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We study the dipion transitions ϒð4SÞ → ϒðnSÞπþπ−ðn ¼ 1; 2Þ. In particular, we consider the effects of
the two intermediate bottomoniumlike exotic states Zbð10610Þ and Zbð10650Þ as well as bottom meson
loops. The strong pion-pion final-state interactions, especially including channel coupling to KK̄ in the S
wave, are taken into account model independently by using dispersion theory. Based on a nonrelativistic
effective field theory we find that the contribution from the bottom meson loops is comparable to those
from the chiral contact terms and the Zb-exchange terms. For the ϒð4SÞ → ϒð2SÞπþπ− decay, the result
shows that including the effects of the Zb exchange and the bottom meson loops can naturally reproduce the
two-hump behavior of the ππ mass spectra. Future angular distribution data are decisive for the
identification of different production mechanisms. For the ϒð4SÞ → ϒð1SÞπþπ− decay, we show that
there is a narrow dip around 1 GeV in the ππ invariant mass distribution, caused by the final-state
interactions. The distribution is clearly different from that in similar transitions from lower ϒ states, and
needs to be verified by future data with high statistics. Also we predict the decay width and the dikaon mass
distribution of the ϒð4SÞ → ϒð1SÞKþK− process.

DOI: 10.1103/PhysRevD.95.034022

I. INTRODUCTION

The processes of dipion emission of the bottomonia
ϒðmSÞ → ϒðnSÞππ are important for understanding the
heavy-quarkonium dynamics and low-energy QCD.
Because the bottomonia are expected to be nonrelativistic
and compact, the method of the QCD multipole expansion
[1–4] is often used to study these transitions, where the
pions emitted come from the hadronization of soft gluons.
Though successful in describing many ϒðmSÞ → ϒðnSÞππ
processes, a well-known anomaly about the method of the
QCD multipole expansion is that it cannot reproduce the
two-hump behavior in the experimental ππ invariant mass
spectra of the decays ϒð3SÞ → ϒð1SÞππ and ϒð4SÞ →
ϒð2SÞπþπ− [5–7]. In a previous study [8], we found that by
including the effects of the two bottomoniumlike exotic
states Zbð10610Þ and Zbð10650Þ discovered by the Belle
Collaboration [9,10] as well as the ππ final-state interaction
(FSI), the anomaly of the ϒð3SÞ → ϒð1SÞππ process can
be naturally explained. Such an analysis is a modern
version of the much earlier studies in Refs. [11,12], where
an isovector bb̄qq̄ state was considered. Although the
direct decay of Zb into ϒð4SÞπ is kinematically impossible,
it may be illuminating to analyze the effect of the
Zb-exchange mechanism in the ϒð4SÞ → ϒð1S; 2SÞπþπ−

processes, which is performed in this study. In this context
it is important to note that improved data on ϒðnSÞ decays
are to be expected from Belle-II that will start operation
soon—for a detailed discussion of prospects for various
decays relevant for this study we refer to Ref. [13].
The ϒð4SÞ meson is above the BB̄ threshold and

decays predominantly to BB̄, so loop effects with inter-
mediate bottom mesons may play an important role in
ϒð4SÞ → ϒðnSÞππðn ¼ 1; 2Þ. Also, the inclusion of the
loops introduces nonanalyticities arising from the BB̄
threshold needed to be taken into account in dispersion
theory, which is discussed later. Because the bottomonia are
close to the open-bottom meson production threshold, the
velocity of the intermediate bottommesons is small and can
be treated as an expansion parameter to build power-
counting rules in a nonrelativistic effective field theory
(NREFT) [14–16]. Within the NREFT scheme, we calcu-
late the dominant box diagrams in the dipion emissions of
ϒð4SÞ, and find that their contribution is comparable in size
to the chiral contact terms and the Zb-exchange graphs.
In the ϒð4SÞ → ϒð1SÞππ process, the dipion invariant

mass reaches above the KK̄ threshold, so the coupled-
channel FSI in the S wave is strong and needs to be taken
into account. Based on analyticity and unitarity, dispersion
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theory can achieve this in a model-independent way. In this
study, we use dispersion theory in the form of modified
Omnès solutions, in which the left-hand-cut contribution is
approximated by the sum of the Zb-exchange mechanism
and the bottom meson loops. At low energies, the ampli-
tude should agree with the leading chiral results, so the
subtraction functions can be determined by matching to
chiral contact terms. For the leading contact couplings of
two S-wave bottomonia to an even number of light
pseudoscalar mesons, we adopt the Lagrangian given in
Ref. [17], constructed in the spirit of the chiral and the
heavy-quark nonrelativistic expansions.
This paper is organized as follows. In Sec. II, we present

the theoretical framework and elaborate on the calculation
of the amplitudes as well as the dispersive treatment of the
FSI. In Sec. III, we fit the experimental data of the ππ
invariant mass distribution to determine the coupling
constants, and discuss the contributions of different mech-
anisms. A summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Lagrangians

Because in the heavy-quark limit the spin of the heavy
quarks decouples, it is convenient to introduce the heavy
quarkonia and heavy hadrons in terms of spin multiplets.
One has J ≡ ϒ · σþ ηb, where ϒ and ηb annihilate the ϒ
and ηb states, respectively, and σ contains the Pauli
matrices [18]. The bottom mesons are collected in Ha ¼
Va · σþ Pa with PaðVaÞ ¼ ðBð�Þ−; B̄ð�Þ0; B̄ð�Þ0

s Þ, and H̄a ¼
−V̄a · σþ P̄a with P̄aðV̄aÞ ¼ ðBð�Þþ; Bð�Þ0; Bð�Þ0

s Þ [19].
The effective Lagrangian for the contact ϒϒ0ππ and

ϒϒ0KK̄ coupling, at the lowest order in the chiral as well as
the heavy-quark expansion, reads [8,17]

Lϒϒ0ΦΦ ¼ c1
2
hJ†J0ihuμuμi þ

c2
2
hJ†J0ihuμuνivμvν þ H:c:;

ð1Þ

where vμ ¼ ð1; 0Þ is the velocity of the heavy quark. The
Goldstone bosons of the spontaneous breaking of chiral
symmetry can be parametrized as

uμ ¼ iðu†∂μu − u∂μu†Þ; u ¼ exp

�
iΦffiffiffi
2

p
F

�
;

Φ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η8 πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η8 K0

K− K̄0 − 2ffiffi
6

p η8

1
CCA; ð2Þ

where F is the pseudo-Goldstone boson decay constant,
and we use Fπ ¼ 92.2 MeV for the pions and FK ¼
113.0 MeV for the kaons. The two operators in Eq. (1)

both scale as Oðq2πÞ in the expansion in (soft) pion
momenta qπ .
The leading Lagrangian for the Zbϒπ interaction, which

is needed in the calculation of the mechanism ϒðmSÞ →
Zbπ → ϒðnSÞππ, reads [18]1

LZbϒπ ¼
X
j¼1;2

X
l

CZbjϒðlSÞπϒ
iðlSÞhZi

bj
†uμivμ þ H:c:; ð3Þ

where Zb1 and Zb2 are used to refer to Zbð10610Þ and
Zbð10650Þ, respectively. The Zb states are collected in the
matrix as

