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We present the next-to-leading-order (NLO) corrections to the fragmentation process of a heavy quark to
a 3S1 wave heavy quarkonium. The virtual and real corrections are calculated by using the dimensional
regularization method. The divergences due to virtual NLO corrections are analytically extracted then we
explain how the poles from phase-space integrals and from loop integrals are canceled by renormalization.
We use the eikonal scheme to evaluate the soft real corrections in 4 − 2ε dimensions. Our numerical
calculations show the fragmentation function (FF) at NLO is dependent on both the μ scale and the initial
quark energy. These corrections have a significant effect on the shape and probability of the FF.
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I. INTRODUCTION

Ever since the discovery of the j=ψ meson in 1974 [1]
and subsequentlyϒ in 1977 [2], a long-term effort has been
made, both experimentally and theoretically, to understand
their production in hadronic collisions. Due to the inherent
characteristics of j=ψ and ϒ, in the family of heavy
mesons, the study of heavy quarkonium may improve
our knowledge of the standard model and of perturbative
and nonperturbative quantum chromodynamics (QCD).
The observation of quarkonium states j=ψ and ϒ, from
experimental data, is also one of the most famous identi-
fication tools of the quark gluon plasma signals [3].
In quarkonium physics, much of the theoretical progress

is stimulated by experimental results obtained from the
LHC and Tevatron accelerators. Recently, there have been
new investigations of j=ψ and ϒ meson production using
pp collision data taken at high energies, from 2.76 to 7 TeV,
by the LHCb [4–6], ALICE [7–9], ATLAS [10,11], and
CMS [12–14] collaborations. The first measurement of
quarkonium production has been presented with the LHCb
detector at

ffiffi
s

p ¼ 8 TeV by assumption of zero polarization
[15]; moreover, both direct and indirect production of
heavy quarkonium has also been analyzed in various
other processes such as electron-positron annihilation, Ζο

and B decays, and hadronic collisions at fixed-target
experiments [16–20].
From theoretical and experimental perspectives, the par-

tonic fragmentation is an important and arguable issue in the
understanding of j=ψ and ϒ meson production. Most of the
studies on their production have been done by singlet color
[21,22] andoctet colormodelswithin nonrelativistic quantum
chromodynamics (NRQCD) [23]. But the performed inves-
tigations between theoretical predictions and experiments
have shown that none of thesemodels can completely explain
the polarization and transverse momentum.

In an effort to solve these problems, several approaches
have been proposed. The FF for the splitting of partons into
heavy quarkonium has been calculated using perturbative
quantum chromodynamics (PQCD) [24,25] at the scale
μ ¼ 2mQ. The authors have summed up leading logarithms
of μ=mQ (μ and mQ are factorization scale and heavy quark
mass, respectively) by using the Altarelli-Parisi evolution
equations. Most recently, the gluon FF into the 1S0
quarkonium has been calculated by considering one-loop
corrections [26]. Also, the relativistic corrections of the
gluon FF into the cc̄ pseudoscalar state has been computed
by using that method [27]. In a study on the charm quark
fragmentation into the S-wave quarkonium states, Ma [28]
presented an approach that allows one to do systematic
investigation on the higher-order corrections, as was
illustrated in [29]. One-loop corrections and the QCD
radiative corrections in αs and relativistic velocity ν lead
to an increase in the cross section of quarkonium produc-
tion in the case of S-wave states. Recently, heavy quarko-
nium FFs at the input scale, μ > 2mQ, have been calculated
in terms of the NRQCD factorization approach in its
velocity expansion for the S and P waves states [30].
We apply the NLO corrections on the fragmentation of

the heavy quark into the 3S1 states of quarkonium, j=ψ
and ϒ. We should note that complete evaluation of the
scattering processes at NLO in QCD requires the calcu-
lation of leading-order graphs, virtual corrections, and real
gluon emission contributions. The results of this work may
be used in the calculation of cross sections.
This text is organized as follows: In Sec. II, the FF of the

c quark to heavy meson is algebraically calculated at LO in
αs. A more complete discussion can be found in Ref. [31].
In Sec. II, a general description of the NLO calculations
is given by using the dimensional regularization technique.
As is well known, this technique is the most appropriate
method for regulating UV and IR divergences. For the two
parts of the virtual and real corrections, we use this
approach to calculate the NLO corrections at the
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fragmentation process. In the last section, we summarize
the procedure of our calculations then analyze the numeri-
cal results at the LO and NLO accuracy for the scales
μ0 > 2mQ.

