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The mass and meson-current coupling of the diquark-antidiquark states with the quantum numbers
JP ¼ 0þ and quark contents Zq ¼ ½cq�½b q� and Zs ¼ ½cs�½b s� are calculated using the two-point QCD sum
rule approach. In calculations the quark, gluon, and mixing condensates up to eight dimensions are taken
into account. The parameters of the scalar tetraquarks extracted from this analysis are employed to explore
the strong vertices ZqBcπ, ZqBcη, and ZsBcη and compute the couplings gZqBcπ , gZqBcη, and gZsBcη.

The strong couplings are obtained within the soft-meson approximation of the QCD light-cone sum rule
method: they form, alongside with other parameters, the basis for evaluating the widths of Zq → Bcπ,
Zq → Bcη, and Zs → Bcη decays. Results obtained in this work for the mass of the tetraquarks Zq and Zs

are compared with available predictions presented in the literature.
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I. INTRODUCTION

During the last decade various experimental collabora-
tions have reported on the observation of hadronic states,
which cannot be described as the traditional hadrons
composed of two or three valence quarks. Indeed, begin-
ning with the discovery of the Xð3872Þ state by the Belle
Collaboration [1] (see, also Ref. [2]) measurements of
various annihilation, collision, and decay processes have
lead to valuable experimental data on the XYZ family of
exotic particles.
The situation with the theoretical models, computational

methods, and schemes proposed to explain observed features
of the exotic states is more complicated. One of the essential
problems here is revealing the quark-gluon structure of the
exotic hadrons. Thus, in accordancewith existing theoretical
models the exotic hadrons are four-quark (tetraquarks) or
five-quark (pentaquarks) states, or contain as constituents
valence gluons (hybrids and glueballs). The second question
is the internal quark-gluon organization and new constituents
(diquarks, antidiquarks, conventional mesons, etc.) of the
exotic hadrons, as well as the nature of the forces binding
them into compact states. Finally, one has to determine
computational methods, which can be applied to carry out
qualitative analysis these multiquark systems. In other
words, one needs to adapt to the exotic hadrons the well-
known methods, which were successfully used to explore
conventional mesons and baryons, and/or to invent
approaches to solve newly emerged problems typical for
the exotic states.We have only outlined a variety of problems
arising when exploring the exotic hadrons. Rather detailed
information on these theoretical methods and also on
collected experimental data can be found in numerous review
papers Refs. [3–12], including the most recent ones [11,12],
and in references therein.

Most of the observed tetraquark states belong to the class
of so-called hidden charm or bottom particles containing
the cc or bb pair. But first principles of QCD do not forbid
existence of the open charm (or bottom) or open charm-
bottom tetraquarks. Experimental information concerning
the open charm tetraquarks is restricted by the observed
D⋆

s0ð2317Þ andDs1ð2460Þmesons, which are considered as
candidates for such exotic states. These particles were
explored both as the diquark-antidiquark states and mol-
ecules built of the conventional mesons. The only candidate
to the open bottom tetraquark is the Xð5568Þ state, which is
also considered the first particle containing four valence
quarks of different flavors. But the experimental status of
this particle remains controversial and unclear. Thus, the
evidence for this resonance was reported by the D0
Collaboration in Ref. [13], and later conformed from
analysis of the semileptonic decays of the B0

s meson in
Ref. [14]. At the same time, the LHCb and CMS collab-
orations could not prove the existence of this state on the
basis of relevant experimental data [Refs. [15,16]].
Numerous theoretical studies of the Xð5568Þ state also
suffer from contradictory conclusions ranging from con-
forming its parameters measured by the D0 Collaboration
to explaining the observed experimental output by some
alternative effects. Avoiding here further details, we refer to
original works addressing various aspects of the Xð5568Þ
physics, and also to the review paper devoted to the open
charm and bottom mesons (Ref. [17]).
The open charm-bottom tetraquarks form the next class of

the exotic particles. It is worth noting that they have not been
discovered experimentally, and to the best of our best
knowledge, they are not under consideration as candidates
for these states. Nevertheless, the open charm-bottom states
have already attracted the interest of theorists, who performed
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their analysis within both the molecule (Refs. [18–21]) and
diquark-antidiquark pictures (Refs. [22–24]) of the tetraquark
model. Thus, in Ref. [24] the authors considered the scalar
and axial-vector open charm-bottom tetraquarks and calcu-
lated their masses by means of QCD two-point sum rules. In
this article some possible decay channels of these states are
emphasized, as well.
In the present work we study the scalar open charm-

bottom exotic states Zq ¼ ½cq�½b q� and Zs ¼ ½cs�½b s� built
of the diquarks ½cq�, ½cs� and antidiquarks ½b q�, ½b s�, where
q is one of the light u and d quarks. First we calculate the
masses and meson-current couplings of these still hypo-
thetical tetraquarks. To this end, we utilize the QCD two-
point sum rule approach, which is one of the powerful
nonperturbative methods to calculate the parameters of the
hadrons [25]. Originally proposed to find masses, decay
constants, and form factors of the conventional mesons and
baryons, it was successfully applied to analyze also exotic
tetraquark states, glueballs, and hybrid qqg resonances in
Refs. [25–29]. The QCD two-point sum rule method
remains among the fruitful computational tools of high
energy physics to investigate the exotic states.
Next, we use parameters of the open charm-bottom

