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The longitudinal polarization of a hyperon in eþe− annihilation at high energies depends on the
longitudinal polarization of the quark produced at the eþe− annihilation vertex, whereas the spin alignment
of vector mesons is independent of it. They exhibit very different energy dependences. We use the
longitudinal polarization of the Lambda hyperon and the spin alignment of K� as representative examples
to present numerical results of energy dependences and demonstrate such distinct differences. We present
the results at the leading twist with perturbative QCD evolutions of fragmentation functions at the
leading order.
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I. INTRODUCTION

The spin dependence of fragmentation functions (FFs) has
attracted much attention since it provides not only important
information on the hadronization mechanism but also an
important place to study properties of quantum chromody-
namics (QCD).High energyeþe− annihilation is the cleanest
place to study FFs. Among different aspects of the spin
dependence, vector polarizations of hyperons and tensor
polarizations of vector mesons are two topics that attracted
special attention because both of them can be measured by
the angular distributions of the decay products. Hyperon
polarizations canbedetermined by the angular distributionof
the decay products of the spin self-analyzing parity violating
weak decay. Different components of the tensor polarization
of vector mesons can also be determined by the angular
distribution of decay products of the strong decay into two
spin zero hadrons. Measurements have been carried out,
e.g., many years ago at the Large Electron-Positron Collider
(LEP) for the longitudinal polarization of a Λ hyperon [1,2]
and for spin alignments of vector mesons [3–5] in the
inclusive production process eþe− → hX, and sizable effects
have been observed. These data have attracted many phe-
nomenological studies, and different approaches have been
proposed to describe them [6–24].
In the theoretical framework of the QCD parton model,

hadron polarizations are expressed in terms of different
FFs [25–31]. These FFs are defined via quark-quark and/or
quark-gluon-quark correlators. The results of the complete
decomposition of a quark-quark correlator as well as those
for that of a quark-gluon-quark at twist-3 for spin-1 hadrons
has been presented, e.g., in [31–33]. A general framework
for eþe− → VπX has been constructed [31], and QCD
parton model results for hadron polarizations in terms of
FFs have been presented up to twist-3 at the leading order
(LO) of perturbative QCD.
With these results, we can make predictions on the energy

dependence of hadron polarization within the theoretical

framework of QCD if we have the results at a given energy
and the scale dependence of FFs. In fact, from the results
presented in [25–31], we see one distinct feature for hadron
polarizations in eþe− annihilations at high energies, i.e., at the
leading twist, polarizations of hadrons are divided into two
categories. In one of them, the polarization of hadrons
depends on the initial longitudinal polarization Pq of the
quark (or antiquark) produced at the eþe−-vertex and is parity
violated. In the second category, the polarization is indepen-
dent of Pq and is parity conserved. The most well-known
example in the inclusive process eþe− → hX is the longi-
tudinal polarization of hyperons, such as Λ, Σ, and Ξ, while
spin alignments of vector mesons, such as ρ and K� are
representatives of the second category. The longitudinal
polarization Pq is a result of a weak interaction and is
completely determined by the electroweak process at the
parton level. It takes themaximumforeþe− annihilation at the
Z pole and changes very fast with energy. Hence, we expect
that the polarization in the first category has a strong energy
dependence. The energy dependence for hadron polarizations
in the second category comes mainly from the scale depend-
ence of the corresponding FFs and/or higher twist contribu-
tions. We expect that they change quite slowly with energy
compared with that in the first category. We should see very
much different behaviors in energy dependence.
The scale dependence of FFs are determined by the QCD

evolution equation. For the leading twist one dimensional
FFs, the evolutions are well established and are determined
by corresponding Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations [34–37] with timelike splitting
functions [38–43]. For the spin-dependent FFs, we have, in
particular, a global fit to those for the production of a Λ
hyperon already available many years ago with next-to-
leading order (NLO) QCD evolutions [43]. However, there
is still no similar study for vector mesons available yet.
Clearly, the energy dependence provides not only a good
place to study the spin dependence of FF but also a good

PHYSICAL REVIEW D 95, 034009 (2017)

2470-0010=2017=95(3)=034009(12) 034009-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.034009
http://dx.doi.org/10.1103/PhysRevD.95.034009
http://dx.doi.org/10.1103/PhysRevD.95.034009
http://dx.doi.org/10.1103/PhysRevD.95.034009


place to study the QCD evolution of the spin-dependent FF
and higher twist contributions. In view that there are some
data available from experiments at LEP [1–5] and that new
measurements can be carried out in experiments at very
much different energies such as BES III and BELLE [44]
and possibly at the future facilities planned and/or dis-
cussed [45], it is very interesting to present some numerical
results at different energies to guide experiment and test
models.
In this paper, after a brief summary of hadron polar-

izations in terms of FFs in eþe− → hX, we take the
longitudinal polarization of Λ and the spin alignment of
K� as two representative examples for the two categories
and calculate the energy dependence. We take them as
examples because we have data from LEP for both of them.
We follow the same way as in [43], make a simple working
parametrization for the corresponding FFs at an initial scale
by fitting the LEP data [1–5], and evolve them to other
energies. We present the results numerically that can be
used as a rough guide for future experiments.
The rest of the paper is organized as follows. After this

Introduction, we summarize the results of FFs defined via
quark-quark correlator, those for hadron polarizations in
terms of FFs in eþe− → hX and QCD evolution equations
for FFs in Sec. II. In Sec. III, we present a working
parametrization of the corresponding FFs, show the
numerical results of QCD evolution at the leading order,
and present the energy dependence of the two representa-
tive examples. We make a short summary and an outlook
in Sec. IV.

II. HADRON POLARIZATIONS IN eþe− → hX
IN TERMS OF FFS

High energy eþe− → hX is the best place to study FFs in
different connections. The results for hadron polarizations
expressed in terms of FFs up to twist-3 in leading order in
pQCD are given in different papers such as [25–31]. Here,
we make a short summary of these results and present, in
particular, the formulas that will be used in the numerical
estimations.

