
Supersymmetry across the light and heavy-light hadronic spectrum. II.

Hans Günter Dosch,1,* Guy F. de Téramond,2,† and Stanley J. Brodsky3,‡
1Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany

2Universidad de Costa Rica, 11501 San Pedro de Montes de Oca, Costa Rica
3SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94309, USA

(Received 10 December 2016; published 15 February 2017)

We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in
light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass,
supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from
five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-
front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light
Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge
slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected from heavy
quark effective theory. This procedure reproduces the observed spectra of heavy-light hadrons with good
precision and makes predictions for yet unobserved states.
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I. INTRODUCTION

In a series of recent articles [1–4], we have shown that
superconformal algebra allows the construction of relativ-
istic light-front (LF) semiclassical bound-state equations in
physical spacetime which can be embedded in a higher-
dimensional classical gravitational theory. This new
approach to hadron physics incorporates basic nonpertur-
bative properties which are not apparent from the chiral
QCD Lagrangian; it includes the emergence of a mass scale
and confinement out of a classically scale-invariant theory,
the occurrence of a zero-mass bound state, universal Regge
trajectories for both mesons and baryons, and the breaking
of chiral symmetry in the hadron spectrum. This holo-
graphic approach to hadronic physics gives remarkable
connections between the light meson and nucleon spectra
[2], as well as specific relations which can be derived for
heavy-light hadrons. Remarkably, even though heavy quark
masses break conformal invariance, an underlying dynami-
cal supersymmetry still holds [3].
Our analysis is based on a procedure developed by de

Alfaro, Fubini and Furlan, and Fubini and Rabinovici
[1,2,5–7]. In our approach, it leads to the natural emergence
of a mass scale into the Hamiltonian of a theory while
retaining essential elements of both conformal invariance
and supersymmetry. In the case of superconformal (graded)
algebra, a generalized Hamiltonian can be constructed as a
linear superposition of superconformal generators which
carry different dimensions; the Hamiltonian thus remains
within the superconformal algebraic structure. This pro-
cedure determines a unique form of a quark confinement

potential in the light-front Hamiltonian for light mesons
and baryons, and it reproduces quite well significant
features of the hadron spectrum and dynamics. The
resulting bound-state equations depend explicitly on orbital
angular momentum, and thus, chiral symmetry is broken
from the outset in the Regge excitation spectra: The ρ
meson and the nucleon have no chiral partners. A striking
feature of the formalism is that the supermultiplets consist
of a meson wave function with internal LF angular
momentum LM and a corresponding baryon wave function
with angular momentum LB ¼ LM − 1 and identical mass.
The lightest meson state with LM ¼ 0 and total quark spin
zero is massless in the chiral limit and is identified with the
pion; it has no supersymmetric partner.
It is not known why the effective theory based on

superconformal quantum mechanics and its light-front
holographic embedding captures so well essential aspects
of the confinement dynamics of QCD. However, under-
lying aspects of the superconformal holographic construc-
tion, conformal symmetry and supersymmetry, as well as
the LF cluster decomposition required by the holographic
embedding, could help us understand fundamental features
of QCD in its nonperturbative domain.
As it is the case for conformal quantum mechanics [5],

where the action remains invariant under conformal trans-
formations, classical QCD in the limit of massless quarks
has no mass scale, but confinement and a mass gap can
emerge from its quantum embodiment. The cluster decom-
position of the constituents of baryons corresponding to a
quark-diquark structure is necessary in order to describe
baryons in light-front holographic QCD (LFHQCD) since
there is only a single holographic variable [8]. The required
LF clustering follows from the mapping of anti-de Sitter
(AdS) equations to QCD bound-state equations in light-
front physics [9], where one identifies the holographic
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variable z in the AdS classical gravity theory with the
boost-invariant transverse separation ζ between constitu-
ents in the light-front quantization scheme [10,11]. In the
case of mesons, ζ2 ¼ b2⊥xð1 − xÞ is conjugate to the
invariant mass of the qq̄ in the LF wave function; it is
the invariant variable of the LF Hamiltonian theory [12].
The resulting symmetry between mesons and baryons is
consistent with an essential feature of color SUðNCÞ: A
cluster of NC − 1 constituents can be in the same color
representation as the anti-constituent; for SUð3Þ, this means
3̄ ∈ 3 × 3 and 3 ∈ 3̄ × 3̄. Thus, emerging hadronic super-
symmetry can be rooted in the dynamics of color
SUð3Þ [13,14].
Our basic model describes the confinement of massless

quarks [1,2,4]. Indeed, for light quark masses it makes
sense to apply superconformal dynamics and to treat the
quark masses as perturbations: The dynamics is then not
significantly changed for nonzero quark mass, and the
resulting confinement scale remains universal for the
resulting hadronic bound states [4]. In contrast, in the case
of heavy quark masses, we cannot rely on conclusions
drawn from conformal symmetry; however, the presence
of a heavy mass need not also break supersymmetry since it
can stem from the dynamics of color confinement [15].
Indeed, as we have shown in Ref. [3], supersymmetric
relations between the meson and baryon masses still hold
to a good approximation even for heavy-light, i.e., charm
and bottom, hadrons.
In addition to the constraints imposed by supersym-