II. FRAGMENTATION FUNCTION
AT LEADING ORDER

The fragmentation process of heavy quark to quarko-
nium, Qðp2Þ → QQ̄ðpÞ þQðk2Þ, at lowest order in αs,
corresponds to the Feynman diagram as shown in Fig. 1.
We have assumed that the momentum of the final meson is
assigned as p ¼ p1 þ k1, such that Qðp1Þ and Q̄ðk1Þ are
emitted collinearly with each other. The four momenta
are labeled in Fig. 1.
By using NRQCD factorization, the fragmentation

function can be formulated as a power series in αs as
the following form:

DQ→QQ̄ðzÞ ¼ hO1ð1S0ÞiQQ̄½α2sdLOðzÞ þ α3sdNLOðzÞ þ � � ��
¼ DLO þ DNLO: ð1Þ

The matrix element O1ð1S0ÞQQ̄ is a proportional color-
singlet common projection operator [26]. So far, different
methods have been used to calculate the quark FF at LO
based on Suzuki [32], Collins [33], Braaten [24], etc. The
final result of their functions is gauge invariance. The
initial conditions of our calculations at LO are the same as
Ref. [31], but there are differences in the method of
calculation of the phase-space integrals and amplitude.
The FF at LO can be briefly expressed in following
standard form:

DLOðzÞ ¼ N
Z

jMLOj
2

dPS2; ð2Þ

where z is the longitudinal energy–momentum fraction of
the meson and MLO is the amplitude at LO. N may be
obtained by a normalization condition of the FFs. dPS2

stands for the differential of the two-body phase space
which can be expressed as

dPS2 ¼
1

ð2πÞ3
d3 ~p d3~k2
4p0k02

δ3ð~p2 − ~k2 − ~pÞ; ð3Þ

Z
dPS2ðQðp2Þ → HðpÞ þQðk2ÞÞ

¼
Z

1

4

1

ð2πÞ3
1

p0

d3k2
k02

δðp0
2 − p0 − k02Þ; ð4Þ

where d3k2 ¼ k02d
2kT2 and p0

2 ¼
ffiffiffiffiffi
s1

p
. We assume that the

meson and final quark form two- body phase space. The
LO amplitude for hadronic production can be written as

MLOðp;p2;k2Þ¼
vðk1Þūðp1Þ
ðk1þk2Þ2

igγμ
λa

2

p2þmQ

p2
2−m2

Q
igγμ

λb

2
uðk2Þ:

ð5Þ

The overall color factor is C2
F. In the Feynman gauge, λ

i

2

is the generator of the SU(3) representation. The common
projection operator is defined as follows:

vðk1; sÞ ūðp1; sÞ ¼
ψMð0Þ

2
ffiffiffi
2

p
m3=2

ðp1 þmÞεðpÞðk1 þmÞ

⊗
�

1cffiffiffiffiffiffi
Nc

p
�
; ð6Þ

where εðpÞ is the polarization vector for vector states j=ψ
(ϒ), 1c and Nc stand for the unit color matrix and the
number of color, Nc¼3 for QCD, and CF¼ðN2

c−1Þ=2Nc
is color factor. ψMð0Þ, a nonperturbative parameter, is a
Schrödinger wave function at the origin of the j=ψðϒÞ
meson with M ¼ 2mQ (Q ¼ c and b quarks). The fraction
of the initial quark’s momentum, z, is transferred to a heavy
quark-antiquark system and each component carries a
fraction of x1, x2 and the final quark takes the remaining

z ¼ EMeson

EQuark
¼ p0

p0
2

: ð7Þ

The four momenta of the particles are parametrized as

p0¼ zp0
2; p0

1¼x1zp0
2; k01¼x2zp0

2; k02¼ð1−zÞp0
2: ð8Þ

By applying the fragmentation kinematics and the scalar
product of four vectors, and integrating over the final-state
phase space as obtained in Ref. [31,34], we can obtain FF at
LO as

