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The reaction γN → ηN is studied in the high-energy regime (with photon lab energies Elab
γ > 4 GeV)

using information from the resonance region through the use of finite-energy sum rules. We illustrate how
analyticity allows one to map the t dependence of the unknown Regge residue functions. We provide
predictions for the energy dependence of the beam asymmetry at high energies.
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I. INTRODUCTION

Pseudoscalar-meson photoproduction on the nucleon is
of current interest for hadron reaction studies. At low
energies it provides information about the nucleon spec-
trum [1–7] while at high energies it reveals details of the
residual hadron interactions due to cross-channel particle
(Reggeon) exchanges [8]. These two regimes are analyti-
cally connected, a feature that can be used to relate properties
of resonances in the direct channel to Reggeons in the cross
channels. In practice this can be accomplished through
dispersion relations and finite-energy sum rules (FESR) [9].
In the resonance region there is abundant data on η

photoproduction on both proton and deuteron targets
including polarization measurements (see for example
Refs. [10–15]). On the other hand, for higher energies
(Elab > 4 GeV), only the unpolarized differential cross
section has been measured [16,17], providing little con-
straint on theoretical models. However, this is about to
change thanks to the forthcoming data from the GlueX
experiment at Jefferson Lab [18,19].
Even though photons couple to both isospin I ¼ 0, 1

states, there are some notable differences between high-
energy photoproduction of the η (I ¼ 0) and the π0 (I ¼ 1).
The neutral pion differential cross section has a dip in the
momentum transfer range, −t ∼ 0.5–0.6 GeV2, whereas
the ηmeson differential cross section is rather smooth there.
The dip in neutral pion photoproduction is likely to be

associated with zeros in the residues of the two dominant
Regge exchanges, the ρ and the ω [20–22]. It is an open
question, however, what mechanisms are responsible for
filling in the dip in eta photoproduction. It is often assumed
that large unnatural contributions come into play [23–26].
Finite-energy sum rules can provide clues here by relating
the t dependence of Regge amplitudes to that of the low-
energy amplitude, usually described in terms of a finite
number of partial waves. Early attempts could not resolve
this issue due to the low quality of the data and the large
uncertainties in the parametrization of the partial waves
[24,25]. Nowadays, however, there are several models that
have been developed for the resonance region of η photo-
production [1–4,7] allowing for a more precise FESR
analysis. Our main objective is to settle the discussion
on the dip mechanism by invoking information from the
low-energy regime. To this end, a Regge-pole model is
fitted to the available high-energy cross-section data and
compared to low-energy models through FESR. This work
on η photoproduction and ongoing work on π0 photo-
production [27] will set the stage for a combined low- and
high-energy analysis of related reactions.
As we discuss in this paper, the largest uncertainty in η

photoproduction stems from the unnatural parity Regge
exchanges that in principle can be isolated through the
photon beam asymmetry measurement. Such measurement
will soon be published by the GlueX Collaboration. The
experiment uses linearly polarized photons with energy
Elab
γ ∼ 9 GeV, and it has simultaneously measured η and π0

production. These novel high-energy data will help to*Jannes.Nys@UGent.be
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reduce the systematic uncertainties and to provide a better
constraint on Regge amplitudes for these reactions.
Through the FESR analysis of η photoproduction we make
new predictions based on the hypothesis of Regge-pole
dominance to be compared with the forthcoming result
from GlueX.
This paper is organized as follows. In Sec. II we discuss

the formalism and set up all conventions with further details
given in the Appendixes. Central to Regge theory, the topic
of factorization is introduced in Sec. III. Section IV focuses
on the dispersion relation used in the derivation of the
FESR. The latter is presented in Sec. V. In Sec. VI we
present the method used to analytically continue the low-
energy amplitudes below the physical threshold which is
needed in the calculation of the dispersive integral. The
predictions arising from the low-energy side of the FESR,
i.e. left-hand side (LHS) of the sum rules, are discussed in
Sec. VII and compared to the high-energy data and the
Regge model in Sec. VIII. The interpretation of the results
and further development of the Regge model, in which we
discuss possible contributions from the enigmatic ρ2 andω2

exchanges, is given in Sec. IX. Our conclusions are
summarized in Sec. X.

II. FORMALISM: SCALAR AMPLITUDES

We describe the kinematics of η photoproduction on a
nucleon target, the s-channel reaction,

γðk; μγÞ þ Nðpi; μiÞ → ηðqÞ þ N0ðpf; μfÞ; ð1Þ
by specifying particle four-momenta and helicities. We use
MN and μ to denote the nucleon and ηmasses, respectively.
For all other particles we denote their masses by mx.
Throughout this paper we use the standard Mandelstam
variables

s¼ðkþpiÞ2; t¼ðk−qÞ2; u¼ðk−pfÞ2; ð2Þ

related by sþ tþ u ¼ Σ ¼ 2M2
N þ μ2. We refer to

Appendix A for further details on the kinematics. The u
channel, in which the variable u represents the physical
center-of-mass energy squared of the γN̄ → ηN̄ reaction, is
related to the s channel by charge conjugation. To make this
symmetry explicit, we use the crossing variable

ν ¼ s − u
4MN

¼ s
2MN

þ t − Σ
4MN

¼ Elab þ
t − μ2

4MN
: ð3Þ

Hence, the t channel corresponds to γη → N̄N. In order
to formulate the dispersion relations, it is necessary to
isolate and remove kinematical singularities. For this
reason, it is convenient to work with the invariant ampli-
tudes that are kinematic singularity free functions of the
Mandelstam invariants. These amplitudes multiply four
independent covariant tensors that contain the kinematical
singularities. The tensor basis is constructed by combining

the photon polarization vector ϵμ ≡ ϵμðk; μγÞ and particle
momenta [28],

M1 ¼
1

2
γ5γμγνFμν; ð4Þ

M2 ¼ 2γ5qμPνFμν; ð5Þ
M3 ¼ γ5γμqνFμν; ð6Þ

M4 ¼
i
2
ϵαβμνγ

αqβFμν: ð7Þ

Here P ¼ ðpi þ pfÞ=2 and Fμν ¼ ϵμkν − kμϵν. In terms of
these covariants the s-channel amplitude is given by

Aμf;μiμγ ¼ ūμfðpfÞ
�X4

k¼1

AkMkðμγÞ
�
uμiðpiÞ; ð8Þ

where the Ak stand for the kinematic singularity and zero
free amplitudes which contain the dynamical information
on resonances and Regge exchanges. It is convenient to
decompose the invariant amplitudes in terms of amplitudes
with well-defined isospin in the t channel, As and Av for
I ¼ 0 and I ¼ 1, respectively,

Aab
i ¼ As

iδ
ab þ Av

i τ
ab
3 ; ð9Þ

where a and b are the isospin indices of the two nucleons.
Hence,

Ap
i ¼ Aiðγp → ηpÞ ¼ As

i þ Av
i ; ð10aÞ

An
i ¼ Aiðγn → ηnÞ ¼ As

i − Av
i : ð10bÞ

We will use the collective notation Aσ
i for the isospin

components (σ ¼ s, v). For isoscalar, e.g. η meson photo-
production, the s and u channels correspond to fixed
I ¼ 1=2. It follows from the symmetry properties of the
covariantsMi under s ↔ u crossing that the amplitudes Aσ

i
with i ¼ 1, 2, 4 (i ¼ 3) are even (odd) functions of ν, i.e.

Aσ
i ð−ν − iϵ; tÞ ¼ ξiAσ

i ðνþ iϵ; tÞ; ð11Þ
with ξ1 ¼ ξ2 ¼ −ξ3 ¼ ξ4 ¼ 1 and ϵ > 0. The t-channel
quantum numbers of the invariant amplitudes can be
identified by projecting onto the t-channel parity-conserving
helicity amplitudes. The latter can be decomposed in terms
of the L − S basis allowing for identification of the spin and
parity (see Ref. [22] and references therein). For γN → ηN,
we list the invariant amplitudes in Table I together with the
corresponding quantum numbers and possible t-channel
exchanges. We note that the amplitude A0

2 ¼ A1 þ tA2,
instead of A2, has good t-channel quantum numbers [22].
We will work with the set of amplitudes ðA1; A0

2; A3; A4Þ
which allow us to separate natural from unnatural parity
t-channel contributions. The γη state couples to C ¼ −1
exchanges in the t channel, which for the NN̄ state implies
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C ¼ ð−1ÞLþS ¼ −1. For the NN̄ state, parity is given by
P ¼ ð−1ÞLþ1. Thus, for positive parity the total angular
momentum is odd (J ¼ L), while for negative parity, J is
either odd or even (J ¼ L� 1, L). Furthermore, since C ¼
−1 the NN̄ state has G-parity equal to −1 for I ¼ 0 andþ1
for I ¼ 1. Beside known resonances, t-channel exchanges
with JPC ¼ ð2; 4;…Þ−− are also allowed, but no mesons
with these quantum numbers have been clearly observed1 to
date [31]. These quantum numbers are not exotic (only the
0−− is), and both the quark model and lattice QCD results
predict the existence of such states [32,33]. At high energies
the dominant t-channel contributions in η photoproduction
are expected from the natural exchanges,which according to
Table I feed into the A1 and A4 amplitudes. The C-parity
conservation prohibits exchanges of the signature partners
of the ρ andω, the a2ð1320Þ and f2ð1270Þ, respectively. The
amplitudes for isovector exchanges (ρ, b, and ρ2) on proton
and neutron differ by sign. Schematically, the net contri-
bution of t-channel exchanges considered here is given by

γp → ηp; A ¼ ðωþ hþ ω2Þ þ ðρþ bþ ρ2Þ; ð12Þ

γn → ηn; A ¼ ðωþ hþ ω2Þ − ðρþ bþ ρ2Þ: ð13Þ

At large s the expression for the differential cross section
and the photon beam asymmetry (Σ) simplifies and in terms
of the scalar amplitudes is given by

dσ
dt

¼ 1

32π
ðjA1j2 − tjA4j2 þ jA0

2j2 − tjA3j2Þ; ð14Þ

Σ
dσ
dt

¼ 1

32π
ðjA1j2 − tjA4j2 − jA0

2j2 þ tjA3j2Þ; ð15Þ

while the exact expression for the differential cross section
reads

dσ
dt

¼ 1

64πsjkj2
1

2

X
μf;μi¼�

jAμf;μi1j2; ð16Þ

since negative photon helicities are related by parity
conservation.