A. FFs defined via quark-quark correlator

The polarization of a hadron produced in a high energy
reaction is described by the spin densitymatrix. For spin-1=2
hadrons, the polarization is described by a 2 × 2 spin density
matrix that is usually decomposed as ρ ¼ ð1þ ~S · ~σÞ=2,
where ~σ is the Pauli matrix, and ~S is the polarization vector
which is represented by the helicity λ and the transverse
polarization vector SμT, i.e.,

Sμ ¼ λ
pþ

M
n̄μ þ SμT − λ

M
2pþ nμ; ð1Þ

where n and n̄ are the two unit vectors in light cone
coordinates. For spin-1 hadrons, the polarization is described

by a 3 × 3 density matrix, which, in the rest frame of the
hadron, is usually decomposed as [46]

ρ ¼ 1

3

�
1þ 3

2
SiΣi þ 3TijΣij

�
; ð2Þ

where Σi is the spin operator of a spin-1 particle, and
Σij ¼ 1

2
ðΣiΣj þ ΣjΣiÞ − 2

3
1δij. The spin polarization tensor

Tij ¼ TrðρΣijÞ and is parametrized as

T ¼ 1

2

0
B@

− 2
3
SLL þ SxxTT SxyTT SxLT
SxyTT − 2

3
SLL − SxxTT SyLT

SxLT SyLT
4
3
SLL

1
CA: ð3Þ

The tensor polarization part has five independent compo-
nents that are given by a Lorentz scalar SLL, a Lorentz vector
SμLT ¼ ð0; SxLT; SyLT; 0Þ, and a Lorentz tensor SμνTT that has
two nonzero independent components SxxTT ¼ −SyyTT and
SxyTT ¼ SyxTT .
For the fragmentation of the quark (or antiquark), the FFs

are defined via the quark-quark and/or the quark-gluon-
quark correlators. The quark-quark or quark-gluon-quark
correlator can, in general, be expressed as a sum of a
spin-independent part, a vector polarization dependent part,
and a tensor polarization dependent part. To describe
the production of spin zero hadrons, we need only the
spin-independent part. For spin-1=2 hadrons, the vector-
polarization dependent part is involved, and for spin-1
hadrons, the tensor polarization dependent part is also
needed. FFs are obtained by making Lorentz decomposi-
tions of the corresponding part in terms of 4-momenta and
variables describing the polarization. Hence, formally, the
spin independent part is exactly the same for hadrons with
different spins, the vector polarization dependent part is
also the same for spin-1=2 and spin-1 hadrons.
The results for the complete decomposition of a quark-

quark correlator are summarized, e.g., in [31]. At the leading
twist, there are totally 18 TMD FFs that are summarized in
Table II of [31]. From the table, we see that 5 of these 18
leading twist TMD FFs describe fragmentation of unpolar-
ized, 4 of them describe longitudinally polarized, and 9 of
them describe transversely polarized quark. For those
describing an unpolarized quark fragmentation, we have
the well-known D1ðz; k⊥Þ describing the number density of
hadrons produced in the fragmentation and the other 4
describing the induced polarizations. Similarly, for FFs of
the longitudinally and transversely polarized quark, we have
the direct spin transferG1L andH1T , respectively, and others
describing the number density and/or “worm-gear effects”.
After integrating over the transverse momentum, we

obtain the results in the one-dimensional case. In this case,
we have only five FFs left at the leading twist, i.e., the
number density D1ðzÞ, the induced D1LLðzÞ, the direct spin
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transfers in the longitudinally polarized case G1LðzÞ, and in
the transversely polarized case, H1TðzÞ and H1LTðzÞ.
We emphasize that one-dimensional FFs are needed to

describe inclusive processes, such as eþe− → hX, while
three-dimensional FFs are needed for semi-inclusive proc-
esses, such as eþe− → h1h2X. They can be studied in the
corresponding processes, respectively. Also, to study those
FFs for unpolarized, transversely polarized or longitudi-
nally polarized quarks, one needs to create quarks in the
corresponding polarization states and know the polariza-
tions of them before the fragmentation.

B. Quark polarization in eþe− → qq̄

It is well-known that the quark or antiquark from
eþe− → Z → qq̄ is longitudinally polarized. The polariza-
tion is given by

PZpole
q ðθÞ ¼ −

ce1c
q
3ð1þ cos2θÞ þ 2ce3c

q
1 cos θ

ce1c
q
1ð1þ cos2θÞ þ 2ce3c

q
3 cos θ

; ð4Þ

where θ is the angle between the incident electron and
the produced quark, ce1 ¼ ðceVÞ2 þ ðceAÞ2, ce3 ¼ 2ceVc

e
A, c

e
V

and ceA are defined in the weak interaction current
ψ̄γμðceV − ceAγ

5Þψ , and the superscript denotes that they
are for the electron, and similarly, for different flavors of
quarks.
Although the quark (antiquark) is not transversely

polarized, their transverse spin components are correlated.
This is described by the transverse spin correlation function
cqnn defined as

cqnn ≡ jm̂nþþj2 þ jm̂n−−j2 − jm̂nþ−j2 − jm̂n−þj2
jm̂nþþj2 þ jm̂n−−j2 þ jm̂nþ−j2 þ jm̂n−þj2

; ð5Þ

where m̂ is the scattering amplitude andþ or − denotes that
the quark or antiquark is in sn ¼ 1=2 or −1=2 state. If we
take ~n as the normal of the production plane, we obtain

cq;Zpolenn ðθÞ ¼ ce1c
q
2sin

2θ

ce1c
q
1ð1þ cos2θÞ þ 2ce3c

q
3 cos θ

; ð6Þ

where cq2 ¼ ðcqVÞ2 − ðcqAÞ2. Define y ¼ l2 · pq=q · pq ≈
ð1þ cos θÞ=2 (l1 and l2 are the 4-momenta of the incident
e− and eþ, q ¼ l1 þ l2 is that of the Z boson, and pq is
that of the produced quark), we can express Pq and cqnn in
terms of y, i.e.,