FIG. 1. The Feynman diagram at LO for quarkonium produc-
tion at the quark fragmentation process.
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DðzÞLO ¼ −2α2sC2
FrjΨMð0Þj2

27πξðzÞm3
2ðz − 1Þz ½ðr

2 þ 42rþ 41Þz4

− 8ð17rþ 1Þz3 þ 8ð17rþ 3Þz2 − 32zþ 16�;
ð9Þ

where in the fragmentation function, ξðzÞ and r are

ξðzÞ ¼ − ððrþ 1Þz2 − 4zþ 4Þ3
16ðz − 1Þ3z2 ; r ¼ k02T =m

2
Q; ð10Þ

where k0T is equal to the transverse momentum of the initial
heavy quark which is only carried by the final state heavy
quark at LO, p2T ¼ k2T ¼ k0T , and the term αsð2mQÞ is the
strong interaction coupling constant. We have calculated
this diagram in the Feynman gauge and the results are the
same as Ref. [24] which have been worked in light cone
gauge. Our calculation at LO is gauge invariant, and it is
close to Eq. (16) in Ref. [24]. Finally, the total FP and
average fraction of longitudinal energy momentum, for the
production of the S-wave bound state, are defined as

FP ¼
Z

1

0

DðzÞLOdz; ð11Þ

hzi ¼
R
1
0 z × DLOðzÞdzR

1
0 DLOðzÞdz

: ð12Þ

III. NEXT-TO-LEADING-ORDER CORRECTIONS

The NLO corrections of the heavy quark fragmentation
to quarkonium include the contributions of virtual and real
QCD corrections. Typical Feynman diagrams which con-
tribute to the one-loop corrections at the fragmentation
process of a heavy quark into j=ψ andϒmesons are shown
in Figs. 2–5. For the two kinds of vertices, g → bb̄ and
c → cc̄, we need only consider one of them sincethey are
similar.
The amplitude of NLO corrections, MNLO, is a combi-

nation of the contributions of virtual and real corrections.
First, we focus on the calculation of virtual corrections.
The virtual corrections amplitude, MVirtual, contains the
corrections of the self-energy according to Fig. 2, triangle
diagrams, Fig. 3, and box diagrams, Fig. 4. The sum over
helicities and colors is performed for each loop diagram
separately. The virtual corrections amplitude, Mvirtual, is
calculated according to the typical structure of Fig. 5,

jMvirtualj2 ¼ MLMR: ð13Þ

a1 a2 a3 a4

FIG. 2. The self-energy diagrams.

FIG. 3. The triangle diagrams in the virtual correction.
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The ML amplitude in the left side of the cut is coupled to
MR, the amplitude in the right side of the cut, with an
eikonal line.
For all diagrams, we should first write ML, which is the

part of the scattering amplitude containing one-loop cor-
rections in the left side of cut of Fig. 5. The self-energy
corrections for S1 in Fig. 2 are written in the following
form [35]:

ML
S1 ¼

p2 þmQ

p2
2 −m2

Q
ΠS1 igsγμ

λ

2

b vðk1Þūðp1Þ
ðk1 þ k2Þ2

igsγμ
λ

2

a
uðk2Þ

ð14aÞ

ΠS1 ¼
1

3

Z
d4q
ð2πÞ4 γν

q1
q21 −m2

Q þ iε
γσ

1

q2 − λ2 þ iε
;

q1 ¼ p2 − q: ð14bÞ

The self- energy tensor, Π, for S2, S3, and S4, is similar
to S1 except that q1 is not identical in its formalism. In S5,
the corrections of the fermion, ghost, and gluon loops to the
gluon propagator are shown. The sum over the ghost and
gluon loop is gauge invariant. The tensor formalisms of
vacuum polarization S5 are given in the below forms,

ΠS5 ¼
CFαs
4π

�
1

εuv
− log

−k2
μ2

��
1

5
− 2

3
nf

�
ðgμνk2 − kμkνÞ;

ð15Þ

where ΓS5 is the spinor amplitude that contains the
contributions of the propagator corrections and nf is the
number of quark flavors. For all diagrams, the conservation
of the vector current can be guaranteed by writing down the
amplitudes starting from the identical vertex. The triangle
diagrams corresponding to the QCD vertex are shown in
Fig. 3. In the Feynman gauge, the contribution of the vertex
corrections is