tetraquarks obtained in thisway to explore the strong vertices
ZqBcπ, ZqBcη, and ZsBcη and calculate the corresponding
couplings gZqBcπ , gZqBcη, and gZsBcη necessary for evaluating
the widths of Zq → Bcπ, Zq → Bcη, and Zs → Bcη decays.
For these purposes, we employ the QCD light-cone sum
method and soft-meson approximation suggested and elab-
orated in Refs. [30–32]. This method in conjunction with the
soft-meson approximation was adapted for investigation of
the strong vertices consisting of a tetraquark and two
conventional mesons in Ref. [33]. Later it was applied to
calculate the decay width of the Xð5568Þ resonance and its
charmed partner state (see Refs. [34–36]). The full version of
the light-cone method was employed to analyze the strong
vertices containing two tetraquarks, as well as to compute
the magnetic moment of some of the four-quark states in
Refs. [37] and [38], respectively.
The present work is organized in the following way. In

Sec. II we calculate the masses and meson-current cou-
plings of the scalar open charm-bottom tetraquarks. Here
we also compare our results with predictions made in other
papers. Section III is devoted to computation of the strong
couplings corresponding to the vertices ZqBcπ, ZqBcη, and
ZsBcη. In this section we calculate the widths of the decay
modes Zq → Bcπ, Zq → Bcη, and Zs → Bcη. It contains
also our brief conclusions. We collect the spectral densities
obtained in mass sum rules in the appendix.

II. MASS AND MESON-CURRENT COUPLING

To evaluate the masses and meson-current couplings of
the diquark-antidiquark Zq ¼ ½cq�½b q� and Zs ¼ ½cs�½b s�
states we use the two-point QCD sum rules. We present

explicitly expressions necessary for computing the mass
and meson-current coupling in the case of the exotic Zq

state. The similar formulas for the particle Zs can be
obtained in a similar manner.
The scalar tetraquark state Zq ¼ ½cq�½b q� can be mod-

eled using various interpolating currents (Ref. [24]). To
carry out required calculations we choose the interpolating
current in the form

Jq ¼ qTaCγ5cbðqaγ5CbTb þ qbγ5Cb
T
aÞ; ð1Þ

which is symmetric under exchange of the color indices
a ↔ b. Here C is the charge conjugation matrix. For
simplicity, in what follows we omit the superscript in
the expressions.
The correlation function for the current JqðxÞ is given as

ΠðpÞ ¼ i
Z

d4xeipxh0jT fJqðxÞJq†ð0Þgj0i: ð2Þ

To derive QCD sum rule expressions for mass and meson-
current coupling the correlation function has to be calcu-
lated using both the physical and quark-gluon degrees of
freedom.
We compute the functionΠPhysðpÞ by suggesting that the

tetraquarks under consideration are the ground states in the
relevant hadronic channels. After saturating the correlation
function with a complete set of the Zq state and performing
in Eq. (2) integral over x, we get the required expression for
ΠPhysðpÞ,

ΠPhysðpÞ ¼ h0jJqjZqðpÞihZqðpÞjJq†j0i
m2

Zq
− p2

þ � � � ;

where mZq
is the mass of the Zq state, and dots stand for

contributions of the higher resonances and continuum states.
We define the meson-current coupling by the equality

h0jJqjZqðpÞi ¼ fZq
mZq

:

Then in terms of mZq
and fZq

the correlation function takes
the simple form

ΠPhysðpÞ ¼
m2

Zq
f2Zq

m2
Zq

− p2
þ � � � ð3Þ

It contains only one term,which is proportional to the identity
matrix, and, therefore, can be replaced by the invariant
function ΠPhysðp2Þ. The Borel transformation applied to
these invariant functions yields

Bp2ΠPhysðp2Þ ¼ m2
Zq
f2Zq

e−m
2
Zq
=M2 þ � � � ð4Þ

In order to obtain the function ΠðpÞ using the quark-
gluon degrees of freedom, i.e., by employing the light and
heavy propagators, we substitute the interpolating current
given by Eq. (1) into Eq. (2), and contract the relevant
quark fields. As a result, for ΠQCDðpÞ we get
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ΠQCDðpÞ ¼ i
Z

d4xeipxfTr½γ5 ~Sb
0b

b ð−xÞγ5Saa0q ð−xÞ�Tr½γ5 ~Saa
0

q ðxÞγ5Sbb0c ðxÞ�

þ Tr½γ5 ~Sa
0b

b ð−xÞγ5Sb0aq ð−xÞ�Tr½γ5 ~Saa
0

q ðxÞγ5Sbb0c ðxÞ� þ Tr½γ5 ~Sb
0a

b ð−xÞγ5Sa0bq ð−xÞ�
× Tr½γ5 ~Saa

0
q ðxÞγ5Sbb0c ðxÞ�þTr½γ5 ~Sa

0a
b ð−xÞγ5Sb0bq ð−xÞ�Tr½γ5 ~Saa

0
q ðxÞγ5Sbb0c ðxÞ�g; ð5Þ

where we employ the notation

~SabqðbÞðxÞ ¼ CSTabqðbÞðxÞC; ð6Þ

with SqðxÞ and SbðxÞ being the q- and b-quark propagators,
respectively.
We continue by invoking into analysis the well-known

expressions of the light and heavy quark propagators. For
our purposes it is convenient to use the x-space expression
of the light quark propagators, whereas for the heavy
quarks we utilize their propagators given in the momentum
space. Thus, for the light quarks we have