III. TESTS OF FACTORIZATION

One of the main purposes of this paper is to investigate
whether the high-energy data can be described entirely in
terms of factorizable Regge poles [34], or whether other
contributions are needed. Specifically we investigate the
implications of angular-momentum conservation which
gives a stronger constraint onRegge amplitudes as compared
to its implications for the scattering amplitude in general. In
the s → ∞ limit, s-channel angular-momentumconservation
implies that the s-channel helicity amplitudes in Eq. (8) have
the following behavior as t → 0 (see Appendix B):

Aμf;μiμγ ∼t→0
ð−tÞn=2; ð17Þ

where n ¼ jðμγ − μiÞ − ð−μfÞj ≥ 0 is the net s-channel
helicity flip. This is a weaker condition than the one imposed
by angular-momentum conservation on factorizable Regge
amplitudes,

Aμf;μiμγ ∼t→0
ð−tÞðnþxÞ=2; ð18Þ

where nþ x ¼ jμγj þ jμi − μfj ≥ 1. We summarize the
expected behavior for the four independent helicity ampli-
tudes in Table II. It can be seen that when factorization is
imposed, all helicity amplitudes in the Regge-pole model
vanish at t ¼ 0. If only the condition given in Eq. (17) is
imposed, the s-channel nucleon helicity flip amplitudeA−;þ1

can be finite at t ¼ 0.
At leading order in s, and for small jtj, the s-channel

helicity amplitudes are related to the invariantsAi by [22,24]

1ffiffiffi
2

p
s
ðAþ;þ1 þ A−;−1Þ ¼

ffiffiffiffiffi
−t

p
A4; ð19Þ

1ffiffiffi
2

p
s
ðAþ;−1 − A−;þ1Þ ¼ A1; ð20Þ

1ffiffiffi
2

p
s
ðAþ;þ1 − A−;−1Þ ¼

ffiffiffiffiffi
−t

p
A3; ð21Þ

1ffiffiffi
2

p
s
ðAþ;−1 þ A−;þ1Þ ¼ −A0

2 ¼ −ðA1 þ tA2Þ: ð22Þ

TABLE I. Invariant amplitudes Ai with corresponding t-chan-
nel exchanges. I is isospin, G is G-parity, J is total spin, P is
parity, C is charge conjugation, and η ¼ Pð−1ÞJ is the naturality.
Ai IG JPC η Leading exchanges

A1 0−, 1þ ð1; 3; 5;…Þ−− þ1 ρð770Þ, ωð782Þ
A0
2 0−, 1þ ð1; 3; 5;…Þþ− −1 h1ð1170Þ, b1ð1235Þ

A3 0−, 1þ ð2; 4;…Þ−− −1 ρ2ð??Þ, ω2ð??Þ
A4 0−, 1þ ð1; 3; 5;…Þ−− þ1 ρð770Þ, ωð782Þ

TABLE II. Behavior of the s-channel helicity amplitudes Aμf ;μi1
for given nucleon helicities, as predicted by Eqs. (17) and (18).

Aμf ;μi1 n nþ x

A−;−1 1 1
A−;þ1 0 2
Aþ;−1 2 2
Aþ;þ1 1 1

1There are some experimental indications of the existence
of ρ2 and ω2 mesons [29,30]. However, these states are observed
by a single group, are poorly established, and thus need
confirmation [31].

FINITE-ENERGY SUM RULES IN ETA … PHYSICAL REVIEW D 95, 034014 (2017)

034014-3



Thus, at high energies the invariants A3 and A4 (A1 and A0
2)

correspond to the s-channel nucleon-helicity nonflip (flip),
respectively. Combining Eqs. (20) and (22) we obtain

A−;þ1 ¼ −
sffiffiffi
2

p ðA0
2 þ A1Þ: ð23Þ

We find that angular-momentum conservation does not
require any of the invariant amplitudes Ai to vanish at
t ¼ 0, but the stronger condition of Eq. (18) implies that the
Regge residues of A1 and A0

2 ought to vanish.
The FESR can be used to test factorization by relating the

t ¼ 0 behavior of the high-energy amplitudes to the behav-
ior at low energy, obtained for example from a phase-shift
analysis.

IV. DISPERSION RELATIONS

We assume that the scalar amplitudes have only the real
axis dynamical cuts imposed by unitarity, and we write the
dispersion relations for Aσ

i ðν; tÞ at constant t using the
contour in the ν plane shown in Fig. 1.
In Fig. 1 we identify the nucleon pole and a cut starting

from the πN threshold. We relate the residues of the s- and
u-channel poles to the phenomenological couplings by
identifying them with the Born terms calculated using an
effective Lagrangian [35] as shown in Fig. 2,

LγNN ¼ −eN̄γμ
1þ τ3

2
NAμ þ e

4MN
N̄ðκs þ κvτ3ÞσμνNFμν;

ð24Þ

LηNN ¼ −iζgηNNN̄γ5Nϕη þ ð1 − ζÞ gηNN

2MN
N̄γμγ5N∂μϕη;

ð25Þ
where κs ¼ 1

2
ðκp þ κnÞ and κv ¼ 1

2
ðκp − κnÞ are the iso-

scalar and isovector nucleon anomalous magnetic moments

and σμν ¼ i
2
½γμ; γν�. The two limiting cases are the ζ ¼ 0

pseudovector and ζ ¼ 1 pseudoscalar coupling. The role of
these two couplings has been explored in dynamical
models for the scattering amplitude based on effective
Lagrangians [35–37]. In the Born terms, however, the
difference between the two interactions leads to a nonpole
contribution that does not contribute to the on-shell
scattering amplitude for which the dispersion relation is
written. The derivative term reduces indeed to the other one
upon use of the equation of motion.
For the Born terms the two diagrams in Fig. 2 give (see

Appendix C)

Aσ;pole
1 ðν; tÞ ¼ egηNN

4MN

�
1

ν − νN
−

1

νþ νN

�
; ð26Þ

Aσ;pole
2 ðν; tÞ ¼ −

egηNN

4M2
N

�
1

ðν − νNÞðνþ νNÞ
�

¼ −
egηNN

ðt − μ2Þ2MN

�
1

ν − νN
−

1

νþ νN

�
; ð27Þ

Aσ;pole
3 ðν; tÞ ¼ −

egηNN

MN

κσ

4MN

�
1

ν − νN
þ 1

νþ νN

�
; ð28Þ

Aσ;pole
4 ðν; tÞ ¼ −

egηNN

MN

κσ

4MN

�
1

ν − νN
−

1

νþ νN

�
; ð29Þ

where νN ¼ ðt − μ2Þ=ð4MNÞ. The coupling gηNN is less
known than gπNN . Using the latter and SU(3) symmetry one
finds g2ηNN=4π ¼ 0.9–1.8 (where the uncertainty is induced
by the uncertainty on the F=D ratio) [35,38]. On the other
hand, from fits to the η photoproduction data using effective
and chiral Lagrangian models [36,37], one obtains a
smaller value, g2ηNN=4π ¼ 0.4–0.52. Similar results are
found in the quark models of Refs. [39,40], while other
constituent-quark models find an even smaller value,
g2ηNN=4π ¼ 0.04 [41]. In the following we choose
g2ηNN=4π ¼ 0.4 as a canonical value. On the real axis the
dispersion relations for (ξi¼1;2;4 ¼ þ1) are given by

ReAσ
i ðν; tÞ ¼ Bσ

i ðtÞ
2νN

ν2N − ν2
þ 2

π
P
Z þ∞

νπ

ν0
ImAσ

i ðν0; tÞ
ν02 − ν2

dν0;

ð30Þ

and for (ξi¼3 ¼ −1) by

FIG. 1. Contour in the complex ν plane used for the dispersion
relations. The s- and u-channel nucleon poles and πN threshold
and cut are shown.

FIG. 2. Nucleon pole contributions to the dispersion relations.
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ReAσ
i ðν; tÞ ¼ Bσ

i ðtÞ
2ν

ν2N − ν2
þ 2ν

π
P
Z þ∞

νπ

ImAσ
i ðν0; tÞ

ν02 − ν2
dν0:

ð31Þ
The residues Bσ

i ðtÞ of the nucleon poles are tabulated in
Table III.

V. FINITE-ENERGY SUM RULES

For the high-energy part of the amplitude, we use a
Regge parametrization. The contribution of a Regge pole
with signature τ ¼ ð−1ÞJ to scalar amplitudes Ai is given
by [42]

Ai;Rðν; tÞ ¼ −βiðtÞ
τðriνÞαðtÞ þ ð−riνÞαðtÞ

sin παðtÞ ðriνÞ−1; ð32Þ

¼ −βiðtÞ
τ þ e−iπαðtÞ

sin παðtÞ ðriνÞαðtÞ−1; ð33Þ

where Eq. (33) is the reduction on the real axis of the more
general expression in Eq. (32). The ri is a scale parameter
of dimension GeV−1 and the residues βiðtÞ are dimension-
less. Under crossing

Ai;Rð−ν; tÞ ¼ −τAi;Rðν; tÞ; ð34Þ
where τ ¼ −1 (þ1) for vector (tensor) exchanges. The
Ai ∼ να−1 behavior corresponds to the typical να behavior
for the s-channel helicity amplitudes [see Eqs. (19)–(22)].
Regge theory does not determine the residues βðtÞ
uniquely. They can be fixed, for example by comparing
with the data. It follows from unitarity, however, that in the
s-channel physical region, both βðtÞ and αðtÞ are real. The
Regge amplitudes in Eq. (32), being analytical functions of
ν, can be represented via a dispersive integral,

ReAσ
i;Rðν; tÞ ¼

1

π
P
Z þ∞

0

ImAσ
i;Rðν0; tÞ

�
1

ν0 − ν
þ ξi
ν0 þ ν

�
dν0:

ð35Þ
If, for a particular energy Λ, the scalar amplitudes Aσ

i
can be approximated by the Regge form Aσ

i ðν; tÞ ¼
Aσ
i;Rðν; tÞ for ν > Λ, then Eqs. (30), (31), and (35) lead

to the FESR [43],

πBσ
i ðtÞ
Λ

�
νN
Λ

�
k
þ
Z

Λ

νπ

ImAσ
i ðν0; tÞ

�
ν0

Λ

�
k dν0

Λ

¼ βσi ðtÞ
ðriΛÞαðtÞ−1
αðtÞ þ k

; ð36Þ

which are used for even (odd) integer k corresponding to
ξi ¼ −1 (ξi ¼ 1), respectively. The energy Λ denotes the
transition energy between the low- and high-energy regimes.
In order to derive Eq. (36), one expands the combination of
Eqs. (30), (31), and (35) in powers of ν0=ν < 1 (since ν0 < Λ
and ν > Λ), after which the result follows from the condition
for the coefficients of ð1=νÞk. Hence, in principle Eq. (36) is
satisfied for all even (odd) integer k for each crossing odd
(even) invariant amplitude. Alternatively, one can derive
continuous-moment sum rules which also require the real
part of the low-energy amplitude [44,45]. The LHS of the
FESR is a function of t determined by the low-energy
behavior of the scattering amplitude. The right-hand side
(RHS) is a function of t determined by the high-energy
behavior, which we parametrize by Regge poles. Amplitude
zeros or other features of the t dependence seen on the LHS
side will be linked to the residue functions βðtÞ.

