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Using deep inelastic scattering on a large nucleus as an example, we consider the transverse momentum
broadening of partons in hard processes in the presence of medium. We find that one can factorize the
vacuum radiation contribution and medium related PT broadening effects into the Sudakov factor and
medium dependent distributions, respectively. Our derivations can be generalized to other hard processes,
such as dijet productions, which can be used as a probe to measure the medium PT broadening effects in
heavy ion collisions when Sudakov effects are not overwhelming.
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I. INTRODUCTION

One of the most intriguing discoveries at the Relativistic
Heavy Ion Collider (RHIC) is the strongly coupled quark
gluon plasma (QGP) [1] created in the heavy ion collisions.
There have been great experimental efforts on the quanti-
tative study of various properties of QGP in terms of both
energy loss and transverse momentum PT broadening
effects [2–6]. For example, as a clear indication of a jet
quenching effect due to large energy loss, a large suppres-
sion of the single hadron spectra in the high PT region in
central AuAu collisions has been observed [7–9]. In
addition, RHIC [10] has also observed that the back-to-
back hadron correlations for moderate PT disappear for
central AuAu collisions. Although one can attribute this
effect to both energy loss and PT broadening effects, it is
believed that the normalized angular correlation around
Δϕ ∼ π is mostly due to medium transverse momentum
broadening with Δϕ being the azimuthal angle difference
between the trigger hadron and the associate hadron.
In fact, it was shown in the Baier-Dokshitzer-Mueller-

Peigne-Schiff (BDMPS) approach [3–5] that the energy
loss and PT broadening effects are related through the
following formula − dE

dx ≃ αsNc
4

q̂L, where q̂L represents the
typical transverse momentum squared that a parton
acquires in the medium of length L. Here, q̂ is the so-
called jet-quenching parameter which depends on the
density of the QGP medium. Therefore, one would expect
that the energy loss effect should be tied together with the
transverse momentum broadening effects in heavy ion
experiments.
Since the commencement of the LHC, similar suppres-

sion of single hadron spectra [11,12] and inclusive jets [13]
has also been found in PbPb collisions, which implies
that similar jet quenching effects persist in the LHC regime.

In the meantime, approximately a factor of two suppression
of the back-to-back dihadron correlation with 8 GeV <
PT;trig < 15 GeV [14] in central heavy ion collisions also
suggests the presence of significant medium effects.
Nevertheless, the dijet measurements conducted by CMS

and ATLAS at the LHC [15,16] seem to be a bit puzzling at
first sight. On one hand, they observed striking dijet
asymmetries in central PbPb collisions which is consistent
with the jet quenching effect [17]. Since the dijet asym-
metry strongly depends on the transverse energy difference
of the dijet system, this observable is not as sensitive to the
PT broadening of jets as the angular correlation. On the
other hand, there is no trace of significant angular decor-
relation found in the same dijet measurement. As a matter
of fact, the normalized angular distribution in central PbPb
collisions is almost the same as the one measured in pp
collisions for Δϕ > 2.
From the theoretical point of view, there are mainly two

competing contributions to the correlation (decorrelation)
of the dijet angular distribution in high energy heavy ion
collisions, namely, the Sudakov effect and the medium
induced PT broadening (For the normalized angular dis-
tribution as shown in Ref. [15], one expects that the energy
loss effect is not very important.). The Sudakov effect, also
known as the parton shower, has been an important topic of
QCD studies for several decades. It normally occurs due to
large amounts of gluon radiation in hard processes, such as
high invariant mass Drell-Yan lepton pair production
process as well as the W and Z boson production [18].
Especially, recent studies [19–22] in several areas of QCD
have shown that it is important to perform the Sudakov
resummation in order to obtain a consistent description of
back-to-back dijet angular correlations in hard processes. It
is also important to mention that the Sudakov factor arises
from the incomplete cancellation of real and virtual graphs
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in high order perturbative calculations if we are measuring
the transverse momentum of the high mass Drell-Yan
lepton pair (or the transverse momentum of heavy particles)
or the momentum imbalance (or the angular correlation) of
dijets produced in high energy scattering. If one integrates
over the transverse momentum of the produced particle or
the azimuthal angle difference of dijets, the Sudakov effect
disappears since the real-virtual cancellation becomes more
complete after the integration.
In order to quantitatively study PT broadening effects in

back-to-back dijet angular correlation measurements with
the presence of medium effects, we need to develop a
sophisticated formalism which incorporates Sudakov
effects and the medium induced PT broadening effects,
and investigate the interplay of these two effects in different
experimental environments. In general, one expects that
the medium effects are absent in pp collisions, and the
correlations are solely due to Sudakov effects in the back-
to-back dijet configurations. This has led to the successful
description [22] of the Tevatron (pp̄) [23] and the LHC
(pp) [24] dijet correlation data. Generally speaking, the
larger the collision energy and jet transverse momentum
are, the larger the Sudakov effects are. In the case of pA
[25] and AA [15,16] collisions, the produced dijet system
can also interact with either the cold nuclear medium or the
hot-dense QGP medium, which generates extra transverse
momentum broadening effects. In dijet productions at the
LHC with the transverse momentum of the leading jet
larger than 100 GeV, Sudakov effects dominate over
medium effects. Rough estimates give the transverse
momentum broadening of the Sudakov effect at the
LHC energy for dijet productions with PT ∼ 100 GeV as
h△P2

Ti ∼ 100 GeV2 [22], as opposed to that due to medium
effects which is h△P2

Ti ∼ q̂L ∼ 10 GeV2. Note that since
the nature of momentum broadening in the transverse
direction is the same as a random walk or Brownian
motion, which suggests that we should always compare
h△P2

