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The mass and meson-current coupling of the diquark-antidiquark states with the quantum numbers
JP = 0" and quark contents Z, = [cq][bq] and Z; = [cs][b ] are calculated using the two-point QCD sum
rule approach. In calculations the quark, gluon, and mixing condensates up to eight dimensions are taken
into account. The parameters of the scalar tetraquarks extracted from this analysis are employed to explore
the strong vertices Z,B .z, Z,B.n, and Z.B.n and compute the couplings 92,B.x> 97,B.n> and gz p -

The strong couplings are obtained within the soft-meson approximation of the QCD light-cone sum rule
method: they form, alongside with other parameters, the basis for evaluating the widths of Z, — B.x,
Z, — Bcn, and Z; — B n decays. Results obtained in this work for the mass of the tetraquarks Z, and Z;
are compared with available predictions presented in the literature.
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I. INTRODUCTION

During the last decade various experimental collabora-
tions have reported on the observation of hadronic states,
which cannot be described as the traditional hadrons
composed of two or three valence quarks. Indeed, begin-
ning with the discovery of the X(3872) state by the Belle
Collaboration [1] (see, also Ref. [2]) measurements of
various annihilation, collision, and decay processes have
lead to valuable experimental data on the XYZ family of
exotic particles.

The situation with the theoretical models, computational
methods, and schemes proposed to explain observed features
of the exotic states is more complicated. One of the essential
problems here is revealing the quark-gluon structure of the
exotic hadrons. Thus, in accordance with existing theoretical
models the exotic hadrons are four-quark (tetraquarks) or
five-quark (pentaquarks) states, or contain as constituents
valence gluons (hybrids and glueballs). The second question
is the internal quark-gluon organization and new constituents
(diquarks, antidiquarks, conventional mesons, etc.) of the
exotic hadrons, as well as the nature of the forces binding
them into compact states. Finally, one has to determine
computational methods, which can be applied to carry out
qualitative analysis these multiquark systems. In other
words, one needs to adapt to the exotic hadrons the well-
known methods, which were successfully used to explore
conventional mesons and baryons, and/or to invent
approaches to solve newly emerged problems typical for
the exotic states. We have only outlined a variety of problems
arising when exploring the exotic hadrons. Rather detailed
information on these theoretical methods and also on
collected experimental data can be found in numerous review
papers Refs. [3—12], including the most recent ones [11,12],
and in references therein.
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Most of the observed tetraquark states belong to the class
of so-called hidden charm or bottom particles containing
the ¢ or bb pair. But first principles of QCD do not forbid
existence of the open charm (or bottom) or open charm-
bottom tetraquarks. Experimental information concerning
the open charm tetraquarks is restricted by the observed

*,(2317) and D, (2460) mesons, which are considered as
candidates for such exotic states. These particles were
explored both as the diquark-antidiquark states and mol-
ecules built of the conventional mesons. The only candidate
to the open bottom tetraquark is the X (5568) state, which is
also considered the first particle containing four valence
quarks of different flavors. But the experimental status of
this particle remains controversial and unclear. Thus, the
evidence for this resonance was reported by the DO
Collaboration in Ref. [13], and later conformed from
analysis of the semileptonic decays of the BY meson in
Ref. [14]. At the same time, the LHCb and CMS collab-
orations could not prove the existence of this state on the
basis of relevant experimental data [Refs. [15,16]].
Numerous theoretical studies of the X(5568) state also
suffer from contradictory conclusions ranging from con-
forming its parameters measured by the DO Collaboration
to explaining the observed experimental output by some
alternative effects. Avoiding here further details, we refer to
original works addressing various aspects of the X(5568)
physics, and also to the review paper devoted to the open
charm and bottom mesons (Ref. [17]).

The open charm-bottom tetraquarks form the next class of
the exotic particles. It is worth noting that they have not been
discovered experimentally, and to the best of our best
knowledge, they are not under consideration as candidates
for these states. Nevertheless, the open charm-bottom states
have already attracted the interest of theorists, who performed
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their analysis within both the molecule (Refs. [18-21]) and
diquark-antidiquark pictures (Refs. [22-24]) of the tetraquark
model. Thus, in Ref. [24] the authors considered the scalar
and axial-vector open charm-bottom tetraquarks and calcu-
lated their masses by means of QCD two-point sum rules. In
this article some possible decay channels of these states are
emphasized, as well.

