CIPT.12 Note that the fake data
resemble the real data strongly, and that, by construction, the
covariancematrices for both data sets are identical.13 TheDV
parameters defining the duality-violating part of the fake data
are given in Eq. (3.6). The ALEPH V and A spectral

functions, together with the model representations using
these DV parameters, are shown in Fig. 4. The model OPE
coefficients follow from the exact FESR (7.3) in Ref. [5], and
have been given already in Eqs. (3.7) and (3.8).

B. Test of the truncated-OPE-model strategy

We apply the truncated-OPE-model strategy directly to
the fake data. Tables XV–XVIII employ the same fits used
to produce Tables I–IV, except that now the real data have
been replaced by the fake data. We show only CIPT fit
results because the fake data have been generated from a
model based on the CIPT perturbative scheme. This is,
however, not essential; the same exercise can also be
carried out for FOPT.
We see that the truncated-OPE strategy fails to reproduce

the model value for αsðm2
τÞ ¼ 0.312 (by 5σ to 7σ for

Tables XV–XVII), even though the individual fits have
good χ2 values, and results of the different fits look
mutually consistent. The same is true of the results for
the OPE coefficients, which come out much smaller in
magnitude than the values given in Eqs. (3.7) and (3.8). In
addition to this failure to reproduce the model parameter
values, the results of this exercise also once more show that
demonstrating internal consistency among the various fits
of Ref. [2] does not allow one to conclude that the
determination of αsðm2

τÞ employing the truncated-OPE
strategy is valid within its quoted errors. We have verified
that the correct values of αsðm2

τÞ and the OPE coefficients
are reproduced, within statistical errors, if higher-
dimension OPE coefficients and DVs are used as input
for the fits, analogous to the tests in Tables XI–XIV. This
exercise shows that not only does the truncated-OPE
strategy not distinguish between significantly different
solutions, but that, in general, its assumptions may end
up driving it to a “solution” which is actually incorrect.

C. Discussion

It is instructive to ask why the truncated-OPE-model
strategy fails to reproduce the model values of αsðm2

τÞ and
the OPE coefficients. As we have seen in Secs. III B 1
and III B 2, setting the high-dimension OPE coefficients
and the DVs to zero affects significantly the value of
αsðm2

τÞ extracted from the fits. Here, since we have the
explicit spectral function for the fake data in hand, we can
analyze the effects of the known DVs underlying these
data on the fit strategy. These DVs affect the extraction of
αs directly through the term on the right-hand side of
Eq. (2.10), and also indirectly through the nonzero values
shown in Eqs. (3.7) and (3.8) of the OPE condensates, CD,
obtained through Eq. (7.3) of Ref. [5].
Let us consider Fig. 5, which shows again a blowup of

the large-s region of the V þ A spectral function. The red
experimental points represent the ALEPH data, and the
thick blue curve shows the model representation of the
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FIG. 3. V þ A nonstrange spectral function. Top panel: fake
data, generated as described in the text, as a function of s. Bottom
panel: true ALEPH data [1] as a function of s. The fake data have
been generated for s ≥ 1.55 GeV2; below this value the two data
sets are the same.

12Similar tests can be carried out with an FOPT-based fake data
set and FOPT fits, with very similar results.

13It appears that the fake data set is slightly smoother than the
real data set.
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V þ A spectral function, which is the sum of the model
representations of the V and A spectral functions shown in
Fig. 4 and as the blue dot-dashed curves in Fig. 5. The black
dashed curve shows the perturbative part of the V þ A
model representation.