metry, we use additional features imposed by the holo-
graphic embedding in order to constrain the specific form
of the confinement potential in the heavy-light sector. We
also use the heavy-quark flavor symmetry of QCD [16] to
determine the dependence of the confinement scale on the
heavy quark mass in the heavy mass limit since this
symmetry is compatible with the light-front holographic
approach [17]. Other holographic approaches to the heavy-
light sector, including the recent holographic approach
given in Ref. [18], which includes chiral and heavy quark
symmetry, have been proposed in Refs. [19–24].
Light quark masses are not only essential for approxi-

mate conformal symmetry, but they also guarantee the
decoupling of transverse degrees of freedom—expressed
through the LF variable ζ in the hadron LF wave function—
from the longitudinal degrees of freedom which depends on
the longitudinal LF momentum fraction x [25]. The holo-
graphic mapping derived from the geometry of AdS space
encodes the kinematics in 3þ 1 physical spacetime, and
the modification of the AdS action—usually described for
mesons in terms of a dilaton profile φðzÞ—generates the
confining LF potential UðzÞ in the light-front bound-state
equations [26].
Since light constituents are present in the heavy-light

bound states of mesons or baryons, the system is still
ultrarelativistic; thus the heavy-light bound states need to

be described by relativistic LF bound-state equations.
This means that the heavy-light system has properties
common to both the chiral and the heavy-quark flavor
sectors [16,18]. It also suggests that we can holographically
connect the supersymmetric theory to a modified AdS
space; this will be possible if the separation of the
dynamical and kinematical variables also persist, at least
to a good approximation, in the heavy-light domain. As we
show, we can again derive a unique confinement potential
for both mesons and baryons in the heavy-light sector, even
when conformal symmetry is broken by a heavy quark
mass. The resulting embedding leads to a LF harmonic
confinement potential for the heavy-light hadrons and thus
to Regge trajectories; however, as we show, the confine-
ment scale and Regge slope depends on the mass of the
heavy quark. We investigate this dependence using heavy
quark effective theory (HQET) [16]. The procedure dis-
cussed in this article not only reproduces the observed data
to a reasonable accuracy, but it also allows us to make
predictions for yet unobserved states.
This article is organized as follows: In Sec. II we briefly

review the construction of the LF Hamiltonian from
supersymmetric quantum mechanics [27] using the meth-
ods developed in Refs. [1,2,6]. In Sec. III we extend our
approach to systems containing a heavy, charm or bottom,
quark. Notably, we discuss the constraints imposed by the
holographic embedding on the supersymmetric potential,
which in turn determine the form of the light-front
potential. We compare our predictions with experiment
in Sec. IV, and in Sec. V we discuss the constraints on the
confinement scale imposed by HQET. Some final com-
ments are given in Sec. VI. In the Appendix we give
expressions for the LF wave functions and hadron distri-
bution amplitudes which are compatible with our general
approach. This article is the continuation of Ref. [3].

II. THE SUPERSYMMETRIC
LIGHT-FRONT HAMILTONIAN

The light-front Hamiltonian derived in the framework of
supersymmetric quantum mechanics [27,28] contains two
fermionic generators, the supercharges, Q and Q†, with the
anticommutation relations

fQ;Qg ¼ fQ†; Q†g ¼ 0; ð1Þ

and the Hamiltonian H

H ¼ fQ;Q†g; ð2Þ

which commutes with the fermionic generators ½Q;H� ¼
½Q†; H� ¼ 0, closing the graded Lie algebra. Since the
Hamiltonian H commutes with Q†, it follows that the
states jϕi and Q†jϕi have identical nonvanishing eigen-
values. In addition, if jϕ0i is an eigenstate of Q with
zero eigenvalue, it is annihilated by the operator
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Q†: Q†jϕ0i ¼ 0. This implies that the lowest mesonic state
on a given trajectory has no supersymmetric baryon partner
[2]. This shows the special role of the pion in the super-
symmetric approach to hadronic physics as a unique state
of zero mass in the chiral limit.
In matrix notation

Q ¼
�
0 q

0 0

�
; Q† ¼

�
0 0

q† 0

�
; ð3Þ

and

H ¼
�
qq† 0

0 q†q

�
; ð4Þ

with

q ¼ −
d
dζ

þ f
ζ
þ VðζÞ; ð5Þ

q† ¼ d
dζ

þ f
ζ
þ VðζÞ; ð6Þ

where ζ is the LF invariant transverse variable and f is a
dimensionless constant. One can add to the Hamiltonian (2)
a constant term proportional to the unit matrix μ2I

Hμ ¼ fQ;Q†g þ μ2I; ð7Þ

where the constant μ has the dimension of a mass; thus, we
obtain the general supersymmetric light-front Hamiltonian
derived in Ref. [3]

Hμ ¼

0
B@− d2

dζ2 þ
4L2

M−1
4ζ2

þ UMðζÞ 0

0 − d2

dζ2 þ
4L2

B−1
4ζ2

þ UBðζÞ

1
CA

þ μ2I; ð8Þ
where LB þ 1

2
¼ LM − 1

2
¼ f and UM and UB are, respec-

tively, the meson and baryon LF confinement potentials:

UMðζÞ ¼ V2ðζÞ − V 0ðζÞ þ 2LM − 1

ζ
VðζÞ; ð9Þ

UBðζÞ ¼ V2ðζÞ þ V 0ðζÞ þ 2LB þ 1

ζ
VðζÞ: ð10Þ

The superpotential V is only constrained by the require-
ment that it is regular at the origin. For the special case
V ¼ 0, the Hamiltonian is also invariant under conformal
transformations, and one can extend the supersymmetric
algebra to a superconformal algebra [6,29]. In fact, the use
of this procedure in supersymmetric quantum mechanics
determines a unique form for the superconformal potential
in (5): It is given by V ¼ ffiffiffi

λ
p

ζ [1,2]. Thus, in the conformal
limit μ2 → 0, and we have

UMðζÞ → λ2Mζ
2 þ 2λMðLM − 1Þ; ð11Þ

UBðζÞ → λ2Bζ
2 þ 2λBðLB þ 1Þ; ð12Þ

with λM ¼ λB ¼ λ. The Hamiltonian (8) acts on the spinor

jϕi ¼
�
ϕM

ϕB

�
; ð13Þ

where the upper component ϕM corresponds to a meson
wave function with angular momentum LM and a lower
component ϕB, which corresponds to the leading-twist
positive chirality component of a baryon ψþ [1,8] with
angular momentum LB ¼ LM − 1. The supersymmetric
framework described here also incorporates a doublet con-
sisting of the nonleading twist minus-chirality component
ψ− of a baryonwhich has angular momentumLB þ 1 and its
partner tetraquark with angular momentum LT ¼ LB [4].
The tetraquark sector is discussed in more detail in Ref. [4].

III. EXTENSION TO THE HEAVY-LIGHT
HADRON SECTOR

In LF holographic QCD the confinement potential for
mesons UM (9) follows from the dilaton term eφðxÞ in the
AdS5 action following Ref. [30]. It is given by [31]

UdilðζÞ ¼
1

4
ðφ0ðζÞÞ2 þ 1

2
φ00ðζÞ þ 2LM − 3

2ζ
φ0ðζÞ; ð14Þ

for JM ¼ LM. In the conformal limit a quadratic dilaton
profile, φ ¼ λζ2 leads to the potential (11).
The dilaton φ is not constrained by the superconformal

algebraic structure in the presence of heavy quark masses,
and thus, its form and the form of the superpotential V are
unknown a priori. Additional constraints do appear, how-
ever, by the holographic embedding which can be derived
by equating the potential (14), given in terms of the dilaton
profile φ, with the meson potential (9) written in terms of
the superpotential V. We have

1

4
ðφ0Þ2 þ 1

2
φ00 þ 2L − 1

2ζ
φ0 ¼ V2 − V 0 þ 2Lþ 1

ζ
V; ð15Þ

where L ¼ LM − 1.
We make the ansatz

φ0ðζÞ ¼ 2λζαðζÞ; ð16Þ
VðζÞ ¼ λζβðζÞ: ð17Þ

Then, we obtain

Udil ¼ λ2ζ2α2 þ 2Lλαþ λζα0; ð18Þ
Ususy ¼ λ2ζ2β2 þ 2Lλβ − λζβ0; ð19Þ
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and therefore,

λ2ζ2ðα2 − β2Þ þ 2Lλðα − βÞ þ λζðα0 þ β0Þ ¼ 0: ð20Þ
Introducing the linear combination

σðζÞ ¼ αðζÞ þ βðζÞ;
δðζÞ ¼ αðζÞ − βðζÞ; ð21Þ

it follows that
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FIG. 1. Heavy-light mesons and baryons with one charm quark: D ¼ qc̄, Ds ¼ sc̄, Λc ¼ udc, Σc ¼ qqc, Ξc ¼ usc. In (a) and (c)
s ¼ 0 and in (b) and (d) s ¼ 1, where s is the total quark spin in the mesons or the spin of the quark cluster in the baryons. The data is
from Ref. [32].
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FIG. 2. Heavy-light mesons and baryons with one bottom quark: B ¼ qb̄, Bs ¼ sb̄, Λc ¼ udb, Σb ¼ qqb, Ξc ¼ usb. In (a) and (c)
s ¼ 0 and in (b) and (d) s ¼ 1, where s is the total quark spin in the mesons or the spin of the diquark cluster in the baryons. The data is
from Ref. [32].
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λ2ζ2σðζÞδðζÞ þ 2LλδðζÞ þ λζσ0ðζÞ ¼ 0: ð22Þ

This yields

δðζÞ ¼ −
λζσ0ðζÞ

λ2ζ2σðζÞ þ 2Lλ
; ð23Þ

and therefore,

αðζÞ ¼ 1

2

�
σðζÞ − λζσ0ðζÞ

λ2ζ2σðζÞ þ 2Lλ

�
; ð24Þ

βðζÞ ¼ 1

2

�
σðζÞ þ λζσ0ðζÞ

λ2ζ2σðζÞ þ 2Lλ

�
: ð25Þ

Using (16) and (24) we obtain upon integration the
dilaton profile for a meson with angular momentum
LM ¼ Lþ 1