Sabq ðxÞ ¼ iδab
x

2π2x4
− δab

mq

4π2x2
− δab

hqqi
12

þ iδab
xmqhqqi

48
− δab

x2

192
hqgσGqi

þ iδab
x2xmq

1152
hqgσGqi − i

gGαβ
ab

32π2x2
½xσαβ þ σαβx�

− iδab
x2xg2hqqi2

7776
− δab

x4hqqihg2G2i
27648

þ � � � ð7Þ

For the heavy Q ¼ b, c quark propagator SabQ ðxÞ we utilize
the expression from Ref. [39],

SabQ ðxÞ ¼ i
Z

d4k
ð2πÞ4 e

−ikx
�
δabðkþmQÞ
k2 −m2

Q

−
gGαβ

ab

4

σαβðkþmQÞ þ ðkþmQÞσαβ
ðk2 −m2

QÞ2

þ g2G2

12
δabmQ

k2 þmQk

ðk2 −m2
QÞ4

þ g3G3

48
δab

ðkþmQÞ
ðk2 −m2

QÞ6
× ½kðk2 − 3m2

QÞ þ 2mQð2k2 −m2
QÞ�

× ðkþmQÞ þ � � �
�
: ð8Þ

In Eqs. (7) and (8) the standard notations

Gαβ
ab ¼ Gαβ

A tAab; G2 ¼ GA
αβG

A
αβ;

G3 ¼ fABCGA
μνGB

νδG
C
δμ; ð9Þ

are introduced. Here a, b ¼ 1, 2, 3 and A; B;C ¼ 1; 2…8

are the color indices, and tA ¼ λA=2 with λA being the

Gell-Mann matrices. In the nonperturbative terms the gluon
field strength tensor GA

αβ ≡GA
αβð0Þ is fixed at x ¼ 0.

Strictly speaking, the QCD sum rule expressions are
derived after fixing the same Lorentz structures in both the
physical and theoretical expressions of the correlation
function. In the case of the scalar particles, as we have
just noted, the only Lorentz structure in these expressions is
∼I. Hence, there is only one invariant functionΠQCDðp2Þ in
the theoretical side of the sum rule, which can be repre-
sented as the dispersion integral

ΠQCDðp2Þ ¼
Z

∞

M2

ρQCDðsÞds
s − p2

þ � � � ; ð10Þ

where M ¼ mb þmc þ 2mq, and ρQCDðsÞ is the corre-
sponding spectral density.
The spectral density ρQCDðsÞ is the key ingredient of the

sum rule calculations. The technical methods for calcu-
lation of the spectral density in the case of the tetraquark
states are well known and presented in rather clear form, for
example, in Refs. [33,40]. Therefore, here we omit details
of calculations and move the final explicit expressions
obtained for ρQCDðsÞ corresponding to the Zq state to the
appendix. Let us note only that the spectral density is
computed by taking into account condensates up to
dimension 8: it depends on the quark, gluon hqqi,
hg2G2i, hg3G3i, and mixed hqgσGqi condensates, and
ones due to their products.
Applying the Borel transformation on the variable p2 to

the invariant function ΠQCDðp2Þ, equating the obtained
expression with Bp2ΠPhysðpÞ, and subtracting the contri-
bution arising from higher resonances and continuum
states, we find the final sum rules. Thus, the sum rule
for the mass of the Zq state reads

m2
Zq

¼
R s0
M2 dsρQCDðsÞse−s=M2

R s0
M2 dsρQCDðsÞe−s=M2 : ð11Þ

The meson-current coupling fZq
is given by the sum

rule,

f2Zq
m2

Zq
e−m

2
Zq
=M2 ¼

Z
s0

M2

dsρQCDðsÞe−s=M2

: ð12Þ

In Eqs. (11) and (12) by s0 we denote the threshold
parameter that dissects the contribution of the ground
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state from one due to the higher resonances and continuum.
Here we should remark that in the present work we
calculate the meson-current couplings fZq

and fZs
for

the first time: they are the main input parameters for the
calculation of the strong coupling constants considered in
the next section and were not analyzed in Ref. [24].
The sum rules contain numerical values of parameters

that should be specified. We collect the required informa-
tion in Table I. For the vacuum expectation value of the
gluon field ∼g3G3 we employ the result reported in
Ref. [41]. The remaining quark and gluon condensates
are well known, and we utilize their standard values. Table I
contains also Bc, η, and π meson masses and decay
constants, which serve as input parameters for computing
of the strong couplings and decay widths in the next section
(see Ref. [42]).
The QCD sum rules depend on the continuum threshold

s0 and Borel variable M2. To extract reliable information
from the sum rules we have to choose such regions for s0
and M2, where the physical quantities under question

demonstrate minimal sensitivity on them. It is worth
emphasizing that namely these two parameters are the
main sources of uncertainties in QCD sum rule predictions.
According to the method used, the window for the Borel

parameter has to provide the convergence of the series of
operator product expansion (OPE), and suppression of the
higher resonance and continuum contributions to the sum
rule. The convergence of OPE, i.e., the exceeding of the
perturbative part to the nonperturbative contributions and
reducing of the contribution with increasing the dimension
of the nonperturbative operators are easily achieved for the
exotic states like the standard hadrons. However, in the
exotic channels the pole contribution to the mass sum rules
remains mainly under 50% of the total integral. But, as we
see in the next section, in the case of strong couplings of the
exotic states with conventional hadrons the pole contribu-
tion exceeds 70% of the whole result. To find the lower
boundary for M2 we demand convergence of the OPE and
exceeding of the perturbative part over the nonperturbative
contribution. The upper limit for this parameter is extracted
by requiring the largest possible pole contribution. As a
result, for M2, in the mass and meson-current calculations,
we fix the following range:

6.5 GeV2 ≤ M2 ≤ 7.5 GeV2: ð13Þ

The choice of the continuum threshold s0 depends on the
energy of the first excited state and can be extracted from
analysis of the pole/total ratio. This criterium enables us to
determine the range of s0 as

55 GeV2 ≤ s0 ≤ 57 GeV2: ð14Þ

To see how the OPE converges and how large the pole
contribution is some plots are in order. We compare the
perturbative and nonperturbative contributions to the
mass sum rule by varying M2 at fixed average value of
s0, and by varying s0 at fixed average M2 in the left
and right panels of Fig. 1, respectively. The contributions
of different nonperturbative operators with respect to M2

at an average value of the continuum threshold and the

TABLE I. Input parameters.

Parameters Values

mBc
ð6275.1� 1.0Þ MeV

fBc
ð528� 19Þ MeV

mη ð547.862� 0.017Þ MeV
mπ ð134.9766� 0.0006Þ MeV
fπ 0.131 GeV
mb 4.18þ0.04

−0.03 GeV
mc ð1.27� 0.03Þ GeV
ms 96þ8

−4 MeV
hq̄qi ð−0.24� 0.01Þ3 GeV3

hs̄si 0.8hq̄qi
m2

0 ð0.8� 0.1Þ GeV2

hq̄gσGqi m2
0hq̄qi

hs̄gσGsi m2
0hs̄si

hαsG2

π i ð0.012� 0.004Þ GeV4

hg3G3i ð0.57� 0.29Þ GeV6

FIG. 1. Left: Comparison of the perturbative and nonperturbative contributions to the mass sum rule of Zq with respect to M2 at an
average value of s0. Right: The same as the left panel but in terms of s0 at an average value of the Borel parameter M2.

S. S. AGAEV, K. AZIZI, and H. SUNDU PHYSICAL REVIEW D 95, 034008 (2017)

034008-4



same quantity with respect to s0 at an average value
of M2 are presented in the left and right panels of
Fig. 2, respectively. The pole/total contribution that
is shown by the PC also on M2 and s0 is depicted in
Fig. 3.
From these figures we see that inside of the working

windows for M2 and s0, the mass sum rule demonstrates a
good convergence and the perturbative part constitutes the
main part of the total integral. We reach the PC contribution

in the range 16%–31% for different values of M2 and s0 in
their working regions. We also remark that the working
regions for the Borel parameter and continuum threshold
obtained for Zq state are roughly the same for the Zs state
and the SUð3Þ flavor violation is negligible. Similar results
for the convergence of the OPE and pole contribution in the
Zq channel are obtained for the Zs state as well and the
presence of the s quark dose not change the situations in
Figs. 1–3 considerably.

FIG. 2. Left: Contribution of different nonperturbative operators to the mass sum rule of Zq with respect to M2 at an average value of
s0. Right: The same as the left panel but in terms of s0 at an average value of the Borel parameter M2.

FIG. 3. Left: Pole/total contribution for the mass sum rule of Zq with respect toM2 at different fixed values of s0. Right: The same as
the left panel but in terms of s0 at different fixed values of the Borel parameter M2.

FIG. 4. Left: The mass of the Zq state as a function of the Borel parameter M2 at various values of s0. Right: The meson-current
coupling fZq

as a function of the Borel parameter M2 at different values of s0.
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The results obtained for the mass and meson-current
coupling of the Zq and Zs state are plotted in Figs. 4 and 5,
and demonstrate mild dependence on s0 and M2. Our
results for the masses and meson-current couplings of the
Zq and Zs states are collected in Table II. Here under Zq we
imply both the Zu and Zd states, which in the exact isospin
symmetry accepted in this work have identical physical
parameters.
The masses of the scalar diquark-antidiquark states with

the same contents were calculated in Ref. [24], as well. The
authors used the QCD two-point sum rule approach, and for
the masses of the Zs and Zq states found

mZs
¼ 7.16� 0.08� 0.06� 0.04 GeV; ð15Þ

and

mZq
¼ 7.11� 0.08� 0.06� 0.01 GeV: ð16Þ

As is seen, predictions obtained in Ref. [24] are consistent
within the errors with our results: The slight discrepancies
can be attributed to the fact that the authors there did not
take into account some terms in both the light and heavy
quark propagators used in the present study. This led to
different working regions for the parameters s0 andM2 and
some differences in convergence of OPE and pole/con-
tinuum ratio.