ML
T1 ¼

p2 þmQ

p2
2 −m2

Q
ΠT1 igγμ

gμρvðk1Þūðp1Þ
ðk1 þ k2Þ2

uðk2Þ ð16aÞ

ΠT1 ¼ g3
Z

d4q
ð2πÞ4

λb

2
γν
λa

2

ðqþmQÞ
ðq2 −m2

Q þ iεÞ

× γρ
ðqþ kþmQÞ

ððqþ kÞ2 −m2
Q þ iεÞ

λc

2
γσ

1

ðq2 − λ2 þ iεÞ
ð16bÞ

ML
T2 ¼

p2 þmQ

p2
2 −m2

Q
igγμ

gμρvðk1Þūðp1Þ
ðk1 þ k2Þ2

ΠT2uðk2Þ ð17aÞ

ΠT2 ¼ −g3
Z

d4q
ð2πÞ4 f

abcγρ½gρσðk − qÞν þ gνρð−q − 2kÞσ þ gσνð2qþ kÞρ�
λb

2

λc

2
γν

×
ðqþmQÞ

ðq2 −m2
Q þ iεÞðq2 − λ2 þ iεÞððqþ kÞ2 − λ2 þ iεÞ γσ: ð17bÞ

ΓTi is considered the vertex correction related to the triangle diagram Ti (i ¼ 1, 2,3,4). The triangle tensors of T3 and T4 are
written in the same manner as T1 and T2. The structure constant of the SU (3) group is displayed with fabc. γσ which
appears in calculation ofΠTi incorporated into the vector current ΓTi. The other corrections of NLO are according to the box
diagrams, B1 and B2, as follows:

FIG. 4. The box diagrams in the virtual correction.
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ML
B1 ¼ g4

Z
d4q
ð2πÞ4

p2 þmQ

p2
2 −m2

Q
γμ

ðqþ p2 þmQÞ
ððqþ p2Þ2 −m2

Q þ iεÞ
uðp1Þv̄ðk1Þ
ðk1 þ k2Þ2

γν
gρμ

ðqþ p2 − p1Þ2 þ iε
;

× γρ
ðq − k2 þmQÞ

ððq − k2Þ2 −m2
Q þ iεÞ γσuðk2Þ

gσν
ðq2 − λ2 þ iεÞ ; ð18Þ

and

ML
B2 ¼ g4

Z
d4q
ð2πÞ4

p2 þmQ

p2
2 −m2

Q
γμ

ðqþ p2 þmQÞ
ððqþ p21Þ2 −m2

Q þ iεÞ γν
gρμ

ðqþ p2 − p1Þ2 þ iε
;

× γρ
uðp1Þv̄ðk1Þ
ðk1 þ k2Þ2

ðqþ k2 þmQÞ
ððqþ k2Þ2 −m2

Q þ iεÞ γσuðk2Þ
gσν

ðq2 − λ2 þ iεÞ : ð19Þ

By considering the kinematic illustrated in the diagrams,
the box tensors of B3 and B4 are written in the same
manner as B1 and B2. Although B4 apparently has a
different topology, its formalism is simply written by
renaming the quark lines. For the tensor integral solution
of the vertex and box corrections, we use the three- and
four-point scalar integrals, respectively. In all equations, the
mass of the heavy quarks is nonzero. We have calculated
the integrals with one- two-, and three-point Feynman
propagators and an eikonal propagator by using the useful
integrals in Appendix B of Ref. [26].
Since MR in the virtual corrections has no divergences,

in ε ¼ 0, MLO is used instead of MR. The rules for the right
of the cut are conjugate of the rules on the left side. In
calculations, the term i=ðp2 −mQÞ comes from coupling
the initial quark coupled to the eikonal line. According
Feynman rules for diagrams that contain the eikonal line,
each eikonal-line propagator with momentum l, contrib-
utes a factor i=ðl −mÞ → iδij=ðl:nÞwhere i and j are color
indices. In Refs. [30,33,34], the usefule rules have been
stated for the Feynman diagrams that lie to the left and right
of the final-state cut.
These integrals are divergent for large values of the

internal loop momenta; thus, we have first to regularize

them by using the method of dimensional regularization
with D ¼ 4 − 2ε, then we cancel the infinities by
renormalization.
In our calculation, FeynArts [36] is used to plot the