φðζÞ ¼
Z

dζ

�
λζσðζÞ − λ2ζ2σ0ðζÞ

λ2ζ2σðζÞ þ 2ðLM − 1Þλ
�
: ð26Þ

On the other hand, from (17) and (25) it follows that this
profile for arbitrary σðζÞ is compatible with the SUSY
potential

VðζÞ ¼ 1

2

�
λζσðζÞ þ λ2ζ2σ0ðζÞ

λ2ζ2σðζÞ þ 2ðLM − 1Þλ
�
: ð27Þ

The baryon equations give no further constraints.
In LFHQCD the AdS geometry fixes the nontrivial

aspects of the kinematics, whereas additional deformations
of AdS space encodes the dynamical features of the theory
[26]. In particular, the dilaton, which describes the dynam-
ics of confinement for mesons in holographic QCD, must
be free of kinematical quantities and thus must be inde-
pendent of the angular momentum LM. This is only
possible if the derivative σ0ðζÞ ¼ 0 in (26) and (27); thus,
σðζÞ ¼ A with A an arbitrary constant. From (26) and (27)
it follows that

φðζÞ ¼ 1

2
λAζ2 þ B; VðζÞ ¼ 1

2
λAζ: ð28Þ

This result implies that the LF potential in the heavy-
light sector, even for strongly broken conformal invariance,
has the same quadratic form as the one dictated by the
conformal algebra. The constant A, however, is arbitrary, so
the strength of the potential is not determined. Notice that
the interaction potential (14) is unchanged by adding a
constant to the dilaton profile; thus, we can set B ¼ 0 in
(28) without modifying the equations of motion.
The LF eigenvalue equation Hjϕi ¼ M2jϕi from the

supersymmetric Hamiltonian (8) leads to the hadronic
spectrum:

Mesons∶ M2 ¼ 4λQðnþ LÞ þ μ2;

Baryons∶ M2 ¼ 4λQðnþ Lþ 1Þ þ μ2; ð29Þ
where, as we see below, the slope constant λQ ¼ 1

2
λA can

depend on the mass of the heavy quark. The constant term μ
contains the effects of spin coupling and quark masses. This
term has been derived for light hadrons in Ref. [4], yielding
very satisfactory results, as well as giving clear evidence for
the universality of the confinement scale λ for light quarks.
More generally, we can allow for a small breaking of the
supersymmetry due to the different light quark masses in
the meson or nucleon, μ2M ≃ μ2B ≃ μ2. We discuss a
possible extension for heavy quarks in the Appendix,
but we initially treat their masses as unconstrained con-
stants in a fit to all the heavy-light trajectories.

IV. COMPARISONS WITH DATA

In Figs. 1 and 2 we display confirmed data for the
heavy-light mesons and baryons containing one charm or
one bottom quark together with the trajectory fit from
(29). The internal spin s in these figures refers to the total
quark spin in the mesons or the spin of the diquark cluster
in the baryons [4]. The results presented in Figs. 1 and 2
constitute a test of the linearity of the trajectories
predicted by the SUSY holographic embedding, and it
allows us to determine the dependence of the slope λQ
on the heavy quark mass scale. The trajectory intercepts
are fixed by the lowest state in each trajectory, but
are determined later by the model in the Appendix.
Unfortunately, the data for heavy-light hadrons are
sparse, compared with those for light hadrons. Only
the D=Λc trajectory, Fig. 1(a) provides an independent
test for the predicted harmonic potential. Thus, future
data on heavy-light hadrons will be essential to test the
assumptions stated in Sec. I for the light-front holo-
graphic model described here.
In Fig. 3 the fitted values for

ffiffiffiffiffi
λQ

p
are presented for the

different trajectories. In the abscissa we indicate the lowest
mass meson for that meson-baryon trajectory. The triangles
indicate the fitted values, and the horizontal lines show the

0.2

0.4

0.6

0.8

1.0

1.2

Channel

Q
G

eV

FIG. 3. The fitted value of
ffiffiffiffiffi
λQ

p
for different meson-baryon

trajectories, indicated by the lowest meson state on that trajectory.
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mean over all channels of hadrons containing the same
heavy-light meson. For comparison, we also give the
corresponding values for a fit to the much more abundant
data for light hadrons [4]. It is obvious that the dispersion of
the data is significantly smaller for the case where the
model is approximately constrained by conformal sym-
metry, as compared to the case where it is strongly broken
by heavy quark masses, and only supersymmetry remains
as a constraint.

All of the results for the charmed hadrons are collected in
Table I; the predictions for bottom hadrons are summarized
in Table II. The slopes for charm hadrons are definitely
larger than those for the light hadrons, but they agree within
�10% for all charm hadrons. The agreement of the data
with the theoretical predictions from (29) is of the same
order as for light hadrons. The average deviation is 55 MeV,
but the data are rather sparse. The model, however, makes
predictions for higher orbital (and radial) excitations with

TABLE I. Charmed hadrons. The quark spin s is the total quark spin of the meson or the diquark cluster, λQ is the
fitted value for the trajectory and ΔM is the difference between the observed and the theoretical value according to
(29). The lowest lying meson mass determines de value of μ2 in (29) for each trajectory. We have added predictions
for unobserved states, marked with a question mark in the column ΔM, if only one superpartner has been observed
and for LM ≤ 2, LB ≤ 1.