Zi
bj ¼

0
B@

1ffiffi
2

p Z0i
bj Zþi

bj 0

Z−i
bj − 1ffiffi

2
p Z0i

bj 0

0 0 0

1
CA: ð4Þ

Note that since strange partners of the Zb states, Zbs, have
not been observed, we set the corresponding matrix entries
in Eq. (4) to 0.
To calculate the box diagrams, we need the Lagrangian

for the coupling of the S-wave bottomonium fields to the
bottom and antibottom mesons [14],

LJHH ¼ igJHH

2
hJ†Haσ · ∂↔H̄ai þ H:c:; ð5Þ

where A∂↔B≡ Að~∂BÞ − ð~∂AÞB. We also need the
Lagrangian for the axial coupling of the Goldstone bosons
to the bottom and antibottom mesons, which at leading
order heavy-flavor chiral perturbation theory is given by
[19–23]

LHHΦ ¼ gπ
2
hH̄†

aσ · uabH̄bi −
gπ
2
hH†

aHbσ · ubai; ð6Þ

where ui ¼ −
ffiffiffi
2

p ∂iΦ=F þOðΦ3Þ corresponds to the three-
vector components of uμ as defined in Eq. (2). Here we use
gπ ¼ 0.5 from a recent lattice QCD calculation [24].2

B. Power counting of the loops

Since the ϒð4SÞ is above the BB̄ threshold and decays
predominantly into BB̄ pairs, the loop mechanism with
intermediate bottom mesons may play a significant role in
the bottomonium transitions ϒð4SÞ → ϒðnSÞπþπ−. In this
section, we analyze the power counting of different kinds of
loops, based on NREFT [14–16]. In NREFT, the expansion

1Here we only include the terms relevant to the ϒ coupling
rather than the full spinmultiplet defined before as J ¼ ϒ · σþ ηb.
In this way, we avoid the discussion of the internal spin structure of
the Zb states, which depends on specific models for Zb and is not
really settled yet.

2The precise value quoted in Ref. [24] is gπ ¼ 0.492� 0.029.
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parameter is the typical velocity of the intermediate heavy

meson, namely, ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmϒðlSÞ −mBð�Þ −mBð�Þ j=mBð�Þ

q
, and

ν ≪ 1 sinceϒðlSÞ are close to the Bð�ÞB̄ð�Þ thresholds. Each
nonrelativistic propagator is counted as 1=ν2, and the full
integral measure

R
d4l as ν5. More details of the power

counting rules are elaborated in Ref. [15].
Without considering the FSI, there are five different

kinds of loop contributions, namely, the box diagrams
displayed in Figs. 1(c1) and 1(d1), and the triangle
diagrams displayed in Figs. 2(a)–2(c). We analyze them
one by one as follows:

(i) Box diagrams, namely Figs. 1(c1) and 1(d1): As
indicated in Eq. (6), the vertex for the axial coupling
of the pion to the bottom mesons is proportional to
the external momentum of the pion qπ . Both the
vertices for the initial and final bottomonia are in a P
wave, and the product of the two vertices can be
counted as Oðν2Þ, so the box diagrams are counted
as ν5ν2q2π=ν8 ¼ q2π=ν. Note that these contributions
thus have the same scaling in pion momenta as the
leading ϒϒ0ππ contact terms from the Lagrangian
Eq. (1), but are formally enhanced by 1=ν in the
nonrelativistic velocity parameter.

(ii) Figure 2(a): The leading Bð�ÞBð�Þππ vertex comes
from the covariant chiral derivative term
hH†

aðiD0ÞbaHbi ¼ hH†
aði∂0 − iV0ÞbaHbi [25,26],

in which the pion pair produced by the vector
current, Vμ ¼ 1

2
ðu†∂μuþ u∂μu†Þ, cannot form a

positive-parity and C-parity state, so this leading
vertex does not contribute to theϒðmSÞ → ϒðnSÞππ
processes. Isoscalar, PC ¼ þþ pion pairs only enter
in the next order Oðq2πÞ from point vertices. For the
vertices of the initial and final bottomonia, both of
them are in P waves, so the product of them can be
counted as Oðν2Þ. These diagrams hence count as
ν5ν2q2π=ν6 ¼ νq2π , and are suppressed compared to
the contact terms ∝ c1;2 by the factor ν.

(iii) Figures 2(b) and 2(c): The leading ϒðlSÞBð�ÞB̄ð�Þπ
vertex given by hJH̄†

aH
†
biu0ab [27] is proportional to

the energy of the pion, Eπ ∼ qπ. In Fig. 2(b), the
vertex for the initial bottomonium is in an S wave,
and the vertex for the final bottomonium is in a P
wave, so the loop momentum must contract with the
external momentum qπ and hence the P-wave vertex
scales asOðqπÞ. For this reason, Fig. 2(b) is counted
as ν5q3π=ðν6mBÞ ¼ q3π=ðνmBÞ, where the factor mB

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

FIG. 1. Feynman diagrams considered for theϒðmSÞ → ϒðnSÞππ processes. The crossed diagrams of (b1), (c1), (b2), and (c2) are not
shown explicitly. The gray blob denotes the final-state interaction.

(a) (b) (c)

FIG. 2. Subleading contributions for ϒðmSÞ → ϒðnSÞππ that are suppressed in comparison to the four-point functions in Fig. 1 and
hence not considered in the calculations. The corresponding power counting arguments are given in the main text.
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has been introduced to match the dimension with the
scaling for cases 1 and 2. Analogous arguments hold
for Fig. 2(c). This class of diagrams is therefore
suppressed in the chiral expansion in pion momenta,
compared to the c1;2 terms.

We find thus that according to the power counting the box
diagrams are dominant among the loop contributions, and
the only ones not expected to be suppressed relative to the
tree-level contact terms. We therefore only calculate those
in the present study. Note that all (box and triangle) loop
contributions discussed here are ultraviolet finite, and do
not require the additional introduction of counterterms.

C. Tree-level amplitudes and box diagram calculation

First we define the Mandelstam variables in the decay
process of ϒðmSÞðpaÞ → ϒðnSÞðpbÞPðpcÞPðpdÞ,

s ¼ ðpc þ pdÞ2; tP ¼ ðpa − pcÞ2; uP ¼ ðpa − pdÞ2;
3s0P ≡ sþ tP þ uP ¼ m2

ϒðmSÞ þm2
ϒðnSÞ þ 2m2

P; ð7Þ

where P denotes the pseudoscalar π or K, since we also
need to take into account the virtual process ϒðmSÞðpaÞ →
ϒðnSÞðpbÞKðpcÞK̄ðpdÞ in the coupled-channel FSI. tP and
uP can be expressed in terms of s and the helicity angle θ
according to

tP ¼ 1

2
½3s0P − sþ κPðsÞ cos θ�;

uP ¼ 1

2
½3s0P − s − κPðsÞ cos θ�;

κPðsÞ≡ σPλ
1=2ðm2

ϒðmSÞ; m
2
ϒðnSÞ; sÞ;