Feynman diagrams. The algebraic calculations like tensor
algebra, tensor integral decomposition, and reduction
and trace are done by Mathematica package FeynCalc [37].
For the numerical evaluation of Feynman diagrams, we
have written some codes in maple. So, we limit ourselves to
presenting the results of the calculation of the one-loop
corrections in the fragmentation process at NLO for
Figs. 2–5.
In the output of our calculation, we find terms contained

in ε−1 which express the divergent part. The regularization
of FF is done in terms of the quark and gloun fields, the
strong coupling constant g, and the heavy quark mass m.
The renormalization of the coupling constant is performed
in the minimal-subtraction (MS) scheme, whereas the
renormalization of heavy quark mass and quark field is
done in the on-shell (OS) mass scheme. The counterterms

of δZMS
g , δZOS

2 , δZOS
3 and δZOS

m have been presented in
Ref. [38]. According to the power-counting rules, all UV
divergences appearing in vacuum polarization and the
triangle and box diagrams are removed by the counterterms
(CTs) of the external parton which form the quarkonium
and the result is UV-free. δZ2 and δZ3 have IR poles. The
eikonal counterterm is proportional to the quark field
counterterm. The IR divergences of the FF in CTs have
the following form:

DðzÞIRCounter → − 3αsCF

πεIR
DLOðzÞ: ð20Þ

It is removed after adding the IR divergences in the real
and virtual NLO corrections. The IR divergences existing
in virtual corrections are found in the box and triangle
diagrams. The combination of virtual infrared divergences
related to amplitude spinors is done as

FIG. 5. Typical structures of the amplitudes squared of virtual
corrections.
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MIR
Vitrual ¼ MIR

Box þMIR
Triangle: ð21Þ

Among the triangle and box diagrams, we find that the
IR divergence appearing in the T1 diagram is canceled by a
similar divergence in the B1 diagram; in addition the
combination of T3 and B3 is IR finite. B2 has both
collinear singularities and IR divergence. The remaining
IR divergences have the following form:

MIR
Virtual ¼

3CFαs
4π

1

εIR

�
m2

Q − 2ðp2:pÞxs logðxsÞ
ð1 − x2sÞm2

Q
þ 1

�
MLO;

ð22Þ

where xs ¼ −Kðs1; mQ;mQÞ and K ¼
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Q

s1

r �
=

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

Q

s1

r �
.

ffiffiffiffiffi
s1

p
is the equal energy of the initial

quark so that its value has to be
ffiffiffiffiffi
s1

p
> 3mQ for fragmen-

tation at high transverse momentum at NLO. In Eq. (20),
the last sentence is due to IR divergences in CTs. These
divergences are canceled by their corresponding parts in
real corrections. Therefore, the vitrual corrected FF can be
expressed as

DVitrualðzÞ ¼ N
Z

dPS2jMVitrualj
2

; ð23Þ

The calculations show that MVitrual can be written as a
combination of leading-order amplitude,MLO, and the loop
corrections amplitude. The FF in the sector real correction
can be expressed as

DRealðzÞ ¼ N
Z

dPS3jMRealj
2

; ð24Þ

where dPS3 is the three-body phase space of final states in
real correction. The Feynman diagram in real corrections is
schematically shown in Figs. 6–7. In the eikonal approxi-
mation, the amplitude squared is obtained as

jMRealj2 ¼ 4παsjMLOj2
�

m2
Q

ðk:k2Þ2
þ m2

Q

ðk:p2Þ2
�
; ð25Þ

Equation (25) contains the IR singularity. To regularize the
IR singularities appearing in real corrections, we have
employed the “Two cut off phase space slicing method”
[39]. In this way, IR divergences are regularized by a cut on
the energy of the emitted gluon. If the emitted gluon energy
is considered k0 > δs, it is called hard, while k0 < δs is
treated as soft. The parameter δs has a small quantity in the
energy unit. In real corrections, the amplitudes squared of
the soft and hard energy have the same structure. Under the
condition k0 < δs, the soft region, we have

FIG. 6. The Feynman diagrams contain real corrections that contribute to the production of quarkonium.