PZpole
q ðyÞ ¼ Tq

1ðyÞ=Tq
0ðyÞ; ð7Þ

cq;Zpolenn ðyÞ ¼ ce1c
q
2CðyÞ=2Tq

0ðyÞ; ð8Þ

Tq
0ðyÞ ¼ ce1c

q
1AðyÞ − ce3c

q
3BðyÞ; ð9Þ

Tq
1ðyÞ ¼ −ce1c

q
3AðyÞ þ ce3c

q
1BðyÞ: ð10Þ

Here, we denote as usual AðyÞ ¼ ð1 − yÞ2 þ y2 ≈
ð1þ cos2 θÞ=2, BðyÞ ¼ 1�2y ≈ − cos θ, and CðyÞ ¼
4yð1 − yÞ ≈ sin2 θ.
Experimental studies are often carried out irrespective of

θ or y. The obtained results just correspond to the results
integrated over θ or y. For the polarization and correlation
of quark given above, if we integrate over θ or y, we obtain

P̄Zpole
q ¼ −cq3=c

q
1; ð11Þ

c̄q;Zpolenn ¼ cq2=2c
q
1: ð12Þ

We see that, the quark is negatively polarized in the
longitudinal direction. Also c2 < 0 since c2V is smaller than
c2A, so we have a negative cqnn at the Z pole.
In general, for eþe− → qq̄, we need to consider con-

tributions from eþe− → Z → qq̄, those from eþe− →
γ� → qq̄, and the interference terms. In this case, we have

PqðyÞ ¼ ΔwqðyÞ=wqðyÞ; ð13Þ

cqnnðyÞ ¼ 2yð1 − yÞðe2q þ χce1c
q
2 þ χqintc

e
Vc

q
VÞ=wqðyÞ: ð14Þ

Here, eq is the electric charge of q, and wqðyÞ and ΔwqðyÞ
are given by

wqðyÞ ¼ χTq
0ðyÞ þ e2qAðyÞ þ χqintI

q
0ðyÞ; ð15Þ

ΔwqðyÞ ¼ χTq
1ðyÞ þ χqintI

q
1ðyÞ; ð16Þ

Iq0ðyÞ ¼ ceVc
q
VAðyÞ − ceAc

q
ABðyÞ; ð17Þ

Iq1ðyÞ ¼ −ceVc
q
AAðyÞ þ ceAc

q
VBðyÞ; ð18Þ

χ ¼ s2=½ðs −M2
ZÞ2 þ Γ2

ZM
2
Z� sin4 2θW; ð19Þ

χqint ¼ −2eqsðs −M2
ZÞ=½ðs −M2

ZÞ2 þ Γ2
ZM

2
Z� sin2 2θW;

ð20Þ

whereMZ and ΓZ are the mass and decay width of Z, θW is
the Weinberg angle, and s ¼ q2 ¼ Q2.
After integrating over y, we obtain

P̄q ¼ ΔWq=Wq; ð21Þ

c̄qnn ¼ ðe2q þ χce1c
q
2 þ χqintc

e
Vc

q
VÞ=3Wq; ð22Þ

where ΔWq and Wq are the results of ΔwqðyÞ and wqðyÞ
after integration over y, and they are given by

ΔWq ¼ −
2

3
ðχce1cq3 þ χqintc

e
Vc

q
AÞ; ð23Þ

Wq ¼
2

3
ðe2q þ χce1c

q
1 þ χqintc

e
Vc

q
VÞ: ð24Þ
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We see that both P̄q and c̄qnn depend on the energy
ffiffiffi
s

p
, and

behave quite differently in the energy dependence. For
comparison, we plot them in Fig. 1 together with the
normalized weight Wq=

P
qWq. We see clearly that, in the

energy region
ffiffiffi
s

p
≤ MZ, as

ffiffiffi
s

p
decreases, the electromag-

netic interaction becomes dominate, the longitudinal polari-
zation of quark P̄q goes to zero rapidly, but the correlation
c̄qnn goes from negative to positive and reaches the
maximum 1=2 rapidly. For

ffiffiffi
s

p
≥ MZ, we have contribu-

tions from both weak and electromagnetic interactions,
and they combine together to give rise to a negative Pq but
positive cqnn. The correlation between the transverse spin
components of the quark and antiquark is strong and
positive.
From these results, we see, in particular, the following. In

eþe−-annihilation at high energies, we have possibilities to
study FFs of unpolarized, longitudinally polarized as well
as transversely polarized quarks. First, we can study FFs of
unpolarized or longitudinally polarized quarks by studying
singly polarized reactions, i.e., by measuring only the
polarization of one hadron in the final state. More precisely,
we can study one-dimensional FFs of unpolarized or
longitudinally polarized quarks in eþe− → hX by meas-
uring the corresponding components of polarizations of h
in the final state. By studying the semi-inclusive process
eþe− → h1h2X and measuring the polarization of h1, we

can study the corresponding three-dimensional FFs.
Second, FFs of the transversely polarized quark can also
be studied in eþe−-annihilation at high energies. But in this
case, we need at least to measure polarizations or other spin
dependent asymmetries of two hadrons in the final states
since the nonzero quantity at the parton level is the
transverse spin correlation between the initial quark and
antiquark but not the transverse polarization of the quark or
antiquark. In this paper, we start with the simplest case,
i.e., eþe− → hX, where only one-dimensional FFs for
the unpolarized or longitudinally polarized quark can be
studied.