σP ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
P

s

r
; ð8Þ

where θ is defined as the angle between the initial ϒðmSÞ
and the positive pseudoscalar in the rest frame of the PP
system, and λða; b; cÞ ¼ a2 þ b2 þ c2 − 2ðabþ acþ bcÞ.
We define q as the 3-momentum of the final bottomonium
in the rest frame of the initial state with

jqj ¼ 1

2mϒðmSÞ
λ1=2ðm2

ϒðmSÞ; m
2
ϒðnSÞ; sÞ: ð9Þ

The calculation of the tree amplitudes is very similar to
our previous study of ϒð3SÞ decays [8], so here we just

quote the partial-wave-projected results. Parity and
C-parity conservation require the pion pair to have even
relative angular momentum l. We only consider the S-wave
and D-wave components in this study, neglecting the
effects of higher partial waves. For the S wave, the
amplitudes of the chiral contact term and the Zb-exchange
term read

Mχ;P
0 ðsÞ ¼ −

2

F2
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒðmSÞmϒðnSÞ

p �
c1ðs − 2m2

PÞ

þ c2
2

�
sþ q2

�
1 −

σ2P
3

���
; ð10Þ

M̂Zb;π
0 ðsÞ¼−

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimϒðmSÞmϒðnSÞ

p
F2
πκπðsÞ

×
X
i¼1;2

mZbi
Cmn;ifðsþjqj2ÞQ0ðyπiÞ

−jqj2σ2π½y2πiQ0ðyπiÞ−yπi�g; ð11Þ
where Cmn;i≡CZbiϒðmSÞπCZbiϒðnSÞπ, yπi≡ð3s0π−s−2m2

Zbi
Þ=

κπðsÞ, andQ0ðyÞ is a Legendre function of the second kind,

Q0ðyÞ ¼
1

2

Z
1

−1

dz
y − z

P0ðzÞ ¼
1

2
log

yþ 1

y − 1
ð12Þ

[PiðzÞ refers to the standard Legendre polynomials]. Note
again that we consider the Zb-exchange diagrams only for
the process involving pions. For every heavy particle,
namely, the bottomonia and the Zb states here, a non-
relativistic normalization factor

ffiffiffiffiffi
M

p
has been multiplied to

the expressions, withM being the corresponding mass. The
widths of the Zb states are neglected in the present
calculation, since their nominal values are of the order
of 10 MeV and thus much smaller than the gap between
their masses and the ϒðlSÞπ threshold.
For the D wave, in which ππ scattering is elastic

to very good approximation in the energy range consi-
dered, we only consider the single-channel FSI, and
therefore we just give the amplitudes of the process
involving pions,

Mχ;π
2 ðsÞ ¼ 2

3F2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϒðmSÞmϒðnSÞ

p
c2jqj2σ2π; ð13Þ

M̂Zb;π
2 ðsÞ ¼ −

5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffimϒðmSÞmϒðnSÞ

p
F2
πκπðsÞ

X
i¼1;2

mZbi
Cmn;i½sþ jqj2 − jqj2σ2πy2πi�½ð3y2πi − 1ÞQ0ðyπiÞ − 3yπi�: ð14Þ
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Now we briefly discuss the calculation of the box
diagrams. There are four intermediate bottom mesons in
the box diagrams Figs. 1(c1) and 1(d1), where we denote
the top left one as M1, and the others as M2, M3, and M4,
in counterclockwise order. The individual contributions are
listed in Table I, with the pseudoscalar or vector content of
½M1;M2;M3;M4� explicitly shown. For the ϒðmSÞ →
ϒðnSÞKK̄ processes, some intermediate states can be

strange bottom mesons Bð�Þ
s , and there are four possibilities

for each ½M1;M2;M3;M4� given above. For simplicity, we
do not list the combinations of intermediate states in the
ϒðmSÞ → ϒðnSÞKK̄ processes explicitly.
The general amplitude for the process ϒðmSÞðpaÞ →

ϒðnSÞðpbÞPðpcÞPðpdÞ reads
MðϒðmSÞ → ϒðnSÞPPÞ

¼ ϵiϒðmSÞϵ
j
ϒðnSÞM

ijðϒðmSÞ → ϒðnSÞPPÞ; ð15Þ

and MijðϒðmSÞ → ϒðnSÞPPÞ can be decomposed as

MijðϒðmSÞ → ϒðnSÞPPÞ ¼ δijM1 þ…; ð16Þ

where we have omitted the remaining terms proportional to
tensor structures built from the different momenta. For the
loop amplitude, we have checked that the M1 term is
indeed numerically dominant, which agrees with the argu-
ment that other contractions of the polarization vectors are
suppressed in the heavy-quark nonrelativistic expansion.
So in the following we only keep the terms proportional to
ϵϒðmSÞ · ϵϒðnSÞ, as we did for the tree amplitude. Details on
the analytic calculation of the box diagrams are given in
Appendix A.
The partial-wave projection of the loop amplitude for the

ϒðmSÞ → ϒðnSÞPP process can be denoted as

M̂loop;P
l ðsÞ ¼ gJHHðmSÞgJHHðnSÞAmpBoxPl ðsÞ: ð17Þ

The analytic expressions of AmpBoxPl ðsÞ are very
involved, so in Fig. 3 we only plot the numerical results
for ϒð4SÞ → ϒð1S; 2SÞπþπ− in the physical region. Note
that the imaginary parts, which are due to the on-shell BB̄
intermediate states, are tiny due to the smallness of phase
space and the fact that the BB̄ pair appears in a relative
P wave.

TABLE I. All loops contributing in each diagram class. The mesons are listed as ½M1;M2;M3;M4�; type 1(c1) and type 1(d1) refer to
the corresponding diagrams in Fig. 1. Two more configurations appear as type 1(c1) in principle, namely, ½B; B̄; B�; B�� and
½B�; B̄; B; B��; however, their contributions to amplitude M1, see Eq. (16), vanishes, and hence they are strongly suppressed. Flavor
labels are dropped for simplicity.

Type 1(c1) ½B; B̄; B; B��; ½B; B̄�; B; B��; ½B�; B̄; B�; B�; ½B; B̄�; B�; B��,
½B�; B̄; B�; B��; ½B�; B̄�; B; B��; ½B�; B̄�; B�; B�; ½B�; B̄�; B�; B��

Type 1(d1) ½B; B̄; B̄�; B��; ½B; B̄�; B̄; B��; ½B�; B̄�; B̄; B�; ½B�; B̄; B̄�; B�; ½B; B̄�; B̄�; B��,
½B�; B̄; B̄�; B��; ½B�; B̄�; B̄; B��; ½B�; B̄�; B̄�; B�; ½B�; B̄�; B̄�; B��.