In the present work we study the scalar open charm-
bottom exotic states Z, = [cq][bg] and Z; = [cs][bs] built
of the diquarks [cq], [cs] and antidiquarks [b g, [b 5], where
q is one of the light # and d quarks. First we calculate the
masses and meson-current couplings of these still hypo-
thetical tetraquarks. To this end, we utilize the QCD two-
point sum rule approach, which is one of the powerful
nonperturbative methods to calculate the parameters of the
hadrons [25]. Originally proposed to find masses, decay
constants, and form factors of the conventional mesons and
baryons, it was successfully applied to analyze also exotic
tetraquark states, glueballs, and hybrid ggg resonances in
Refs. [25-29]. The QCD two-point sum rule method
remains among the fruitful computational tools of high
energy physics to investigate the exotic states.

Next, we use parameters of the open charm-bottom
tetraquarks obtained in this way to explore the strong vertices
Z,B.m, Z,B.n, and Z;B_n and calculate the corresponding
couplings 92,8.2> 92,Bon> and g p , necessary for evaluating
the widths of Z, — B.x, Z, — B.n, and Z; — B_n decays.
For these purposes, we employ the QCD light-cone sum
method and soft-meson approximation suggested and elab-
orated in Refs. [30-32]. This method in conjunction with the
soft-meson approximation was adapted for investigation of
the strong vertices consisting of a tetraquark and two
conventional mesons in Ref. [33]. Later it was applied to
calculate the decay width of the X(5568) resonance and its
charmed partner state (see Refs. [34—36]). The full version of
the light-cone method was employed to analyze the strong
vertices containing two tetraquarks, as well as to compute
the magnetic moment of some of the four-quark states in
Refs. [37] and [38], respectively.

The present work is organized in the following way. In
Sec. II we calculate the masses and meson-current cou-
plings of the scalar open charm-bottom tetraquarks. Here
we also compare our results with predictions made in other
papers. Section III is devoted to computation of the strong
couplings corresponding to the vertices Z,B .x, Z,B 1, and
Z B n. In this section we calculate the widths of the decay
modes Z, —» B.x, Z, — B.n, and Z; — B.n. It contains
also our brief conclusions. We collect the spectral densities
obtained in mass sum rules in the appendix.

II. MASS AND MESON-CURRENT COUPLING

To evaluate the masses and meson-current couplings of
the diquark-antidiquark Z, = [cq|[bq] and Z, = [cs][b 7]
states we use the two-point QCD sum rules. We present
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explicitly expressions necessary for computing the mass
and meson-current coupling in the case of the exotic Z,
state. The similar formulas for the particle Z; can be
obtained in a similar manner.

The scalar tetraquark state Z, = [cq][bg] can be mod-
eled using various interpolating currents (Ref. [24]). To
carry out required calculations we choose the interpolating
current in the form

J9 = gl Cyscy(q,rsChy + GpysChY), (1)

which is symmetric under exchange of the color indices
a <> b. Here C is the charge conjugation matrix. For
simplicity, in what follows we omit the superscript in
the expressions.

The correlation function for the current J9(x) is given as

I(p) =i / d*xe (0| T{J9(x)J4"(0)}[0).  (2)

To derive QCD sum rule expressions for mass and meson-
current coupling the correlation function has to be calcu-
lated using both the physical and quark-gluon degrees of
freedom.

We compute the function IT""*( p) by suggesting that the
tetraquarks under consideration are the ground states in the
relevant hadronic channels. After saturating the correlation
function with a complete set of the Z, state and performing
in Eq. (2) integral over x, we get the required expression for
™ (p),

<0|J"|Zq(192)>(Zq(p)lf‘ﬁl(»Jr

"™ (p) = 3
mz =P

where mgz, is the mass of the Z, state, and dots stand for

contributions of the higher resonances and continuum states.
We define the meson-current coupling by the equality

(01791Z,(p)) = fz,mz,.

Then in terms of mz, and f Z, the correlation function takes
the simple form

2 2
mz Iz,
2

e (p) = 2
mz, —P

(3)

It contains only one term, which is proportional to the identity
matrix, and, therefore, can be replaced by the invariant
function TTP™3(p?). The Borel transformation applied to
these invariant functions yields

2 2
Phys( 2\ _ .2 (2 ,~My /M
B 1T (p?) =mz f7,e

+ .- (4)

In order to obtain the function IT(p) using the quark-
gluon degrees of freedom, i.e., by employing the light and
heavy propagators, we substitute the interpolating current
given by Eq. (1) into Eq. (2), and contract the relevant

quark fields. As a result, for II%P(p) we get
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P (p) = / d*xeP* {Tr[ysSh " (=x)ysSee (=x)] Tr[ys 4 (x)y5sS2 (x)]

+ Trlys S5 (=x)rs S (=) TelysSq" ()5S ()] + Trlys Sy (=x)y5Sg " (=)
X Trlys S (x)rsSe ()] +TrelysSh “ (=x)ysSh (=) TrlysSg* (x)rsS2¥ (x)]}, (5)

where we employ the notation

Sqin (x) = CSTeb (x)C, (6)
with S, (x) and S, (x) being the g- and b-quark propagators,
respectively.