C. Hadron polarizations at the Z pole

Hadron polarizations in eþe−-annihilations at high
energies are given e.g., in [29–31] in terms of FFs. For
eþe− → Z → VX at the leading order in pQCD and up to
twist-3, for the longitudinal components, we obtain

hλiðz; yÞ ¼ 2

2Sþ 1

P
qPqðyÞTq

0ðyÞG1LðzÞP
qT

q
0ðyÞD1ðzÞ

; ð25Þ

hSLLiðz; yÞ ¼
3

2ð2Sþ 1Þ

P
qT

q
0ðyÞD1LLðzÞP

qT
q
0ðyÞD1ðzÞ

: ð26Þ

Here, for brevity and clarity, we omit the superscript q → V
in the fragmentation functions, e.g.,D1ðzÞ ¼ Dq→V

1 ðzÞ; and
S is the spin of hadron h. The factor (2Sþ 1) appears here
because, in the conventions used in [31] in defining FFs via
a quark-quark correlator and/or a quark-gluon-quark cor-
relator, D1ðzÞ is the number density for the produced h
averaging over rather than summing over the spin of h.
We write this factor explicitly so that the corresponding
expressions eventually take the same form for spin-1=2 as
well as spin-1 hadrons. For the transverse components,
we have

hSxTiðz; yÞ ¼ −
8MDðyÞ

ð2Sþ 1ÞzQ

P
qT

q
3ðyÞGTðzÞP

qT
q
0ðyÞD1ðzÞ

; ð27Þ

hSyTiðz; yÞ ¼
8MDðyÞ

ð2Sþ 1ÞzQ

P
qT

q
2ðyÞDTðzÞP

qT
q
0ðyÞD1ðzÞ

; ð28Þ

hSxLTiðz; yÞ ¼ −
8MDðyÞ

ð2Sþ 1ÞzQ

P
qT

q
2ðyÞDLTðzÞP

qT
q
0ðyÞD1ðzÞ

; ð29Þ

hSyLTiðz; yÞ ¼
8MDðyÞ

ð2Sþ 1ÞzQ

P
qT

q
3ðyÞGLTðzÞP

qT
q
0ðyÞD1ðzÞ

; ð30Þ

where DðyÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞp

, and we also define,

Tq
2ðyÞ ¼ −ce3c

q
3 þ ce1c

q
1BðyÞ; ð31Þ

FIG. 1. Energy dependence of the longitudinal polarization P̄q,
the transverse quark-antiquark spin correlation c̄qnn, and the
normalized weight Wq=

P
qWq of a different flavor q of quark

produced in eþe− annihilation.
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Tq
3ðyÞ ¼ ce3c

q
1 − ce1c

q
3BðyÞ: ð32Þ

We recall that hSyTi is P even and naive T odd, hSxTi is P odd
and naive T even, and hSyLTi is P odd and naive T odd. We
emphasize that formally vector polarization components,
such as hλi, hSxTi and hSyTi, have exactly the same
expressions in terms of FFs for spin-1=2 hadrons or vector
mesons. This means that Eqs. (25) and (27)–(28) are the
same for hyperons and for vector mesons. They are just
given by the corresponding FFs for specified hadrons.
The spin alignment of the vector meson is measured

by the 00 component ρ00 of the spin density matrix ρ in
the helicity basis. It is directly related to hSLLi by
ρ00 ¼ ð1 − 2hSLLiÞ=3, which means

ρ00ðz; yÞ ¼
1

3
−
1

3

P
qT

q
0ðyÞD1LLðzÞP

qT
q
0ðyÞD1ðzÞ

: ð33Þ

We consider the case of integrated over θ or y, and we
have

λ̄ðzÞ ¼ −
2

2Sþ 1

P
qc

q
3G1LðzÞP

qc
q
1D1ðzÞ

; ð34Þ

ρ̄00ðzÞ ¼
1

3
−
1

3

P
qc

q
1D1LLðzÞP

qc
q
1D1ðzÞ

; ð35Þ

S̄xTðzÞ ¼ −
3πM

2ð2Sþ 1ÞzQ

P
qc

e
3c

q
1GTðzÞP

qc
e
1c

q
1D1ðzÞ

; ð36Þ

S̄yTðzÞ ¼ −
3πM

2ð2Sþ 1ÞzQ

P
qc

e
3c

q
3DTðzÞP

qc
e
1c

q
1D1ðzÞ

; ð37Þ

S̄xLTðzÞ ¼
3πM

2ð2Sþ 1ÞzQ

P
qc

e
3c

q
3DLTðzÞP

qc
e
1c

q
1D1ðzÞ

; ð38Þ

S̄yLTðzÞ ¼
3πM

2ð2Sþ 1ÞzQ

P
qc

e
3c

q
1GLTðzÞP

qc
e
1c

q
1D1ðzÞ

: ð39Þ

We see that at the leading twist, we have only two
nonzero components, i.e., the longitudinal polarization
PLh ¼ hλi and ρ00 ¼ ð1 − 2hSLLiÞ=3. The transverse
polarization exists at twist-3, i.e., it is power suppressed.
We also note that there is no twist-3 contribution to hλi or
hSLLi. The higher twist corrections to these two compo-
nents come only from twist-4 or even higher twists [29].

D. Hadron polarizations at different energies

At different energies, we need to consider contributions
from eþe− → Z → VX, those from eþe− → γ� → VX, and
those from the interference terms. For the longitudinal
components, we have