Ti instead of hj△PT ji. This naturally explains why
there are no visible medium modifications found for dijet
angular correlation measurement in both pPb [25] and
PbPb [15,16] collisions at the LHC, since the correspond-
ing modification in terms of dijet angular distributions is
too small to be seen at the LHC. To probe the medium
effects through angular correlation measurements, we
either need to lower the PT of the dijet system or measure
dihadrons with much lower PT as in Refs. [10,14]. This can
significantly reduce the Sudakov effects. Therefore, as
recently pointed out in Refs. [26,27], one can also measure
medium effects at RHIC through dijets with roughly PT ∼
35 GeV and hadron-jet as well as dihadron correlations.
In this paper we study the transverse momentum dis-

tribution of jets produced by a hard scattering in the
medium. For explicitness we consider a jet to be produced
in the deep inelastic scattering of a transverse virtual photon
on a nucleus. We consider in detail two separate cases

where (i) the time scale over which the jet is produced, τq, is
much less than the size, L, of the nucleus and (ii) where τq
is much greater than L in the target rest frame. The
transverse momentum of the jet then comes from various
sources, namely, from the hard scattering itself, from
radiation not induced by the medium (Sudakov radiation),
from multiple scattering of the jet in the medium (q̂) and
from radiation induced by the medium (radiative correc-
tions to q̂). In our current discussion we take the transverse
momentum of the virtual photon to be zero to minimize the
transverse momentum coming from the hard scattering.
Although our discussion is done in the context of cold

nuclear matter, a large nucleus, it is straightforward to
extend to hot matter simply by changing from the q̂ of cold
matter to the q̂ of hot matter. For example the discussion
given in Sec. II, for τq ≪ L, can be used to describe the
imbalance between the transverse momentum of the two
jets produced in a hard scattering in heavy ion collisions.
In Refs. [26,27], the relative importance to imbalance

(the azimuthal angle between the two jets, hadron-jet or
dihadrons) of Sudakov emission and medium induced
broadening (multiple scattering effects together with
medium induced radiation) was analyzed for jets produced
in heavy ion collisions. In Sec. II we include the medium
induced radiative contribution, namely, radiative correc-
tions to q̂, to the imbalance. If the q̂ of Sec. II is taken to be
that of hot matter then we have evaluated all the contri-
butions to q̂ included in the analysis of Ref. [26,27].
In the case that the transverse momentum broadening is

dominated by Sudakov double logarithmic radiation, as in
the case of jet production in LHC heavy ion collisions, it is
necessary to revisit the evaluation of radiative corrections to
q̂ as done in the context of a q̂-dominated broadening. This
is done in Sec. II C where all double logarithmic radiative
corrections to q̂ are evaluated.
In Sec. III we consider small-x deep inelastic scattering

where the jet is formed on a time scale long compared to the
length of the medium. We begin in Sec. III A by doing the
analysis assuming a fixed coupling and with the photon
virtuality in the scaling region of the small-x evolution. Up
to an overall constant we are able to get analytic expres-
sions for the jet broadening in (41) or, in the various regions
shown in Fig. 6, in (42)–(44). It is interesting to investigate
what happens at a fixed amount of the broadening, k⊥, of
the jet as one varies the hardness, Q2, from moderate to
large values while always assuming that x is small enough
that one remains in the scaling region of the small-x

evolution. When ln Q2

k2⊥
< 1ffiffiffiffi

αs
p Sudakov effects are not visible

and the transverse momentum, k⊥, comes completely from
small-x evolution and exhibits scaling in (42). As Q2 is
increased one gets a scaling behavior with a simple factor
giving the Sudakov contribution given by (43). When

ln Q2

k2⊥
> 1

αs
the scaling behavior is completely destroyed

and the transverse momentum distribution is flat reflecting
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the randomizing effects of the Sudakov radiation. This is
exhibited in (44).
In Sec. III B, running coupling effects are introduced

and we no longer suppose that Q2 lie in the scaling region
of the small-x evolution. The three different regions of
Fig. 6 give very similar results as compared to the fixed
coupling case. The first region, where Q2 is not so large,
shows no Sudakov modification of the spectrum of trans-
verse momentum broadening. The next region of somewhat
larger Q2 again has a simple Sudakov factor [see (52)]
modifying the small-x answer. Finally, the large Q2 region
again completely eliminates all k⊥-dependence, as given
in (59).
In the case where τq ≫ L, q̂-effects are not very visible,

since they are hidden in the initial distribution for the small-
x evolution. In Sec. III C we show explicitly how q̂-effects,
and radiative corrections to q̂, come into the initial
condition for small-x evolution. If there were no radiative
corrections to q̂, the initial condition for small-x evolution
is just the scattering matrix for a dipole given by the
McLerran-Venugopalan model. If one uses q̂t rather than q̂
in the MV model initial condition then evolution in the
medium is also included and will show up as an enhance-
ment of Q2

s . We conclude and summarize in Sec. IV.

II. LARGE MEDIUM FORWARD JET
PRODUCTION IN DIS

A. The basic formulas

We begin our discussions of forward jet production in
deep inelastic scattering (DIS) on a large nucleus in the case
τq ¼ 2qþ

Q2 is much less than the length of the medium. For a

scattering at impact parameter b in the nucleus, the nuclear
medium length is L ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
with R the nuclear

radius. The (transverse) virtual photon initiating the process

has momentum qμ with qμ ¼ ðqþ; q− ¼ − Q2

2qþ
; q⊥ ¼ 0Þ.

The process is illustrated in Fig. 1 where the forward quark
(or antiquark) has momentum k and travels a distance z in
the medium after its production. In the current situation of
τq=L ≪ 1, this production can take place on a definite
nucleon in the nucleus with that nucleon at a distance L − z
from the front face of the nucleus. In Refs. [28–30], a

similar process has been considered to study the modifi-
cation of average transverse momentum squared due to the
medium effects. In this paper, we focus on the transverse
momentum spectrum, where all the relevant QCD dynam-
ics play important roles.
In this large-x process there is no small-x evolution.

However, there is the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the quark distribution of the
struck nucleon, the Sudakov effects due to the hard
scattering and the measurement of the forward quark,
and finally the multiple scattering and medium induced
radiation of the outgoing quark. At the moment we do not
introduce a cone condition for the produced quark jet nor
do we consider the fragmentation of the quark. These can
be included accordingly for a complete evaluation of the
forward jet electroproduction. Our purpose here is to
illustrate in a simple context the various effects that may
occur in jet production in a medium.
The transverse momentum spectrum of the quark is

given by

dN
d2bd2k⊥

¼
Z

d2x⊥
ð2πÞ2 e

−ik⊥·x⊥ρxqN

�
x;