VI. SUBTHRESHOLD CONTINUATION

The integral on the LHS of the FESR of Eq. (36) starts at
the lowest s-channel threshold, i.e. the πN threshold, and it
is necessary to analytically continue the scalar amplitudes
below the physical ηN threshold (see Fig. 3).
Low-energy parametrizations that are currently available

are based on the partial-wave series expansion. The series
diverges in the unphysical domain and approximations
are required. In the following we collectively denote
the electric (El�) and magnetic (Ml�) multipoles, by

z = +1

z = –1

N N N

0.0 0.5 1.0 1.5
–1.0

–0.8

–0.6

–0.4

–0.2

0.0

(GeVv )

t(
G

eV
2
)

FIG. 3. Overview of the kinematic domains. The red band is the
unphysical subthreshold region where we continue the ampli-
tudes. The solid red lines indicate the πN and ηN branch points atffiffiffi
s

p ¼ 1.07 GeV and 1.49 GeV, respectively. The red dashed line
shows the nucleon pole. The solid black lines show the bounda-
ries tðzs ≡ cos θ ¼ �1Þ of the physical domain, which is in-
dicated by the dark shade. The white domain between the ηN and
physical boundary lines shows the unphysical domain above
threshold where we use the multipole expansion to reconstruct the
amplitudes. The black dashed line shows the upper boundary Λ of
the low-energy dispersion integral in Eq. (36).

TABLE III. Pole contributions to the dispersion relations in
Eqs. (30) and (31).

σ ¼ s σ ¼ ν

Bσ
1 − egηNN

4MN
− egηNN

4MN
e ¼ 0.303

Bσ
2

egηNN

2MN

1
t−μ2

egηNN

2MN

1
t−μ2 g2ηNN=4π ¼ 0.4

Bσ
3

egηNN

4MN

κs

MN

egηNN

4MN

κv

MN
κs ¼ −0.065

Bσ
4

egηNN

4MN

κs

MN

egηNN

4MN

κv

MN
κv ¼ 1.845
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Ml�. Specifically, we use the η-MAID 2001 [4] model and
an approach similar to Ref. [46] to continue the multipoles
in s ¼ W2. For individual moments we identify resonances
that give the dominant contributions close to threshold and
continue them below threshold using the Breit-Wigner
parametrization used in the η-MAID 2001 model [4]. The
formalism is summarized in Appendix D. At the ηN
threshold, the multipoles behave as Ml� ∼

jqj→0
jqjl, where

q is the relative three-momentum in the ηN center-of-mass
frame, and from Eq. (A5) it follows that cos θjqj is linear in
t and finite at threshold (except on the boundary of the
physical region where it is 0). Thus, even though individual
multipoles are suppressed at threshold they give a finite
contribution at fixed t. Some multipoles are dominated at
threshold by a well-known resonance. For example, in the
ηN photoproduction channel, the E0þ is substantial at
threshold in the physical region due to the S11ð1535Þ
resonance, which couples strongly to the ηN channel.
But there are also multipoles where it is not clear how
much they should contribute below the ηN threshold. In
practice, we identify the main multipole contributions to the
invariant amplitudes at the ηN threshold, and we continue
them below threshold until no discontinuities are notable at
threshold within the considered domain 0 ≤ −t ≤ 1 GeV2.
We hereby start from the lowest multipole order l ¼ 0 and
add subthreshold-continued higher-order multipoles until
the invariant amplitudes below the ηN threshold (generated
from a lower number of partial waves) sufficiently repro-
duce the amplitudes at threshold. The resulting isospin
components of the continued invariant amplitudes are
shown in Fig. 4. We note that the continuation becomes
less reliable as −t increases, and we restrict the analysis to
the range 0 ≤ −t ≤ 1 GeV2.

VII. LEFT-HAND SIDE OF THE FESR

We proceed with the discussion of the LHS of the FESR
(36). Various features of the observed t dependence will be

analyzed in the context of the Regge parametrization in the
following section.
To compute the LHS we use a single parametrization for

the low-energy amplitudes from the η-MAID 2001 model
[4]. Three main restrictions hinder the use of other available
models. First, the sum rules in Eq. (36) require isospin
decomposable amplitudes, meaning that a proton and
neutron version of the low-energy model must be available.
Second, the ingredients of the low-energy model should be
simple enough and well tabulated in the corresponding
references in order to allow for a reconstruction of the
model. The latter is mandatory to enable a subthreshold
continuation of the model amplitudes. For example, the
Bonn-Gatchina model [1] does provide a set of isospin
decomposed multipoles. However, we were unable to
continue the invariant amplitudes below the ηN threshold
starting from the provided multipoles. A third restriction is
that the low-energy models should be valid up to suffi-
ciently high energies (W ≳ 2 GeV). A different version of
the η-MAID model (dubbed η-MAID 2003) was presented
in Refs. [47,48] with the aim to remedy the overestimated
D15ð1675Þ contribution in the η-MAID 2001 model. The
model includes Regge contributions. However, since their
parametrization is significantly different from the standard
definition in Eq. (32), we do not include it in our analysis.
After carrying out the FESR analysis with the η-MAID

2001 amplitudes, we will compare the results to the Bonn-
Gatchina 2014-02 (BoGn) [1], ANL-Osaka (ANL-O) [2],
and Julich-Bonn (JuBo) [3] models for the proton target.
For the latter two models, only the proton amplitudes are
available. Furthermore, as discussed earlier, for all these
other models, it is unclear how to extrapolate the invariant
amplitudes outside the physical region j cos θj ≤ 1.
Figure 3 illustrates the domain where the LHS of the

FESR is evaluated and the different kinematic domains are
covered therein. Note that the s- and u-channel πN thresh-
olds start to overlap at νπðtπÞ ¼ 0 or tπ ¼ −0.243 GeV2 [see
Eq. (A8)]. In principle, at higher −t, the Schwarz reflection
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FIG. 4. Isoscalar and isovector invariant amplitudes ðA1; A0
2; A3; A4Þ of the η-MAID 2001 model [4] at t ¼ 0, −0.5, and −1 GeV2.
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principle is no longer applicable, since the scattering
amplitude is no longer real on a part of the real axis.
From analyticity of the scattering amplitude in t, it is
assumed that the dispersion relations can be applied beyond
−tπ. The η-MAID 2001 model is applicable from threshold
up toWmax ¼ 2 GeV or Elab

γ;max ¼ 1.66 GeV. Therefore, we
are forced to take Λ ¼ Elab

γ;max þ ðt − μ2Þ=4MN .
The η-MAID 2001 model incorporates the nucleon Born

terms, real t-channel ρ and ω exchanges, and nucleon
resonances up to the F15 partial wave. Hence, the imagi-
nary part of the model amplitudes can be reconstructed by
including the l ≤ 3 multipoles. The results for the LHS
of the FESR are shown in Fig. 5. Below we comment on the
specific features observed in its t dependence. We concen-
trate on moments with k > 1, since Eq. (36) assumes
αþ k > 0 and in order to reduce sensitivity to the sub-
threshold continuation. We also show the LHS of the FESR
for a single moment in Fig. 6, where the contribution of the

Born terms is illustrated. It turns out that the main features
(i.e. relative strength and zeros) in the LHS can be
attributed to the dispersive integral. Therefore, we discuss
Fig. 5 in terms of the dispersive term only. To facilitate the
discussion on factorization, we also include the sum rules
for the s-channel helicity amplitude A−;þ1 [see Eq. (23)]
in Fig. 7.

(i) Comparing the LHS for the two isospin components
of A1, we find a dominant isovector contribution.
Considering As;v

1 in Fig. 4 at e.g. t ¼ −0.5 GeV2, the
large LHSðAv

1Þ can be traced back to strong reso-
nance contributions just above threshold and a
smaller contribution at W ¼ 1.6–1.7 GeV which
both carry the same sign in Av

1. While the bump
around W ¼ 1.5 GeV also dominates As

1, its iso-
scalar component is substantially smaller than its
isovector part. Also, the second bump at W ¼
1.6–1.7 GeV enters the isoscalar amplitude with
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FIG. 5. LHS of the FESR Eqs. (30) and (31). We ignore the lowest moment, in order to soften the dependence on the unphysical
subthreshold region. The results depicted on the top (bottom) four panels are for the isoscalar (isovector) component of the amplitude.
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FIG. 6. Matching the RHS with the LHS of the sum rules. The color band shows the range of the LHS, using a range of 0.04 ≤
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an opposite sign and reduces the dispersive integral in
LHSðAs

1Þ. The large LHSðAv
1Þ is consistent with the

expectation for the high-energy side of the sum rule,
which is related to a large s-channel nucleon-helicity
flip component of the t-channel ρ exchange. The
small LHSðAs

1Þ is related to a negligible helicity-flip
component of the ω (see Sec. VIII for details).