We continue by invoking into analysis the well-known
expressions of the light and heavy quark propagators. For
our purposes it is convenient to use the x-space expression
of the light quark propagators, whereas for the heavy
quarks we utilize their propagators given in the momentum
space. Thus, for the light quarks we have

S;h () = iBap 22t Oap 4:12[;2 = O <?g>
+ i64p % —bap 19—22 (GgoGq)
+ 6y % (qgoGq) — i %%; [£6 o5 + O opk]
1P 1 B

For the heavy Q = b, ¢ quark propagator S‘é”(x) we utilize
the expression from Ref. [39],

sy [ L {latt 0

3 2_,2
2r) k> —myp,
_ 9Ga ouplk+ mg) + (k+ mg)oa
N 3
2G2 k2 ¥ 3G3 k
+2 SapMg 2+m2Q4 ! Sap (2+m2Q)6
12 (k* —myg) 48 (k* —myg)

X [k(k* = 3mg) 4 2mg (2k* — mp)]

X(k—l—mQ)+~~-}. (8)

In Egs. (7) and (8) the standard notations

ng = Giﬁtf}b, G = Gé/;Gé/r
G’ = fA%¢G;, GG, 9)

are introduced. Here a, b =1, 2,3 and A,B,C =1,2...8
are the color indices, and #* = A4/2 with A4 being the

|
Gell-Mann matrices. In the nonperturbative terms the gluon
field strength tensor G, = G4,(0) is fixed at x = 0.
Strictly speaking, the QCD sum rule expressions are
derived after fixing the same Lorentz structures in both the
physical and theoretical expressions of the correlation
function. In the case of the scalar particles, as we have
just noted, the only Lorentz structure in these expressions is
~I. Hence, there is only one invariant function I12P(p?) in
the theoretical side of the sum rule, which can be repre-
sented as the dispersion integral

HQCD(pz):/”'&(S)stJF..., (10)

M S—=P

where M = my, + m, 4 2m,, and p©P(s) is the corre-
sponding spectral density.

The spectral density pQ°P(s) is the key ingredient of the
sum rule calculations. The technical methods for calcu-
lation of the spectral density in the case of the tetraquark
states are well known and presented in rather clear form, for
example, in Refs. [33,40]. Therefore, here we omit details
of calculations and move the final explicit expressions
obtained for p°P(s) corresponding to the Z, state to the
appendix. Let us note only that the spectral density is
computed by taking into account condensates up to
dimension 8: it depends on the quark, gluon (ggq),
(?G?), {¢°G?), and mixed (GgoGgq) condensates, and
ones due to their products.

Applying the Borel transformation on the variable p? to
the invariant function TP (p?), equating the obtained
expression with szHPhys( p), and subtracting the contri-
bution arising from higher resonances and continuum
states, we find the final sum rules. Thus, the sum rule
for the mass of the Z, state reads

, S dspP(s)se

m = .
“ [ dspACP(s)e

(11)

The meson-current coupling fz is given by the sum
rule,

2 2 N
Sy, e = / " dsp®CP(s)e= . (12)
q M2

In Egs. (11) and (12) by s, we denote the threshold
parameter that dissects the contribution of the ground
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TABLE 1. Input parameters.

Parameters Values

mg (6275.1 + 1.0) MeV
S, (528 £19) MeV

m, (547.862 £ 0.017) MeV
m, (134.9766 + 0.0006) MeV
Iz 0.131 GeV

my 418700 GeV

m, (1.27 +£0.03) GeV
m 961% MeV

(gq) (-0.24 +0.01)% GeV?
(5s) 0.8(79)

m3 (0.8 £0.1) GeV?
390Gq) m§(qq)

m} (55)

(0.012 4 0.004) GeV*
(0.57 4 0.29) GeV®

A~ s~ o~
k “l
RS

Q

Q

>
=

state from one due to the higher resonances and continuum.
Here we should remark that in the present work we
calculate the meson-current couplings fzq and f, for

the first time: they are the main input parameters for the
calculation of the strong coupling constants considered in
the next section and were not analyzed in Ref. [24].

The sum rules contain numerical values of parameters
that should be specified. We collect the required informa-
tion in Table I. For the vacuum expectation value of the
gluon field ~g’G® we employ the result reported in
Ref. [41]. The remaining quark and gluon condensates
are well known, and we utilize their standard values. Table I
contains also B., #n, and 7 meson masses and decay
constants, which serve as input parameters for computing
of the strong couplings and decay widths in the next section
(see Ref. [42]).