FIG. 7. Typical structure of the amplitudes squared of real
corrections.
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dPSSoft3 ¼ dPS2
d3k

ð2πÞ32k0

����
k0<δs

: ð26Þ

The three-body phase space for the real correction in the
hard region can be expressed as

dPSHard3 ¼ 1

16ð2πÞ5
d3 ~p
p0

d3~k2
k20

d3~k
k0

δ3ð~p2 − ~p − ~k2 − ~kÞ

× δðp20 − p0 − k20 − k0Þ ð27Þ

Z
d3 ~p ¼

Z
4πp0dp0 ð28aÞ

Z
d3~k ¼

Z
kLd2kT ð28bÞ

The kinematic for this scattering is obtaiend as

p ¼ zð ffiffiffiffiffi
s1

p
; 0; pT;

ffiffiffiffiffi
s1

p Þ ð29aÞ

p2 ¼ ð ffiffiffiffiffi
s1

p
; 0; p2T;

ffiffiffiffiffi
s1

p Þ; ð29bÞ

k2 ¼ xð ffiffiffiffiffi
s1

p
; 0; k2T;

ffiffiffiffiffi
s1

p Þ; ð29cÞ

k ¼ ð1 − z − xÞð ffiffiffiffiffi
s1

p
; 0; kT;

ffiffiffiffiffi
s1

p Þ ð29dÞ

The four-momentumenergy conservation yields ðkþ k2Þ2 ¼
ðp2 − pÞ2 and then ðk2:kÞ ¼ 2m2

Q. So, for the hard sector,
we have

Z
dPSHard3 jMRealj

2

¼
ZZ

s12ð1 − z − xÞz
16ð2πÞ4m2

Qx
dzdx; ð30Þ

where 0 ≤ z ≤ 1 − δs, 1 − δc ≤ x ≤ 1þ δc − z, and
δc ≪ δs [39]. The result of the integrations over the hard
phase space multiplied by the hard amplitude squared is a
logarithmic function of the soft cutoff δs.
In the real corrections, the combination of R1 and R2

shows no IR singularities. R3 and R5 have IR collinear
singularity, and R4 is IR finit. The sum of the soft and hard
parts gives the full real correction. The collinear singularity
and the IR divergence in the real corrections can be
expressed as

MIR
Real ¼

3CFαs
4π

1

εIR

�
4

3
logðδsÞ

−m2
Q − 2ðp2:pÞxs logðxsÞ

ð1 − x2s Þ
þ 2

�
×MLO ð31Þ

MIR
Collinear ¼ − 3CFαs

4π

1

εIR

�
4

3
logðδsÞ − 1

�
×MLO; ð32Þ

the logðδsÞ involved in the terms that will be canceled by
the δ-dependent terms in the hard sector of the real
corrections. The combination of Eqs. (20) with, (22),
(31), and (32) leads to removing IR divergences. All UV
and IR divergences in the Feynman gauge are well defined
and our calculation is gauge invariant. Finally, one can
obtain the FF at NLO for the process Q → j=ψðϒÞ þQ as

DNLOðzÞ ¼
Z

jMSoftj
2

dPSSoft3 þ
Z

jMHardj
2

dPSHard3

þ
Z

jMVirtualj
2

dPS2; ð33Þ

so that we have

DðzÞ ¼ DLOðzÞ ¼ DNLOðzÞ: ð34Þ

The FF is obtained as a function of the quark mass,
s12 ¼ ðp2 − p1Þ2, μ scale, logarithms of the soft δs, and
collinear δc cutoffs. All terms of order δs and δc are
neglected. Finally, we can compute them numerically.