(ii) The bump aroundW ¼ 1.5 GeV in A1 has a strong t
dependence due to itsD13ð1520Þ content. In both As

1

and Av
1 the bump is smallest around t ¼ 0. As a

result, LHSðAv
1Þ tends toward zero for t → 0. For the

isoscalar component on the other hand, the smaller
contribution at higher W dominates the dispersive
integral at t ¼ 0, resulting in a different behavior of
LHSðAs

1Þ as t → 0. This second contribution to the
A1 is mainly attributed to the D15ð1675Þ and
P11ð1710Þ within the η-MAID 2001 model.

(iii) The LHS of the FESR for As
4 is large and switches

signs at t ≈ −0.5 GeV2. This behavior is generated
in the low-energy model by the contributions around
W ¼ 1.5 and 1.65 GeV which collectively switch
signs at t ≈ −0.5 GeV2. In the isovector component,
these two contributions work destructively. How-
ever, the predictions for the LHS are quite similar to
the isoscalar component, since its dispersive integral
is dominated by the resonances around W ¼
1.65 GeV and, hence, follows its sign switch. The
opposite sign of the LHSðAs

4Þ and LHSðAv
4Þ is

therefore mainly an effect induced by the contribu-
tions aroundW ¼ 1.65 GeV. The relative size of the
As
1 and As

4 (A
v
1 and Av

4) is related in the high-energy
model to a dominant nucleon-helicity nonflip (flip)
contribution of the ω (ρ).

(iv) TheLHSof theAv
3 FESR is quite substantial, which is

a feature that is not expected from the perspective of
the high-energy model. In fact, there are no known
mesons which feed into the A3 amplitude. Therefore,
one would expect the sum rules for As;v

3 to be small
compared to the other amplitudes. Considering
Fig. 4, it appears that this contribution is mainly
related to a bump around W ¼ 1.5 GeV and to a
smaller extent a constructively contributing peak
around W ¼ 1.65 GeV. For the isoscalar part, the
dominant peak aroundW ¼ 1.5 GeV is substantially

smaller than in the isovector component. On top of
that, the second peak contributes with an opposite
sign, resulting in a smaller LHS for the isoscalar
component of A3. The two bump structures are
mainly the result of the D13ð1520Þ and D15ð1675Þ
resonance content. Since it is known [47] that the
D15ð1675Þ is overestimatedwithin the η-MAID 2001
model, the non-negligible LHS predictions for Av

3

might be a model-specific feature.
We now focus on specific features (such as zeros) in the

LHS of the FESR that will be used to constrain the high-
energy model.

(i) The LHS of the FESR for the amplitude Av
1 shows a

zero at t ≈ 0.05 GeV2. A zero at t ¼ 0 is expected
from Regge pole factorization. Indeed, it can be seen
from Eqs. (20) that A1 must vanish at t ¼ 0 for
factorizable contributions, since all s-channel hel-
icity amplitudes vanish.

(ii) To study the factorization properties, consider the
LHS of the Av

−;þ1 FESR in Fig. 7. This s-channel
helicity amplitude was shown to be the only ampli-
tude which is not forced to be zero at t ¼ 0 by
angular-momentum conservation (see Sec. III). The
tendency toward zero at t ¼ 0 is not seen in the
isoscalar component of the A−;þ1 amplitude which is
a manifest violation of factorization. However, it
should be noted that the As

−;þ1 is small and might
actually be consistent with zero at t ¼ 0 within
uncertainties of the model. The observed possible
departure from factorization has also been seen in
other reactions. A well-known example is charged
pion photoproduction, where the factorization of the
pion exchange term predicts a dip in the cross section
at t ¼ 0, while the observed cross section is finite in
the range 0 ≤ −t ≤ m2

π [8]. In the latter case this may
be attributed to the conspiring contribution from s-
channel exchanges required by current conservation
[49].Alternatively itmay be due to absorption,whose
effect on the amplitude can be taken approximately
into account by evaluating the numerator of the pion
exchange at t ¼ m2

π, also known as Williams’ “poor
man absorption” model [50].

(iii) For both the isovector and isoscalar component of
the A4, we observe a zero in the LHS of the FESR in
the vicinity of t ≈ −0.5 GeV2.

(iv) The low-energy predictions of the FESR for A0s
2 and

A0v
2 suggest a similar behavior with a relative

strength v=s ≈ 1.5.
More contemporary and coupled-channel models,

such as Refs. [1–3], might provide more decisive informa-
tion on some of the above-mentioned observations. For
example, consider ImAp

1 and ImA0p
2 at t ¼ 0 in Fig. 8. These

models tend to predict a strong violation of factorization
in the high-energy ωð=ρÞ and b=h exchanges compared to
the somewhat older η-MAID 2001 model. Especially
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FIG. 7. LHS of the sum rules in Eq. (36) for the s-channel
isoscalar and isovector contributions to the helicity amplitude in
A−;þ1 Eq. (23).
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evaluating the A3 FESR with state-of-the-art coupled
channels might shed light on the unexpectedly large A3

contribution. However, such an analysis is currently hin-
dered by the problematic subtreshold region and low
predictive power and instabilities just above threshold, just
outside of the physical region.

VIII. RIGHT-HAND SIDE OF THE FESR

The RHS of the FESR is evaluated using a Regge
pole model. Inspired by the observations made in the
previous section, one is able to determine the t dependence
of the Regge pole residues βσi ðtÞ within the domain
0 ≤ −t ≤ 1 GeV2. The most direct way of using the
FESR is by computing the LHS of the FESR using a
low-energy model, and extracting the residues [by inverting
Eq. (36)] by introducing only assumptions about the Regge
trajectories. However, directly implementing the low-
energy predictions for the residues into a high-energy
model does not necessarily result in a satisfactory repro-
duction of the cross-section data.2 We will therefore fit a
LHS-inspired t dependence of the Regge pole residues to
the high-energy data and subsequently evaluate the RHS of

the FESR in Eq. (36). The latter is then compared to the
LHS of the FESR.
To obtain a better intuition about the Regge exchange

parameters entering the scalar amplitudes Ai we compute
those using a particle exchange instead of a Reggeon
exchange model (cf. Fig. 9). For example using Rρ¼
1=ðt−m2

ρÞ for the ρ meson exchange, we obtain the
following contributions to Aρ

i [22]:

Aρ
1 ¼ gρ1tR

ρ; A0ρ
2 ¼ 0; Aρ

3¼ 0; Aρ
4 ¼ gρ4R

ρ: ð37Þ

In the s channel, g1 (g4) corresponds to a nucleon-helicity
flip (nonflip). For b meson exchange
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FIG. 8. Comparison of the proton-target amplitudes Ap
i ¼ As

i þ Av
i of the high-energy Regge prediction to a number of resonance-

region models for t ¼ 0, −0.5, and −1 GeV2 from top to bottom. The models have been constructed using their l ≤ 5 multipoles only.

FIG. 9. Single-meson t-channel exchange diagram.

2This is partly related to the low cutoff energy Λ which is due
to the limited applicable energy domain of the low-energy model.
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Ab
1 ¼ 0; A0b

2 ¼ tgb2R
b; Ab

3 ¼ 0; Ab
4 ¼ 0: ð38Þ

These indicate the t factors that are necessary for angular-
momentum conservation and factorizable t-channel
exchanges. It should be stressed, however, that Regge
residue factorization is a stronger constraint than factori-
zation of on-shell couplings since the former imposes a
relation among the residues for all t.
Among others, the above effective parameters will later

be fitted to the available high-energy data. Below we derive
estimates for the coupling constants in order to constrain
the fit to realistic values. It will be useful for comparison to
relate the couplings g1 and g4 to the standard electromag-
netic tensor gt and vector gv coupling constants, λVηγ [4,35],

gV1 ¼ eλVηγ
μ

gVt
2MN

; gV4 ¼ −
eλVηγ
μ

gVv : ð39Þ

As an initial estimate we take the coupling constant for the
ρ and ω exchange from the η-MAID model (see Table 2 in
Ref. [4])

λωηγ ¼ 0.29; gωv ¼ 16.0; gωt ¼ 0; ð40Þ
λρηγ ¼ 0.81; gρv ¼ 2.4; gρt ¼ 14.64: ð41Þ

Note that λρηγ ≈ 3λωηγ as expected from SU(3) flavor
symmetry. These couplings are related to the gV1 and gV4
according to Eq. (39) yielding

gω1 ¼ 0; gω4 ¼ −2.57 GeV−1; ð42Þ
gρ1 ¼ 3.49 GeV−2; gρ4 ¼ −1.07 GeV−1: ð43Þ

These estimates show that ω is expected to be dominantly
helicity nonflip, while ρ is dominantly helicity flip. This is
consistent with fits to the high-energy data from the relative
helicity-flip and nonflip F=D ratios in combination with
SU(3) flavor symmetry (see for example Table AA.4c in
Ref. [8]). For the b and h exchange little is known about
their couplings [31], and the η-MAID model does not
include these exchanges. We obtain a first estimate based
on the predictions from the low-energy side of the FESR. In
Appendix E, we obtain gb2 ¼ 3.80 GeV−2 for the b cou-
pling based on SU(3) flavor symmetry and vector meson
dominance.
For the Regge exchange the trajectories αρ and αω are

fixed by considering the resonance spectrum. This fixes the
s dependence of the Regge-pole contributions. For V ¼ ρ,
ω, we assume weak degeneracy αVðtÞ ¼ 1þ α0Vðt −m2

ρÞ
where α0V ¼ 0.9 GeV−2. Note that αVðt0Þ ¼ 0 for
t0 ≈ −0.5 GeV2. For the axial vectors A ¼ b, h we assume
weak degeneracy with the pion trajectory αAðtÞ ¼ α0Aðt −
m2

πÞwith α0A ¼ 0.7 GeV−2 (see Fig. 10). Within the Regge-
pole model a number of constraints can be derived for the t
dependence of Regge residues βσi ðtÞ by comparing with the

LHS of the FESR. The two sides are compared in Fig. 6 and
below we summarize the main findings.