hλiðz; yÞ ¼ 2

2Sþ 1

P
qPqðyÞwqðyÞG1LðzÞP

qwqðyÞD1ðzÞ
; ð40Þ

hSLLiðz; yÞ ¼
3

2ð2Sþ 1Þ

P
qwqðyÞD1LLðzÞP
qwqðyÞD1ðzÞ

; ð41Þ

and for the transverse components

hSxTiðz; yÞ ¼ −
8MDðyÞ

ð2Sþ 1ÞzQ

P
qΔxwqðyÞGTðzÞP
qwqðyÞD1ðzÞ

; ð42Þ

hSyTiðz; yÞ ¼
8MDðyÞ

ð2Sþ 1ÞzQ

P
qΔywqðyÞDTðzÞP
qwqðyÞD1ðzÞ

; ð43Þ

hSxLTiðz; yÞ ¼ −
8MDðyÞ

ð2Sþ 1ÞzQ

P
qΔywqðyÞDLTðzÞP

qwqðyÞD1ðzÞ
; ð44Þ

hSyLTiðz; yÞ ¼
8MDðyÞ

ð2Sþ 1ÞzQ

P
qΔxwqðyÞGLTðzÞP

qwqðyÞD1ðzÞ
; ð45Þ

where wqðyÞ is given by Eq. (15), and ΔxwqðyÞ and
ΔywqðyÞ are given by

ΔxwqðyÞ ¼ χTq
3ðyÞ þ χqintI

q
3ðyÞ; ð46Þ

ΔywqðyÞ ¼ χTq
2ðyÞ þ χqintI

q
2ðyÞ; ð47Þ

Iq2ðyÞ ¼ −ceAc
q
A þ ceVc

q
VBðyÞ; ð48Þ

Iq3ðyÞ ¼ ceAc
q
V − ceVc

q
ABðyÞ: ð49Þ

After integrating over y, we obtain

λ̄ðzÞ ¼ 2

ð2Sþ 1Þ

P
qP̄qWqG1LðzÞP

qWqD1ðzÞ
; ð50Þ

ρ̄00ðzÞ ¼
1

3
−
1

3

P
qWqD

q→h
1LL ðzÞP

qWqD
q→h
1 ðzÞ ; ð51Þ

S̄xTðzÞ ¼ −
8M

ð2Sþ 1ÞzQ

P
qΔxWqGTðzÞP
qWqD1ðzÞ

; ð52Þ

S̄yTðzÞ ¼
8M

ð2Sþ 1ÞzQ

P
qΔyWqDTðzÞP
qWqD1ðzÞ

; ð53Þ

S̄xLTðzÞ ¼ −
8M

ð2Sþ 1ÞzQ

P
qΔyWqDLTðzÞP

qWqD1ðzÞ
; ð54Þ

S̄yLTðzÞ ¼
8M

ð2Sþ 1ÞzQ

P
qΔxWqGLTðzÞP

qWqD1ðzÞ
; ð55Þ
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where ΔxWq ¼ πðχce3cq1 þ χqintc
e
Ac

q
VÞ=8, and ΔyWq ¼

−πðχce3cq3 þ χqintc
e
Ac

q
AÞ=8. We see again that there exist

twist-3 transverse polarizations that can be used to study
higher twist effects, in particular, the corresponding higher
twist FFs. However, we should also note that at lower
energies where electromagnetic interactions dominate, such
twist-3 contributions are nonzero only at a given y but
vanish after the integration over y or θ in the entire region.
This is consistent with the data available [47]. One can,
however, study such effects by measuring transverse polar-
izations integrated in a given region of θ or y, such as in the
forward or backward hemisphere.

E. QCD evolution equations for G1L and D1LL

QCD evolutions for leading twist one dimensional FFs
have been well established and are determined by corre-
sponding DGLAP equations [34–37] with timelike splitting
functions [38–43]. We just give the equations that will be
used in our numerical estimations in the following.
The evolution of the spin transfer G1L is given by
DGLAP in the longitudinally polarized case, while that
for the SLL-dependent FF D1LL is the same as that for
unpolarized FF D1. They are given by

∂
∂ lnQ2

Gi→h
1L ðz;Q2Þ

¼ αsðQ2Þ
2π

X
j

Z
1

z

dy
y
Gj→h

1L

�
z
y
;Q2

�
ΔPjiðy; αsÞ; ð56Þ

∂
∂ lnQ2

Di→h
1LLðz;Q2Þ

¼ αsðQ2Þ
2π

X
j

Z
1

z

dy
y
Dj→h

1LL

�
z
y
;Q2

�
Pjiðy; αsÞ; ð57Þ

where i or j denotes different types of partons, such as
different flavors of quarks, antiquarks, and gluons. At the
leading order (LO) in pQCD, the polarized splitting
functions are given by [41,42]

ΔPqqðyÞ ¼ CF

�
1þ y2

ð1 − yÞþ
þ 3

2
δð1 − yÞ

�
; ð58Þ

ΔPgqðyÞ ¼ CF
1 − ð1 − yÞ2

y
; ð59Þ

ΔPqgðyÞ ¼ ½y2 − ð1 − yÞ2�=2; ð60Þ

ΔPggðyÞ ¼ Nc

�
ð1þ y4Þ

�
1

y
þ 1

ð1 − yÞþ

�
−
ð1 − yÞ3

y

�

þ 11Nc − 2Nf

6
δð1 − yÞ; ð61Þ

where Nc ¼ 3 and CF ¼ ðN2
c − 1Þ=2Nc. The unpolarized

splitting functions are given by

PqqðyÞ ¼ ΔPqqðyÞ; ð62Þ

PgqðyÞ ¼ CF
1þ ð1 − yÞ2

y
; ð63Þ

PqgðyÞ ¼ ½y2 þ ð1 − yÞ2�=2; ð64Þ

PggðyÞ ¼ Nc

�
2y

ð1 − yÞþ
− 2

�
y2 − y −

1

y
þ 1

��

þ 11Nc − 2Nf

6
δð1 − yÞ: ð65Þ

The NLO results for these splitting functions have also
been obtained, and a global fit for the spin-dependent
FF Gq→Λ

1L ðz;QÞ has been given in [43]. However, the data
available are still too far to make such detailed analysis for
other hadrons. Even for Gq→Λ

1L ðz;QÞ, we still far away from
a reliable parameterization of different contributions [43].
The purpose of our studies in this paper is not to make a
global fit for polarized FFs but to demonstrate the two
distinctly different behaviors in the energy dependence of
hadron polarization in eþe−-annihilation. We therefore
limit ourselves to the next-to-leading order in pQCD,
where only leading order splitting functions given above
are used.