There are several important observations to make about
this figure. First, we note that the model is not excluded
by the data, even if one can imagine other models that
might do equally well. Second, let us reiterate that it is not
correct to think of DVs in this region of the spectral
function as a “small effect.” The parton model (i.e., QCD to
zeroth order in αs) contribution is given by a horizontal line
at 2π2ρVþA ¼ 1. As already emphasized in Sec. III B 2, it is
the difference between the actual spectral function and this
parton model horizontal line that contains the dynamics of
QCD, and the duality-violating oscillations are not small on
this scale. Third, one notes that the blue curve shows a
duality-violating oscillation that is quite large at s0 ¼ m2

τ ,
larger, in fact, than at any other value of s0 larger than
1.7 GeV2. This can happen over a limited range of s even
though the individual V and A DVs are exponentially
damped. Since the truncated-OPE strategy of Ref. [2]
simply assumes DVs to be suppressed to a negligible level
in its s0 ¼ m2

τ fits without being able to test this assumption
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FIG. 4. V (left panel) and A (right panel) nonstrange spectral functions, as a function of s. Data points from Ref. [1], curves represent
the model described in the text for s ≥ 1.55 GeV2, and dashed lines show the perturbative part of the model.

TABLE XV. CIPT fits employing the truncated-OPE strategy
on the fake data, based on the weights of Eq. (3.1). By
assumption, C10 ¼ C12 ¼ C14 ¼ C16 ¼ 0. Errors are statistical
only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

0.334(4) −0.0023ð4Þ 0.0007(3) −0.0008ð4Þ 0.94=1

TABLE XVI. CIPT fits employing the truncated-OPE strategy
on the fake data, based on the reduced weights (3.2). By
assumption, C10 ¼ C12 ¼ C14 ¼ 0. Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) C8 (GeV8) χ2=dof

0.334(3) −0.0023ð3Þ 0.0007(2) −0.0007ð2Þ 0.98=1

TABLE XVII. CIPT fits employing the truncated-OPE strategy
on the fake data, based on the optimal weights (3.3) with m ¼ 1
and n ¼ 1;…5. By assumption, C12 ¼ C14 ¼ C16 ¼ 0. Errors
are statistical only.

αsðm2
τ Þ C6 (GeV6) C8 (GeV8) C10 (GeV10) χ2=dof

0.334(4) 0.0008(4) −0.0008ð5Þ 0.0001(3) 0.92=1

TABLE XVIII. CIPT fits employing the truncated-OPE strat-
egy on the fake data, based on the weights of Eq. (3.4) with
n ¼ 0;…3. By assumption, C8 ¼ 0. Errors are statistical only.

αsðm2
τ Þ C4 (GeV4) C6 (GeV6) χ2=dof

0.337(11) −0.003ð2Þ 0.001(2) 1.25=1
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FIG. 5. Blowup of the large-s region of the V þ A nonstrange
spectral function. Black dashed line: the perturbative (CIPT)
representation of the model. Blue curve: full model representa-
tion, including DVs. Blue dot-dashed curves: separate V and A
parts of the model spectral function, shown also in Fig. 4, but
scaled by a factor 2.
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for validity, the result is that it is unable to reproduce the
model value for αsðm2

τÞ correctly.

V. MODELING DUALITY VIOLATIONS

There are two lessons to be learned from the failure of
the truncated-OPE-model approach. First, DVs cannot
simply be ignored. The data do not exclude the possibility
that they are significant enough that they have to be taken
into account in any high-precision fit of the data, which is,
by experimental necessity, limited to s ≤ m2

τ . This means,
in practice, that DVs have to be modeled in order to
carefully assess their contribution to any quantity extracted
from these data.14

Of course, modeling DVs, using Eq. (2.11), does two
things. First, it introduces a new assumption into the
analysis—the assumption that the model is good enough
that results obtained for αsðm2

τÞ from τ decays are reliable.
While clearly the model (2.11) does a good job represent-
ing the data, it is possible that it does not give an accurate
representation of the V and A spectral functions for s > m2