FIG. 3. The S- (left) andD-wave (right) box amplitudes in ϒð4SÞ → ϒð1SÞπþπ− (top) and ϒð4SÞ → ϒð2SÞπþπ− (bottom). The black
solid and red dashed lines denote the real and imaginary parts, respectively.
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D. Final-state interactions with a
dispersive approach, Omnès solution

There are strong FSIs in the ππ system especially in the
isoscalar S wave, which can be taken into account model
independently using dispersion theory. Based on the
principles of unitarity and analyticity, dispersion theory
determines the decay amplitudes up to some subtraction
constants, which can be fixed by matching to the results of
chiral effective theory. Since the mass difference between
the ϒð4SÞ and the ϒð1SÞ is larger than the KK̄ threshold,
we consider the isospin symmetric two-channel (ππ and
KK̄) FSI for the dominant S-wave component, while for the
D wave only the single-channel ππ FSI is considered.
For the ϒðmSÞ → ϒðnSÞπþπ− processes, the partial-

wave expansion of the amplitude including the FSI reads

Mfullðs; cos θÞ ¼ ϵϒðnSÞ · ϵϒðmSÞ
X∞
l¼0

½Mπ
l ðsÞ

þ M̂π
l ðsÞ�Plðcos θÞ; ð18Þ

whereMπ
l ðsÞ represents the right-hand-cut part and accounts

for s-channel rescattering, and the “hat functions” M̂π
l ðsÞ

contain the left-hand cuts, contributed by crossed-channel
pole terms or open-flavor loop effects. In general the box
diagrams contribute to both the left-hand cuts at t; u >
ðmBð�Þ þmBð�Þ Þ2 and right-hand cut at s > ðmBð�Þ þmBð�Þ Þ2;
however, this right-hand cut is far away from the physical
region, so it can be safely neglected. In this study, we
approximate the left-hand cuts by the sum of the
Zb-exchange diagram and the box diagrams, M̂π

l ðsÞ ¼
M̂Zb;π

l ðsÞ þ M̂loop;π
l ðsÞ. Similar methods to approximate

the left-hand-cut structures by including resonance
exchange (in the case of no loops) have been applied in
Refs. [28–31].
Next we discuss the Omnès solution to obtain the

amplitude including the FSI. For simplicity first we discuss
the single-channel solution, which applies for the D-wave
case. The functions M̂lðsÞ are real along the right-hand cut,
so in the elastic ππ rescattering region the partial-wave
unitarity conditions reads

ImMlðsÞ ¼ ½MlðsÞ þ M̂lðsÞ� sin δ0l ðsÞe−iδ
0
l ðsÞ: ð19Þ

In the elastic region, the phases δIl of the partial-wave
amplitudes of isospin I and angular momentum l equal the
ππ elastic phase shifts modulo nπ, as required by Watson’s
theorem [32,33]. The Omnès function is defined as [34]

ΩI
lðsÞ ¼ exp

�
s
π

Z
∞

4m2
π

dx
x
δIlðxÞ
x − s

�
; ð20Þ

which obeys ΩI
lðsþ iϵÞ ¼ e2iδ

I
lΩI

lðs − iϵÞ. Using the
Omnès function, the solution of Eq. (19) can be obtained
[8,35],

MlðsÞ ¼ Ω0
l ðsÞ

�
Pn−1
l ðsÞ þ sn

π

Z
∞

4m2
π

dx
xn

M̂lðxÞ sin δ0l ðxÞ
jΩ0

l ðxÞjðx − sÞ
�
;

ð21Þ

where the polynomial Pn−1
l ðsÞ is a subtraction function. For

theD-wave phase shift δ02ðsÞ, we use the result given by the
Madrid-Kraków collaboration [36], and smoothly continue
it to π for s → ∞.
For the S wave, we take into account the two-channel

rescattering effects. Along the right-hand cut, the two-
channel unitarity conditions reads

ImM0ðsÞ ¼ 2iT0�
0 ðsÞΣðsÞ½M0ðsÞ þ M̂0ðsÞ�; ð22Þ

where the two-dimensional vectors M0ðsÞ and M̂0ðsÞ
contain the right-hand and the left-hand-cut parts of both
the ππ and the KK̄ final states, respectively,

M0ðsÞ ¼
� Mπ

0ðsÞ
2ffiffi
3

p MK
0 ðsÞ

�
; M̂0ðsÞ ¼

� M̂π
0ðsÞ

2ffiffi
3

p M̂K
0 ðsÞ

�
:

ð23Þ

The two-dimensional matrices T0
0ðsÞ and ΣðsÞ are

T0
0ðsÞ ¼

0
B@

η0
0
ðsÞe2iδ00ðsÞ−1
2iσπðsÞ jg00ðsÞjeiψ

0
0
ðsÞ

jg00ðsÞjeiψ
0
0
ðsÞ η0

0
ðsÞe2iðψ00ðsÞ−δ00ðsÞÞ−1

2iσKðsÞ

1
CA ð24Þ

and ΣðsÞ≡ diagðσπðsÞθðs − 4m2
πÞ; σKðsÞθðs − 4m2

KÞÞ.
There are three input functions in the T0

0ðsÞ matrix: the
ππS-wave isoscalar phase shift δ00ðsÞ, for which we use the
result from the Roy equation analysis in Ref. [37]; and
the ππ → KK̄ S-wave amplitude g00ðsÞ ¼ jg00ðsÞjeiψ

0
0
ðsÞ with

modulus and phase, for which the results based on the Roy-
Steiner approach in Ref. [38] are used. These inputs are
used below the appearance of additional inelasticities from
4π intermediate states, namely, up to

ffiffiffiffiffi
s0

p ¼ 1.3 GeV [the
f0ð1370Þ resonance is known to have a significant coupling
to 4π [39]]. Above s0, the phases δ00ðsÞ and ψ0

0 are guided
smoothly to 2π [40],

δðsÞ ¼ 2π þ ðδðs0Þ − 2πÞ 2

1þ ð ss0Þ3=2
: ð25Þ

The inelasticity η00ðsÞ in Eq. (24) is related to the modulus
jg00ðsÞj by

η00ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4σπðsÞσKðsÞjg00ðsÞj2θðs − 4m2

KÞ
q

: ð26Þ

The numerical solution of the homogeneous two-channel
unitarity relation
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ImΩðsÞ ¼ 2iT0�
0 ðsÞΣðsÞΩðsÞ; Ωð0Þ ¼ 1; ð27Þ

has been computed in Refs. [40–43]. Using ΩðsÞ, the
solution of the inhomogeneous two-channel unitarity con-
dition in Eq. (22) is given by

M0ðsÞ ¼ ΩðsÞ
�
Pn−1ðsÞ þ sn

π

Z
∞

4m2
π

dx
xn

×
Ω−1ðxÞTðxÞΣðxÞM̂0ðxÞ

x − s

�
: ð28Þ

To determine the required number of subtractions that
guarantees that the dispersive integrals in Eqs. (21) and (28)
converge, we need to investigate the high-energy behavior
of the integrand. First it is known that for the single-channel
Omnès function defined in Eq. (20), it falls off asymptoti-
cally as s−k if the phase shift δIlðsÞ approaches kπ at high
energies. Since the D-wave ππ phase shift, δ02ðsÞ, reaches π
for high energies, we have Ω0

2ðsÞ ∼ 1=s for large s. Second,
the high-energy behavior of the two-channel Omnès
function has been analyzed in Ref. [40], and the 1=s
asymptotic behavior of ΩI

lðsÞ is ensured by the asymptotic
condition

P
δIlðsÞ ≥ 2π for s → ∞, where

P
δIlðsÞ is the

sum of the eigen phase shifts. Third, we have checked that
in an intermediate energy range of 1 GeV2 ≲ s ≪ m2