III. NUMERICAL RESULTS FOR PLΛ AND ρ̄K
�

00

As has already been emphasized in Sec. II, from the
results given by Eqs. (25)–(30) and (40)–(45), we see
clearly that at the leading twist there exist only two
components of the polarization, PLh ¼ λ̄ and S̄LL or ρ̄00,
and that there is a distinct difference between them: the
former depends on the initial longitudinal polarization P̄q

of the quark and describes the longitudinal spin transfer in
the fragmentation of the quark. It is parity violating in
eþe− → hX and is caused by the weak channel eþe− →
Z → hX and its interference to the electromagnetic channel
eþe− → γ� → hX. The latter is independent of P̄q and is an
induced polarization in the quark fragmentation. It is parity
conserved and exists even in the fragmentation of the
unpolarized quark. Clearly, such distinct differences should
manifest themselves in different high energy reactions. One
of the consequences in eþe−-annihilation is the different
behavior in the energy dependence.
As can be seen from Eq. (50), the energy dependence of

PLh comes from three factors: the quark polarization Pq,
the relative weight Wq of different flavors, and the scale
dependence of FFs. The first two factors are determined by
the electroweak interactions and can easily be calculated.
From the results (see, e.g., Fig. 1), we see clearly that the
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energy dependence of P̄q is very strong, in particular, in the
region for

ffiffiffi
s

p
, a bit larger than MZ down to few GeV, say,

5 <
ffiffiffi
s

p
< 200 GeV. That of the normalized Wq in this

energy region is also quite obvious but quite smoother
than that of P̄q. Furthermore, the influence of Wq on the
polarization of a hadron can only be transferred via the
flavor dependence of the corresponding FFs and can be
weakened in kinematic regions, where the flavor depend-
ence of FF is not strong. The scale dependence of FF is
determined by QCD evolution and is perhaps the smoothest
among the three factors [43] in the above-mentioned energy
region. Hence, without detailed calculations, we can
already expect that the longitudinal polarization of the
hyperon in eþe−-annihilation changes fast with energy,
and the behavior is dominated by that of P̄q. In contrast,
for S̄LL, the energy dependence comes only from that
of Wq and FFs. There should be a much smoother energy
dependence for SLL in the energy region mentioned above.
This is a clear prediction based on the general features of
the QCD quark-parton picture and is independent of the
detailed behaviors of FFs that can be tested by experiments.
Currently, our knowledge on the precise forms of FFs is

still very limited due to limitations of data available, in
particular, in the polarized case. It is quite fortunate that
there are some data available from LEP [1–5] on the
longitudinal polarization PLΛ of Λ and the spin alignment
ρ̄K

�
00 of K�. Although they are still very far from sufficient
for a detailed analysis, we can use them to initialize such a
study to demonstrate the essential features and guide future
experimental studies.

A. Parametrizations and QCD evolutions
of G1L and D1LL

Because of decay contributions, polarization of a Λ
hyperon is much more involved than other hyperons and/or
vector mesons. In general, the leading twist FF for a quark
to a baryon, q → Bi, can be written as the sum of a direct
fragmentation and a decay contribution part, i.e.,

Dq→Bi
1 ðzÞ ¼ Dq→Bi

1dir ðzÞ þ
X
j≠i

Rji
D

Z
dz0Kji

Dðz; z0ÞDq→Bj

1 ðz0Þ;

ð66Þ

Gq→Bi
1L ðzÞ ¼ Gq→Bi

1L;dirðzÞ þ
X
j≠i

Rji
D

×
Z

dz0Kji
Dðz; z0ÞtjiDðz; z0ÞGq→Bj

1L ðz0Þ; ð67Þ

where Rji
D is the decay branch ratio of Bj → Bi þ X,

Kji
Dðz; z0Þ is the probability for a Bj with z0 to decay into

a Bi with z, and tjiDðz; z0Þ is the spin transfer factor in the
decay process.

Numerical results show that, for the Λ hyperon, the
contributions from Σ0 and Ξ0;− are sizable [7,8]. However,
since there is no suitable data for Σ0 or Ξ polarization in
eþe− available yet, it is impossible to make such a detailed
analysis. On the other hand, the energy dependences of the
hadron polarizations that we will study in this paper come
mainly from the QCD evolution of FFs and the energy
dependence of the polarization of the quark produced at
the eþe−-annihilation vertex. We would expect that the
influences from the decay contributions on the energy
dependence are not very large. Hence, in this paper, as a
rough estimation, we simply parametrize the final Dq→Λ

1 ðzÞ
and Gq→Λ

1L ðzÞ, and evolve them to other energies using
DGLAP equations given by Eq. (56).
Currently, for the unpolarized FF D1ðzÞ, there exist

already a number of parametrizations in the literature for
the production of hadrons such as pion, Kaon, proton, and
Λ [48]. We can just take the most recent parametrizations
AKK08 given in [49] for Λ.
For the polarized FF Gq→Λ

1L ðzÞ, a global fit and detailed
analysis have already been given in 1998 in [43] by de
Florian, Stratmann, and Vogelsang (DSV98) to the NLO in
QCD evolution. However, as have already been pointed out
in [43], the data available are far from sufficient to fix all
different contributions. They had to make some assump-
tions such as that the heavy-flavor contributions are
neglected, that the u and d fragmentations are taken as
equal, and that the polarized unfavored and gluon FFs are
taken as zero at the initial scale etc. in order to carry out the
calculations. They presented also the results at different
scenarios. The results already show explicitly that, com-
pared to the drastic change of P̄q with energy shown in
Fig. 1, the scale dependence of FF is smooth and the
difference between LO and NLO results is not very large.
There is not much progress on parametrizations of