τ ,
where it is needed in the sum rule (2.10), but where no data
are available [3]. However, ignoring DVs altogether in any
type of fit to the data amounts to setting ρDVV=AðsÞ ¼ 0 in
Eq. (2.11). Clearly, this is nothing else than a different
choice of model. Given the oscillations visible in the data,
we believe the choice that ignores DVs, in fact, to be a very
poor model. In any case, our analysis in Secs. III and IV
demonstrates that the model in which DVs are ignored does
not lead to reliable results, irrespective of the question of
the reliability of introducing an explicit model for DVs.
Second, once one models DVs explicitly, one is able to

avoid artificially truncating the OPE. Instead, one can use
the s0 dependence of the spectral integrals in the region
where the theoretical representation composed of the OPE
and the DV ansatz works, thus avoiding spectral integrals
involving weights that probe very high orders in the OPE.
This approach, the DV-model strategy, was developed in
Ref. [3] and applied there, and in Ref. [4], to the OPAL data
[10], and in Ref. [5] to the revised ALEPH data [1].

A. Summary of the DV-model strategy of Ref. [5]

We will not review, in this article, the DV-model strategy
employed in our analyses of the τ-decay data, as it has been
explained in great detail in Refs. [3–5]. As indicated above,
a model of the form (2.11) was used to parametrize DVs
separately in the V and A channels, and the analysis was
restricted to FESRs involving weights that probe OPE
coefficients only up to dimension eight. Note that we also
avoided weights with a term linear in x, which probe C4,

because of potential problems with such moments already
in perturbation theory [3,29]. We varied s0 ∈ ½smin; m2

τ �
with 1.4 GeV2 ≤ smin ≤ 1.7 GeV2, checking for stability
as a function of smin, and carrying out many self-
consistency tests between a large number of fits.15

One of the tests we carried out is to consider the s0
dependence of our fitted representation in comparison with
the data for the spectral integrals with moments (3.1). We
show, in Fig. 6, the results based on our smin ¼ 1.55 GeV2

CIPT fit in Table V of Ref. [5]. What is plotted in
each figure is the s0-dependence of the spectral integral
at s0 ¼ m2

τ minus the spectral integral at s0. The presence of
strong correlations in the data and the fits makes it
necessary to plot such differences if one wishes to appro-
priately appraise the level of agreement between theory and
data. We note that, of the moments shown in Fig. 6, only
w00 was used explicitly in our fit. The OPE coefficients CD,
D > 8, required to obtain the theoretical moments for the
weights w10, w11, w12 and w13, were computed using the
power weight xN FESRs at a single s0 (chosen equal to
1.55 GeV2) with our αs and DV parameter fit results as
input [5]. The resulting CD values are listed in Eq. (3.7).
The agreement of the w10, w11, w12 and w13 spectral
integrals with the corresponding theoretical representa-
tions, as a function of s0, thus provides a test of the
self-consistency of our strategy.
Figure 7 shows the same type of plots, but now using the

results from the CIPT fit given in Table I (which corre-
sponds to Table I of Ref. [2]), obtained ignoring DVs, and
setting C10 ¼ C12 ¼ C14 ¼ C16 ¼ 0. Note that in this case
all spectral integrals at s0 ¼ m2

τ were included in the fit.
One clearly sees that the s0 dependence deteriorates for
weights which probe the higher-dimension terms in the
OPE. The comparison of Figs. 6 and 7 clearly favors the
DV-model strategy over the truncated-OPE strategy.
We have also considered examples of FOPT fits, again

using our fit for smin ¼ 1.55 GeV2 from Table Vof Ref. [5]
and the fit of Table I of Ref. [2].16 We show the spectral
integrals with weights w10 and w13 in Fig. 8. The two
weights we chose to show are representative of the whole
set, except for w00 for which the DV-model-strategy plot
looks as good as in the CIPT case. This is no surprise, as the
s0 dependence of the spectral integral with weight w00 was
used in the fits based on this strategy. Although the
performance of the DV model in the FOPT case is some-
what worse than in the CIPT case, it is still much better than
that of the truncated-OPE model. We note that the results
for αsðm2

τÞ obtained with the DV-model strategy in Ref. [5]
do not rely on spectral integrals with weights w1l, whereas
all these weights are used in the truncated-OPE strategy.

14We have carried out very extensive searches for sets of
weights for which DVs contribute insignificantly to all associated
moments. While we have no proof that such a set cannot be
found, we have not succeeded in finding one.