1

x2⊥ þ 1=Q2

�

×
Z

L

0

dze−E ; ð1Þ

where

E ¼ q̂x2⊥z=4þ ESud þ EMedium Induced Radiation ðMIRÞ; ð2Þ

with the quark transport coefficient

q̂ ¼ CF

Nc

4π2αsNc

N2
c − 1

ρxGðxÞ: ð3Þ

Here, ρ is the nucleon density and xG the nucleon’s
gluon distribution, while xqN the quark distribution of a
nucleon should be evaluated at a scale x2⊥, that is
qN ¼ qNðx; 1

x2⊥þ1=Q2Þ. When x⊥ ¼ 0, see below, one gets

qN as the quark distribution at the hard scattering scale. The
various terms of Eq. (2) can be interpreted as follows: q̂
term accounts for multiple scattering as the quark passes
through the nucleus; ESud accounts for the real and virtual
Sudakov corrections, which are medium independent,
induced by the hard scattering; and EMIR accounts for
gluonic radiative corrections which involve a single scat-
tering in the medium. We are especially interested in
evaluating Eq. (1) in the regime where k⊥ is not too far
from its typical value for an event. Then x2⊥ ∼ 1=k2⊥ in (1),
and the Sudakov contributions all come from (virtual)
corrections having transverse momenta satisfying
l2⊥ ≫ 1=x2⊥, as seen in the lower limit of the dl2⊥ integral
in Eq. (7), below. Since such values of l2⊥ are much greater
than q̂L, the Sudakov corrections are medium independent,

FIG. 1. Forward jet production in DIS on a large nucleus in the
large-x region.

MEDIUM INDUCED TRANSVERSE MOMENTUM BROADENING … PHYSICAL REVIEW D 95, 034007 (2017)

034007-3



as q̂L is the natural momentum scale separating contribu-
tions which are medium dependent from those which are
not medium dependent. As we shall see below, the q̂ and
EMIR terms in (2) can be combined into a more complete q̂,
which we shall call q̂t ≡ q̂total, where

q̂tx2⊥z=4 ¼ q̂x2⊥z=4þ EMIR: ð4Þ

Then the z-integral in (1) can be done giving

dN
d2bd2k⊥

¼
Z

d2x⊥
x2⊥

ρxqNðx; 1
x2⊥þ1=Q2Þ

π2q̂t

× e−ik⊥·x⊥ð1 − e−q̂tx
2⊥L=4Þe−ESud : ð5Þ

The right-hand side of (5) has the form of an unintegrated
Weizsacker-Williams quark distribution in analogy with the
Weizsacker-Williams (WW) [31–33] gluon distribution.
We note that Z

dN
d2bd2k⊥

d2bd2k⊥ ¼ AxqN: ð6Þ

The Sudakov factor in (5) is naturally included as part of
the WW quark distribution since the usual Wilson line of
theWW distribution implicitly includes the Sudakov factor,
see the discussions below.

B. The Sudakov factor

In order to evaluate the Sudakov term, and later the EMIR
term, it is convenient to bring the complex conjugate
amplitudes in Fig. 1 into the amplitude and view the
process as in Fig. 2 [34,35]. In Fig. 2 we have taken the
virtual photon to interact on the front face of the nucleus so
that the quark goes through a length L of nuclear matter. We
have also added a gauge link at t ¼ ∞ to make the process
manifestly gauge invariant, and we have indicated a gluon
line l which is emitted, and absorbed by the 0⊥ and x⊥
quark and antiquark lines. (Emission and reabsorption of l
off 0⊥ corresponds to a virtual correction to the quark line
in the amplitude of Fig. 1. Emission and reabsorption off x⊥

corresponds to a virtual correction to the quark line in the
complex conjugate amplitude of Fig. 2 while emission off
0⊥ (x⊥) and absorption off x⊥ (0⊥) corresponds to a real
gluon emission correction to the graph in Fig. 1.)
Now the evaluation of ESud is straightforward [20,21]

ESud ¼ 2
αsCF

2π

Z
qþ

qþ=½Q2x2⊥�

dlþ
lþ

Z lþ
qþQ

2

1=x2⊥

dl2⊥
l2⊥

¼ αsCF

2π
ln2ðQ2x2⊥Þ: ð7Þ

The various limits to the l2⊥ and lþ integration are
determined as: (i) The lower limit to the l2⊥ integration
comes from the fact that the softer l⊥-values cancel
between emissions (absorptions) off the 0⊥ and x⊥ lines.
(ii) The upper limit of the l2⊥-integration comes from the
requirement that τl > τq. This is shown in some detail in
Appendix A. The limits on the lþ-integration are manifest.
The logarithmic contribution given in (7) comes completely
from the virtual contributions as described above. The real
emissions serve only to cancel the virtual emissions in the
l2⊥x2⊥ ≪ 1 region.
The lifetime, τl ¼ 2lþ

l2⊥
, can be either less than L or greater

than L in (7) so that the gluon, l, will sometimes exist
within the medium. However, the gluon is too close to
either the quark 0⊥ or antiquark (x⊥) for the interactions
with the medium to distinguish, say, the quark-l system
from the quark so that medium interactions with the gluon
cancel out leaving the Sudakov term medium independent.
It is interesting to note that the Sudakov effects occur

when a dipole is created in a medium, as given by (1) and
illustrated in Fig. 2, however there are no Sudakov effects
in dipole nucleus scattering where the t < 0 and t > 0
regions occur in a symmetric way and there is no hard
reaction to stimulate radiation.
If Q is very large then the typical values of k⊥ for which
dN

d2bd2k⊥
is large will be determined by ESud given in (7) and

used in (1) rather than by q̂ or q̂t [26]. This is the situation
for jet azimuthal angle distributions measured in ion-ion
collisions at the LHC where Sudakov effects overwhelm q̂
effects [26]. The interplay of Sudakov and q̂ effects in (1) is
an essential factor for dijet production in heavy ion
collisions. Theoretically, in the case that Sudakov effects
are the dominant broadening effects, the radiative correc-
tions to q̂ leading to q̂t changes from the standard
calculations of Refs. [36,37], which will be discussed in
the following subsection.