ϒ, both
the inhomogeneities contributed by the Zb-exchange term
and the box graph term grow at most linearly in s. So we
conclude that in the dispersive representations for M2ðsÞ
and M0ðsÞ, three subtractions are sufficient to make the
dispersive integrals convergent.
At low energies, the amplitudesM2ðsÞ andM0ðsÞ should

match to the results of chiral perturbation theory. Namely,
in the limit of switching off the final-state interactions,
Ω0

2ðsÞ ¼ 1 and Ωð0Þ ¼ 1, the subtraction functions agree
with the chiral representations given in Eqs. (10) and (13).
Since both Mχ

0ðsÞ and Mχ
2ðsÞ grow no faster than ∼s2, they

can be covered by the degree of the subtractions. Therefore,
for the D wave, the integral equation takes the form

Mπ
2ðsÞ ¼ Ω0

2ðsÞ
�
Mχ;π

2 ðsÞ þ s3

π

Z
∞

4m2
π

dx
x3

M̂π
2ðxÞ sin δ02ðxÞ

jΩ0
2ðxÞjðx − sÞ

�
:

ð29Þ

For the S wave, the integral equation reads

M0ðsÞ ¼ ΩðsÞ
�
Mχ

0ðsÞ þ
s3

π

Z
∞

4m2
π

dx
x3

×
Ω−1ðxÞTðxÞΣðxÞM̂0ðxÞ

x − s

�
; ð30Þ

where Mχ
0ðsÞ ¼ ðMχ;π

0 ðsÞ; 2= ffiffiffi
3

p
Mχ;K

0 ðsÞÞT .

The differential decay width for ϒðmSÞ → ϒðnSÞπþπ−
with respect to the ππ invariant mass and the helicity angle
reads

dΓ
d

ffiffiffi
s

p
d cos θ

¼
ffiffiffi
s

p
σπjqj

128π3m2
ϒðmSÞ

jMπ
0 þ M̂π

0

þ ðMπ
2 þ M̂π

2ÞP2ðcos θÞj2: ð31Þ

III. PHENOMENOLOGICAL DISCUSSION

The experimental data considered in this work are the ππ
invariantmass distributions of theϒð4SÞ → ϒð1S; 2SÞπþπ−
decays measured by the BABAR [44] and Belle collabora-
tions [45].
The chiral coupling constants ci in Eq. (1) are different

for the two decays ϒð4SÞ → ϒð1SÞπþπ− and ϒð4SÞ →
ϒð2SÞπþπ−, since there is no symmetry connecting
the bottomonium states with different radial excitations.
The mass difference between the two Zb states is
much smaller than the difference between their masses
and the ϒðlSÞπðl ¼ 1; 2Þ thresholds as well as
mϒð4SÞ −mπ; they have the same quantum numbers and
thus the same coupling structure as given by Eq. (3). So the
Zbð10610Þ and Zbð10650Þ contributions are strongly cor-
related in the fit, and it is very difficult to distinguish their
effects from each other in the processes studied in this
work. Therefore we only use one Zb, the Zbð10610Þ, in our
fit by setting Cnm;2 ¼ 0 as in our previous analysis of
ϒð3SÞ → ϒð1; 2SÞππ [8]. For the input mass of the
Zbð10610Þ, we use the heavy-quark spin symmetry con-
serving result given in Ref. [46]. The value of gJHHð4SÞ is
extracted from the measured open-bottom decay widths of
the ϒð4SÞ, gJHHð4SÞ ¼ 1.43 GeV−3=2.
For each ϒð4SÞ → ϒðnSÞππðn ¼ 1; 2Þ process, the

unknown parameters are c1 and c2 corresponding to the
chiral contact ϒϒ0ΦΦ coupling, C4n;1 related to the Zb-
exchange mechanism, and gJHHðnSÞ for the box diagrams.
To illustrate the effects of the Zb-exchange and box graph
mechanisms, we perform several fits by choosing different
strategies. Fit I only includes the chiral contact ci terms; fit
II adds the Zb-exchange terms to them. Fit III includes the
chiral contact ci terms and the box diagrams, and finally fit
IV takes all of the contact ci terms, the Zb exchange, and
the box diagrams into account. The FSI is included in all
fits. In Fig. 4, the fitted results of fits I–IV are shown as the
green dash-dot-dotted, red dashed, blue dot-dashed, and
black solid lines, respectively. The fitted parameters as well
as the χ2=d:o:f. of our best fit, fit IV, are shown in Table II.
We find very different values for the parameters c1 and c2
from fitting the data of transitions between different ϒðlSÞ
states. These low-energy constants parametrize the non-
perturbative QCD matrix elements of gluonic operators
between the initial and final bottomonia. For different
initial and final ϒ states, these parameters are not related to
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each other at the hadronic level, and can well be very
different. In principle, the parameter values from the fit in
this paper cannot be directly compared with those in
Ref. [8], which do not include the box diagrams when
analyzing the ϒð3SÞ and ϒð2SÞ dipion transitions. We thus
made a new fit to the decay ϒð3SÞ → ϒð1SÞππ studied
therein. It turns out that the values of c1 and c2 decrease
only by around 35% in comparison with those given in
Table I of Ref. [8]. Our fittings turn out to indicate the
following hierarchy: jc4→1

1;2 j ≪ jc4→2
1;2 j≲ jc3→1

1;2 j ≪ jc3→2
1;2 j.

This may be understood from the node structure of the
ϒ wave functions: for the processes with the same initial ϒ
state, the larger the difference between the principal
quantum numbers, the smaller the gluonic matrix elements
and thus the magnitude of the parameters. Note that the
total χ2 value for the transition ϒð4SÞ → ϒð2SÞπþπ− is
very low, χ2=d:o:f ¼ 0.01. This small number reflects the
observation that the fluctuation in the data appears to be
significantly smaller than what the error bars allow for,
which indicates that they might well be dominated by
systematics.
Using the central values of the parameters in the best fit,

in Fig. 5 we plot the moduli of the S- and D-wave
amplitudes from the ci terms, the Zbð10610Þ state, and
the box graphs for the processes ϒð4SÞ → ϒð1SÞπþπ− and