Status Particle IðJPÞ Quark content Spin n, L
ffiffiffiffiffi
λQ

p
[GeV] ΔM [MeV]

obs Dð1869Þ 1
2
ð0−Þ cq̄ 0 0, 0 0.655 0

obs D1ð2400Þ 1
2
ð1þÞ cq̄ 0 0, 1 0.655 139

obs Λcð2286Þ 0ð1
2
þÞ cqq 0 0, 0 0.655 4

obs Λcð2595Þ 0ð1
2
−Þ cqq 0 0, 1 0.655 −36

obs Λcð2625Þ 0ð3
2
−Þ cqq 0 0, 1 0.655 −6

obs Λcð2880Þ 0ð5
2
þÞ cqq 0 0, 2 0.655 −59

pred D2ð2630Þ 1
2
ð2−Þ cq̄ 0 0, 2 0.655 ?

pred D2ð2940Þ 1
2
ð3þÞ cq̄ 0 0, 3 0.655 ?

obs D�ð2007Þ 1
2
ð1−Þ cq̄ 1 0, 0 0.736 0

obs D�
2ð2460Þ 1

2
ð2þÞ cq̄ 1 0, 1 0.736 −29

obs Σcð2520Þ 1ð3
2
þÞ cqq 1 0, 0 0.736 28

pred D�
3ð2890Þ 1

2
ð3−Þ cq̄ 1 0, 2 0.736 ?

pred Σcð2890Þ 1ð5
2
−Þ cqq 1 0, 1 0.736 ?

pred Σcð2890Þ 1ð3
2
−Þ cqq 1 0, 1 0.736 ?

pred Σcð2890Þ 1ð1
2
−Þ cqq 1 0, 1 0.736 ?

obs Dsð1958Þ 0ð0−Þ cs̄ 0 0, 0 0.735 0

obs Ds1ð2460Þ 0ð1þÞ cs̄ 0 0, 1 0.735 23

obs Ds1ð2536Þ 0ð1þÞ cs̄ 0 0, 1 0.735 73

obs Ξcð2467Þ 1
2
ð1
2
þÞ csq 0 0, 0 0.735 31

obs Ξcð2575Þ 1
2
ð1
2
þÞ csq 0 0, 0 0.735 113

obs Ξcð2790Þ 1
2
ð1
2
−Þ csq 0 0, 1 0.735 −67

obs Ξcð2815Þ 1
2
ð3
2
−Þ csq 0 0, 1 0.735 −41

pred Ds2ð2856Þ 0ð2−Þ cs̄ 0 0, 2 0.735 ?

obs D�
sð2112Þ 0ð1−Þ? cs̄ 1 0, 0 0.766 0

obs D�
s2ð2573Þ 0ð2þÞ? cs̄ 1 0, 1 0.766 −29

obs Ξcð2646Þ 1
2
ð3
2
þÞ csq 1 0, 0 0.766 28

obs D�
s3ð3030Þ 0ð3−Þ? cs̄ 1 0, 2 0.766 0

pred Ξcð3030Þ 1
2
ð5
2
−Þ csq 1 0, 1 0.766 ?

pred Ξcð3030Þ 1
2
ð3
2
−Þ csq 1 0, 1 0.766 ?

pred Ξcð3030Þ 1
2
ð1
2
−Þ csq 1 0, 1 0.766 ?
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an accuracy of approximately �100 MeV. The values for
the mean of the modulus of deviation between theoretical
and experimental values is 55 MeV, the standard error is
72 MeV; this deviation is comparable to that obtained for
light hadrons [3,4]. We have added in Table I the predicted
missing superpartners and all mesons with angular momen-
tum LM ≤ 2 and baryons with LB ≤ 1.
We have omitted the Σc and the Σb baryons from the

figures and the tables since it is not clear whether they
should be included in the same trajectories with the
pseudoscalar or the vector meson, as is discussed in more
detail at the end of the Appendix.

V. THE SCALE DEPENDENCE OF λQ FROM
HEAVY QUARK EFFECTIVE

THEORY (HQET)

It has been known for a long time [33], and has been
formally proved in HQET [16], that in the case of masses of

heavy mesonsMM, the product
ffiffiffiffiffiffiffiffi
MM

p
fM approaches, up to

logarithmic terms, a finite value

ffiffiffiffiffiffiffiffi
MM

p
fM → C; ð30Þ

TABLE II. Bottom hadrons. The notation is the same as for Table I.