III. WIDTHS OF THE Zq → Bcπ, Zq → Bcη,
AND Zs → Bcη DECAY CHANNELS

In this section we investigate the possible decay channels
of the exotic ZsðqÞ states, and calculate the widths of the
modes, which are, in accordance with our results obtained
in Sec. II, kinematically allowed.
It is not difficult to see that the quark content and mass

of the Zq state permit its decay to Bc and π mesons:
The producing of the Bc and η mesons in the decay process
is also possible. The tetraquark Zs can decay to Bc and η
mesons. At the same time, the modes Zq → Bcη

0 and
Zs → Bcη

0 are among kinematically forbidden decay
channels.
We concentrate here on the Zs → Bcη decay channel.

To find its width we explore the vertex ZsBcη and calculate
the strong coupling gZsBcη using the light-cone sum rule
method and soft-meson approximation. To this end, we
introduce the following correlation function,

Πðp; qÞ ¼ i
Z

d4xeipxhηðqÞjT fJBcðxÞJ†ð0Þgj0i; ð17Þ

where the interpolating current for the Bc meson is given as

JBcðxÞ ¼ iblðxÞγ5clðxÞ: ð18Þ

The correlation function Πðp; qÞ is the basic component
of the sum rule calculations. Expressed in terms of the
physical quantities it takes a rather simple form,

ΠPhysðp; qÞ ¼ h0jJBc jBcðpÞi
p2 −m2

Bc

hBcðpÞηðqÞjZsðp0Þi

×
hZsðp0ÞjJ†j0i
p02 −m2

Z
þ � � � ; ð19Þ

where p, q, and p0 ¼ pþ q are the momenta of Bc, η, and
the Zs states, respectively. The first term above is the
ground state contribution, whereas effects of the higher
resonances and continuum states are denoted by the dots.

FIG. 5. Left: The mass of the Zs state as a function of the Borel parameter M2 at various values of s0. Right: The meson-current
coupling fZs

as a function of the Borel parameter M2 at different values of s0.

TABLE II. The two-point sum rule prediction for the masses
and meson-current couplings of the Zq and Zs states.

Mass, m.-c. coupling Results

mZq
ð6.97� 0.19Þ GeV

fZq ð0.38� 0.03Þ × 10−2 GeV4

mZs
ð7.01� 0.21Þ GeV

fZs ð0.41� 0.04Þ10−2 GeV4
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We define the Bc meson matrix element

h0jJBc jBcðpÞi ¼
fBc

m2
Bc

mb þmc
; ð20Þ

with mBc
and fBc

being the mass and decay constant of the
Bc meson, and also the matrix element describing the vertex

hBcðpÞηðqÞjZsðp0Þi ¼ gZsBcηp · p0: ð21Þ

Then the ground state component of the correlation
function can be recast into the form

ΠPhysðp; qÞ ¼ fBc
fZmZm2

Bc
gZsBcη

ðp02 −m2
ZÞðp2 −m2

Bc
Þðmb þmcÞ

p · p0:

ð22Þ

In the soft-meson limit we apply the restriction q ¼ 0,
which, naturally, leads to equality p ¼ p0 (for details, see
Ref. [33]). In this approximation the invariant function
corresponding to ΠPhysðp; qÞ depends only on the variable
p2, and is given by the following expression,

ΠPhysðp2Þ ¼ fBc
fZmZm2

Bc
gZsBcη

ðp2 −m2
ZÞðp2 −m2

Bc
Þðmb þmcÞ

m2

þ � � � ; ð23Þ

where m2 ¼ ðm2
Z þm2

Bc
Þ=2.

What is important is that now we have to use the one-
variable Borel transformation on p2, and apply the operator

�
1 −M2

d
dM2

�
M2em

2=M2

; ð24Þ

to both sides of the sum rule. The last operation is necessary
to remove all unsuppressed contributions emerging in the
physical side of the sum rule due to the soft-meson limit
(see Ref. [31]).
The second side of the sum rule, i.e., QCD expression for

ΠQCDðp; qÞ, is

ΠQCDðp; qÞ ¼ i
Z

d4xeipxf½γ5 ~Sibc ðxÞγ5 ~Sbib ð−xÞγ5�αβ
× hηðqÞjsaαsaβj0i
þ½γ5 ~Sibc ðxÞγ5 ~Saib ð−xÞγ5�αβhηðqÞjsaαsbβj0ig:

ð25Þ

Here by α and β are the spinor indices.
We proceed by using the expansion

saαsbβ →
1

4
Γj
βαðsaΓjsbÞ; ð26Þ

where Γj is the full set of Dirac matrixes, and performing
the summation over color indices.
Calculation of the traces over spinor indices and inte-

gration of the obtained integrals in accordance with
procedures reported in Ref. [33] enable us to extract the
imaginary part of the correlation function ΠQCDðp; qÞ. As a
result, we find not only the spectral density, but also
determine local matrix elements of the η meson that form
it. Our analysis proves that in the soft-meson limit only the
local twist-3 matrix element hηðqÞjsiγ5sj0i survives and
contributes to the spectral density ρsηðsÞ corresponding to
the ZsBcη vertex. Within the same approximation the
strong couplings of the vertices ZqBcη and ZqBcπ are
determined by the matrix elements hηðqÞjqiγ5qj0i and
hπðqÞjqiγ5qj0i, respectively.
The situation with the pion is clear: its matrix element is

known, and was used in our previous works to explore
decays of other tetraquarks. But the matrix elements of the
eta mesons deserve more detailed analysis, which is
connected with mixing phenomena in the η − η0 system.
The η − η0 mixing and Uð1Þ axial anomaly are problems

that decisively affect physics of the eta mesons. The η − η0
mixing can be described using either the singlet-octet basis
of the flavor group SUfð3Þ, or the quark-flavor basis. The
latter is founded on the ss and ðuuþ ddÞ= ffiffiffi