ϒð4SÞ → ϒð2SÞπþπ−, respectively. In addition, in Fig. 6
we show the resulting theoretical predictions for the
angular distributions.
As shown in Fig. 4, including theZb-exchange and the box

graph contributions improves the fit quality for ϒð4SÞ →
ϒð1SÞπþπ− only marginally, mainly in the region around
1 GeV. However, for ϒð4SÞ → ϒð2SÞπþπ−, the fit quality
increases significantly when considering either of those two
mechanisms (or both). Loop effects were already studied in
the 3P0 quark-pair-creation model in Ref. [47], and found to
be tiny for ϒð3S; 2SÞ → ϒð2S; 1SÞπþπ−. This is probably
due to the fact that ϒð3S; 2SÞ are too far below the BB̄
threshold. This situation is expected to change for theϒð4SÞ,
with the open-bottom channels contributing significantly to
its decay rate. In Fig. 5, one observes that for the dominant
S-wave amplitudes, the contributions from the ci terms, from
the Zb-exchange term, and from the box diagram term are all
of the same order. Especially, for the decay ϒð4SÞ →
ϒð1SÞπþπ−, the box graphs and the Zb exchange play a
major role in the energy range around 0.95 GeV, and account
for the better description of the data there. Note that the
contribution of loops including Bs mesons, producing kaons
that subsequently rescatter into a pion pair, is entirely
negligible: in the NREFT formalism, these graphs vanish
at the KK̄ threshold. For theD wave, the contributions from
Zb exchange and the box graphs are much smaller than that
from the ci terms. We should mention that the plots in Fig. 5
correspond to using the central values of the best fit
parameters. The shapes of the curves corresponding to the
box diagrams and the Zb-exchange terms are similar; how-
ever, their relative strength is not very meaningful because
there is a strong correlation in the fit between the parameters
C41;1 and JJHHð1SÞ. This can be easily seen from the fact that
the curves for fits II and III are very similar to each other in
Fig. 4 (left), whichmeans that theZb-exchange and box terms
can hardly be distinguished in the ππ invariant mass dis-
tribution of the transition ϒð4SÞ → ϒð1SÞπþπ−.

FIG. 4. Fit results of the ππ invariant mass spectra for the decays ϒð4SÞ → ϒð1SÞπþπ− (left) and ϒð4SÞ → ϒð2SÞπþπ− (right). The
solid squares and solid circles denote the data from the BABAR Collaboration [44] and Belle Collaboration [45], respectively. Fit I (green
dash-dot-dotted) only includes the chiral contact terms ci; fit II (red dashed) includes chiral contact terms and the Zb-exchange term; fit
III (blue dot-dashed) includes chiral contact terms and box diagrams; fit IV (black solid) includes the contact terms ci, the Zb-exchange
term, and the box diagrams. The FSI is included in all fits.

TABLE II. Fit parameters from the best fits of the ϒð4SÞ →
ϒðnSÞππðn ¼ 1; 2Þ processes.

ϒð4SÞ → ϒð1SÞπþπ− ϒð4SÞ → ϒð2SÞπþπ−
c1ðGeV−1Þ ð9.8� 1.0Þ × 10−4 ð1.2� 0.6Þ × 10−1

c2ðGeV−1Þ ð−1.6� 1.1Þ × 10−4 ð−1.0� 0.6Þ × 10−1

C4n;1 ð2.6� 1.3Þ × 10−4 ð−3.2� 1.8Þ × 10−2

gJHHðnSÞðGeV−3
2Þ ð8.6� 6.1Þ × 10−5 ð1.7� 0.8Þ × 10−2

χ2=d:o:f 10.45=ð20 − 4Þ ¼ 0.65 0.04=ð7 − 4Þ ¼ 0.01
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Notice that in Refs. [48,49], the loop contribution of the
sequential process ϒð4SÞ→BB̄→ϒðnSÞS→ϒðnSÞπþπ− ×
ðn¼1;2Þ, where the scalar S can correspond to the f0ð500Þ
and the f0ð980Þ, has been considered. This kind of loop
topology can be described by Fig. 2(a) including FSIs,
which is suppressed compared to the box graphs in NREFT.
In our scheme, the FSIs are taken into account in a model-
independent way, and we do not have to specify the
contributing scalar resonances. Another merit of our
calculation is that, instead of only obtaining the absorptive
part of the loops by using Cutkosky rules [48,49], we
completely compute both their real and imaginary parts.
An interesting feature of the ππ invariant mass distri-

bution of ϒð4SÞ → ϒð1SÞπþπ− is that the older Belle data
from Ref. [50] hint at a two-peak structure in the range of
mπþπ− ¼ 0.8…1.2 GeV, while the later measurements
given in Refs. [44,45] do not display such a feature in

any obvious way. As the mass difference between ϒð4SÞ
and ϒð1SÞ is about 1.12 GeV, the isoscalar-scalar f0ð980Þ
meson, which couples strongly to ππ, should be visible in
the spectrum. With the FSI described reliably in the
dispersive approach, we see that the f0ð980Þ indeed
accounts for a dip at its mass, and a two-peak structure
is naturally produced. A possible reason why such a two-
peak structure is not observed in Refs. [44,45] may be the
wide energy bins used in these experimental measurements.
The fact that the f0ð980Þ should be manifest in the ππ
invariant mass distribution of ϒð4SÞ → ϒð1SÞπþπ− has
already been emphasized in Ref. [7]. The dip caused by the
f0ð980Þ is also present in the calculation of Ref. [51].
For the ϒð4SÞ → ϒð2SÞπþπ− process, it is known that

the two-hump behavior in the ππ invariant mass spectra is
incompatible with the prediction from the QCD multipole
expansion, resembling the case of ϒð3SÞ → ϒð1SÞππ

FIG. 5. Moduli of the S- (left) and D-wave (right) amplitudes in ϒð4SÞ → ϒð1SÞπþπ− (top) and ϒð4SÞ → ϒð2SÞπþπ− (bottom). The
black solid lines represent our best fit results, while the red dot-dashed, blue dashed, and green dotted lines correspond to the
contributions from the ci terms, the Zbð10610Þ, and the box diagrams, respectively.

FIG. 6. Theoretical predictions of the helicity angular distributions for the decays ϒð4SÞ → ϒð1SÞπþπ− (left) and ϒð4SÞ →
ϒð2SÞπþπ− (right). The line style is as in Fig. 4.
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[5,8,47]. In the formalism outlined above, the original
formulation of the QCD multipole expansion appears by
including only the tree-level ci terms, however, omitting the
ππ FSIs. As shown by the blue dot-dashed line in the right
panel of Fig. 4, including the final-state interaction can
roughly reproduce a two-hump structure. However, it
produces a 0 in the amplitude inside the physical region
and the agreement with the data is not very convincing.
This feature was also observed in our previous study of
ϒð3SÞ → ϒð1SÞππ, where, however, a simultaneous fit of
the ππ invariant mass and the helicity angular distributions
cannot reproduce the two-hump behavior in the dipion
mass spectra by only using the ci terms [8]. The angular
distribution data are therefore important to distinguish the
effects of different mechanisms. In Fig. 6, the theoretical
predictions of the helicity angular distributions in different
fit scenarios are shown. For ϒð4SÞ → ϒð2SÞπþπ−, the
angular distributions are distinctly different when including
the Zb-exchange and box graph terms; hence these results
can be used to check their effects when experimental data
become available in the future.
Using the fit parameters given in Table II, we can predict

the decay width of ϒð4SÞ → ϒð1SÞKþK−, as well as the
corresponding KK̄ invariant mass distribution. The relevant
Feynman diagrams can be obtained by replacing all external
pions by kaons in Fig. 1, but without diagram (b1) due to the
absence of a ZbϒK vertex. The Zb contributes also to KK̄
through diagram (b2) due to the final-state interactions
that, especially around the KK̄ threshold, provide strong

ππ → KK̄ transitions. Most ingredients of the amplitude of
the ϒð4SÞ → ϒð1SÞKþK− process have been given in
Sec. II. We omit the KK̄ D wave, which is negligible due
to its strong near-threshold suppression. Within 1σ uncer-
tainties, the prediction of the decay width of ϒð4SÞ →
ϒð1SÞKþK− is