C. Radiative corrections to q̂

In the previous evaluation of the radiative corrections
(double logarithmic) to q̂ [36–39], one considers gluon
emission from a dipole, similar to that in Fig. 2. However,
in this case, the gluon interacts with the mediummaking theFIG. 2. Forward jet production in DIS in dipole model.
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effect medium dependent, as a correction to q̂. The effective
value of x2⊥ of the dipole is x2⊥ ∼ 1=ðq̂LÞ ¼ 1=Q2

s when
transverse momentum broadening is q̂ dominated. If,
however, the broadening is Sudakov dominated the value
of x2⊥ will change and a new evaluation is necessary. At
lowest order the radiative correction to q̂ is illustrated in
Fig. 3 and given by

q̂t ¼ q̂

�
1þ αsNc

π

Z
dl2⊥
l2⊥

Z
dlþ
lþ

�
; ð8Þ

where the limits of integration have yet to be set. q̂, as
earlier, is the quark transport coefficient and we work in the
fixed coupling approximation. The limits of integration in
(8) are set by the following constraints:

2lþ
l2⊥

< L; ð9Þ

2lþ
l2⊥

<
l2⊥
q̂
; ð10Þ

2lþ
l2⊥

> r0; ð11Þ

l2⊥ <
1

x2⊥
; ð12Þ

lþ < qþ: ð13Þ

The physics meanings of the above constraints are as
follows: (9) is the constraint that the gluon, l, be within the
medium; (10) is a single scattering requirement, necessary
to get a double logarithm; (11) requires that the fluctuation
live longer than the proton size, r0; (12) requires that the
gluon transverse distance from the dipole is greater than the
dipole size, which is necessary for a double logarithm to
emerge. In particular, (10) is a stronger requirement than (9)
when l2⊥ < q̂L, while (9) is the stronger requirement
when q̂L < l2⊥ < 1=x2⊥. Much of what follows can also

be found in [40]. We include this simplified discussion for
completeness.
Let us start with 1=x2⊥ > q̂L. Writing (8) more com-

pletely and using the constraints of (9)–(13), we arrive at,

q̂t − q̂ ¼ ᾱsq̂
�Z

q̂L

q̂r0

dl2⊥
l2⊥

Z ðl2⊥Þ2=q̂

l2⊥r0

dlþ
lþ

þ
Z

1=x2⊥

q̂L

dl2⊥
l2⊥

Z
l2⊥L

l2⊥r0

dlþ
lþ

�
; ð14Þ

or

q̂t − q̂ ¼ ᾱsq̂ ln
L
r0

�
1

2
ln

L
r0

þ ln
1

q̂Lx2⊥

�
; ð15Þ

where ᾱs ≡ αsNc=π. In order to sum the whole series of
double logs it is convenient to introduce the following
logarithmic variables

K ¼ ln
1

q̂r0x2⊥
; K1 ¼ ln

l2⊥
q̂r0

; ð16Þ

τ ¼ ln
L
r0
; τ1 ¼ ln

lþ
l2⊥r0

: ð17Þ

With these notations, Eq. (14) takes the form

q̂t − q̂ ¼ ᾱsq̂
Z

τ

0

dτ1

Z
K

τ1

dK1 ¼ ᾱsq̂

�
Kτ −

1

2
τ2
�
: ð18Þ

The domain of integration for K1, τ1 in (18) is shown in the

left panel of Fig. 4. The boundary 2lþ
l2⊥

¼ l2⊥
q̂ given in (10)

becomes the boundary τ1 ¼ K1 in Fig. 4. It is now
straightforward to sum the complete double logarithmic
series as

q̂t ¼ q̂
X∞
n¼0

Δn; ð19Þ

where

Δn ¼ Πn
i¼1ᾱs

Z
τiþ1

0

dτi

Z
Kiþ1

τi

dKi ð20Þ

with τnþ1 ¼ τ and Knþ1 ¼ K in (20). Therefore, we find
that Δn obeys the following equation,

∂
∂τ

∂
∂KΔnðτ; KÞ ¼ ᾱsΔn−1ðτ; KÞ; ð21Þ

which, with (18), gives
FIG. 3. Radiative correction to dipole-nucleus scattering in
dipole model.

MEDIUM INDUCED TRANSVERSE MOMENTUM BROADENING … PHYSICAL REVIEW D 95, 034007 (2017)

034007-5



Δn ¼
ᾱnsKn−1τn½ðnþ 1ÞK − nτ�

n!ðnþ 1Þ! : ð22Þ

Using (22), the sum in (19) can be derived [40]

q̂t ¼ q̂

�
1ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p I1ð2
ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p
Þ þ

�
1 −

τ

K

�
I2ð2

ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p
Þ
�
:

ð23Þ

In the case of q̂r0 ≤ 1=x2⊥ ≤ q̂L, i.e., 0 ≤ K ≤ τ,
the domain of integration for K1 is shown in the right
panel of Fig. 4. With that, we find that Eq. (8) can be
written as

q̂t − q̂ ¼ ᾱsq̂
Z

K

0

dτ1

Z
K

τ1

dK1 ¼
1

2
ᾱsq̂K2; ð24Þ

which is simply given by (18) with τ being replaced by K.
Similarly, it is easy to see, for this case, that

Δn ¼
ᾱnsK2n

n!ðnþ 1Þ! ; and q̂t ¼ q̂
1ffiffiffiffiffi
ᾱs

p
K
I1ð2

ffiffiffiffiffi
ᾱs

p
KÞ:

ð25Þ

In summary, we have the following results for different K
values,

q̂t ¼ q̂ if K < 0; ð26aÞ

q̂t ¼ q̂
1ffiffiffiffiffi
ᾱs

p
K
I1ð2

ffiffiffiffiffi
ᾱs

p
KÞ if 0 ≤ K ≤ τ; ð26bÞ

q̂t ¼ q̂

�
1ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p I1ð2
ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p
Þ

þ
�
1 −

τ

K

�
I2ð2

ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p
Þ
�

if K > τ: ð26cÞ

The above results, together with (7), give the complete
evaluation of E in (1) via (2). [When used in (1) the L in τ
should be changed to z the effective path length for the
integrand of (1).]
The spectrum dN

d2bd2k⊥
is then given by (1) or (5) where

all the ingredients for evaluating (1) or (5) are given by (7)
and (26). It is straightforward to include running coupling
effects and higher order corrections to the Sudakov term in
(7). [See (46) for running coupling corrections.] However,
it is not clear at present how to include running coupling
corrections to q̂t in a resummed way. See Ref. [40] for the
state of the art.
More interestingly, following (21) and summing over all

n, one can in fact write down a double differential evolution
equation for q̂t as follows

∂
∂τ

∂
∂K q̂t ¼ ᾱsq̂t; ð27Þ

which is equivalent to the DGLAP evolution equation for
the gluon distribution in the double logarithmic limit. As
shown in Refs. [41,42], the solution of (27) can be written
in terms of superpositions of modified Bessel functions
IνðxÞ with coefficients determined by boundary conditions,
since ðτκÞ

ν
2Iνð2

ffiffiffiffiffiffiffiffiffi
ᾱsτκ

p Þ for arbitrary ν is a solution to (27).
For example, given the boundary conditions q̂tjK¼0 ¼
q̂tjτ¼0 ¼ q̂, one can find q̂t ¼ q̂I0ð2

ffiffiffiffiffiffiffiffiffiffi
ᾱsKτ

p Þ which is
equivalent to the usual DGLAP double logarithmic solution
for gluon distributions.1 Furthermore, it is straightforward
to check that (23) or (26c) is the solution to (27) given
boundary conditions q̂tjK¼0 ¼ q̂ð1 − ᾱs

2
τ2Þ and q̂tjτ¼0 ¼ q̂.