polarized FFs since DSV98 [43] besides some improve-
ments for unpolarized FFs. There are, however, many
phenomenological studies [6–19,50–52] using different
models on hyperon polarization in different high energy
reactions. We note, in particular, a series of analysis with
the aids of the Monte Carlo event generator such as PYTHIA
based on Lund string fragmentation model [53,54] and
another series [12–18] based on the Gribov relation [55]
between PDFs and FFs. With a Monte Carlo event gen-
erator, one can analyze in detail the influence of different
contributions. From these different phenomenological stud-
ies [6–19,50–52], we see that although there are distinct
differences in different models, some features are common.
Consistent with the data available [1–5], all models seem to
suggest that polarization dependent FFs are important only
in the large z region. In the language of the Feynman-Field
type of recursive cascade fragmentation picture [56–59],
polarized FFs are dominated by the contributions of the
“first rank” hadrons, i.e., those containing the fragmenting
quarks and/or antiquarks. It implies also that the main
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features are determined by the “favored” fragmentations.
The contributions from the “unfavored” and gluon frag-
mentations are from “higher rank” hadrons. They are, in
general, small and have negligible dependence on the flavor
of the initial quark (antiquark) or gluon. This is also
consistent with the assumptions made by DSV in [43].
Since the purpose of the calculations in this section is to

demonstrate the main feature of the energy dependence of
hyperon polarization, we do not intend to make a best fit for
the data available. Instead, wewould like to pick up the most
influential parts to demonstrate the main features expected.
In view that the differences between LO and NLO QCD
evolution results are not very large [43] and the accuracy that
we can reach at this stage is not very high, we choose to do
only a LO QCD evolution. We take a parametrization in the
same form as DSV98 [43] in the second scenario with the
same assumptions and/or approximations in connection with
the heavy flavor contributions, u and d flavor dependence,
unfavored, and gluon fragmentation at the initial scale. We
will use the most recent parametrization for the correspond-
ing unpolarized FFs and readjust the parameters to get a
better fit to theLEPdata [1,2].More precisely, for the s-quark
fragmentation, we take

Gs→Λ
1L ðzÞ ¼ zaDs→Λ

1 ðzÞ; ð68Þ

while for u and d quark, we take

Gq→Λ
1L ðzÞ ¼ NzaDq→Λ

1 ðzÞ; ð69Þ

where q ¼ u or d, and limit the parameters a > 0 and
jNj ≤ 1 so that the positivity bounds are satisfied [43]. We
further limitN to be negative and small to be consistent with
the expectation from the Gribov relation [55] and polarized
PDFs [60]. We choose an initial scale at Q ¼ 5 GeV and
evolve the FFs to larger Q’s and fix the parameters by the
LEP data for Λ polarization [1,2]. In this way, we fix the
parameters as a ¼ 0.5 and N ¼ −0.1. The result of the fit
for Λ polarization is shown by the solid line in Fig. 2. The
obtained Gq→Λ

1L ðz;Q2Þ at different Q for q ¼ u, d, and s are
shown in Fig. 3. We see that in general Gs→Λ

1L ðz;Q2Þ is
positive and much larger thanGu→Λ

1L ðz;Q2Þ orGd→Λ
1L ðz;Q2Þ.

The small difference betweenGu→Λ
1L ðz;Q2Þ andGd→Λ

1L ðz;Q2Þ
comes from that between Du→Λ

1 ðz;Q2Þ and Dd→Λ
1 ðz;Q2Þ

from AKK08 [49].
For vector mesons such as K�, the decay contributions

are negligible. So we need to simply parametrize and
evolve the corresponding D1 and D1LL to obtain S̄LL at
different energies. However, our knowledge about para-
metrizations of the corresponding FFs is even more limited
than that for Λ. There is even no parametrization of FF in
the unpolarized case available yet. As a start, we make a
simple parametrization by using those for K� from AKK08
[49] and by parametrizing the data for the ratio of K� to K

as given in [61]. The z dependence for the ratio is taken as
linear, i.e., DK�

1 ðzÞ=3DKþ
1 ðzÞ ¼ 0.2zþ 0.1, and is assumed

to be the same for different flavors.
For the SLL-dependent FFs, D

q→K�
1LL ðzÞ, we carry out the

calculations at the same level as that given above for
Gq→Λ

1L ðzÞ. Inspired by the almost linear z dependence of
data of ρ00 [3], we parametrize Dq→K�

1LL ðzÞ as
Dq→K�

1LL ðzÞ ¼ c1D
q→K�
1 ðzÞ; ð70Þ

for unfavored fragmentations and

Dq→K�
1LL ðzÞ ¼ ðc1 þ c2zÞDq→K�

1 ðzÞ; ð71Þ

FIG. 2. Longitudinal polarization of Λ in eþe− → ΛX at high
energies. The LEP data are taken from [1,2]. The solid line is
the fit described in the text while those at other energies are
calculated results using DGLAP for FFs and energy dependence
of Pq.

FIG. 3. The longitudinal spin transfer fragmentation function
G1Lðz; Q2Þ for q → Λ as a function of z for different flavors of q at
different values ofQ. The solid lines are obtained by fitting data for
PLΛ at Q ¼ MZ, and the others are obtained using DGLAP with
leading order splitting functions described in the text.
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for favored fragmentations. We limit −3=2 < c1 < 3 and
−3=2 < c1 þ c2z < 3 for 0 < z < 1 to satisfy the positiv-
ity bound. By fitting the available z-dependence data on the
spin alignment of K� from OPAL [3], we fix the parameters
as c1 ¼ 0.15 and c2 ¼ −1.2 at Q ¼ 5 GeV. The fitted

curve is presented in Fig. 4. The obtained Dq→K�0
1LL ðz;Q2Þ at

different Q for q ¼ u, d, or s is given by the solid line
in Fig. 5.
Because the data (see Fig. 4) for ρK

�
00 are larger than 1=3

in the large z region, the SLL-dependent FF D1LLðz;Q2Þ
should be negative in the corresponding z region. At
small z, ρ00 is smaller than 1=3, which implies a positive
D1LLðz;Q2Þ. These features are shown clearly in Fig. 5,
where we can see that for favored fragmentations,
D1LLðz;Q2Þ are negative at larger z while those for

unfavored fragmentations also play an important role in
the small z region and are positive.
From Fig. 3, we see that the peaks for zG1Lðz;Q2Þ shift

towards smaller z for larger Q. In the large z region,
G1Lðz;Q2Þ decreases with increasing Q, while for small z,
it increases with increasing Q. This former is shown more
obviously in Fig. 6, where Gq→Λ