The QCD sum rules depend on the continuum threshold
so and Borel variable M?. To extract reliable information
from the sum rules we have to choose such regions for s,
and M?, where the physical quantities under question
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demonstrate minimal sensitivity on them. It is worth
emphasizing that namely these two parameters are the
main sources of uncertainties in QCD sum rule predictions.

According to the method used, the window for the Borel
parameter has to provide the convergence of the series of
operator product expansion (OPE), and suppression of the
higher resonance and continuum contributions to the sum
rule. The convergence of OPE, i.e., the exceeding of the
perturbative part to the nonperturbative contributions and
reducing of the contribution with increasing the dimension
of the nonperturbative operators are easily achieved for the
exotic states like the standard hadrons. However, in the
exotic channels the pole contribution to the mass sum rules
remains mainly under 50% of the total integral. But, as we
see in the next section, in the case of strong couplings of the
exotic states with conventional hadrons the pole contribu-
tion exceeds 70% of the whole result. To find the lower
boundary for M? we demand convergence of the OPE and
exceeding of the perturbative part over the nonperturbative
contribution. The upper limit for this parameter is extracted
by requiring the largest possible pole contribution. As a
result, for M2, in the mass and meson-current calculations,
we fix the following range:

6.5 GeV? < M?* < 7.5 GeV>. (13)
The choice of the continuum threshold s, depends on the
energy of the first excited state and can be extracted from
analysis of the pole/total ratio. This criterium enables us to
determine the range of s, as

55 GeV? < 5y <57 GeV>. (14)
To see how the OPE converges and how large the pole
contribution is some plots are in order. We compare the
perturbative and nonperturbative contributions to the
mass sum rule by varying M? at fixed average value of
so» and by varying s, at fixed average M? in the left
and right panels of Fig. 1, respectively. The contributions
of different nonperturbative operators with respect to M?
at an average value of the continuum threshold and the

100 T T T T T

100 T T T

80+ —_— Perturbative Contribution 80+ P ive Contributi
s —————— Non-Perturbative Contribution S ——————— Non-Perturbative Contribution
3 60 ._g 60
I E  p————————==mmmmmmeeeeeeemee
5 40} 5 4of
o ()
® X

20+ 201

0 L L L L L 0 L L L
6.6 6.8 7.0 7.2 7.4 55.0 55.5 56.0 56.5 57.0
M(GeV?) so(GeV?)

FIG. 1. Left: Comparison of the perturbative and nonperturbative contributions to the mass sum rule of Z, with respect to M? at an
average value of s,. Right: The same as the left panel but in terms of s, at an average value of the Borel parameter M>.
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FIG. 2. Left: Contribution of different nonperturbative operators to the mass sum rule of Z, with respect to M? at an average value of
so. Right: The same as the left panel but in terms of s, at an average value of the Borel parameter M>.

1.0 T 1.0 :
— 5=55GeV? M?=6.5 GeV?

08  ------ 50=56 GeV? ] 08 = -===-- M?=7.0 GeV?
.......... 55257 GeV? ] seeneenee M227.5GeV?

0.0 L L
6.6 6.8

7.0
M(GeV?)

FIG. 3. Left: Pole/total contribution for the mass sum rule of Z, with respect to M 2 at different fixed values of s,. Right: The same as
the left panel but in terms of s, at different fixed values of the Borel parameter M.

same quantity with respect to s, at an average value
of M? are presented in the left and right panels of
Fig. 2, respectively. The pole/total contribution that
is shown by the PC also on M? and s, is depicted in
Fig. 3.

From these figures we see that inside of the working
windows for M? and So, the mass sum rule demonstrates a
good convergence and the perturbative part constitutes the
main part of the total integral. We reach the PC contribution

in the range 16%-31% for different values of M? and s, in
their working regions. We also remark that the working
regions for the Borel parameter and continuum threshold
obtained for Z, state are roughly the same for the Z; state
and the SU(3) flavor violation is negligible. Similar results
for the convergence of the OPE and pole contribution in the
Z, channel are obtained for the Z state as well and the
presence of the s quark dose not change the situations in
Figs. 1-3 considerably.

8.0 1.0 T T T T T
50=55 GeV? 50=55 GeV?
———————— 50=56 GeV” 0.8+ ————---- 5=56GeV?
75¢ 2 1~ 2
------------ $0=57 GeV/ <> smmesmmesses =57 GeV
2 & 06;
0 70 - S— g
N =)
g ‘;’ [ ey ——|
[ W
6.5 02!
6'0 I I I I I 0-0 1 1 1 1 1
6.6 6.8 7.0 7.2 74 6.6 6.8 7.0 7.2 74
M?(GeV?) M?(GeV?)