2
p

as the basic
states, and is convenient to describe the mixing phenomena
of the η − η0 system, including mixing of the physical
states, decay constants, and higher twist distribution
amplitudes (Ref. [43–46]).
In the present work we follow this approach and utilize

the quark-flavor mixing scheme in our calculations. Then
the twist-3 matrix elements of interest are given as

2mqhηðqÞjqiγ5qj0i ¼
hqηffiffiffi
2

p ; ð27Þ

2mshηðqÞjsiγ5sj0i ¼ hsη; ð28Þ

where the parameters hsðqÞη are defined by the equalities

hsðqÞη ¼ m2
ηf

sðqÞ
η − Aη;

Aη ¼ h0j αs
4π

Ga
μν
~Ga;μνjηðpÞi; ð29Þ

and Aη is the matrix element appearing due to the Uð1Þ
anomaly.
In Refs. [44–46] it was assumed that the parameters

hsðqÞη obey the same mixing scheme as the decay constants
of the eta mesons, and hence the following equality
holds:

� hqη hsη

hqη0 hsη0

�
¼

�
cosφ − sinφ

sinφ cosφ

��
hq 0

0 hs

�
: ð30Þ
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Here φ is the mixing angle in the quark-flavor scheme; hs
and hq are input parameters extracted from analysis of the
experimental data,

hq ¼ ð0.0016� 0.004Þ GeV3;

hs ¼ ð0.087� 0.006Þ GeV3;

φ ¼ 39.3°� 1.0°: ð31Þ
The details about the local matrix elements of the eta

mesons presented above are sufficient to calculate the
spectral densities under investigation. We find

ρsηðsÞ ¼
hsη

48ms
LðsÞ; ð32Þ

for the ZsBcη vertex,

ρqηðsÞ ¼ hqη
48

ffiffiffi
2

p
mq

LðsÞ; ð33Þ

for the ZqBcη vertex, and

ρπðsÞ ¼
fπm2

π

24
ffiffiffi
2

p
mq

LðsÞ ð34Þ

for the ZqBcπ vertex, where the “universal” function LðsÞ
has the form

LðsÞ ¼ 1

π2s2
½s2 þ sðm2

b þ 6mbmc þm2
cÞ − 2ðm2

b −m2
cÞ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþm2

b −m2
cÞ2 − 4m2

bs
q

þ 1

3

Z
1

0

dz
j2z2

��
αs

G2

π

�
½sðm2

bj
3 þmbmcjz −m2

cz3Þδð2Þðs − ΦÞ

þ 2ðm2
bj

3 −m2
cz3 þmbmcð1þ 3jzÞÞδð1Þðs − ΦÞ� þ hg3G3i 1

5 × 26π2j3z3

× f12j2z2½3mbmcð1þ 5jzð1þ jzÞÞ þ 3m2
bj

5 − zð3m2
cz4 þ sjð1þ jzð7þ 11jzÞÞÞ�

× δð2Þðs − ΦÞ − 2jz½m3
cz5ð4mb − 7mcÞ þ 2s2j3z3ð2þ 7jzÞ þm2

bj
5ð7m2

b − 4mbmc

þ 9sð1 − 2zÞzÞ þ 9mcsjz2ðmcz3ð2z − 1Þ − 2mbjð1þ 3jzÞÞ�δð3Þðs − ΦÞ
þ ½2m5

bmcj5 − 2m5
cmbz5 − s3j5z5 þ 6s2j3z3ðm2

bj
3 þmbmcjz −m2

cz3Þ
þ sjzð4m3

bmcj4z − 7m4
bj

5 − 4m3
cmbjz4 þ 7m4

cz5Þ�δð4Þðs − ΦÞg

þ
�
αs

G2

π

�
2 mbmc

33 × 2
½−6jzδð3Þðs − ΦÞ þ 2ðmbmc − sð1þ 3jzÞÞδð4Þðs − ΦÞ

þ sðmbmc − sjzÞδð5Þðs − ΦÞ�
�
; ð35Þ

where

Φ ¼ m2
bj −m2

cz
jz

; j ¼ z − 1: ð36Þ

The final sum rule to evaluate the strong coupling reads

gZsBcη ¼
ðmb þmcÞ

fBc
fZmZm2

Bc
m2

�
1 −M2

d
dM2

�
M2

×
Z

s0

M2

dseðm2−sÞ=M2

ρsηðsÞ: ð37Þ

The similar expressions are valid for the remaining two
couplings gZqBcη and gZqBcπ , as well.
In order to get the width of the decay Zs → Bcη we adapt

to this case the expression derived in Ref. [34], which takes
the form

ΓðZs → BcηÞ ¼
g2ZsBcη

m2
Bc

24π
λðmZ;mBc

; mηÞ

×

	
1þ λ2ðmZs

; mBc
; mηÞ

m2
Bc



; ð38Þ

where

λða; b; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4 þ c4 − 2ða2b2 þ a2c2 þ b2c2Þ

p
2a

:

Parameters required for numerical computations of the
decay widths are listed in Table I. Apart from the standard
information it contains also the decay constant fBc

of the Bc
meson, for which we utilize its value derived in the context
of the sum rule method in Ref. [47].
The analysis carried out in accordance with traditional

requirements of the sum rule calculations enables us to fix
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the working windows for the parameters s0 and M2 in this
section. Our analyses show that the same regions for theM2

and s0 as the mass sum rules in the previous section lead to
a better convergence of OPE and a nice pole contribution
for the strong coupling constants under consideration. The
perturbative-nonperturbative comparison, convergence of
nonperturbative series, and pole/total ratio as an example
for the ZqBcπ vertex are depicted in Figs. 6–8. From these
figures we see that the perturbative contribution exceeds the
nonperturbative one considerably and the OPE nicely
converges. We also get a nice pole contribution of about
70%. Similar results are obtained for other vertices.

The output of numerical calculations depicted in
Figs. 9–11 demonstrates the dependence of the strong
coupling constants, gZqBcπ , gZqBcη, and gZsBcη onM

2 and s0,
which demonstrate good instabilities of the couplings with
respect to auxiliary parameters.
The strong couplings and decay widths of the exploring

processes are collected in Table III. The obtained results are
typical for the decays of tetraquark states. One of their
notable features is the difference between ΓðZq → BcπÞ
and ΓðZq → BcηÞ. In fact, the Zq state may interact with
the pion and η meson through its qq component. But the
spectral density of the vertex ZqBcη is proportional to hqη ,

FIG. 8. Left: Pole/total contribution of the ZqBcπ vertex with respect to M2 at different fixed values of s0. Right: The same as the left
panel but in terms of s0 at different fixed values of the Borel parameter M2.

FIG. 7. Left: Contribution of different nonperturbative operators to the ZqBcπ vertex with respect to M2 at an average value of s0.
Right: The same as the left panel but in terms of s0 at an average value of the Borel parameter M2.

FIG. 6. Left: Comparison of the perturbative and nonperturbative contributions to the ZqBcπ vertex with respect to M2 at an average
value of s0. Right: The same as the left panel but in terms of s0 at an average value of the Borel parameter M2.
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which numerically is considerably smaller than fπm2
π

entering into ρπðsÞ. The reason is a reducing effect of
the axial anomaly explicit from Eq. (29).
Investigation of the open charm-bottom tetraquarks

performed in the present work within the diquark-
antidiquark picture led to quite interesting predictions.
Theoretical exploration of these states using alternative
pictures for their internal organization, as well as exper-
imental studies, may shed light not only on their parameters
but also on properties of the conventional particles.

FIG. 11. Left: The coupling constant gZsBcη as a function of the Borel parameter M2 at various values of s0. Right: The coupling
constant gZsBcη as a function of threshold s0 at various values of M2.

FIG. 9. Left: The coupling constant gZqBcπ as a function of the Borel parameter M2 at various values of s0. Right: The coupling
constant gZqBcπ as a function of threshold s0 at various values of M2.

FIG. 10. Left: The coupling constant gZqBcη as a function of the Borel parameter M2 at various values of s0. Right: The coupling
constant gZqBcη as a function of threshold s0 at various values of M2.

TABLE III. The strong couplings and decaywidths of theZq and
Zs exotic particles obtained within the soft-meson approximation.

Strong couplings, widths Predictions

gZqBcπ ð0.57� 0.21Þ GeV−1

gZqBcη ð0.45� 0.17Þ GeV−1

gZsBcη ð0.69� 0.26Þ GeV−1

ΓðZq → BcπÞ ð111� 49Þ MeV
ΓðZq → BcηÞ ð43� 19Þ MeV
ΓðZs → BcηÞ ð112� 51Þ MeV
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APPENDIX: THE SPECTRAL DENSITIES
FOR THE Zq STATE

Here we present the results obtained for the two-
point spectral density corresponding to the Zq state. We get

ρQCDðsÞ ¼ ρpertðsÞ þ
X8
k¼3

ρkðsÞ; ðA1Þ

where by ρkðsÞ we denote the nonperturbative contribu-
tions to ρQCDðsÞ. The explicit expressions for ρpertðsÞ and
ρkðsÞ are obtained in terms of the integrals of the Feynman
parameters z and w as

ρpertðsÞ ¼ 1

28π6

Z
1

0

dz
Z

1−z

0

dw
wz
ht8

ðm2
btwþm2

ctz − shwzÞ2

× ½z2ð6m2
cshtw − 7s2h2w2 −m4

ct2Þ þ 2m2
btwzð3shw −m2

ctÞ −m4
bt

2w2�Θ½Lðs; z; wÞ�;

ρ3ðsÞ ¼
hqqi
23π4

Z
1

0

dz
Z

1−z

0

dw
ðmbwþmczÞ

t5
ð2shwz −m2

crz −m2
btwÞðm2

btwþm2
crz − shwzÞΘ½Lðs; z; wÞ�;