Status Particle IðJPÞ Quark content Spin n, L
ffiffiffiffiffi
λQ

p
[GeV] ΔM [MeV]

obs Bð5279Þ 1
2
ð0−Þ bq̄ 0 0, 0 0.963 0

obs B1ð5721Þ 1
2
ð1þÞ bq̄ 0 0, 1 0.963 101

obs Λbð5620Þ 0ð1
2
þÞ bqq 0 0, 0 0.963 1

obs Λbð5912Þ 0ð1
2
−Þ bqq 0 0, 1 0.963 −28

obs Λcð5920Þ 0ð3
2
−Þ bqq 0 0, 1 0.963 −20

pred B2ð5940Þ 1
2
ð2−Þ cq̄ 0 0, 2 0.963 ?

obs B�ð5325Þ 1
2
ð1−Þ bq̄ 1 0, 0 1.13 0

obs B�
2ð5747Þ 1

2
ð2þÞ bq̄ 1 0, 1 1.13 −45

obs Σ�
bð5833Þ 1ð3

2
þÞ bqq 1 0, 0 1.13 44

pred B�
3ð6216Þ 1

2
ð3−Þ cq̄ 1 0, 2 1.13 ?

pred Σbð6216Þ 1ð5
2
−Þ cqq 1 0, 1 1.13 ?

pred Σbð6216Þ 1ð3
2
−Þ cqq 1 0, 1 1.13 ?

pred Σbð6216Þ 1ð1
2
−Þ cqq 1 0, 1 1.13 ?

obs Bsð5367Þ 0ð0−Þ bs̄ 0 0, 0 1.11 0
obs Bs1ð5830Þ 0ð1þÞ bs̄ 0 0, 1 1.11 16
obs Ξbð5795Þ 1

2
ð1
2
þÞ bsq 0 0, 0 1.11 −16

pred Bs2ð6224Þ 0ð2−Þ bs̄ 0 0, 2 1.11 ?
pred Ξbð6224Þ 1

2
ð1
2
−Þ bsq 0 0, 1 1.11 ?

pred Ξbð6224Þ 1
2
ð3
2
−Þ bsq 0 0, 1 1.11 ?

obs B�
sð5415Þ 0ð1−Þ? bs̄ 1 0, 0 1.16 0

obs B�
s2ð5840Þ 0ð2þÞ? bs̄ 1 0, 1 1.16 −55

obs Ξbð5945Þ 1
2
ð3
2
þÞ bsq 1 0, 0 1.16 55

pred B�
s3ð6337Þ 0ð3−Þ? bs̄ 1 0, 2 1.16 ?

pred Ξbð6337Þ 1
2
ð5
2
−Þ bsq 1 0, 1 1.16 ?

pred Ξbð6337Þ 1
2
ð3
2
−Þ bsq 1 0, 1 1.16 ?

pred Ξbð6337Þ 1
2
ð1
2
−Þ bsq 1 0, 1 1.16 ?

0 2 4 6 8 10

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

MM GeV

Q
G

eV

FIG. 4. The fitted value of λQ vs the meson massMM. The solid
line is the square root dependence (36) predicted by HQET.
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a relation which can also be derived using the light-front
holographic approach [17]. In the present holographic
framework this means that the confinement scale λQ has
to increase with increasing quark mass. Indeed, using the
results of the Appendix, we can write the decay constant
fM (A7) expressed through the wave function (A4)

fM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
1
0 dx e−m

2
Q=λð1−xÞ

q
ffiffiffiffiffiffiffiffiffiffiffi
2NCλ

p
π

×
Z

1

0

dx e−m
2
Q=2λð1−xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
; ð31Þ

where, for simplicity, we consider the case where m1 ¼ 0;
the heavy quark mass is m2 ¼ mQ.
We introduce ν2 ≡m2

Q=λ and use the saddle-point
method to evaluate the integral of the numerator for large
values of ν2. One expands the numerator around the value
x0 ¼ 1

ν2
þOð 1

ν4
Þ, where the integrand is maximal and

obtains:

e−
1
2
ν2=ð1−xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞ
p

¼ e−ν
2=2−log ν−1=2þOð1νÞe1

4
ðx−x0Þ2ðm4þOðν2ÞÞ: ð32Þ

This Gaussian integral yields:

Z
1

0

dx e−
1
2
ν2=ð1−xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1 − xÞ
p

¼ e−ν
2=2ffiffiffiffiffiffiffi
eν2

p π

ν2

�
1þ erf

�
1

2

��
:

ð33Þ

The integral in the denominator of (31) can be performed
analytically

Z
1

0

dx e−ν
2=ð1−xÞ ¼

Z
∞

1

dy
y2

e−ν
2y

¼ e−ν
2 − ν2Γ

�
0;

1

ν2

�

¼ e−ν
2

�
1

ν2
þO

�
1

ν4

��
: ð34Þ

Thus in the large mQ limit:

fM ¼
ffiffiffi
6

e

r �
1þ erf

�
1

2

��
λ3=2

m2
Q
: ð35Þ

In the limit of heavy quarks the meson mass equals the
quark mass. From the HQET relation (30) it follows that

λQ ¼ constmQ; ð36Þ

where the constant in (36) has the dimension of mass. This
corroborates our statement that the increase of λQ with
increasing quark mass is dynamically necessary. In Fig. 4
we show the value of λQ for the π, K, D, and B mesons as
function of the meson massMM. From the difference of the
values of

ffiffiffiffiffiffiffiffi
MM

p
fM for the D and B mesons (see

Appendix A, Table III) we must conclude that, in this
region, we are still far away from the heavy quark regime. It
is nevertheless remarkable that the simple functional
dependence (36) derived in the heavy quark limit predicts
for the c quark a value

ffiffiffiffiffi
λc

p ¼ 0.653 GeV–after fixing the
proportionality constant in (36) at the Bmeson mass, which
is indeed at the lower edge of the values obtained from the
fit to the trajectories (0.655 to 0.766 GeV). It makes no
sense to apply HQET below the mass of the MD. Indeed,
there is no sign of an increase of

ffiffiffi
λ

p
between the π and

K mass.