(i) The vector and axial-vector Regge amplitudes in
Eq. (32) have poles at odd integer values of α. The
poles generated by the sin πα denominator at even
integer α are removed by the signature factor
1 − e−iπα. Poles located at negative integer α are
unphysical and should be canceled by residue zeros.
Such poles can be removed by taking β∝ 1=Γðαþ1Þ
but this parametrization is not unique; e.g. one can
write βðtÞ ∝ ðαþ 1Þðαþ 2Þðαþ 3Þ � � �, which in
combination with the signature factor, forces the
amplitude to be finite (zero) at negative odd (even)
integer α.

(ii) A single Regge pole with α ¼ 0, physically corre-
sponds to a spin-0, t-channel exchange. For the ρ
and ω trajectories, this corresponds to t≈−0.5GeV2.
At α ¼ 0, the signature factor removes the wrong-
signature pole generated by sin πα, but the amplitude
remains finite. Since a spin-0 exchange cannot flip
the nucleon helicity, the Regge residues in the t-
channel spin-flip amplitudes are expected to vanish
at t ≈ −0.5 GeV2. These are referred to as the
nonsense wrong signature zeros (NWSZ). Similar
zeros are expected, for example in π0 photoproduc-
tion amplitudes [27]. Assuming factorization, the
hadronic vertex in neutral meson photoproduction
reactions can be related to πN scattering residues. A
zero has also been observed in the t-channel iso-
vector helicity-flip amplitude Bð−Þ in a recent FESR
analysis of low-energy πN scattering models [43].

(iii) The definite parity, singularity free t-channel
helicity-flip amplitudes can be written in terms of
the invariant amplitudes as [22]

F3 ¼ 2MNA1 − tA4; ð44Þ

FIG. 10. Chew-Frautchi plot including the π, b, h,
and ρ excitations and quark model states 2−− and 4−−. The
black lines show the trajectories αðtÞ ¼ 0.7ðt −m2

πÞ and
αðtÞ ¼ 1þ 0.9ðt −m2

ρÞ.
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F4 ¼ A3: ð45Þ
The FESR for these amplitudes are depicted in
Fig. 11. For ω exchange the nonsense wrong sig-
nature zeros are clearly present in LHSðAs

4Þ and
LHSðAs

3Þ and possibly in LHSðAs
1Þ. However, for

the ρ, only the LHSðAv
4Þ has the zero, while LHSðAv

1Þ
and LHSðAv

3Þ are finite near t ≈ −0.5 GeV2. The
absence of theNWSZ for the ρ exchange suggests the
importance of nonfactorizable corrections in this
amplitude.

(iv) The presence or absence of NWSZ distinguish π0

from η photoproduction. In π0 photoproduction,
there is a dip in the cross section near t ∼
−0.5 GeV2 because of the zero for the exchange
ω, which is dominant there [see Eq. (E1)], while for
η, the ρ is dominant which does not have this dip.

(v) One can force the NWSZ by taking βðtÞ ∝ αðtÞ in
the corresponding t-channel helicity flip amplitudes.
This procedure is referred to as the nonsense
mechanism [42,43]. Since ω is dominantly s-chan-
nel helicity nonflip, i.e. Aω

1 ∼ 0, one can approximate
Fω
3 ¼ −tAω

4 , and so we take βω4 ∼ α for simplicity.
Since there is no NWSZ in Aρ

1, there is no need to
impose such a relation between β and α for Fρ

3.
However, since a zero is observed in LHSðAρ

4Þ, we
do impose βρ4 ∼ α.

(vi) Since the h and b exchanges have quantum numbers
corresponding to t-channel nucleon-helicity nonflip
only, no NWSZ are expected in their residues. The
αb ¼ 0 occurs at t ¼ 0.018 GeV2, and indeed nei-
ther of the LHSðAs;v

2 Þ suggest the presence of a zero
at this t.

(vii) As discussed above, there are no known Reggeons
that would contribute to A3. The A3 corresponds to
quantum numbers of unnatural exchanges. However,
as seen from the LHS of the FESR, this contribution
is non-negligible. Figure 12 shows the contribution
of the A3 to the cross section evaluated using the η-
MAID 2001 model. At small −t, its contribution is
small increasing toward larger values of −t. In this
section we discuss the high-energy parametrization

where a “conservative model” is presented. The
model consists solely of known exchanges and for
which As;v

3 ≡ 0. In the next section, we elaborate an
“exploratory model” where we study the possibility
of including Regge trajectories for mesons which,
albeit predicted by lattice QCD and quark models
[32,33], have not been observed yet.

According to the arguments presented above we use the
following parametrization for vector contributions V ¼ ρ,
ω [using the notation of Eq. (32)]

βV1 ðtÞ ¼ gV1 t
−πα0V

2

1

ΓðαVðtÞ þ 1Þ ; ð46Þ

βV4 ðtÞ ¼ gV4
−πα0V

2

1

ΓðαVðtÞÞ ; ð47Þ

while for the axial vectors A ¼ b, h we use

β0A2 ðtÞ ¼ gA2 t
−πα0A

2

1

ΓðαAðtÞ þ 1Þ ; ð48Þ

where the prime in β02 denotes the fact that this is the A0
2

residue. This also explains the factor of t. The factor
−πα0=2 ensures the correct on-shell couplings. The func-
tions 1=Γðαþ 1Þ and 1=ΓðαÞ are both equal to 1 at the pole
α ¼ 1, yet they result in a different strength in the physical
region. The scale parameters ri [cf. Eq. (32)] are found to
efficiently compensate for the increased strength brought in
by 1=Γðαþ 1Þ and allows one to hold on to the on-shell
couplings calculated earlier. The ri parameters affect the
slope in t of the amplitudes by introducing an exponential
damping exp ½ðαðtÞ − 1Þ ln r� at large −t since we take r ≥
1 GeV−1 and αðtÞ < 1 in the physical region.
Each exchange e is assigned its own scale parameter in

Eq. (32), which will be denoted by rei . We introduce the
parameter reductions rρ1 ¼ rω1 , r

ρ
4 ¼ rω4 , and rb2 ¼ rh2 , and,

therefore, we drop the superscript. In order to further reduce
the number of free parameters, we assumeweak degeneracy
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FIG. 11. LHS and RHS of the FESR for the two isospin
components of the definite parity, singularity free t-channel
nucleon-helicity flip amplitude F3 [see Eq. (44)].
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FIG. 12. The η-MAID differential cross section at
W ¼ 2.0 GeV. The solid line is the full model, and the dashed
line shows the A3 contribution.
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and relate the coupling of the hmeson to the coupling of the
b meson by gh2 ¼ 2gb2=3, according to the LHS predictions
(see Sec. VII).
So far we have discussed a high-energy model which

incorporates the features observed in the low-energy
predictions of the residues. We have provided realistic
estimates for the coupling constants of the leading t-
channel exchanges in order to set the scale of the individual
contributions. These estimates are necessary when, in the
next step, we fit the high-energy model to the available
cross-section data by varying coupling constants and scale
parameters. We use data for Elab

γ ≥ 4 GeV from [16,17] (for
details see Fig. 13). Since the number of high-energy data
points is rather limited (31 cross-section measurements at 3
different beam energies), we constrain the couplings within
a predefined range centered around the estimates given
earlier, in order to avoid overfitting data. The s dependence
of the model is fixed by the Regge trajectories so only the
t dependence and strength of the contributions are allowed
to vary. Our model involves eight free parameters: five
coupling constants gρ1, g

ω
1 , g

ρ
4, g

ω
4 , and gb2 and three scale

parameters r1, r2, and r4. The coupling constants are
constrained within 30% around the values estimated above.
The exception is gω1 , which we constrain to be in the range
0 ≤ gω1 ≤ 0.2 GeV−2. The scale parameters may assume all

values greater than or equal to one. The optimal parameters
are given Table IV which correspond to χ2=d:o:f: ¼ 3.04.
The largest contributions to the χ2 are related to the data at
very forward scattering angles −t < 0.1 GeV2. It should be
noted that the cross-section fit does not force hard con-
straints on gb2. The resulting model is compared to the data
in Fig. 13, and beam-asymmetry predictions are presented
in Fig. 14.
The fit fixes the residues of the high-energy model.

Plugging the results in the RHS of Eq. (36), we obtain the
high-energy prediction of the sum rules. The latter can be
compared to the LHS of the sum rules, originating from the
low-energy model. The RHS of the As;v

4 amplitudes shows
the same shape for the residues as predicted by the LHS,
but is not able to reproduce the sign of one of the βs;v4
couplings. The cross section on a proton target can be
decomposed at leading order in s as follows:

dσ
dt

¼ 1

32π
ðjAω

1 þAρ
1j2− tjAω

4 þAρ
4j2þjA0b

2 þA0h
2 j2Þ: ð49Þ

Because of the assumed degeneracy of the ρ and ω
trajectories and residues βρ;ω4 we cannot isolate their
individual contributions. Since only proton target dσ=dt
information is available, our fit is only sensitive to
jA4j2 ∼ jgω4 þ gρ4j2. The LHS of the FESR suggests a
destructively interfering isoscalar and isovector contribu-
tion to the A4. In our high-energy model, As

4 and A
v
4 require

- Eγ
lab = 4 GeV (x 1)

- Eγ

γ

lab = 6 GeV (x 10–2)

- E lab = 8 GeV (x 10–4)

- Outliers
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FIG. 13. High-energy γp → ηp data compared to the fitted
Regge model. The dotted (dashed) line shows the isovector
(isoscalar) contribution. The solid line represents the full Regge
model. Data are from Refs [16,17]. The three data points in brown
from Dewire et al. [17] at Elab

γ ¼ 4 GeV were excluded from the
fit due to a systematic inconsistency.

Eγ
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FIG. 14. Predictions for the beam asymmetry at Elab
γ ¼ 4, 6,

9 GeV for the conservative model.

TABLE IV. Parameter values of the high-energy model ob-
tained from a constrained χ2 minimization.