IV. RESULTS AND DISCUSSION

In this work, the heavy quark FF to heavy quarkonium
has been calculatd by applying one-loop corrections at
process Q → QQ̄þQ, where Q can be c and b quarks.
We briefly reviewed the procedure used in our previous
work [31] for the extraction of the nonperturbative FF at
LO in αs. They were finally described only with two
parameters—longitudinal energy–momentum fraction z
and the transverse momentum of the initial quark kT . In
order to achieve higher-order corrections, we calculated the
FF according to Figs. 2–5. For the numerical calculations,
the following input parameters are used:

mc¼1.5GeV; mb¼4.5GeV; hk02T ij=ψ ¼0.7GeV2;

jψϒð0Þj2¼6.48GeV3; jψj=ψ ð0Þj2¼0.81GeV3:

Here,Ψð0Þ is the value of the heavy meson’s radial wave
function at the origin [18]. For j=ψ and ϒ, the FF at LO is
close to the result in Ref. [32]. It agrees with Ref. [24] and
is smaller than Ref. [34] by a factor 1=ð2NcÞ in the limit
ε ¼ 0. The authors in Ref. [34] have followed the Collins-
Soper model and have considered some additional dia-
grams. The eikonal line is part of the Collins and Soper set
of rules, and it allows a gauge-invariant definition of the
fragmentation function. But at the LO, one can avoid their
definition and use another construction of the FF where it
maintains gauge invariance. Thus, it can be concluded that
our FF according to the Suzuki model at LO is gauge
invariant. In the calculation of NLO corrections, eikonal
lines have been used. First, the corrections of the amplitude
at the NLO are calculated in the left side of the cut and then
merged with the amplitude in the right side of the cut. The
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NLO correction is done by the well-known method of
dimensional regularization. The running strong coupling
αs is evaluated at one loop by evolving from the exper-
imental value αsðMZÞ ¼ 0.11, and it is given by

αs
4π

¼ 1

β0L
−
β1 logL
β30L

; ð35Þ

where β0 ¼ ð33 − 2nfÞ=4, β1 ¼ ð34=3ÞC2
A − 4CFTFnf−

ð20=3ÞCATFnf, and L ¼ logðμ2=Λ2
QCDÞ with μ ¼ 2mQ

and ΛQCD ¼ 166 MeV. For the renormalization scales
appearing in DðzÞ, we adopt different renormalization
scales in DðzÞ, μ ¼ 3mQ, 5mQ, 10mQ, and 30mQ. In the
virtual corrections, we assumed that the initial heavy quark
transverse momentum, k0T , is carried by the final heavy
quark with four-momentum k2 and in the real corrections, it
is distributed between the final quark and soft or hard
gluon. In the real corrections, the finite terms of the virtual
corrections are integrated over the two-body phase space.
In the real corrections, the subtracted finite terms of the soft
and hard amplitude are integrated over the phase space of
the three final state. After cancellation of all divergences in
the NLO corrections and adding all the finites, the total FF
is obtained as Eq. (33). The FF at LO is dependent on the μ
scale via the coupling constant while at NLO this depend-
ence appears in both the coupling constant and NLO
corrections, especially in virtual terms. In the NLO calcu-
lations, the initial quark energy should be larger than the
initial scale for fragmentation, so we considered it to be at
least 2 times the μ scale.
The total FPs have been listed in Tables I and II for

production of j=Ψ and ϒ mesons at NLO in μ different
scales. The total FP is obtained by integrating the FF at

NLO and LO over z from 0 to 1. As expected, the FP at
NLO is larger than the FP at LO in different values μ. The
numerical results listed in Tables I and II indicate that when
renormalization scale μ increases NLO corrections dramat-
icaly enhance the FP. The initial quark energy has been
considered as the function of μ, the growth of this scale
increases energy of initial heavy quark for fragmentation to
quarkonium so, the FP at NLO slowly increase. In Table III,
the FPs have been evaluated with respect to variations of
the initial quark energy.
The FFs of the j=Ψ and ϒ mesons have been plotted in

Figs. 8 and 9, respectively, in different scales μ from
μ ¼ 3mQ to MZ=2. The solid lines indicate FFs at LO and
other lines show FFs at NLO. Our FF at LO agrees with
Braaten’s work [24] for j=ψ as shown in Fig. 8. The
diagrams at LO and NLO indicate that the one-loop
corrections enhance the FP to the Q → QQ̄þQ process.
When the energy scale has been increased, it is observed
that the FF enhances in the small z region. For any arbitrary
value μ, we observed that the peak of NLO diagram become
higher than LO diagram. Near the peak, for arbitrary value
of initial quark squared energy 2μ, the NLO corrections
enhance FP at least 16% for j=ψ andϒ respect to the lowest
order near the peak at μ ¼ 3mQ. This value grows by
increasing the renormalization scale somewhat for