VI. SUMMARY AND CONCLUSIONS

In this article we have extended light-front holographic
QCD to heavy-light hadrons by using the embedding of
supersymmetric quantum mechanics in a modified higher
dimensional space asymptotic to AdS. Remarkably, this
embedding not only yields supersymmetric relations
between mesons and baryons, but it also determines the
superconformal potential and thus the effective potential in
light-front holographic QCD. If one introduces for mesons
the breaking of the maximal symmetry of AdS5 by a dilaton
term, as it is usually done, one finds that only a quadratic
dilaton profile is compatible with the supersymmetric
potential; thus, a harmonic LF potential again emerges,
as is the case for light quark hadrons. This implies linear
trajectories not only for light hadrons, but also for the
heavy-light mesons and baryons. Although the experimen-
tal data are sparse, the existing data are not in contradiction
with this linearity; however, future data on heavy-light

TABLE III. Leptonic decay constants. Second row: the phenomenological values; third row: theoretical values obtained from (A9)
with the unmodified wave function (A4) and the fitted heavy quark masses mc ¼ 1547, mb ¼ 4922 MeV; last row: theoretical values
obtained with the modified wave function with the scale factor α ¼ 1

2
in (A10). The fitted masses are mc ¼ 1327, mb ¼ 4572 MeV.

Decay const. [MeV] fK fD fDs fB fBs
fDs
fD

fBs
fB

Phenomenology 155 212 249 187 227 1.17 1.22
Unmodified w.f. 152 127 159 81 117 1.25 1.44
Modified w.f. � � � 199 216 194 229 1.09 1.18
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hadrons will be critical to test the dynamical assumptions
described here.
In our approach the heavy quark influences the trans-

verse degrees of freedom only indirectly by modifying the
strength of the harmonic potential; this modification cannot
be determined from supersymmetry. However, the depend-
ence of the confinement scale on the heavy quark mass can
be calculated in HQET, and it is in agreement with the
observed increase. Indeed, HQET is compatible with the
light-front holographic approach to hadron physics [17].
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APPENDIX: WAVE FUNCTIONS AND
DISTRIBUTION AMPLITUDES

As mentioned above, the additional term μ2 in Eq. (29)
for light hadrons was given in [4] in terms of the internal
spin and the quark masses of the constituents. The spin
interaction term has the simple form 2λs, where s is the
quark spin of the meson or the quark spin of the diquark
cluster in the baryon, respectively. There is, however a
problem with the cluster spin assignment of the Σc and Σb,
as explained at the end of this appendix.
In order to estimate the influence of the quark masses and

also to evaluate the decay constants fM, which play a
crucial role in Sec. V, we need to have a good description of
the wave functions of the hadrons. We found for a hadron
with LF angular momentum L and radial excitation number
n [8]

ψ ð0Þ
n;L ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞ

p
ζLLL

n ðjλjζ2Þe−jλjζ2=2; ðA1Þ

with normalization

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πðnþ LÞ!

n!

r
jλj−ðLþ1Þ=2: ðA2Þ

Here, LL
n are the associated Laguerre Polynomials,

and ζ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp jb⊥j.

LFHQCD gives us no hints on the longitudinal
dynamics, so we have constructed the wave function for
hadrons with light quarks of mass mi by the principle that
the wave function is determined by the invariant mass of the
constituents

Xn
i¼1

k2⊥i þm2
i

xi
; ðA3Þ

where k⊥i is the transverse momentum of the constituent i.
This leads to the effective wave function for hadrons with
small quark masses:

ψ ðmÞ
n;L ¼ 1

Nm
e−

1
2λΔm

2

ψ ð0Þ
n;L; ðA4Þ

with

Δm2 ¼
Xn
i¼1

m2
i

xi
: ðA5Þ

It is certainly not realistic to assume that these wave
functions, derived under the assumption of small quark
masses, can be simply extrapolated to heavy-light hadrons.
But on the other hand, the embedding of the supersym-
metric theory into modified AdS demands that the quark
masses enter only indirectly through the confining (trans-
verse) dynamics, namely by a change of the confinement
scale λ. We therefore apply, in an exploratory way, the
procedure developed for light quarks [8] to determine also
the masses of hadrons containing a heavy quark.
According to [4] the set of constants μ2 in (29) are given

in first approximation by

μ2 ¼ 2λsþ ΔM2½m1;…; mn�; ðA6Þ

where the first term is the spin term discussed above and

ΔM2½m1;…; mn� ¼
λ2

F
dF
dλ

with F½λ� ¼ R
1
0 …

R
x1…xne−

1
λΔm

2

δðPn
i¼1 xi − 1Þ, is the

effective quadratic mass correction for hadrons used in
Refs. [4,8], with n ¼ 2 for mesons and n ¼ 3 for baryons.
Since λQ has been determined in the fit to the trajectories