Γϒð4SÞ→ϒð1SÞKþK− ¼ 0.18þ0.21
−0.09 keV; ð32Þ

corresponding to a branching fraction of 0.9þ1.0
−0.4 × 10−5, and

the dikaon invariantmass spectrum is given in Fig. 7 (top left).
The rapid rise of the KK̄ invariant mass distribution in the
near-threshold region is a result of thef0ð980Þ, in linewith the
dip around 1 GeV in Fig. 4. Like the ϒð4SÞ → ϒð1SÞπþπ−
process, there is a strongcorrelation between theZb-exchange
terms and the box diagrams in the ϒð4SÞ → ϒð1SÞKþK−

process, and in Fig. 7 we also plot the contributions from the
ci terms (top right), the Zbð10610Þ state plus box graphs
(bottom left), and their interference (bottom right), respec-
tively. One finds that for the central values of the theoretical
predictions, the Zb-exchange term and the box graphs nearly
cancel eachother, and the total line shape is quite similar to the
ci terms only. Both the rapid rise in themKK̄ distribution and
the nontrivial structure in the large mππ region of the dipion
invariant mass distribution are due to the final-state inter-
actions between the light mesons, depicted in Figs. 1(c1),
1(d1), and 1(a2)–1(d2), which receive contributions from
both the Zb-exchange and box diagrams. As a result, their
strong correlation in the fit to the data of the dipion transitions

FIG. 7. Theoretical prediction of the KK̄ invariant mass spectrum for the decay ϒð4SÞ → ϒð1SÞKþK− (top left). The contributions
from the ci terms (top right), the Zbð10610Þ state plus box graphs (bottom left), and their interference (bottom right) are also depicted.
The shaded areas correspond to the error band.
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leads to the significant cancellation in the prediction of the
mKK̄ distribution. The large spread mainly comes from the
uncertainties of Zbð10610Þ plus box graphs, and the inter-
ference term. These predictions encourage future experimen-
tal measurements in this channel.

IV. CONCLUSIONS

We have studied the effects of Zb exchange and bottom
meson loops in the decays ϒð4SÞ → ϒðnSÞππðn ¼ 1; 2Þ.
The bottom meson loops are treated in the NREFT scheme,
in which the power counting rules indicate that the box
diagrams are dominant. The strong FSIs, especially the
coupled-channel FSI in the S wave, are taken into account
model independently by using dispersion theory. The forms
of the subtraction functions are obtained by matching to the
leading chiral contact terms. Through fitting the data of the
ππ invariant mass spectra, the couplings of the ϒϒ0ππ and
ϒBð�ÞBð�Þ vertices, as well as the product of couplings of
the Zbϒπ and Zbϒ0π vertices are determined (where ϒ and
ϒ0 denote the final- and initial-state bottomonia). For the
dominant S-wave component, it is found that the contri-
butions from Zb exchange, the loops, and the chiral contact
term are of the same order. For ϒð4SÞ → ϒð2SÞπþπ−,
including the Zb-exchange term and the bottom meson
loops naturally describes the two-hump behavior in the ππ
invariant mass distribution. Unfortunately, the present data
are insufficient to distinguish between the effects of the Zb
exchange and the bottom meson loops. We provide
theoretical predictions of the helicity angular distributions,
which may be useful to identify the effects of Zb exchange
and bottom meson loops with future experimental data. For
the ϒð4SÞ → ϒð1SÞπþπ− decay, we expect that there is a
dip in the ππ spectrum around 1 GeV, caused by the
opening of the KK̄ channel near the f0ð980Þ resonance.
This dip has probably not been observed yet in the present
experimental data yet due to lack of sufficiently precise
energy resolution. Improved data to resolve this issue
are eagerly awaited. We also predict the decay width
and the KK̄ invariant mass distribution of the ϒð4SÞ →
ϒð1SÞKþK− process, demonstrating the usefulness
of this additional measurement that should be feasible at
Belle II.
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APPENDIX: REMARKS ON THE BOX
DIAGRAMS AND FOUR-POINT INTEGRALS

In this appendix, we discuss the calculation of the
amplitudes that involve four-point loop integrals in some
detail. We start by discussing the parametrization and
simplification of scalar four-point integrals. Then we
introduce a tensor reduction scheme to deal with higher-
rank integrals. Finally, we give the leading part of the
corresponding integrals (proportional to ϵϒ0 · ϵϒ) for the
possible intermediate bottom mesons.

1. Scalar four-point integrals

Because of the simpler structure we begin with the first
topology as shown in Fig. 8. The corresponding scalar
integral, evaluated for the initial bottomonium at rest
[p ¼ ðM; 0Þ] and labeled Jð0cÞ to be consistent with
Fig. 1, reads

Jð0cÞ ≡ i
Z

d4l
ð2πÞ4

1

½l2 −m2
1 þ iϵ�½ðp − lÞ2 −m2

2 þ iϵ�½ðl − q1 − q2Þ2 −m2
3 þ iϵ�½ðl − q1Þ2 −m2

4 þ iϵ�

≃ −i
16m1m2m3m4

Z
d4l
ð2πÞ4

1

½l0 − l2
2m1

−m1 þ iϵ�½l0 −M þ l2
2m2

þm2 − iϵ�

×
1

½l0 − q01 − q02 −
ðlþqÞ2
2m3

−m3 þ iϵ�½l0 − q01 −
ðl−q1Þ2
2m4

−m4 þ iϵ�
: ðA1Þ
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Performing the contour integration is straightforward since only one pole is located in the upper half-plane. We find

−
μ12μ23μ24

2m1m2m3m4

Z
d3l
ð2πÞ3

1

½l2 þ c12 − iϵ�½l2 þ 2 μ23
m3

l · qþ c23 − iϵ�½l2 − 2 μ24
m4

l · q1 þ c24 − iϵ� ; ðA2Þ

where we defined

c12 ≡ 2μ12ðm1 þm2 −MÞ; c23 ≡ 2μ23

�
m2 þm3 −M þ q01 þ q02 þ

q2

2m3

�
;

c24 ≡ 2μ24

�
m2 þm4 −M þ q01 þ

q2
1

2m4

�
; μij ¼

mimj

mi þmj
: ðA3Þ

For the second topology we immediately find

Jð0dÞ ≡ i
Z

d4l
ð2πÞ4

1

½l2 −m2
1 þ iϵ�½ðp − lÞ2 −m2

2 þ iϵ�½ðp − q2 − lÞ2 −m2
3 þ iϵ�½ðl − q1Þ2 −m2

4 þ iϵ�

≃ −i
16m1m2m3m4

Z
d4l
ð2πÞ4

1

½l0 − l2
2m1

−m1 þ iϵ�½l0 −M þ l2
2m2

þm2 − iϵ�

×
1

½l0 þ q02 −M þ ðlþq2Þ2
2m3

þm3 − iϵ�½l0 − q01 −
ðl−q1Þ2
2m4

−m4 þ iϵ�
: ðA4Þ

Here the possibility for two different cuts to go on shell leads to a slightly more complicated three-dimensional integral

−
μ12μ34

2m1m2m3m4

Z
d3l
ð2πÞ3

1

½l2 þ d12 − iϵ�½l2 − 2 μ34
m4

l · q1 − 2 μ34
m3

l · q2 þ d34 − iϵ�

×

�
μ24

½l2 − 2 μ24
m4

l · q1 þ d24 − iϵ� þ
μ13

½l2 þ 2 μ13
m3

l · q2 þ d13 − iϵ�
�
; ðA5Þ

where we defined

d12 ≡ 2μ12ðm1 þm2 −MÞ; d34 ≡ 2μ34

�
m3 þm4 − q0 þ q2

1

2m4

þ q2
2

2m3

�
;

d24 ≡ 2μ24

�
m2 þm4 −M þ q01 þ

q2
1

2m4

�
; d13 ≡ 2μ13

�
m1 þm3 −M þ q02 þ

q2
2

2m3

�
: ðA6Þ

In both cases the remaining three-dimensional momentum integration needs to be carried out numerically.