TABLE III. The universal FP at the NLO level for the j=Ψ and
ϒ mesons in the c and b quark fragmentation, respectively, at the
μ ¼ 3mQ scale for different values of

ffiffiffiffi
s1

p
.

ffiffiffiffiffi
s1

p
2μ 2μ 5μ 10μ 15μ

F:Pj=Ψ × 10−3 0.21 0.22 0.23 0.25 0.29
F:Pϒ × 10−4 0. 38 0.45 0.47 0.52 0.60

FIG. 8. The FF of c to j=ψ as a function of z. The solid line and
dash-dot line indicate the FF at LO in our work and Ref. [24],
respectively. The FFs at NLO have been shown in different values
of the renormalization scale μ, from 3mc, 5mc, and 10mc with
dash, dot, and dash-dot-dot lines.

TABLE I. The universal FP × 10−3 at LO and NLO for the j=Ψ
and ϒmesons in the c and b quark fragmentation, respectively, atffiffiffiffi
s1

p ¼ 2μ. The results of Eq. (18) in Ref. [40] have been divided
to π.

LO NLO

Our work 0.18 μ ¼ 3mc 0.21
[24] 0.18 μ ¼ 5mc 0.22
[34] 1.13 μ ¼ 10mc 0.23
[32,40] 0.14 μ ¼ 10mc 0.35

TABLE II. The universal FP × 10−4 at the LO and NLO scale
for the ϒ meson in the b quark fragmentation at

ffiffiffiffi
s1

p ¼ 2μ. The
results of Eq. (18) in Ref. [40] have been divided to π.

LO NLO

Our work 0.38 μ ¼ 3mb 0.44
[24] 0.33 μ ¼ 5mb 0.45
[34] 2.1 μ ¼ 10mb 0.47
[40] 0.26 μ ¼ 10mb 0.69
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μ ¼ MZ=2, FP at NLO enhances by a factor of about 2 for
the j=Ψ meson, and it grows more slowly by a factor of
about 1.2 for the ϒ meson. The mean value of the
longitudinal momentum fraction, z is 0.7 at LO and
NLO. In the Suzuki model [32] this parameter is about
0.7 for j=Ψ and 0.76 for ϒ meson at LO, actually they are
close together. This means produced heavy quarkonium in
fragmentation process carry a large portion of longitudinal
momentum fraction of initial quark. In another comparison,
the FP in our work is larger than FP in Suzuki fragmenta-
tion model. This difference has been caused by adopting a

different calculation method for the phase space. Both
works have the same amplitude spinors and contain spin
information. The Braaten perturbative model integrates
over the invariant mass of the fragmenting quark [24],
but in our work the integration is done over k02T . In addition,
we employed the above parameters in the perturbative FF
obtained in Ref. [40]. There, the authors improved the FF
obtained within the model Berger [41] by modifying the
wave function but the FF at the Berger model works just for
z > 0.95 and does not comply with predictions about the
behavior of the FF at small z. However, we compare the FP
with that work at LO because the FF is derived from the
same Feynman diagram and the hadron momentum p is
portioned equally between the constituents formed meson
the same as our work. The result of Ref. [40] in Table I
has been divided by a factor π. Actually, the FP at LO is
larger than our result by a factor of 2.5 for the ϒ and j=Ψ
mesons. It should be noted that the Berger FF is obtained
by integrating on the transverse momentum final state
and it is obtained in the axial gauge and with no spin
information.
We find that the FF at the NLO is sensitive to selection of

the μ scale. The results show that QCD corrections to FFs
have a significant effect on the production of quarkonium
states at large transverse momentum. Generally, the NLO
corrections can enhance FP and, thus, it can be used to
calculate the hadron cross section and help to modify the
quarkonium polarization theoretically. The infinitesimal
disagreement between our result and the others listed in
Tables I and II can be due to dependence of our FF on the
value k0T and the meson wave function effects, etc.
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