and the light quark masses are known from the fits to light
hadrons [8], the only free parameter in these formulas is the
effective heavy quark mass, mQ. For hadrons containing a
charm quark, the best fit to the eight ground states of the
trajectories yields mc ¼ 1547 MeV, for the bottom quark
mass one obtains correspondingly mb ¼ 4922 MeV.
The quality of the fit is worse than that to the trajectories;
the standard deviation is 95 MeV.
A more severe test for the adequacy of the wave

functions are the leptonic decay constants. The leptonic
decay constant of a pseudoscalar meson M samples the
light-front wave function at small distances and is a very
sensitive test for the wave function. Its exact computation is
given in terms of the valence light-front wave function
[34,35]

fM ¼ 2
ffiffiffiffiffiffiffiffiffi
2NC

p Z
1

0

dxϕðxÞ; ðA7Þ

where

ϕðxÞ ¼
Z

d2k⊥
16π3

ψðx;k⊥Þ; ðA8Þ
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is the distribution amplitude (DA). Since ϕðxÞ ¼
ψðx;b⊥ ¼ 0Þ= ffiffiffiffiffiffi

4π
p

, we can write fM in terms of the
LFWF at zero transverse impact distance:

fM ¼
ffiffiffiffiffiffiffiffiffi
2NC

π

r Z
1

0

dxψðx;b⊥ ¼ 0Þ; ðA9Þ

which is identical with the result first obtained by van
Royen and Weisskopf [36].
The decay constants fM of the heavy-light mesons are

not directly observable since the leptonic decay rates also
depend on the matrix elements of the weak decay of heavy
quarks. There are, however, many phenomenological
results, notably from QCD sum rules and lattice calcu-
lations, which give a fairly consistent picture. We present in
Table III, second row, the results from [32], Leptonic
decays of charged pseudoscalar mesons. For completeness
we have also included the K meson.
The results for the decay constants obtained from (A9)

with the wave function (A4) are displayed in Table III, third
row, “Unmodified w.f.”. Though qualitative features are
reproduced, the magnitude of the decay constants is grossly
underestimated with increasing heavy quark mass. This is
due to the fact that the heavy quark carries most of the
longitudinal momentum, as it is formally expressed through
the xi dependent exponent Δm2 (A5) in (A4). If the heavy
quark mass m2 increases, then x is pushed to very small
values; this suppresses the decay constant fM. Since this

suppression is evidently too strong, an easy remedy is to
multiply the heavy quark mass in the exponential (A5) of
the wave function (A4) by a factor α < 1; thus, we modify

e
− 1

2λ

m2
Q

xQ → e
− α2

2λ

m2
Q

xQ ; ðA10Þ

in the LF wave function for the heavy quark with mass mQ

and longitudinal momentum xQ.
The result for α ¼ 1

2
is shown in Table III, last row,

“Modified w.f.”. The improvement from errors between
40% and 60% to errors between 3% and 8% is dramatic,
and, most important, there is no sign of an increasing
discrepancy with increasing quark mass. Since the quantity
α is mass independent, it does not affect the conclusions
from HQET, drawn in Sec. V, notably the relation (36);
only the value of mQ in (35) has to be multiplied by
α ¼ 1

2
. The values for the quark masses, obtained from

a fit to the data with this modified wave function, are
mc ¼ 1.327 GeV and mb ¼ 4.572 GeV. The fit is slightly
worse than that with the unmodified wave function (A4);
the standard deviation is 125 MeV.
In Fig. 5 we show the distribution amplitude (A8) for the

chiral case and for the heavy pseudoscalar mesons;
the dotted lines for the heavy mesons correspond to the
unmodified wave function (A4), and the solid ones are
obtained from the modified wave function with the scale
factor α ¼ 1

2
in (A10).
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FIG. 5. Distribution amplitudes for pseudoscalar mesons. From top to bottom: Chiral case,Dmeson and B meson. The dotted line for
the D and B mesons is obtained with the unmodified wave function (A4), the solid line with the modified wave function with the scale
factor α ¼ 1

2
in (A10).
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The increasing discrepancy between the longitudinal
momentum of the light constituents and that of the heavy
quark, with increasing quark mass, could provide a
plausible explanation of why the Σc and Σb do not fit
on the trajectories for a pseudoscalar meson. In this case a
scalar diquark cluster can be formed only by the heavy and
a light quark, whereas the cluster formed of two light
quarks has isopin 1 and hence quark spin 1. The trajectories
for the pseudoscalar mesons are characterized by s ¼ 0;

hence, they are matched to baryons of scalar diquarks. Due
to the increasing difference between the longitudinal
momenta, the formation of a heavy-light cluster becomes
less and less probable with increasing heavy quark
mass. This is also observed: The mass difference δM
between the Σ�

b, which must contain a spin 1 cluster,
and the Σb is δM ¼ 20 MeV; in contrast, the Σ�

cð2520Þ,
which must contain a spin 1 cluster, and the Σcð2455Þ
is δM ¼ 65 MeV.
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