This indicates that the evolution equation of q̂t in the
double logarithmic limit is also given by (27) with
particular boundary conditions which reflect the informa-
tion of the target medium such as length L and multiple
scatterings. Therefore, it seems that we can obtain the full
results in (26) by continuing the solution (26c) to (26b) at
K ¼ τ then to (26a) at K ¼ 0.

FIG. 4. Domains of integration respectively for K > τ (left panel) and for 0 < K ≤ τ (right panel).

1This is natural since it is known that q̂ is proportional to target
gluon distributions by definition.
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III. SMALL-x FORWARD JET PRODUCTION
IN DIS

We now turn to the limit opposite to that of the large
medium considered in Sec. II, namely the case where
τq ≫ L. Here the process has the virtual photon splitting
into a quark-antiquark dipole which then further evolves
before passing over the nucleus. The process is illustrated
in Fig. 5 where evolution of the (x⊥1, 0⊥) and (x⊥2, 0⊥)

dipoles in the amplitude and complex conjugate amplitude
are not explicitly shown, nor are the interactions with the
target nucleus shown.

A. The forward jet spectrum; fixed coupling analysis

The forward quark (or antiquark) jet spectrum coming
from the scattering of a transverse virtual photon is usually
written as [43]

dN
d2bd2k⊥

¼
X
f

e2f
Q2Nc

32π6

Z
d2x1⊥d2x2⊥e−ik⊥·ðx1⊥−x2⊥Þ

Z
1

0

dz½z2 þ ð1 − zÞ2�

×∇x1⊥K0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2x21⊥zð1 − zÞ

q
� · ∇x2⊥K0½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2x22⊥zð1 − zÞ

q
�½1þ Sðx1⊥ − x2⊥Þ − Sðx1⊥Þ − Sðx2⊥Þ�: ð28Þ

The different factors in (28) are straightforward to under-
stand: the ∇K0 factors are the quark-antiquark wave
functions of the virtual transverse photons in the amplitudes
and complex conjugate amplitude; ½z2 þ ð1 − zÞ2� is the
splitting function of the photon. For the various S-matrices
the combination in (28) guarantees that there is at least one
interaction in the amplitude and in the complex conjugate
amplitude. The normalization isZ

d2bd2k⊥
dN

d2bd2k⊥
¼

X
f

e2f½xqfAðx;Q2Þ þ xq̄fAðx;Q2Þ�:

ð29Þ
However, (28) is missing a Sudakov factor. One often

says that DIS scattering is given in terms of a dipole

scattering amplitude times the virtual photons’ quark-
antiquark wave functions. That is true of (29) with

dN
d2bd2k⊥

given by (28). However if a jet is measured rather

than integrated over, as in (29), a Sudakov factor [21]

Sudakov ¼ e−
αsCF
2π ln2½Q2ðx1⊥−x2⊥Þ2þ1� ð30Þ

should be inserted in the integrand in (28). [The 1 in
Q2ðx1⊥ − x2⊥Þ2 þ 1 is included to make the x1⊥ → x2⊥
limit, as occurs in (29), nonsingular.] Now inserting (30)
into the integrand of (28) and changing the variables of
integration, we will get

dN
d2bd2k⊥

¼
X
f

e2f
Q2Nc

32π6

Z
d2x1⊥d2x⊥

Z
1

0

dze−ik⊥·x⊥ ½z2 þ ð1 − zÞ2�∇x1⊥K0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2x21⊥zð1 − zÞ

q
�

· ∇x1⊥K0½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðx1⊥ − x⊥Þ2zð1 − zÞ

q
�e−αsCF

2π ln2ðQ2x2⊥Þ½1þ Sðx⊥Þ − 2Sðx1⊥Þ�: ð31Þ

While it appears difficult to do the x1⊥-integration in (31)
exactly, it is clear that jx1⊥j ∼ jx⊥j dominates the leading
power contribution of the integral and that z ∼ 1

Q2x2⊥
or 1 −

z ∼ 1
Q2x2⊥

so that

dN
d2bd2k⊥

¼ C
Z

d2x⊥
πx2⊥

e−ik⊥·x⊥e−
αsCF
2π ln2ðQ2x2⊥ÞTðx⊥; YÞ ð32Þ

where 1 − S ¼ T and Y ¼ ln 1
xBj
. C is a constant in the sense

that it has no k⊥-dependence but it will depend on the form
of T, that is in the scaling region it will depend on the
anomalous dimension giving the scaling behavior. As an
illustration, let us suppose that the energy is high enough
that k⊥ can be taken in the scaling region [44,45]

Tðx⊥Þ ¼ ½Q2
sx2⊥�1−λ0 : ð33Þ

It is straightforward to get
FIG. 5. Radiative correction to dipole-nucleus scattering in
dipole model in the small-x limit.
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dN
d2bd2k⊥