15We revisit one such stability test in Sec. V B below.
16For these plots, we estimated FOPT values for C10–16

analogous to the CIPT estimates given in Ref. [5].
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B. The criticism of Ref. [2]

In the preceding sections, we have demonstrated that the
truncated-OPE-model strategy suffers from systematic
problems which preclude its use as a method for obtaining
a reliable determination of αsðm2

τÞ from hadronic τ decays.
It is, however, also relevant to ask whether the DV-model
strategy provides an acceptable alternative, and Ref. [2]
devoted a section to criticism of this strategy. The key
criticisms raised by Ref. [2] are encapsulated in Fig. 6 and
Table X of Ref. [2]. Here we will address these criticisms,
both refuting them and at the same time commenting more
specifically on some of their more misleading aspects.

First, we consider the argument based on Fig. 6 of
Ref. [2], which chooses to focus on the simplest, but
noncentral, fit of Ref. [5]. We reproduce this figure in
Fig. 9. The fit considered in Ref. [2] is a fit of perturbation
theory (FOPT) and the DV ansatz (2.11) to the s0-
dependent (w ¼ 1)-weighted integrals of the V spectral
function on the left-hand side of Eq. (2.10).17 The fit is
performed in the interval ½smin; m2

τ �. Figure 9 shows the
resulting αsðm2

τÞ (left panel) and the p-value of the fit
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FIG. 6. Comparison of V þ A spectral integrals with weights wkl of Eq. (3.1), using results of the CIPT fit with smin ¼ 1.55 GeV2 of
Table V of Ref. [5] with data, using the ALEPH data of Ref. [1].

17According to Eq. (2.5) no OPE coefficients CD≥2 are probed
for the choice w ¼ 1.
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(right panel), as a function of smin. This figure is in good
agreement with Fig. 6 of Ref. [2]. There are small
differences; in particular, our p-values are somewhat
higher, likely as a result of the somewhat more careful
treatment of the ALEPH data in Ref. [5].6

Let us now explain why the criticism of Ref. [2] based on
these two plots is unjustified. With regard to the left panel
of Fig. 9, Ref. [2] states that “the fitted values of αsðm2

τÞ do
not present the stability one would expect.” This is a
misreading of the plot. By varying smin, as was also done in
Ref. [5], one lets the data decide whether a stability region
exists. To the left of this region (if it exists), i.e., for smaller
smin, the importance of nonperturbative effects not captured

by perturbation theory or the DV ansatz (2.11) causes the
value of αsðm2

τÞ to move. For larger values of smin,
there should be stability, but, as fewer points are included
in the fit if smin increases, the results will become noisier.
This is precisely what one sees in Fig. 9, and there is,
moreover, a nice “plateau” (region of stability) for
1.5 GeV2 ≲ smin ≲ 1.8 GeV2.
With regard to the p-values shown in the right-hand

panel, Ref. [2] states that “If the model were reliable, it
should work better at higher hadronic invariant masses,”
and takes both the size of the p-values in the region of the
plateau, and the “significant deviations” at larger smin as a
signal of “poor statistical quality.”One should bear in mind,
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FIG. 7. Comparison of V þ A spectral integrals with weights wkl of Eq. (3.1), using results of the CIPT fit in Table I, i.e., Table I of
Ref. [2] with data, using the ALEPH data of Ref. [1].