FIG. 4. Left: The mass of the Z, state as a function of the Borel parameter M? at various values of 5. Right: The meson-current
coupling f7 as a function of the Borel parameter M? at different values of s,.
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8.0 1.0
5p=55 GeV? 50=55 GeV?
750 T 50=56 GeV’ 1 08r -------- 50=56 GeV”
B B 50=57 GeV? *% ------------ 50=57 GeV?
e
o
e
xu
]
6_0 1 1 1 1 1 0.0 1 1 1 I I
6.6 6.8 7.0 7.2 74 6.6 6.8 7.0 7.2 74
M?(GeV?) M?(GeV?)

FIG. 5.

Left: The mass of the Z, state as a function of the Borel parameter M? at various values of s,. Right: The meson-current

coupling f as a function of the Borel parameter M? at different values of s,.

The results obtained for the mass and meson-current
coupling of the Z, and Z; state are plotted in Figs. 4 and 5,
and demonstrate mild dependence on s, and M?. Our
results for the masses and meson-current couplings of the
Z, and Z; states are collected in Table II. Here under Z, we
imply both the Z, and Z, states, which in the exact isospin
symmetry accepted in this work have identical physical
parameters.

The masses of the scalar diquark-antidiquark states with
the same contents were calculated in Ref. [24], as well. The
authors used the QCD two-point sum rule approach, and for
the masses of the Z; and Z, states found

mz =7.16 +0.08 £+ 0.06 & 0.04 GeV, (15)

and

mz =T7.11+0.08 £0.06 £0.01 GeV. (16)

As is seen, predictions obtained in Ref. [24] are consistent
within the errors with our results: The slight discrepancies
can be attributed to the fact that the authors there did not
take into account some terms in both the light and heavy
quark propagators used in the present study. This led to
different working regions for the parameters s, and M? and
some differences in convergence of OPE and pole/con-
tinuum ratio.

TABLE II. The two-point sum rule prediction for the masses
and meson-current couplings of the Z, and Z; states.

Mass, m.-c. coupling Results

mg, (6.97 £0.19) GeV

fz, (0.38 +0.03) x 1072 GeV*
my, (7.01 £0.21) GeV

fz. (0.41 £+ 0.04)1072 GeV*

1Il. WIDTHS OF THE Z, - B,x, Z, — B,
AND Z, — B,y DECAY CHANNELS

In this section we investigate the possible decay channels
of the exotic Zy(, states, and calculate the widths of the
modes, which are, in accordance with our results obtained
in Sec. II, kinematically allowed.

It is not difficult to see that the quark content and mass
of the Z, state permit its decay to B, and = mesons:
The producing of the B, and # mesons in the decay process
is also possible. The tetraquark Z; can decay to B, and 5
mesons. At the same time, the modes Z, — B.#' and
Z, — B.y are among kinematically forbidden decay
channels.

We concentrate here on the Z; — B.n decay channel.
To find its width we explore the vertex Z,B,.n and calculate
the strong coupling gz p , using the light-cone sum rule
method and soft-meson approximation. To this end, we
introduce the following correlation function,

(p.q) =i / d*xe'™(n(q)|T{J%(x)J*(0)}[0). (17)
where the interpolating current for the B,. meson is given as

JP(x) = iby(x)yse;(x). (18)

The correlation function TI(p, ¢) is the basic component
of the sum rule calculations. Expressed in terms of the
physical quantities it takes a rather simple form,

™ (p. q) = W (B(P)n()|Z;(P"))

20 (19

2 2 J
p-—myg

where p, ¢, and p’ = p + ¢ are the momenta of B, n, and
the Z, states, respectively. The first term above is the
ground state contribution, whereas effects of the higher
resonances and continuum states are denoted by the dots.
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We define the B, meson matrix element

2
S5,

<O|JB“ ,
my, +m,

B.(p)) = (20)
with mp and fp being the mass and decay constant of the
B. meson, and also the matrix element describing the vertex

(B(p)n(@)|Zs(P')) = 9z.8.4P - P'- (21)

Then the ground state component of the correlation
function can be recast into the form

2
fB.fzmzmg 9z, /

™ (p, q) = pp.
(P-9) = G ) (7 = m ) (my + o)

(p”

(22)

In the soft-meson limit we apply the restriction g = 0,
which, naturally, leads to equality p = p’ (for details, see
Ref. [33]). In this approximation the invariant function
corresponding to ITP"(p, ¢) depends only on the variable
p?, and is given by the following expression,

I fzmzmy 97,5, 2
(p* = mz)(p* = mg )(my, +m,)

_|_...’