Parameter Fit Initial estimates

gρ1 3.434� 0.083 GeV−2 3.49 GeV−2

gρ4 −1.397� 0.085 GeV−1 −1.07 GeV−1

gω1 0.116� 0.074 GeV−2 0
gω4 −3.346� 0.087 GeV−1 −2.57 GeV−1

gb2 4.946� 1.491 GeV−2 3.80 GeV−2

r1 3.001� 0.087 GeV−1

r4 1.974� 0.101 GeV−1

r2 6.204� 2.484 GeV−1
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the same sign in order to properly reproduce the forward
bump around t ¼ −0.1 GeV2. It is not clear from the
available high-energy data which isospin component should
have an opposite sign compared to its LHS prediction.
We cross-check this sign inconsistency between the LHS

and RHS predictions with other models. The comparison
between the high-energy proton amplitudes and a number
of low-energy models is depicted in Fig. 8. It is clear from
these figures that the A4 amplitude is ill-constrained among
the low-energy models, making it unclear whether the A4

inconsistency is due to the choice of the η-MAID model, or
rather to a shortcoming of the high-energy parametrization.
The best agreement at low −t and W ≤ 2 GeV is obtained
with the Bonn-Gatchina model, which Reggeizes the
t-channel contributions. All resonances contribute to the
A4 amplitude [see Eq. (F10)], making it highly sensitive to
the model assumptions. Finally, it should also be noted that,
while the LHS does not match the RHS, the couplings gρ4
and gω4 do have the same sign as the t-channel contributions
in the low-energy model. One might argue that the missing
strength in the forward direction is related to imposing
factorization of the ω contribution in the Aω

1 . However, we
find that when the constraint of a vanishing As

1 at t ¼ 0 is
removed, one is unable to reproduce the forward bump at
−t ≈ 0.1 GeV2 when As

4 and Av
4 contribute with opposite

sign.
The A0s

2 and A0v
2 are found to be small and represent a

negligible contribution to the cross section. However, the
unnatural contributions cannot be neglected since they can
clearly be identified in the beam asymmetry (Σ) in
accordance with Stichel’s theorem [51]. At leading order,
one obtains

Σ ¼ ðjA1j2 − tjA4j2Þ − ðjA0
2j2 − tjA3j2Þ

ðjA1j2 − tjA4j2Þ þ ðjA0
2j2 − tjA3j2Þ

: ð50Þ

Hence, for a dominating natural exchange (A1 and A4),
Σ ¼ þ1 is expected, while purely unnatural exchange
(A0

2 and A3) corresponds to Σ ¼ −1. According to factori-
zation, all amplitudes must vanish as t → 0. Bearing in
mind the t factors both explicitly and implicitly written in
Eq. (50), the expected behavior in both cases at small t is

Σ ∼
t→0

jA1j2 − jA0
2j2

jA1j2 þ jA0
2j2

ðang:mom: conservationÞ; ð51Þ

Σ ∼
t→0

jA4j2 − jA3j2
jA4j2 þ jA3j2

ðfactorizationÞ: ð52Þ

We show our predictions for the beam asymmetry at Elab
γ ¼

9 GeV in Fig. 14. Some important remarks can be made
here. Since the current model is dominated by natural
exchange, the result is close to Σ¼þ1. At t≈−0.5GeV2,
a dip is observed, which is generated by the vanishing A4

contribution from natural exchange. Assuming factorization

and A3 ≡ 0, only Σ ¼ þ1 is possible at t ¼ 0. Any exper-
imentally observed deviation suggests either an A3 contri-
bution or a violation of factorization. The experimental
signature of both possibilities will be demonstrated in the
next section.
Our only reference of the relative isospin contributions in

the high-energy data is the strength of the LHS of the
FESR. The upcoming GlueX results on photon asymme-
tries in both pion and eta photoproduction would represent
an invaluable source of information in this respect. For
example, in a combined analysis one may be able to learn
about the h contribution. The relative size of Σðγp → ηpÞ
and Σðγp → π0pÞ at the same kinematics is related to the
relative strength of the unnatural isoscalar and isovector
exchanges in a Regge-pole model [8]. Considering
Eq. (E1), it can easily be seen that the isoscalar contribu-
tions are suppressed by a factor of 9 compared to the
isovector contributions in η photoproduction, relative to π0

photoproduction. By comparing the beam asymmetry in
both channels, one can extract the relative strength of the
contributions.
For completeness, we compare the high-energy model

(valid for Elab
γ ≥ 4 GeV) to the available low-energy data in

Fig. 15, where the model is extrapolated outside its scope of
application. The Regge model reproduces the low-energy
data on average (except close to threshold), illustrating the
fact that also the real parts of the high-energy amplitudes
are consistent with low-energy data.

IX. AN EXPLORATORY MODEL

Since the LHS of the FESR suggests a non-negligible A3

component, we consider an alternative description of the
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FIG. 15. Extrapolation (dashed line) of the high-energy
model, which is valid from Elab

γ ¼ 4.0 GeV (solid line). The
model is evaluated at t ¼ −0.4 GeV2 and data are collected for
0.35 ≤ −t ≤ 0.45 GeV2. Data are from Refs. [14,16,17,52–56].
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high-energy amplitudes that is further constrained by the
low-energy prediction for the sum rules. By considering the
residues and scale factors

βσi ðtÞrαðtÞ−1i ¼ LHSkðAσ
i Þ
αðtÞ þ k

ΛαðtÞ−1 ; ð53Þ

one can construct a Regge-pole model directly from the
low-energy model with minimal assumptions. In order to
compute the residues, βs;v3 from Eq. (53), one also needs a
model for the corresponding Regge trajectories. In the
absence of experimental information we base our estimate
of the trajectory functions on the quark model predictions.
In both the isoscalar and the isovector cases, a relativized
quark model [32] predicts two states with masses3 m2−− ¼
1.7 GeV and m4−− ¼ 2.34 GeV, which, assuming a linear
trajectory, leads to αðtÞ ¼ −0.235þ 0.774t. The states are
depicted in the Chew-Frautschi plot in Fig. 10 where
we notice a compatibility with the b and the π trajectories.
The high-energy amplitude is sensitive to variations in the
trajectory slope and intercept. It should be noted that
for t in the range 0 ≤ −t ≤ 1 GeV2 such that αðtÞ ¼ 0,
the amplitude has an unphysical pole which needs to be
canceled by residue zeros. For the isoscalar and isovector
parts of the LHS, a zero is found at t ≈ −0.7 GeV2 and

t ≈ 0.3 GeV2, respectively. These zeros impose a relation
between the slope and intercept of the trajectories if they are
assumed to be related to the α ¼ 0 point. In the case of the
isoscalar amplitude, the restriction αðt ¼ −0.7 GeV2Þ ¼ 0
has poor correspondence to the quark-model states. For
the isovector part on the other hand, the constraint αðt ¼
0.3 GeV2Þ ¼ 0 is in good agreement with the quark model,
which predicts αðt ¼ 0.304 GeV2Þ ¼ 0. To study the
trajectory dependence of the high-energy model, we extract
the residues βs;v3 in Eq. (53) using a range of trajectories. We
vary the location of the pole α ¼ 0 within the range 0 ≤
t ≤ 0.4 GeV2 and determine the trajectory slope and
intercept by a least-squares fit to the quark-model states.
The range of trajectories is shown in Fig. 10. The effect on
the cross section is illustrated in Fig. 16. The main
experimental sensitivity is at small −t, where a pole close
to the physical region overestimates the data (where it is not
canceled by a residue zero). For a distant pole, the effect of
the A3 contributions is negligible. It should be noted that
the α ¼ 0 point corresponds to an exotic 0−− state. The
increased cross section at low −t is a manifestation of this
state. While interesting experimentally, we do not expect
such a signature to be seen in high-energy experiments.
Using the same procedure, we study the effect on the

beam asymmetry induced by the uncertainty of the trajec-
tory in Fig. 17. In the conservative model, which incor-
porates factorization explicitly, Σ ¼ þ1 is obtained at
t ¼ 0, in agreement with Eq. (52). The signature of
factorization is now clear in Fig. 17 where Σ is slightly
smaller than þ1. Switching on the A3 contribution gen-
erates a strong dip at forward angles. The further away from
the physical region the α ¼ 0 is located, the weaker is the
contribution from A3. In the latter case, the beam asym-
metry is closer to þ1.

X. CONCLUSIONS AND OUTLOOK

We have analyzed γN → ηN using the framework of
finite-energy sum rules. Using these sum rules, one is able
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FIG. 16. Predictions for the cross section within the extended
model for k ¼ 2, 3. The band corresponds to various ρ2 and ω2

trajectories. The data are scaled as in Fig. 13.
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FIG. 17. Predictions for the beam asymmetry at Elab
γ ¼ 9 GeV

for k ¼ 2, 3 without (black solid curve) and with (gray band) the
A3 contributions for various ρ2 and ω2 trajectories.

3The states reported in Ref. [29] have masses
mρ2 ¼ 1.94 GeV, mρ4 ¼ 2.23 GeV, and those in Ref. [30] have
masses mω2

¼ 1.97 GeV and mω4
¼ 2.25 GeV. Hence,

these states suggest a much steeper trajectory with an intercept
α ¼ 0 at higher t.
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to obtain the t dependence of the high-energy Regge
residues using low-energy models. We found zeros in
the low-energy predictions of the A4 residues correspond-
ing to nonsense wrong-signature zeros in the high-
energy model. While the t dependence of the A4 is in
good agreement with our expectations, a sign mismatch
was found in the comparison between the high- and the
low-energy models. The low-energy model predictions at
t → 0 suggest a factorizable ρ contribution, while the ω
exchanges indicate deviations from factorization. On the
other hand, the behavior of the amplitude at t ≈ −0.5 GeV2

suggests the very opposite. Through the use of FESR, we
found that a NWSZ seems to be lacking in the t-channel
helicity flip amplitude of the ρ residue. Including this
observation in our model, results in a mechanism where the
dip in η photoproduction is filled up with natural contri-
butions, rather than genuinely assumed unnatural b
exchange [23]. The upcoming GlueX results will be able
to either confirm or refute this explanation: photon beam
asymmetry measurements close to Σ ¼ þ1 within the
range −t ≈ 0.5–0.6 GeV2 would indicate that the absence
of a dip in eta photoproduction should indeed be attributed
to natural exchanges.
Inspired by the low-energy predictions, two high-energy

models were presented. In the first one, we consider a
conservative model with only t-channel exchanges that can
be associated with observed meson resonances. Within the
high-energy model, the A3 invariant amplitude is expected
to be zero, since no known mesons can contribute to it.
However, the low-energy predictions suggest a large
isovector A3 component. Therefore, in the second model
we include exchanges that correspond to, as yet, unob-
served mesons. We provided predictions for the cross
section and beam asymmetry at high energies and sug-
gested experimental signatures of factorization and novel
meson exchanges.
A global analysis of low- and high-energy data of related

reactions within the framework of FESR can shed light
onto some of the above-mentioned inconsistencies.
Especially, the inclusion of constraints from related neutral
pion photoproduction amplitudes and data can resolve
some of the issues. In this work, we found that the lack
of dip in the cross section of η photoproduction is due to a
dominant Aρ

1 contribution, which does not have a zero in its
residue. In neutral pion photoproduction, the cross section
shows a dip due to a dominant Aω

4 , which contains a
nonsense wrong signature zero. This work, in combination
with an ongoing FESR analysis in pion photoproduction
[27] prepares the ground for such a combined analysis.
In future research, it will be interesting to study whether

low-energy models can provide a good description of the
data when the A3 invariant amplitude is forced to be small.
In this respect, the FESR can be used to propagate high-
energy information to constrain the low-energy models.
Such an analysis is outside the scope of this work.