¼ 2C
Z

∞

0

dx⊥
x⊥

ðQ2
sx2⊥Þ1−λ0

× J0ðk⊥x⊥Þe−
αsCF
2π ln2ðQ2x2⊥Þ ð34Þ

or

dN
d2bd2k⊥

¼ 2C
�
Q2

s

Q2

�
1−λ0

Z
∞

0

dx⊥
x⊥

× J0ðk⊥x⊥Þe−
αsCF
2π ln2ðQ2x2⊥Þþð1−λ0Þ lnðQ2x2⊥Þ: ð35Þ

Changing variables to z ¼ lnðQ2x2⊥Þ one gets

dN
d2bd2k⊥

¼ C
�
Q2

s

Q2

�
1−λ0

Z þ∞

−∞
dzJ0

�
k⊥
Q

ez=2
�

× e−
αsCF
2π z2þð1−λ0Þz: ð36Þ

Although the z integration has been written as going from
−∞ to ∞ in (36), the effective range can be taken as
z < ln Q2

k2⊥

dN
d2bd2k⊥

¼ C
�
Q2

s

Q2

�
1−λ0

Z
lnQ

2

k2⊥
−∞

dze−
αsCF
2π z2þð1−λ0Þz: ð37Þ

It is now straightforward to write (37) in terms of the error
function ErfðxÞ by rewriting (37) as

dN
d2bd2k⊥

¼ C
�
Q2

s

Q2

�
1−λ0

e
ð1−λ0Þ2π
2αsCF

ffiffiffiffiffiffiffiffiffiffiffi
2π

αsCF

s

×
Z ffiffiffiffiffiffiffi

αsCF
2π

p
½lnQ2

k2⊥
−ð1−λ0Þπ

αsCF
�

−∞
dwe−w

2

; ð38Þ

where we have introduced

w ¼
ffiffiffiffiffiffiffiffiffiffiffi
αsCF

2π

r �
z −

ð1 − λ0Þπ
αsCF

�
: ð39Þ

Using

ErfðxÞ ¼
Z

x

0

dte−t
2

; ð40Þ

one has

dN
d2bd2k⊥

¼ C
�
Q2

s

Q2

�
1−λ0

e
ð1−λ0Þ2π
2αsCF

ffiffiffiffiffiffiffiffiffiffiffi
2π

αsCF

s

×
�
Erf

� ffiffiffiffiffiffiffiffiffiffiffi
αsCF

2π

r �
ln
Q2

k2⊥
−
ð1 − λ0Þπ
αsCF

��

þ
ffiffiffi
π

p
2

�
: ð41Þ

One can write approximate results for the three regions
shown in Fig. 6 as follows:

dN
d2bd2k⊥

				
①

¼ C
1 − λ0

�
Q2

s

k2⊥

�
1−λ0

; ð42Þ

dN
d2bd2k⊥

				
②

¼ C
1 − λ0

�
Q2

s

k2⊥

�
1−λ0

e
−αsCF

2π ln2Q
2

k2⊥ ; ð43Þ

dN
d2bd2k⊥

				
③

¼ πC

ffiffiffiffiffiffiffiffiffiffiffi
2

αsCF

s
e
ð1−λ0Þ2π
2αsCF

�
Q2

s

Q2

�
1−λ0

: ð44Þ

Equations (42)–(44) are approximate equations, accurate
away from the boundaries of their respective regions. To get
an accurate evaluation at the boundary of regions ② and ③

one must use (41). Equations (42) and (43) have a smooth
transition between regions ① and ② so that (43) can be used
in both regions. Also, if ln Q2

Q2
s
< ð1−λ0Þπ

αsCF
region ③ does not

exist and (43) again becomes the relevant formula.
In region ① Sudakov effects are very small and the

“normal” scaling result holds as indicated in (42). When k2⊥
decreases, one moves to region ② where Sudakov effects
appear in a very simple way, modifying the geometric

scaling formula. Finally, if ln Q2

Q2
s
is large enough, when ln Q2

k2⊥
gets larger than ð1−λ0Þπ

αsCF
the k⊥ of the jet does not come

mainly from small-x evolution and all k⊥-dependence has
disappeared due to the randomizing effects of Sudakov
radiation.

B. The forward jet spectrum; running coupling

Now we shall repeat the discussion given in Sec. III A
but using a running QCD coupling and without the
assumption that Q2 is in the scaling region of the small-
x evolution. Not too much changes from our earlier analysis
and much of the discussion of Sec. III A can be directly
taken over to the running coupling case. The main change is
the modification of (30). Now Sudakov effects take the
form

FIG. 6. Three regions of the transverse momentum spectrum as

a function of ln Q2

k2⊥
in case τq ≫ L.
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ln Sud ¼ −
CF

π

Z
Q2

1=x2⊥

dl2⊥
l2⊥

αsðl2⊥Þ
Z

qþ

qþ
l2⊥
Q2

dlþ
lþ

: ð45Þ

Using αs ¼ 1
b ln l2⊥=Λ2, one finds

ln Sud ¼ −
CF

πb

�
ln
Q2

Λ2
ln

ln Q2

Λ2

ln 1
x2⊥Λ2

− lnQ2x2⊥
�

ð46Þ

which now replaces (30). Except for the Sudakov factor,
(31) and (32) still hold. It is straightforward to write (46) in
terms of z ¼ lnQ2x2⊥ as

ln Sud ¼ CF

πb

�
ln
Q2

Λ2
ln

�
1 −

z

ln Q2

Λ2

�
þ z

�
ð47Þ

and, expanding the logarithm and using αsðQÞ ¼ 1
b lnQ2=Λ2,

to get

ln Sud ¼ −
CF

πb2αsðQÞ
X∞
n¼2

ðzbαsðQÞÞn
n

ð48Þ

or

ln Sud ¼ −
αsðQÞCF

2π
z2 þ � � � ð49Þ

in case zbαsðQÞ is small.
The regions ①, ②, ③ in Fig. 6 are essentially unchanged

except for the value of ln Q2

k2⊥
separating regions ② from ③.

Let us begin near ln Q2

k2⊥
¼ 0, the left-most region in Fig. 6

where (37) now becomes

dN
d2bd2k⊥

¼ C
Z

lnQ
2

k2⊥
0

dze−
αsCF
2π z2þlnTðz;Q;YÞ ð50Þ

where Y, in Tðz;Q; YÞ, is Y ¼ ln 1
xBj
. When ln Q2

k2⊥
is not too

large zαsðQÞ ≪ 1 and we have used (49) as the Sudakov

factor. So long as αsCF
2π ln2 Q2

k2⊥
< 1, region ①, the Sudakov

factor in (50) may be dropped and

dN
d2bd2k⊥

¼ C
Z

lnQ
2

k2⊥
0

dzTðz;Q; YÞ: ð51Þ

If Q were in the scaling region, Tðx⊥Þ ¼ ½Q2
sx2⊥�1−λ0 , (39)