HPhys (p2) —

(23)

where m* = (m3 +mj_)/2.
What is important is that now we have to use the one-
variable Borel transformation on p?, and apply the operator

d

to both sides of the sum rule. The last operation is necessary
to remove all unsuppressed contributions emerging in the
physical side of the sum rule due to the soft-meson limit
(see Ref. [31]).

The second side of the sum rule, i.e., QCD expression for
P (p. q), is

MO (p, ) = i / e {55 (x)ps 38 (=2)7les
x (n(q)[s¢s5(0)
58 ()58 (=x)7slap (@) 5255410) .

(25)
Here by a and f are the spinor indices.
We proceed by using the expansion
S5t o L [Y (sogh) (26)
Sasp = 7T pa(5T7s7),
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where I'/ is the full set of Dirac matrixes, and performing
the summation over color indices.

Calculation of the traces over spinor indices and inte-
gration of the obtained integrals in accordance with
procedures reported in Ref. [33] enable us to extract the
imaginary part of the correlation function ITI%°P(p, ¢). As a
result, we find not only the spectral density, but also
determine local matrix elements of the # meson that form
it. Our analysis proves that in the soft-meson limit only the
local twist-3 matrix element (5(q)[Siyss|0) survives and
contributes to the spectral density p(s) corresponding to
the Z,B.n vertex. Within the same approximation the
strong couplings of the vertices Z,B.n and Z,B.x are
determined by the matrix elements (1(q)|qgiysq|0) and
(7(q)|qirsq|0), respectively.

The situation with the pion is clear: its matrix element is
known, and was used in our previous works to explore
decays of other tetraquarks. But the matrix elements of the
eta mesons deserve more detailed analysis, which is
connected with mixing phenomena in the 7 — 7’ system.

The n — ' mixing and U(1) axial anomaly are problems
that decisively affect physics of the eta mesons. The n — %/
mixing can be described using either the singlet-octet basis
of the flavor group SU(3), or the quark-flavor basis. The

latter is founded on the 5s and (@u + dd)/+/2 as the basic
states, and is convenient to describe the mixing phenomena
of the n—# system, including mixing of the physical
states, decay constants, and higher twist distribution
amplitudes (Ref. [43-46]).

In the present work we follow this approach and utilize
the quark-flavor mixing scheme in our calculations. Then
the twist-3 matrix elements of interest are given as

_
= 7
2m,(n(q)|siyss|0) = hy,
(q)

2my(n(q)lgirsq|0) (27)

(28)

where the parameters /, ¥’ are defined by the equalities

h;(fz) _ m%f’s?(q) —A,,

X ~q Fauw
Ay = (0152 GG n(p)), (29)
and A, is the matrix element appearing due to the U(1)
anomaly.
In Refs. [44-46] it was assumed that the parameters

hf,(q) obey the same mixing scheme as the decay constants
of the eta mesons, and hence the following equality

holds:
<hZ hf,) :(cosgo —sin(p><hq 0) (30)
hy by, sing  cosg 0 h)
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Here ¢ is the mixing angle in the quark-flavor scheme; 4,
and h, are input parameters extracted from analysis of the
experimental data,

h, = (0.0016 + 0.004) GeV?,

hy, = (0.087 & 0.006) GeV?,

@ =39.3°+1.0° (31)
The details about the local matrix elements of the eta

mesons presented above are sufficient to calculate the
spectral densities under investigation. We find

s

pi(5) = g L(s). (32)

1
L(s) = =[5> + s(m? + 6mym. + m2) —2(

n’s?

PHYSICAL REVIEW D 95, 034008 (2017)
for the Z,B_.n vertex,

hq
I(s) = —2L —L(s), 33
) = L (33)
for the ZqBL.n vertex, and
Samz
L(8) =——"—L(s 34
) = 3y T ) (34

for the Z,B .z vertex, where the “universal” function L(s)
has the form

ms — m?)?] \/(s +m? —m?)? —dm?s

1 (1 d G?
#3 [ (@ D st mmjz = mi)0s - 0)

_]2Z2

+2(m2 3 = m223 + mym, (1 +3jz2))60 (s — )] + (°G?)