All material together with an interactive website for the
model will be made available online [57,58].
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APPENDIX A: KINEMATICS AND
CONVENTIONS

In the s-channel center-of-mass (c.o.m.) frame, we write
the particle four-momenta as

kμ ¼ ðjkj; kÞ; qμ ¼ ðEq; qÞ; ðA1Þ
pμ
i ¼ ðEi;−kÞ; pμ

f ¼ ðEf;−qÞ; ðA2Þ
for which the components follow directly from the
invariants

jkj ¼ s −M2
N

2
ffiffiffi
s

p ; Eq ¼
s −M2

N þ μ2

2
ffiffiffi
s

p ; ðA3Þ

Ei ¼
sþM2

N

2
ffiffiffi
s

p ; Ef ¼ sþM2
N − μ2

2
ffiffiffi
s

p : ðA4Þ

The c.o.m. energy W follows from W ¼ ffiffiffi
s

p
. The eta-

meson three-momentum q and c.m. scattering angle θ are
readily determined using

zs ≡ cos θ ¼ t − uþ Δ=s
4jkjjqj ; ðA5Þ

jqj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðMN − μÞ2Þðs − ðMN þ μÞ2Þ

p
2

ffiffiffi
s

p ; ðA6Þ

where Δ ¼ M2
NðM2

N − μ2Þ. Furthermore, we introduce

t0 ¼ t − tðzs ¼ þ1Þ: ðA7Þ
In the high-s limit, t0 → t. We distinguish the πN and ηN
thresholds and the nucleon pole (νπ , νη, and νN , respectively)
which can be computed using the following expressions:
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νπ ¼
2ðMN þmπÞ2 þ t − Σ

4MN
; ðA8Þ

νη ¼
2ðMN þ μÞ2 þ t − Σ

4MN
¼ μþ tþ μ2

4MN
; ðA9Þ

νN ¼ 2M2
N þ t − Σ
4MN

¼ t − μ2

4MN
; ðA10Þ

where Σ ¼ sþ tþ u ¼ 2M2
N þ μ2. The photon energy in

the laboratory frame is given by

Elab
γ ¼ s −M2

N

2MN
: ðA11Þ

APPENDIX B: FACTORIZATION

In Regge theory, factorization follows from unitarity of
the scattering amplitude [34,59–61]. This section details
the effect of factorization on the Regge-pole amplitude.
First, we derive factors which result from purely angular-
momentum conservation, which must be included in the
general scattering amplitude. Finally, we discuss how
restrictions in the t channel manifest themselves in the
s-channel amplitudes.
In order to analytically continue the helicity amplitudes,

one must identify all kinematic singularities. In Ref. [62],
Wang derived the threshold, pseudothreshold, and small jtj
factors which can lead to singularities in the parity-
conserving helicity amplitudes. Once these are pulled
out of the amplitude, it only contains dynamical singular-
ities. This is for example required when the t-channel
helicity amplitudes are Reggeized and continued for large
s. In Ref. [63] the implications of these t factors on the s-
channel amplitude were discussed. On top of that, Leader
considered with rigor the effect of factorization of the
residues of the t-channel contributions.
For the convenience of notation, let us denote the γN →

ηN reaction by 1þ 2 → 3þ 4 with helicities μi¼1;2;3;4 and

λi¼1;2;3;4 in the s and t channels, respectively. Let AðsÞ
μ4μ3;μ2μ1

be the s-channel and AðtÞ
λ4λ2;λ3λ1

the t-channel helicity

amplitudes.4 The kinematic t singularities in AðsÞ
μ4μ3;μ2μ1 stem

entirely from the half-angle factor

ξμμ0 ðzsÞ ¼
�
1þ zs
2

�jμþμ0 j
2

�
1 − zs
2

�jμ−μ0 j
2

;

μ ¼ μ1 − μ2; μ0 ¼ μ3 − μ4; ðB1Þ
in the rotation functions dJμμ0 ðzsÞ in the partial wave
expansion [64]

AðsÞ
μ4μ3;μ2μ1ðs; tÞ ¼

Xþ∞

J¼M

ð2J þ 1ÞAðsÞJ
μ4μ3;μ2μ1ðsÞdJμμ0 ðzsÞ;

M ¼ maxfjμj; jμ0jg: ðB2Þ
One defines the s-channel helicity amplitude which is free
from kinematic t singularities via

ÂðsÞ
μ4μ3;μ2μ1ðs; tÞ ¼ AðsÞ

μ4μ3;μ2μ1ðs; tÞ=ξμμ0 ðzsÞ: ðB3Þ
Since ÂðsÞ

μ4μ3;μ2μ1 is known to be free from t singularities,
and since

zs ¼ 1þ 2st0

S12ðsÞS34ðsÞ
; ðB4Þ

S2
ijðsÞ ¼ ½s − ðmi þmjÞ2�½s − ðmi −mjÞ2�; ðB5Þ

it is easy to see from Eqs. (B1) and (B3) that the most

singular behavior of AðsÞ
μ4μ3;μ2μ1 is

AðsÞ
μ4μ3;μ2μ1 ∼

t0→0
ð−t0Þjμ−μ

0 j
2 ∼

s→þ∞
ð−tÞjðμ3−μ1Þ−ðμ4−μ2Þj2 : ðB6Þ

This behavior states that no net helicity flip is allowed
at zs ¼ þ1 if the angular momentum is to be conserved.
As discussed in Sec. III, the factorization of the
Regge residue forces harder constraints on the small jtj
behavior [cf. Eq. (17)] than would be expected from purely
angular-momentum conservation [cf. Eq. (18)].
In order to figure out the dominant small jtj dependence

of the amplitudes when factorization of the t-channel
residues is imposed, it is natural to first trace back all
the t factors in the t channel. These results in the t channel
are then rotated to the s channel, where the crossing matrix
might introduce additional factors. Such a procedure is
straightforward when there are unequal masses in both the
initial and the final states of the t-channel process [63]. For
the case of equal masses (such as the current one), the
derivations are tedious, and we will outline the general idea
below. Analogous to Eq. (B2), the t-channel helicity

amplitude AðtÞ
λ4λ2;λ3λ1

can be expanded in terms of the partial

wave amplitudes AðtÞJ
λ4λ2;λ3λ1

ðtÞ, and a kinematic s-singularity
free amplitude can be defined,

ÂðtÞ
λ4λ2;λ3λ1

ðs; tÞ ¼ AðtÞ
λ4λ2;λ3λ1

ðs; tÞξ−1λλ0 ðztÞ;
λ ¼ λ1 − λ3; λ0 ¼ λ2 − λ4: ðB7Þ

Here,

zt ¼
t2 þ tð2s − ΣÞ þ ðm2

1 −m2
3Þðm2

2 −m2
4Þ

T 13ðtÞT 24ðtÞ
;

T 2
ijðtÞ ¼ ½t − ðmi þmjÞ2�½t − ðmi −mjÞ2�: ðB8Þ

After applying the Sommerfeld-Watson transformation to
the partial-wave expansion of the kinematic-singularity free,

4We will explicitly denote the s and t channels between
brackets in superscript in this section only (i.e. AðsÞ and AðtÞ).
In any other case, we consider the s-channel amplitudes.
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definite parity and signature amplitude, one obtains the
following Regge pole contribution to the amplitude [42]:

AðtÞ
λ4λ2;λ3λ1

ðs;tÞ¼−ð−1Þλ0 ð2αðtÞþ1Þπβλ4λ2;λ3λ1ðtÞζτðtÞdαðtÞλλ0 ðztÞ;
ðB9Þ

ζτðtÞ ¼
τ þ e−iπαðtÞ

2 sin παðtÞ : ðB10Þ

Assuming that the high-energy amplitude can be decom-
posed into a sum of Regge pole contributions Eq. (B9),

AðtÞ
λ4λ2;λ3λ1

ðs; tÞ ¼
X
n

AðtÞn
λ4λ2;λ3λ1

ðs; tÞ: ðB11Þ

At leading order in zt (or equivalently s), the rotation
functions factorize [63,65]

dJλλ0 ðztÞ →
zt→þ∞

ð−1Þλ0DJ
λðztÞDJ

λ0 ðztÞ; ðB12Þ

where

DJ
λðztÞ ¼

�
ð−1Þλ

�
zt
2

�
J Γð2αþ 1Þ
Γðα − jλj þ 1ÞΓðαþ jλj þ 1Þ

�
1=2

:

ðB13Þ
In combination with the factorization of the residues

βλ4λ2;λ3λ1ðtÞ ¼ βλ4λ2ðtÞβλ3λ1ðtÞ [60], the above can be cast
into the factorized form

AðtÞn
λ4λ2;λ3λ1

ðs; tÞ ¼ −AðtÞn
λ4λ2

ðs; tÞAðtÞn
λ3λ1

ðs; tÞ; ðB14Þ
where

AðtÞn
λ3λ1

ðs; tÞ ¼ ½ð2αþ 1Þπζτ�1=2βλ3λ1Dα
λðztÞ: ðB15Þ

Since the crossing matrix [66] also factorizes

Rμ4μ3;μ2μ1
λ4λ2;λ3λ1

ðs; tÞ ¼ Rμ4μ2
λ4λ2

ðs; tÞRμ3μ1
λ3λ1

ðs; tÞ; ðB16Þ
we can write

AðsÞn
μ4μ3;μ2μ1ðs; tÞ ¼ −AðsÞn

μ4μ2ðs; tÞAðsÞn
μ3μ1ðs; tÞ: ðB17Þ

Hence, in the high-s limit, factorization and a single Regge
pole in the t channel can be linked to factorization in the s
channel. Obviously, the behavior in Eq. (B6) is at variance
with the latter. It can be shown that the simplest solution to
this problem is to take [63,65,67]

AðsÞ
μ4μ3;μ2μ1 ∼t→0

ð−tÞ12ðjμ3−μ1jþjμ4−μ2jÞ; ðB18Þ

which is obviously a more stringent constraint compared
to Eq. (B6).