would emerge but, in any case, in region ① the result for
dN

d2bd2k⊥
is the usual result with Sudakov effects being

negligible.
As one moves into regions ②, (50) remains valid so long

as ln Q2

k2⊥
is not too large. As in (51) the z integration is

dominated by the upper end, z ∼ ln Q2

k2⊥
, of the integral so that

dN
d2bd2k⊥

∼ e
−αsðQÞCF

2π ln2Q
2

k2⊥T

�
x⊥ ¼ 1

k⊥

�
: ð52Þ

If k⊥ is in the scaling region then (43) will emerge. Here the
Sudakov correction is a simple factor times the usual result
without including Sudakov effects. The transition between
② and ③ is determined by

d
dz

ðln Sudþ lnTÞ ¼ 0: ð53Þ

Using (47) this gives the equation

zbαsðQÞ
1 − zbαsðQÞ ¼

πb
CF

1

T
∂T
∂z : ð54Þ

[In case T ¼ ðQ2
sx2⊥Þ1−λ0 ¼ ðQ2

s
Q2Þ1−λ0eð1−λ0Þz, the scaling

region, and if one used (49) the boundary ln Q2

k2⊥
¼ ð1−λ0Þπ

αsCF

shown in Fig. 6 would emerge.]
Without assuming that the boundary between regions ②

and ③ is in the scaling region we can parametrize T as

T ∝ ðx2⊥Þ1−λeff ∼ eð1−λeffÞz; ð55Þ

where λeff may depend on Y and on x⊥. Assuming the z
dependence of λeff is small, a reasonable assumption, using
(54) and (55) gives

ln
Q2

k2⊥
¼ ð1 − λeffÞπ

CFαsðQÞ½1þ πbð1−λeffÞ
CF

�
≡ z0 ð56Þ

as the boundary between regions ② and ③. (The boundary
between ② and ③ as given by (56) is to the left of the end

point, ln Q2

Q2
s
, in Fig. 6 so long as ln Q2

Λ2 > ½1þ πbð1−λeffÞ
CF

� ln Q2
s

Λ2 ,

which we suppose to be the case.)
In region ③ all k⊥-dependence is lost because the

Sudakov factor cuts off the z integration before the upper

limit, ln Q2

k2⊥
, is reached. It is in this upper limit that the k⊥-

dependence resides. Generalizing (50) to read

dN
d2bd2k⊥

¼ C
Z

lnQ
2

k2⊥
0

dzeln SudþlnT ð57Þ

or, using (47)

dN
d2bd2k⊥

¼ C
bαs

Z
1

0

dwe
CF

πb2αs
½lnð1−wÞþw�

Tðw;Q; YÞ ð58Þ

where bαsz ¼ w. Doing the w-integration by integrating
about the saddle point (56) gives
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dN
d2bd2k⊥

¼ πC

1þ πbð1−λeffÞ
CF

×

ffiffiffiffiffiffiffiffiffiffiffi
2

αsCF

s
e

CF
πb2αs

½lnð1−w0Þþw0�Tðz0; Q; YÞ ð59Þ

with w0 ¼ bαsz0 with z0 given by (56). Equation (44) is
recovered if one only keeps the quadratic term in w0 in the
exponential in (59) and if one takes a scaling solution for T.

C. Medium effects

In the case of τq ≪ L, the medium effects, i.e., the
multiple scattering and radiative corrections interacting
with the nucleus, led to explicit nuclear medium effect
summarized in (26) which can directly affect the spectrum
and, if Q2 is not too large, compete with Sudakov effects
when (1) or (5) is used to evaluate the spectrum. In the
small-x limit such medium effects must be hidden in the T
in (51) or (52). The usual way to incorporate multiple
scattering effects into T is to use the McLerran-
Venugopalan (MV) model

TMVðx⊥Þ ¼ 1 − e−Q
2
sðMVÞx2⊥=4 ð60Þ

as the initial condition for the evolution of Tðx⊥; YÞ using
the Balitsky-Kovchegov (BK) equation. The evolution is
done from Y0 to Y ¼ ln 1

xBj
¼ ln sx2⊥ and where Y0 is

determined by requiring that the coherence of the dipole,
x⊥, be the nuclear length L ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
with R the

nuclear radium and b the impact parameter. One easily
determines Y0 is

Y0 ¼ lnLM ð61Þ

with M the nucleon mass.

What is missing in the above discussion is evolution in
the medium. The Q2

sðMVÞ in (60) is given by

Q2
sðMVÞ ¼ q̂L ð62Þ

with q̂ given in (3). One can incorporate evolution in the
medium, evolution below Y0, simply by replacingQ2

sðMVÞ
in (60) by Q2

s initial ¼ Q2
s in where

Q2
s in ¼ q̂tL ð63Þ

with q̂t given in (26). Now, in contrast toQ2
sðMVÞ,Q2

sin has
a strong dependence on the dipole size and additional
dependence on medium length due to double logarithmic
corrections. Thus the initial condition, at Y0,

T inðx⊥Þ ¼ 1 − e−Q
2
s inx

2⊥=4 ð64Þ
should include evolution in the medium, at least in the fixed
coupling limit. In the weak coupling limit ᾱs → 0, Q2

s in →
Q2

sðMVÞ (q̂t → q̂) and the above initial condition reduces
to the MV initial condition since all the medium evolution
is negligible. In general, we believe (64) is an improved
initial condition for Balitsky, Kovchegov, Jalilian-Marian,
Iancu, McLerran, Weigert, Leonidov and Kovner (BK-
JIMWLK) [46–49] evolution compared to (60).