1
5 x 26772j323

x {12722 [3mym (1 + 5jz(1 + jz)) + 3m2j° — z(3m?z* + sj(1 + jz(7 + 11jz2)))]
x 8@ (s — @) = 2jz[miz>(4my, — Tm.) + 25223 (2 + Tjz) + m3 > (Tm3 — dmym,
+95(1 = 22)2) + 9Im,sj2(m 23 (22 = 1) = 2my,j(1 4 3jz2))]6%) (s — @)

+ 2mym.j° = 2mimyz> — 5320 4+ 652223 (m3 2 + mym, jz — m?Z?)

+ sjz(dmim.jtz — Tm}j> — dmimyjz* + Tmiz°)]16W (s — @)}

G*\? ,
’ <“s _> P [6j26) (s = @) + 2(mym, — s(1 +3j2))8 9 (s — )
T

33x2

T s(mym, — 5j2)69(s - @) }

where

2 2
_ My —mez
Jjz

The final sum rule to evaluate the strong coupling reads

d
(mb + mzc) . 1 — M2 . e
fB.fzmzmp m am

X /SO dse =)V ps (). (37)
Mz

9z,B.n =

The similar expressions are valid for the remaining two
couplings 92,B.n and 9z,B.x> 35 well.

In order to get the width of the decay Z; — B.n we adapt
to this case the expression derived in Ref. [34], which takes
the form

(35)
g%\.B(.q %;,.
I'(Z; - B.y) = 24x A(my, mB‘.’mn)
w14 Emz g )] g
B,
where

B Vat + bt + ¢t = 2(a?h? + a’c? + bc?)
N 2a '

Aa, b, c)

Parameters required for numerical computations of the
decay widths are listed in Table I. Apart from the standard
information it contains also the decay constant f_of the B,
meson, for which we utilize its value derived in the context
of the sum rule method in Ref. [47].

The analysis carried out in accordance with traditional
requirements of the sum rule calculations enables us to fix
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FIG. 6. Left: Comparison of the perturbative and nonperturbative contributions to the Z,B . vertex with respect to M? at an average
value of s,. Right: The same as the left panel but in terms of s, at an average value of the Borel parameter M.
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FIG. 7. Left: Contribution of different nonperturbative operators to the Z,B .z vertex with respect to M 2 at an average value of s.
Right: The same as the left panel but in terms of s, at an average value of the Borel parameter M?.
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FIG. 8. Left: Pole/total contribution of the Z, B, .z vertex with respect to M 2 at different fixed values of s,,. Right: The same as the left
panel but in terms of s at different fixed values of the Borel parameter M>.

the working windows for the parameters s, and M? in this
section. Our analyses show that the same regions for the M?
and s, as the mass sum rules in the previous section lead to
a better convergence of OPE and a nice pole contribution
for the strong coupling constants under consideration. The
perturbative-nonperturbative comparison, convergence of
nonperturbative series, and pole/total ratio as an example
for the Z, B x vertex are depicted in Figs. 6-8. From these
figures we see that the perturbative contribution exceeds the
nonperturbative one considerably and the OPE nicely
converges. We also get a nice pole contribution of about
70%. Similar results are obtained for other vertices.

The output of numerical calculations depicted in
Figs. 9-11 demonstrates the dependence of the strong
coupling constants, 92,8.x> 92,B.n> and gz p , on M? and s,
which demonstrate good instabilities of the couplings with
respect to auxiliary parameters.

The strong couplings and decay widths of the exploring
processes are collected in Table III. The obtained results are
typical for the decays of tetraquark states. One of their
notable features is the difference between I'(Z, — B, x)
and I'(Z, — B.n). In fact, the Z, state may interact with
the pion and # meson through its gg component. But the
spectral density of the vertex Z, B, 1 is proportional to hi,
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TABLE III.

The strong couplings and decay widths of the Z, and

Z exotic particles obtained within the soft-meson approximation.

Strong couplings, widths

Predictions

9z,B.x
9z,B.n
9z,B.n
r (Zq — B.7)
'z, — B.n)
I'(Z, — B.n)

(0.57 £ 0.21) GeV™!

(0.45+0.17) GeV™!

(0.69 £ 0.26) GeV~!
(111 £ 49) MeV
(43 £19) MeV
(112 £51) MeV

PHYSICAL REVIEW D 95, 034008 (2017)

which numerically is considerably smaller than f,m2
entering into p,(s). The reason is a reducing effect of
the axial anomaly explicit from Eq. (29).