APPENDIX C: NUCLEON POLE TERM

The Born contributions to the reaction amplitudes are
shown diagrammatically in Fig. 2. We decompose the
contributions in the covariant basis in Eqs. (4)–(7),

Apoleðs; tÞ ¼ As−ch: poleðs; tÞ þ Au−ch: poleðs; tÞ

¼ −egηNNūðpfÞ
�
γ5

kþ pi þMN

s −M2
N

�
eNϵþ

iκN
4MN

σμνFμν

�
þ
�
eNϵþ

iκN
4MN

σμνFμν

�
pf − kþMN

u −M2
N

γ5

�
uðpiÞ

¼ ūðpfÞ
�
eeNgηNN

�
1

s −M2
N
þ 1

u −M2
N

�
M1 þ 2eeNgηNN

�
1

ðs −M2
NÞðu −M2

NÞ
�
M2

−
egηNN

2MN
κN

�
1

s −M2
N
−

1

u −M2
N

�
M3−

egηNN

2MN
κN

�
1

s −M2
N
þ 1

u −M2
N

�
M4

�
uðpiÞ: ðC1Þ

This clearly highlights the crossing symmetry of the Ai.
Note that eN ¼ 1 (0) for the proton (neutron).

APPENDIX D: SUBTHRESHOLD
CONTINUATION

In this section, we summarize the η-MAID 2001 for-
malism for resonance contributions to eta photoproduction.
A resonance contribution to a multipole Ml� reads

Ml�ðWÞ ¼ ~MR;l�
mRΓtot

m2
R −W2 − imRΓtot

fηNCηN; ðD1Þ

where CηN is an isospin factor and

fηN ¼ ζηN

�
1

ð2J þ 1Þπ
jkjMN

jqjmR

ΓηN

Γ2
tot

�
1=2

; ðD2Þ

Γtot ¼ Γπ þ Γη þ Γ2π; ðD3Þ

Γπ ¼ βπNΓ
� jqπj
jqπ;Rj

�
2lþ1

�
X2 þ jqπ;Rj2
X2 þ jqπj2

�
l mR

W
; ðD4Þ

Γη ¼ βηNΓ
� jqj
jqRj

�
2lþ1

�
X2 þ jqRj2
X2 þ jqj2

�
l mR

W
; ðD5Þ
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Γ2π ¼ ð1 − βηN − βπNÞΓ
� jq2πj
jq2π;Rj

�
4lþ2

�
X2 þ jq2π;Rj2
X2 þ jq2πj2

�
lþ2

:

ðD6Þ
The ζηN � 1 is the relative sign between the decay of the
resonance to the πN and the ηN channels, X is a scale factor
related to the range of interactions responsible for the
finite scattering in higher partial waves l > 0, and βx ¼
ΓxðmRÞ=Γ is the branching ratio of the resonance into
channel x. The qx and qx;R denote the center-of-mass three-
momenta evaluated at W and W ¼ mR, respectively. The
parameters ~MR;l� can be related to the photoexcitation

helicity amplitudes, as shown in Ref. [4]. The CηN , ~MR;l�,
Γ, mR, βπN , and βηN were obtained in a fit to the world data
in Ref. [4] for the proton and Ref. [48] for the neutron. For
the subthreshold evaluation of the multipoles, we take
jqxj ¼ Re½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðMN −mxÞ2Þðs − ðMN þmxÞ2Þ

p
=ð2 ffiffiffi

s
p Þ�

in the evaluation of the energy dependent decay widths.
Finally, the CGLN amplitudes, F i defined in Eq. (F2),

are constructed from the multipoles using the relations
summarized in Eqs. (F3)–(F6).

APPENDIX E: b1 COUPLINGS

Using vector-meson dominance (VMD), SU(3) flavor
symmetry, and the OZI rule (no disconnected quark lines),
one obtains the following relations between the neutral
pseudoscalar-meson photoproduction amplitudes:

AðηÞ ¼
ffiffiffi
3

p
A
�
Aρðπ0Þ þ Abðπ0Þþ

1

9
ðAωðπ0Þ þ Ahðπ0ÞÞ

�
;

ðE1Þ
where the

ffiffiffi
3

p
is related to ideal ω − ϕ mixing and A ¼

1.55 to η − η0 mixing [24,68,69]. The b1 decays dominantly
through b1 → π0ω. In Ref. [70] it is shown that gb1πω ¼
9.77 from the corresponding decay width. Using VMD, one
can relate gb1πω to gb1πγ

gb1πγ ¼
e
fω

gb1πω ¼ 0.189; ðE2Þ

where fω ¼ 3fρ is the universal coupling constant of the ω
meson. This constant is not well constrained. We take fρ ¼
5.2 as in Ref. [21]. After applying Eq. (E1), one obtains
gb1ηγ ¼ 0.51. The nucleon vertex b1NN can be estimated
through axial-vector meson dominance as demonstrated in
Ref. [21]. Yu et al. [21] have illustrated that their estimate
of gtb1NN ¼ −14 is in good agreement with more funda-
mental theories (see Table 4 in Ref. [21] and the discussion
thereof). Finally, in our notation, we obtain

gb2 ¼ gb1ηγ
gtb1NN

2MN
¼ −3.8 GeV−2: ðE3Þ

APPENDIX F: AMPLITUDE BASES

The invariant amplitudes are defined in Eqs. (4)–(7).
Here we summarize their relation to the s-channel
electric and magnetic multipoles [28]. In terms of spinor
amplitudes,

A ¼ 4πW
MN

χ†fFχi; ðF1Þ

where χi (χf) is the initial (final) nucleon Pauli spinor in the
center-of-mass frame and

F ¼ σ · ϵF 1 − iσ · q̂σ · ðk̂ × ϵÞF 2

þ σ · k̂ q̂ ·ϵF 3 þ σ · q̂ q̂ ·ϵF 4; ðF2Þ

where q̂ ¼ q=jqj and k̂ ¼ k=jkj. The Chew-Goldberger-
Low-Nambu (CGLN) amplitudes F i are given in terms of
the multipoles Ml� by

F 1 ¼
X
l¼0

ðElþ þ lMlþÞP0
lþ1 þ ðEl− þ ðlþ 1ÞMl−ÞP0

l−1;

ðF3Þ

F 2 ¼
X
l¼1

ððlþ 1ÞMlþ þ lMl−ÞP0
l; ðF4Þ

F 3 ¼
X
l¼1

ðElþ − lMlþÞP00
lþ1 þ ðEl− þMl−ÞP00

l−1; ðF5Þ

F 4 ¼
X
l¼2

ð−Elþ þMlþ − El− −Ml−ÞP00
l : ðF6Þ

The derivatives of the Legendre polynomials (PðnÞ
l ) are a

function of cos θ, while the multipoles depend on s
only. The invariant amplitudes Ai are obtained from the
F i’s using

A1 ¼N
�
WþMN

W−MN

~F 1− ðEfþMNÞ ~F 2

þMN
t−μ2

ðW−MNÞ2
~F 3þMN

ðEfþMNÞðt−μ2Þ
W2−M2

N

~F 4

�
;

ðF7Þ

A2 ¼
N

W −MN
½ ~F 3 − ðEf þMNÞ ~F 4�; ðF8Þ

A3 ¼
N

W −MN

�
~F 1 þ ðEf þMNÞ ~F 2

þ
�
W þMN þ t − μ2

2ðW −MNÞ
�
~F 3

þ
�
W −MN þ t − μ2

2ðW þMNÞ
�
ðEf þMNÞ ~F 4

�
; ðF9Þ
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A4 ¼
N

W −MN

�
~F 1 þ ðEf þMNÞ ~F 2

þ t − μ2

2ðW −MNÞ
~F 3 þ

t − μ2

2ðW þMNÞ
ðEf þMNÞ ~F 4

�
;

ðF10Þ

where N ¼ 4π=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEi þMNÞðEf þMNÞ

p
and the reduced

CGLN amplitudes are defined by

~F 1 ¼ F 1; ~F 2 ¼ F 2=jqj;
~F 3 ¼ F 3=jqj; ~F 4 ¼ F 4=jqj2: ðF11Þ

The factors of jqj remove the kinematic threshold zeros that
appear in the multipole decomposition of F i,Ml� ∼

jqj→0
jqjl.

Explicitly, the reduced CGLN amplitudes up to and
including D Fwaves (l ¼ 2) are

~F1 ¼ E0þ þ E2− þ 3M2− þ 3ðE1þ þM1þÞ cos θ
þ 3=2ðE2þ þ 2M2þÞð5cos2θ − 1Þ; ðF12Þ

~F2 ¼ ½M1− þ 2M1þ þ 3ð2M2− þ 3M2þÞ cos θ�=jqj;
ðF13Þ

~F3 ¼ ½3ðE1þ −M1þÞ þ 15ðE2þ −M2þÞ cos θ�=jqj;
ðF14Þ

~F4 ¼ 3½−E2− − E2þ −M2− þM2þ�=jqj2: ðF15Þ
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