BOITO, GOLTERMAN, MALTMAN, and PERIS PHYSICAL REVIEW D 95, 034024 (2017)

034024-14



however, that the p-value of a fit is itself a statistical
quantity, which will fluctuate with the data. For larger smin,
the fluctuations in the data are more pronounced, and the
p-values follow suit. Furthermore, a p-value of about 8%
is generally not regarded as a proof of the failure of a
hypothesis in a statistical analysis. In Ref. [5] many other
fits where carried out (including multiple-weight V channel
and combined Vand A channel fits, and a combined w ¼ 1
V and A channel fit with p-values about double those of

the corresponding V-channel-only fit; the results were also
subjected to further tests, such as those provided by the
Weinberg sum rules). The internal consistency of all these
tests was taken as evidence for the likely validity of the
final result.
We may further test this reasoning by repeating the

DV-model analysis on a fake data set, as in Sec. IV. To do
so, we generated a fake data set in the same way as in
Sec. IVA, but now for the V channel only, using, to be
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FIG. 8. Comparison of V þ A spectral integrals with weights wkl of Eq. ([9]), using results of the FOPT fit with smin ¼ 1.55 GeV2 of
Table Vof Ref. [5] (left panels), and using results of the FOPT fit in Table I, i.e., Table I of Ref. [2] (right panels), with data, using the
ALEPH data of Ref. [1].
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specific, FOPT perturbation theory. The results of this
exercise are shown in Fig. 10. The patterns are the same as
those seen in Fig. 9. The only difference is that, in the case
of Fig. 10, we know that the fake data has been constructed
from a theoretical spectral function with αsðm2

τÞ ¼ 0.297
and the DV parameters given in the smin ¼ 1.55 GeV2

FOPT line of Table IV in Ref. [5].
Considering first the left panel of Fig. 10, we see that the

pattern is consistent with the pattern seen in the left panel of
Fig. 9. In addition, the fits find the correct values of αsðm2

τÞ
and the DV parameters δV , γV , αV and βV within errors.18

The stability plateau is located in the same smin range in
both figures. Also the right panels look very similar. For
smin ≲ 1.4 GeV2, the fits to both the real and fake data have
similar p-values, indicating that the theory representation
works less well in that region, and stops working toward
lower smin. For larger smin, the p-values of the fake data fits
are better than for the real data fits. This is no surprise: after
all, the theory is “perfect” for the fake data, whereas it is not
expected to be so for the real data. More importantly, the
large downward fluctuation near smin ¼ 1.7 GeV2 is seen
in both figures. By construction of the fake data fits, the
putative conclusion that these would be bad fits for the
fake data case is obviously incorrect. Therefore, the same
conclusion cannot be drawn for the real data fits either: it is
not excluded that the feature seen around smin ¼ 1.7 GeV2

in the right panel of Fig. 9 is nothing else than a fluctuation.
Turning now to the second point, let us briefly comment

on Table X of Ref. [2]. Again, Ref. [2] considers the
noncentral, FOPT fit of the spectral integral with weight
wðxÞ ¼ 1 of Ref. [5]. However, instead of using the DV
ansatz as given in Eq. (2.11), it is now multiplied by sn,
with n ¼ 0, 1, 2, 4, 8 [n ¼ 0 corresponds to Eq. (2.11),
of course]. This makes very little sense, as follows from
the discussion of the ansatz (2.11) at the end of Sec. II.
While Eq. (2.11) introduces a particular model for DVs

(which are a manifestation of the resonances one sees in
the spectral functions), one should insist that any model
incorporates what we know about the phenomenon the
ansatz is supposed to model. In particular, Sec. II
suggests that one might try to introduce a prefactor
1þ a1=sþ a2=s2 þ � � �, with new parameters a1;2;…,
reflecting the expectation that Eq. (2.11) emerges because
of the suspected asymptotic nature of the OPE, for which
the expansion parameter is 1=s. The multiplication of
Eq. (2.11) with an inverse power of this expansion
parameter is, in view of these expectations, a wildly
arbitrary choice, with no root in anything we know or
suspect about the physics of QCD.
Despite the obvious shortcomings of the modifications

to the DV ansatz employed in Ref. [2], the fits shown in
Table X of Ref. [2], in fact, show a remarkable stability as
a function of n. The p-values shown there are essentially
constant. In terms of the criteria of Ref. [2], where 1.5σ
central-value shifts are deemed indications of stability of
the analysis, one would have to characterize the results for
αsðm2

τÞ as surprisingly constant: even the value at n ¼ 8,
αsðm2

τÞ ¼ 0.314ð15Þ, is just 1σ away from the central
n ¼ 0 value 0.298, while that at n ¼ 4 is closer to 0.5σ
distant. The conclusion that such variations prove “model
dependence,” as claimed in Ref. [2], thus seems to us a
somewhat surprising one. While we believe that the
attempt of Ref. [2] to vary the DV model is theoretically
unfounded and thus quite arbitrary, the tests of Table X
in Ref. [2] in fact only serve to confirm the reliability of
the results of Ref. [5].