Investigation of the open charm-bottom tetraquarks
performed in the present work within the diquark-
antidiquark picture led to quite interesting predictions.
Theoretical exploration of these states using alternative
pictures for their internal organization, as well as exper-
imental studies, may shed light not only on their parameters
but also on properties of the conventional particles.
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FIG. 9. Left: The coupling constant gz p , as a function of the Borel parameter M? at various values of s,. Right: The coupling
constant gz p , as a function of threshold s at various values of M>.
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FIG. 10.  Left: The coupling constant gz p , as a function of the Borel parameter M? at various values of s,,. Right: The coupling
constant gz p , as a function of threshold s, at various values of M>.
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constant g,  , as a function of threshold s, at various values of M>.
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APPENDIX: THE SPECTRAL DENSITIES
FOR THE Z, STATE

(A1)

where by p,(s) we denote the nonperturbative contribu-
tions to pQCP (). The explicit expressions for pP(s) and

Here we present the results obtained for the two-  p;(s) are obtained in terms of the integrals of the Feynman

point spectral density corresponding to the Z,, state. We get ~ parameters z and w as
|

-
PP (s =5 6/ dz/ Zdw— (m3tw + m2tz — shwz)?
X [22(6m2shtw — 752f12w2 —mi?) + 2m3twz(3shw — m2t) — my*w?]O[L(s, z, w)].

1=z myw + m,
p(s) = > 4/ / %(%hwz —m2rz — mitw)(mitw + m2rz — shwz)®[L(s, z, w)],

1_
pals) = 3 v 29 4/ dz/ dw—{z [30h3s2w3 — dsm2hrw(9pw + 9wz + 47°)

+ mir?(9pw + 9wz + 82%)] + 2mItwz[m?t(9wz + 13w? — 9w + 4z%) — 2shw? (13w + 9z — 9)]
+m}rPw3 (17w + 9z — 9)}O[L(s, z, w)],

-
mO a4) / / Ta mbw + hmyw + mez) (2m2tw + 2m2rz — 3shwz)®|L(s, z, w)],

1=z wz
pe(s) = 5 x 3 » 212 6/ / dw nr {28m2w’ f3 + 2w 3 (32m32 + 10m2 — 21s) + w’ f47?

x 2m2f 4+ s(11w = 32) + m2 (30w + 2)] + 2w*23[3m?j + 25 — 1Tmiw — m2f* (3w — 4)
+ miw?(38 — 42w + 23w? — 5w?) + 25(11 — 54w + 86w? — 59w* + 15w*)] — 2w3z*
x [A(m2(19w —4) = 3m2 — 25) = 2sw(w? — 2)(4 = Tw + 4w?) + miw*(10w* — 43w? 4+ 73w — 61)
+ m2w(23 — 62w + T8W? — 47w3 + 11w*)] + 2w 22 [m2j + m2j*(1 = Tw) + 3m3 j*w(dw — 1)
+25/2(31w — 8) + maw? (56w — 14w? — 83) + m2w? (46 — 70w + 49w? — 13w?) 4 2sw? (5w + 13w?
—6w? —33)] + 2Pw[j?(21s — 32m2 + 2m3 (6w — 5)) + j2w(12miw(f + w) + (25 + 22w)
+ m2(78w —90)) + w? 2m2(f = 1)(11f = 5) + 2m3w (16w — 51) + 5(163w — 19w? — 350))]
— 77[s(228w* = 75w) 4 26mIw> + 20m2w® — 2j*w*(3m2(f — 10) — Smiw + 35(3 + w))
+2732mE(12w = 7) + 3sw + miw(5w = 2))] + 28[*w?(8m2 + 155) + 2w*(19s + 5m2)
+ 2 (m2(4 = 10w) = 2m3w + 3sw)] — 2322m2}O[L(s, z, w)]

32 x 27%

(gq)* mpm
2 < \/(ermi —m?)? —dsm?,

1- hwz
+gs q4) / / T dw p (2shwz—mbtw m?2tz)O[L(s, z, w)]

G 1-z 1
p(s) = ﬁ{/ / dwm{4mbw (22 +zf = 2wf) + m.z[fwz(3 — 2z — 6w)

2300 = 82+ 8) = 3202} OLL (s 2w)] + L (g — m )2 — 5]\ (mE — m2 4 5)? - 4mb}

N

1-z
ps(s) = =55 29 5 / dz / wm}’;ﬁ}” {hfwz[1060) (s — A) + 1162 (s — A)] + 25226 (s — A},
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where we omitted to show the terms proportional to the m

PHYSICAL REVIEW D 95, 034008 (2017)

in order to avoid very lengthy expressions. Here,

L(s,z,w) =— -
e 07+ 2)
Hm2 2
AZi(mbw—l—mcz)’ t=w+w+2z)(z-1),
hwz
h=w+z-1, f=w-1, j=z-1,

and ©]...] is the usual unit-step function.

ds

SUlw + ) (mw + mz2) + wlmpw” = shz + miwa)] gy o py ( : ) o-8)

r=z2+w+z)(w=-1),
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