ρ4ðsÞ ¼ −
hαs G2

π i
3 × 29π4

Z
1

0

dz
Z

1−z

0

dw
wz
ht6

fz2½30h3s2w3 − 4sm2
chrwð9pwþ 9wzþ 4z2Þ

þm4
cr2ð9pwþ 9wzþ 8z2Þ� þ 2m2

btwz½m2
ctð9wzþ 13w2 − 9wþ 4z2Þ − 2shw2ð13wþ 9z − 9Þ�

þm4
bt

2w3ð17wþ 9z − 9ÞgΘ½Lðs; z; wÞ�;

ρ5ðsÞ ¼
m2

0hqqi
25 × π4

Z
1

0

dz
Z

1−z

0

dw
hðmbwþmczÞ

t4
ð2m2

btwþ 2m2
crz − 3shwzÞΘ½Lðs; z; wÞ�;

ρ6ðsÞ ¼
hg3sG3i

5 × 3 × 212π6

Z
1

0

dz
Z

1−z

0

dw
wz

hf2t7
f28m2

bw
7f5 þ zw6f5ð32m2

b þ 10m2
c − 21sÞ þ w5f4z2

× ½2m2
cf þ sð11w − 32Þ þm2

bð30wþ 2Þ� þ 2w4z3½3m2
bjþ 2s − 17m2

bw −m2
cf4ð3w − 4Þ

þm2
bw

2ð38 − 42wþ 23w2 − 5w3Þ þ 2sð11 − 54wþ 86w2 − 59w3 þ 15w4Þ� − 2w3z4

× ½j2ðm2
bð19w − 4Þ − 3m2

c − 2sÞ − 2swðw2 − 2Þð4 − 7wþ 4w2Þ þm2
bw

2ð10w3 − 43w2 þ 73w − 61Þ
þm2

cwð23 − 62wþ 78w2 − 47w3 þ 11w4Þ� þ 2w2z5½m2
bjþm2

cj2ð1 − 7wÞ þ 3m2
bj

2wð4w − 1Þ
þ 2sj2ð31w − 8Þ þm2

bw
3ð56w − 14w2 − 83Þ þm2

cw2ð46 − 70wþ 49w2 − 13w3Þ þ 2sw2ð5wþ 13w2

− 6w3 − 33Þ� þ z6w½j3ð21s − 32m2
c þ 2m2

bð6w − 5ÞÞ þ j2wð12m2
bwðf þ wÞ þ sð25þ 22wÞ

þm2
cð78w − 90ÞÞ þ w3ð2m2

cðf − 1Þð11f − 5Þ þ 2m2
bwð16w − 51Þ þ sð163w − 19w2 − 350ÞÞ�

− z7½sð228w4 − 75w5Þ þ 26m2
bw

5 þ 20m2
cw5 − 2j2w2ð3m2

cðf − 10Þ − 5m2
bwþ 3sð3þ wÞÞ

þ 2j3ð2m2
cð12w − 7Þ þ 3swþm2

bwð5w − 2ÞÞ� þ z8½j2w2ð8m2
c þ 15sÞ þ 2w4ð19sþ 5m2

cÞ
þ j3ðm2

cð4 − 10wÞ − 2m2
bwþ 3swÞ� − 2j3z9m2

cgΘ½Lðs; z; wÞ�

þ g2shqqi2
32 × 2π4

Z
1

0

dz
Z

1−z

0

dw
h2wz
t5

ð2shwz −m2
btw −m2

ctzÞΘ½Lðs; z; wÞ�

þ hqqi2
6π2

mbmc

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþm2

b −m2
cÞ2 − 4sm2

b

q
;

ρ7ðsÞ ¼
hαs G2

π ihqqi
32 × 25π2

�Z
1

0

dz
Z

1−z

0

dw
1

½w2 þ jðwþ zÞ�4 f4mbw3ðz2 þ zf − 2wfÞ þmcz½fwzð3 − 2z − 6wÞ

þ z3ðw − 8zþ 8Þ − 3f2w2�gΘ½Lðs; z; wÞ� þmb þmc

s2
½ðmb −mcÞ2 − s�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

b −m2
c þ sÞ2 − 4sm2

b

q �
;

ρ8ðsÞ ¼ −
hαs G2

π i2
34 × 29π2

Z
1

0

dz
Z

1−z

0

dw
m2

bm
2
cwz

h4t2f
fhfwz½10δð1Þðs − ΔÞ þ 11δð2Þðs − ΔÞ� þ 2s2t2δð3Þðs − ΔÞg; ðA2Þ
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where we omitted to show the terms proportional to the mq in order to avoid very lengthy expressions. Here,

Lðs; z; wÞ ¼ −
f½jðwþ zÞðm2

bwþm2
czÞ þ wðm2

bw
2 − shzþm2

cwzÞ�
ðw2 þ jðwþ zÞÞ2 ; δðnÞðs − ΔÞ ¼

�
d
ds

�
n
ðs − ΔÞ;

Δ ¼ tðm2
bwþm2

czÞ
hwz

; t ¼ w2 þ ðwþ zÞðz − 1Þ; r ¼ z2 þ ðwþ zÞðw − 1Þ;
h ¼ wþ z − 1; f ¼ w − 1; j ¼ z − 1; ðA3Þ

and Θ½…� is the usual unit-step function.
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