VI. CONCLUSION

Our main goal in this article was a thorough investigation
of the truncated-OPE-model strategy for extracting αsðm2

τÞ
from experimental data for hadronic τ decays. This strategy
has been used extensively, notably in Refs. [1,2,9,10]. In a
series of articles [3–5] we have designed and implemented a
different strategy, the DV-model strategy. This strategy gives
different results for αsðm2

τÞ, and it is thus important to
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FIG. 10. FOPT determination of αsðm2
τ Þ as a function of smin, using the V-channel w ¼ 1 fit of Ref. [5], but now replacing the ALEPH

data with fake data (see text).

18At smin ¼ 1.55 GeV2, the fit finds the value 0.301(11),
where the error is statistical only.
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understand and appraise the difference. In Refs. [3–5] we
detailed the merits and assumptions of our strategy, and
commented on theweaknesses of the truncated-OPE strategy
as a motivation for the design of this alternate approach.
Reference [2] presented a detailed analysis of the

determination of αs based on the truncated-OPE strategy.
This allowed us to devise a series of explicit tests to assess
the validity of this approach; these are discussed in Secs. III
and IV. These tests demonstrate unambiguously that the
truncated-OPE strategy fails to produce reliable results for
αsðm2

τÞ. In Sec. III we showed that varying the input values
assumed for the higher dimension OPE condensates, CD, in
the truncated-OPE strategy can lead to significantly lower
values for αsðm2

τÞ, about 8% lower in our example. This
should be compared to the <4% total error claimed in
Ref. [2]. In Sec. IV, we showed that the truncated-OPE
strategy is incapable of detecting residual DVs,19 even
when applied to a fake data set known to include them. As a
consequence, it is incapable of reproducing the correct
result for αs in such a situation, finding instead a value
about 7% too high in our fake data test, and more than 5σ
away from the true value on which the fake data is based.
It is to be noted that 7%–8% deviations are larger than
the differences between the CIPT and FOPT values of the
coupling. These failures result from shortcomings in the
two main assumptions on which the truncated-OPE strat-
egy is based: (1) the assumption that a number of higher-
dimension OPE contributions can safely be set to zero by
hand, for which there is no basis in QCD; (2) the
assumption that DVs can be effectively neglected, even
though the data clearly show resonance effects which, in
the context of the FESR analysis, necessarily produce some
level of quark-hadron duality violation. Our conclusion
is that the truncated-OPE-model strategy does not hold up
to detailed scrutiny, and should no longer be used for a
precision determination of αsðm2

τÞ from hadronic τ decays.
Of course, the alternative DV-model strategy should

be subjected to similar scrutiny. Since this strategy was not
the main topic of this article, we did not review the
complete analysis of its application to the ALEPH data
presented already in Ref. [5], in which many consistency
tests were carried out [our result for αsðm2

τÞ is based on six
different fits, and our analysis satisfies several V − A sum
rules within errors]. Moreover, the fits reported in
Tables XI–XIV in Sec. III are fully consistent with the
results of Ref. [5], and thus provide further evidence for the
stability of results obtained using the DV-model strategy.
We also, in Sec. V B, refuted the criticism of Ref. [5]
contained in Sec. VII of Ref. [2], showing that the evidence
on which this criticism was presumed to be based, in
fact, actually provides further support for the validity of the
DV-model strategy. In Sec. VA we contrasted the two

strategies, showing how much better the DV-model strategy
performs than the truncated-OPE strategy.
We are of course aware of the fact that the need to