1L ðz;Q2Þ as a function of Q
at different values of z is shown. Similarly, in the large z
region, we see the same tendency for D1LLðz;Q2Þ as a
function of Q from Figs. 5 and 7, i.e., the magnitude of
D1LLðz;Q2Þ also decreases with increasing Q for large z
values. The relative rapid changes for the corresponding
Dq→K�

1LL ðz;Q2Þ at z ¼ 0.1 for q ¼ d or s is due to the
crossover with zero at z ∼ 0.1�0.2. We see clearly that
the magnitudes of these FFs do not change with Q as
drastically as Pq does (see Fig. 1). We therefore expect that
the energy dependence of PLΛ should be dominated by
that of Pq and that of ρK

�
00 is smooth.

B. Energy dependence of PΛ and ρ̄K
�

00

By inserting these results for FFs at different Q, we
obtain PLΛ and ρ̄K

�
00 at different energies

ffiffiffi
s

p ¼ Q. We plot
the results in Figs. 2 and 4, respectively.

FIG. 4. Spin alignment ofK� as a function of z. The solid line is
the fit described in the text while those at other energies are
calculated results using DGLAP for FFs. The data points are from
OPAL at LEP and are taken from [3].

FIG. 6. QCD evolved G1Lðz;Q2Þ for q → Λ as a function of Q
at a different z divided by the corresponding value atQ0 ¼ 5 GeV.

FIG. 5. The SLL dependent fragmentation functionD1LLðz; Q2Þ
for q → K� as a function of z for different flavors of q at different
values of Q. The solid lines are obtained by fitting data for ρK

�
00 at

Q ¼ MZ, the others are obtained using DGLAP with leading
order splitting functions described in the text.
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From Figs. 2 and 4, we see clearly that there is a strong
energy dependence for PLΛ, whereas that for ρ̄K

�
00 is quite

weak. The former comes mainly from the energy depend-
ence of Pq, while the latter comes mainly from QCD
evolution of FFs. To show this more explicitly, we plot PLΛ

at a given z as a function of Q in the same figure as P̄q in
Fig. 8. For comparison, we also plot ρ̄K

�
00 in the third panel

of the same figure.
From Fig. 8, we explicitly see that PLΛ behaves in very

much the same way as Pq as functions of Q. This shows
clearly that the energy dependence of PLΛ is dominated by
that of Pq. We see in particular that just like P̄q, P̄LΛ

changes very fast with energy and goes to zero when Q
deviates from Q ¼ MZ for Q < MZ. This is because at
smaller Q, electromagnetic interaction becomes dominant
and weak interaction via exchange of Z boson becomes
negligible rapidly. Whereas at large Q, although smaller
than that at the Z pole, it is still sizable and becomes quite
flat with increasing Q. The results show, in particular, that
at BES or BELLE energies, PLΛ should be negligibly
small. Furthermore, from the results presented in Sec. II D
such as Eqs. (40)–(45), we see that there is no twist-3
contribution to PLΛ but there can be a twist-3 contribution
to the transverse components. Higher twist contributions to

PLΛ come only from a twist-4 or even higher twist [29].
This implies that at BES energies, the transverse compo-
nents could even become larger than the longitudinal
component for a given region of θ or y.
In contrast to PLΛ, ρ̄00 changes with Q quite weakly and

remains sizable even at BES energies. The relatively rapid
change in the energy region around MZ comes from the
influence ofWq. This is a clear prediction that can be tested
by future experiments [62].
At the end of this section, we would like to emphasize

once more the following. Since the energy dependence of
PLΛ is dominated by Pq, the influence from other effects
such as heavy flavor contribution, u and d flavor depend-
ence, “unfavored”, and gluon fragmentation etc. contribute
only to the fine structure of the results shown in Fig. 8.
Lacking data and other related information, we simply
neglected them at the initial scale in obtaining the results in
Fig. 8. However, they are definitely worthwhile for exper-
imental and theoretical studies in the future. Furthermore,
since they are addenda to the contribution from Pq in the
case of PLΛ, it might be more difficult to separate them
from each other. On the other hand, there is no contribution
from Pq for a vector meson spin alignment ρ00. This means
that such effects should play more important roles and
manifest themselves more explicitly in different properties
of ρ00. It could be much easier to study them in detail by
studying ρ00. In this sense, vector meson spin alignment
could be a much better place to study different contribu-
tions in detail. Furthermore, since it is independent of initial

FIG. 7. QCD evolved D1LLðz; Q2Þ for q → K� as function of Q
at a different z divided by the corresponding value atQ0 ¼ 5 GeV.

FIG. 8. Energy dependence of the longitudinalΛ polarization in
eþe− annihilation.
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quark polarization, it is also foreseeable that the effect of
tensor polarization determined by ρ00 can also be studied in
other high energy reactions independent of whether the
initial hadron is polarized.

IV. SUMMARY AND OUTLOOK

Using the longitudinal polarization PLΛ of a Λ hyperon
and the spin alignment ρK

�
00 of K�0 as representative

examples, we demonstrate the two very different behaviors
in energy dependences of hadron polarizations in eþe−
annihilations. The results show clearly that PLΛ has a
very strong energy dependence due to its direct dependence
on the initial longitudinal polarization Pq of the quark q,
while ρK

�
00 has a rather weak energy dependence since it is

independent of Pq. The former is dominated by the energy
dependence of Pq, while the latter comes mainly from the

QCD evolutions of the FFs. We have presented the results
at the leading twist with pQCD evolution at the leading
order. In view that the measurements of both PLΛ and ρK

�
00

can, in principle, be easily carried out in experiments at
BES or BELLE, we think that this provides a good place to
test QCD evolutions of FFs and/or to check whether higher
twist effects are important.
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