2. Tensor reduction

Since each of the interactions of an ϒ with a pair of bottom mesons scales with the momentum of the latter we have to
deal with

(c1) (d1)

FIG. 8. Kinematics used in the calculation of the four-point integrals.
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−μ12μ23μ24
2m1m2m3m4

Z
d3l
ð2πÞ3

fðlÞ
½l2 þ c12 − iϵ�½l2 þ 2 μ23

m3
l · qþ c23 − iϵ�½l2 − 2 μ24

m4
l · q1 þ c24 − iϵ� ; ðA7Þ

where fðlÞ ¼ f1; li; liljg for the fundamental scalar, vector, and tensor integrals, respectively. Using the momentum of the
final state ϒ, q, and q⊥ ¼ q1 − qðq · q1Þ=q2, a convenient parametrization reads

Jð1Þi ¼ −μ12μ23μ24
2m1m2m3m4

Z
d3l
ð2πÞ3

li

½l2 þ c1 − iϵ�½l2 − 2 μ23
m3

l · qþ c2 − iϵ�½l2 − 2 μ24
m4

l · q1 þ c3 − iϵ�
≡ qiJð1cÞ1 þ qi⊥J

ð1cÞ
2 ðA8Þ

and

Jð2Þij ¼ −μ12μ23μ24
2m1m2m3m4

Z
d3l
ð2πÞ3

lilj

½l2 þ c1 − iϵ�½l2 − 2 μ23
m3

l · qþ c2 − iϵ�½l2 − 2 μ24
m4

l · q1 þ c3 − iϵ�

≡
�
δij −

qiqj

q2
−
qi⊥q

j
⊥

q⊥2

�
Jð2cÞ0 þ qiqj

q2
Jð2cÞ1 þ qi⊥q

j
⊥

q⊥2
Jð2cÞ2 þ qiqj⊥ þ qi⊥qj

jqjjq⊥j
Jð2cÞ3 ; ðA9Þ

where the scalar integrals JðrÞm can easily be disentangled
and have to be evaluated numerically. The corresponding
expressions for topology II can be obtained by changing the
denominators accordingly.

3. Amplitudes

Tables III and IV list the relevant amplitudes for this
calculation. We only give the dominant amplitudes, i.e., the
ones that contribute to the part proportional to ϵðϒ0Þ · ϵðϒÞ
as was explained in the main text. We further notice that
all box diagrams are proportional to the overall factor
ϵaðϒ0ÞϵbðϒÞg2πgJ0HHgJHH=F2

π .

Finally, we need to consider the different flavors
of the intermediate bottom mesons. For topology (c1)
with a pair of charged pions four possibilities exist:
½Bð�Þþ; Bð�Þ−; Bð�Þþ; Bð�Þ0�, ½Bð�Þ−; Bð�Þþ; Bð�Þ−; B̄ð�Þ0�,
½Bð�Þ0; B̄ð�Þ0; Bð�Þ0; Bð�Þþ�, and ½B̄ð�Þ0; Bð�Þ0; B̄ð�Þ0; Bð�Þ−�.
For topology (d1) this reduces to just two:
½Bð�Þþ; Bð�Þ−; B̄ð�Þ0; Bð�Þ0� and ½B̄ð�Þ0; Bð�Þ0; Bð�Þþ; B̄ð�Þ−�.
For the case of neutral pions the number of possible
diagrams doubles—a factor 2 that is balanced by the factorffiffiffi
2

p
in the SUð3Þ light-meson matrix.

TABLE III. All loops contributing to topology (c1) in Fig. 1.
The mesons are listed as ½M1;M2;M3;M4�; P and V denote
intermediate pseudoscalar and vector mesons, respectively. The
different flavors are dropped for simplicity—the full amplitude
contains the sum of all possible ones.

Intermediate mesons Amplitude

½P; P; P; V� 8q1 · q2Jð2Þab

½P; V; P; V� −8q1 · q2Jð2Þab

½V; P; V; P� 4δabqi1ð2qj2Jð2Þij þ q · q2Jð1ÞiÞ
½P; V; V; V� 4δabðqi1q · q2 − qi2q · q1ÞJð1Þi
½V; P; V; V� 4δabqi1ð2qj2Jð2Þij þ q · q2Jð1ÞiÞ
½V; V; P; V� 4δabðqi1q · q2 − qi2q · q1ÞJð1Þi
½V; V; V; P� 8δaiδbjq1 · q2Jð2Þij

þ 4δabqi1ð2qj2Jð2Þij þ q · q2Jð1ÞiÞ
½V; V; V; V� 4δabð4δijq1 · q2Jð2Þij − qi2q · q1Jð1Þi

þ qi1ðq · q2Jð1Þi − 4qj2J
ð2ÞijÞÞ

TABLE IV. All loops contributing to topology (d1) in Fig. 1;
see Table III for further notation.

Intermediate
mesons Amplitude

½P; P; V; V� 8q1 · q2Jð2Þab

½P; V; P; V� 4δabðq1 · q2ð2δijJð2Þij þ qi2J
ð1ÞiÞ

− qi1ð2qj2Jð2Þij þ q22Jð1ÞiÞÞ
− 8δaiδbjq1 · q2Jð2Þij

½V; V; P; P� 4δabqi1ð2qj2Jð2Þij þ q · q2Jð1ÞiÞ
½V; P; V; P� 4δabqi1ððq · q2 þ 2q1 · q2ÞJð1Þi − 2qj2J

ð2ÞijÞ
½P; V; V; V� −4δabð2qi1qj2Jð2Þij þ qi2ðq1 · q2 − q12ÞJð1ÞiÞ
½V; P; V; V� −4δabqi1ð2qj2Jð2Þij − ðq · q2 þ 2q1 · q2ÞJð1ÞiÞ
½V; V; P; V� −4δabð2qi1qj2Jð2Þij þ qi2ðq1 · q2 − q12ÞJð1ÞiÞ
½V; V; V; P� −4δabqi1ð2qj2Jð2Þij þ ðq22 − q1 · q2ÞJð1ÞiÞ
½V; V; V; V� 4δabð4δijq1 · q2Jð2Þij − qi2q · q1Jð1Þi

þ qi1ðq · q2Jð1Þi − 4qj2J
ð2ÞijÞÞ
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