include a parametrization of DVs on the theory side of
the FESR analysis of spectral functions obtained from
hadronic τ decays leads to a certain model dependence in
the strategy we employ. This is, however, true of both
strategies: in the DV-model strategy, this is explicit, through
the use of Eq. (2.11), while in the truncated-OPE-model
strategy, it is implicit, through the neglect of DVs, which
corresponds to the ansatz ρDVV=AðsÞ ¼ 0, s ≥ s0, and the
uncontrolled truncation of the OPE. We reiterate that the
investigation presented here shows unambiguously that
the truncated-OPE-model fails to yield reliable results, and
presents further evidence of the robustness of the DV-model
approach. More precise data for the V and A spectral
functions, possibly obtainable from τ-decay data collected
at BABAR and/or Belle, or from future eþe− → hadrons
cross-section data, would make it possible to subject the
DV-model strategy to more stringent tests than possible at
present, using only OPAL and ALEPH data.
It has been pointed out that the results of Ref. [5] for

αsðm2
τÞ, found using the revised ALEPH data [1], lie about

0.03 below those of Ref. [4], found (using the same
strategy) from the OPAL data [10]. Assuming the two
data sets to be uncorrelated, and largely because of the
larger errors on the OPAL-based result, the difference
amounts to about 1.4σ. This means that the two determi-
nations are consistent with each other, and thus that it is
appropriate to consider their weighted average, as was done
in Ref. [5]. This yields αsðm2

τÞ ¼ 0.303ð9Þ (FOPT) and
αsðm2

τÞ ¼ 0.319ð12Þ (CIPT), results consistent with those
of a recent, preliminary combined fit of the ALEPH and
OPAL data reported in Ref. [30].
In order to compare this result with that of the truncated-

OPE-model strategy, we have to resort to the original OPAL
analysis of the OPAL data [10], because Ref. [2] did not
consider the OPAL data. In view of this, the best one can do
is to combine the results of Ref. [2], αsðm2

τÞ ¼ 0.319ð12Þ
(FOPT) and αsðm2

τÞ ¼ 0.335ð13Þ (CIPT), with those of
Ref. [10], αsðm2

τÞ ¼ 0.324ð15Þ (FOPT) and αsðm2
τÞ ¼

0.348ð21Þ (CIPT). The weighted average between
Ref. [2] and Ref. [10] is αsðm2

τÞ ¼ 0.321ð9Þ (FOPT) and
αsðm2

τÞ ¼ 0.339ð11Þ (CIPT). Again, these values, follow-
ing from the truncated-OPE-model strategy, are about 0.02
larger than those following from the DV-model strategy, a
difference comparable to that between the CIPT and FOPT
determinations.
Without including OPAL data, the results from the two

strategies are

αsðm2
τÞ ¼ 0.296ð10Þ ðFOPT; DV-model strategy ½5�Þ;

αsðm2
τÞ ¼ 0.310ð14Þ ðCIPT; DV-model strategy ½5�Þ;

ð6:1Þ
19By “residual,” we refer to those integrated DV contributions

that remain even after the partial suppression produced by the use
of pinched weights.
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αsðm2
τÞ ¼ 0.319ð12Þ ðFOPT; truncated-OPE-model strategy ½2�Þ;

αsðm2
τÞ ¼ 0.335ð13Þ ðCIPT; truncated-OPE-model strategy ½2�Þ: ð6:2Þ

In this case, the difference between the results of the two
strategies is about 0.024, larger than the roughly 0.015
difference between the individual CIPT and FOPT results.
In this article, we have demonstrated that the values in
Eq. (6.2) result from the use of a flawed fitting strategy, and
provided further evidence for the reliability of the values in
Eq. (6.1). The unreliable treatment of nonperturbative
effects in the truncated-OPE-model strategy affects both
the central value and uncertainties of αsðm2

τÞ. As such, we
believe it is inappropriate to include values such as those in
Eq. (6.2), obtained using this strategy, in any average
for αsðm2

τÞ.
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