IV. CONCLUSION

Through the one-loop calculation of quark jet production
in DIS on a large nucleus by allowing one extra gluon
radiation, we integrate over the full phase space of the
radiated gluon, and show that the medium induced broad-
ening effects can be separated from the conventional
Sudakov effects coming from parton showers in the
vacuum in both large medium and shock wave cases,
which are summarized in the left and right phase space
plots in Fig. 7, respectively. As shown in Fig. 7, the

FIG. 7. Left figure corresponds to large medium case with τq ≡ 2qþ=Q2 ≪ L: The red shaded region shows when in-medium
radiation contributes to transverse momentum broadening. The cancellation of the double logarithmic contributions from Fig. 8 is
indicated. The Sudakov contribution, coming from graph B in Fig. 8, is shown as the green shaded region in the upper right hand corner.
Here the formation time τl ≡ 2lþ

l2⊥
. Right figure indicates the shock wave limit with τq ≫ L: In-medium radiation and multiple scattering,

shown in the shaded region, now gives the initial condition, at τl ¼ L or Y0 ¼ lnLM with M the nucleon mass, for BK evolution. The
region where Sudakov suppression effects come from is indicated in the upper right hand part of the figure. Regions where Aþ B of
Fig. 8 and Bþ C of Fig. 8 cancel are shown. Above the line τl ¼ L and below the line τl ¼ τq is the region of BK evolution.
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transverse momentum broadening due to Sudakov effects
and medium induced radiation as well as the small-x
evolution (the small-x evolution is absent in the former
case since xBj is taken to be large) come from different
regions of the phase space of the radiated gluon.
A similar calculation for the process of producing a

gluon jet in DIS with a gluonic current [32,43] can also be
performed, which leads to a similar result as the quark jet
production considered in this paper. In this case, the color
factor of the Sudakov double logarithm is CA instead of CF,
and the medium effects is taken care of by the WW gluon
distribution with the possible corresponding small-x evo-
lution [50] and the gluonic q̂ in the initial condition. Based
on these examples, we argue that there should be a
factorization between the medium PT broadening effects
and the Sudakov effects in general for hard processes, since
the Sudakov effects normally arise from vacuum soft-
collinear gluon radiation and they only depend on the
virtuality of the considered hard processes and the mea-
sured transverse momentum.
The separation of Sudakov effects and medium broad-

ening effects allows us to have a more sophisticated
framework to compute the medium PT broadening effects
in hard processes especially the dijet or dihadron produc-
tions in heavy ion collisions where Sudakov effects are not
negligible. We can further use these processes as probes to

quantitatively extract the values of q̂ at RHIC and the LHC
energies (see e.g., Refs. [26,27]).
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APPENDIX: THE SUDAKOV
DOUBLE LOG IN DIS

We shall carry out the calculation by choosing a frame in
which the nucleus is moving along the negative z-direction
with momentum Pμ. At leading-order, the virtual photon
knocks out a quark carrying an energy fraction z ¼ p−

P−. The
overall normalization is chosen to give

ðA1Þ

where ϵμTλ is the transverse polarization vector, xBj ≡Q2=ð2q · pÞ and qTðz; k⊥Þ is the unintegrated (TMD) quark
distribution. As illustrated in Fig. 8, there are 6 diagrams at NLO. We shall choose Aþ ¼ 0 lightcone gauge. For the double
log result, the gluon in these diagrams can be taken as soft, that is, lþ ≪ qþ ≈ kþ and l− ≪ p−. In this gauge (E) and (F) do
not contribute. In terms of

l

qq

p p

k

(b)

+ c. c.

qq

p p

k

(a)

l

qq

p p

k

(d)

+ c. c.
l

qq

p p

k

(e)

l

l

qq

p p

k

(c)

+ c. c.

l

qq

p

p

k

(f)

+ c. c.

FIG. 8. Diagrams for DIS at the next-to-leading order (NLO).
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PαβðkÞ ¼ −gαβ þ
kαηβ þ kβηα

kþ
with ηα ¼ gþα ; ðA2Þ

one has

A ¼ g2CF

2

Z
1

0

dz
Z

d2l⊥dlþ
ð2πÞ32lþ

ūpϵ�Tλðkþ lÞγαkγβðkþ lÞϵTλup
½ðkþ lÞ2 þ iϵ�2 PαβðlÞδððqþ p − lÞ2ÞqTðz; k⊥ þ l⊥Þ: ðA3Þ

By keeping the leading order in qþ, one has

A ≈
g2CF

4P−

Z
dz

Z
d2l⊥dlþ
ð2πÞ32lþ

1

4ðl−Þ2 ½ūpϵ
�
Tλγ

−γþγ−γþγ−ϵTλup�PþþðlÞδ
�
z −

l−

P− − xBj

�
qTðz; k⊥ þ l⊥Þ

¼ αsCF

π

Z
dl2⊥
l2⊥

dlþ

lþ
zqTðz; k⊥ þ l⊥Þj

z¼xBjþ l−
P−

¼ αsCF

π

Z
Q2

0

dl2⊥
l2⊥

Z
1

0

dð1 − ξÞ
1 − ξ

zqTðz; k⊥ þ l⊥Þj
z¼xBjþ l−

P−

: ðA4Þ

Here, the double log region lies only in the range l2⊥ ≲ k2⊥. Diagram (B) can be easily obtained from the conservation of
probability, that is,

B ¼ −
αsCF

π

Z
Q2

0

dl2⊥
l2⊥

Z
1

0

dð1 − ξÞ
1 − ξ

xBjqTðxBj; k⊥Þ: ðA5Þ

Since l−
P− ≪ 1, one can neglect it compared to xBj and one has

Aþ B ≈ −
αsCF

π

Z
Q2

k2⊥

dl2⊥
l2⊥

Z
1

0

dð1 − ξÞ
1 − ξ

xBjqTðxBj; k⊥Þ: ðA6Þ

Diagram (C) is given by

C ¼ ig2CF

Z
dz

Z
d4l
ð2πÞ4

ūpϵ�Tλkγ
αðk − lÞϵTλðp − lÞγβup

ðl2 þ iϵÞ½ðk − lÞ2 þ iϵ�½ðp − lÞ2 þ iϵ�PαβðlÞδððqþ pÞ2ÞqTðz; k⊥Þ: ðA7Þ

As before, qþ ≈ kþ is taken to be large and, as a result, one has

C ≈
ig2CF

P− qTðxBj; k⊥Þ
Z

d4l
ð2πÞ4

ūpγ−ðp − lÞγβup
ðl2 þ iϵÞ½−l− þ iϵ�½ðp − lÞ2 þ iϵ�PþβðlÞ: ðA8Þ

The integrand of the above integral has a pole given by

0 ¼ ðp − lÞ2 þ iϵ; ðA9Þ

that is,

l− ≈
l2⊥ − iϵ
2lþ

þ p− with l⊥ > p⊥: ðA10Þ

By using this fact, we obtain

C ≈
ig2CF

P− qTðxBj; k⊥Þ
Z

d2l⊥dlþdl−
ð2πÞ4

ūpγ−ðl⊥ · γ⊥Þγi⊥up
ðl2 þ iϵÞ½−l− þ iϵ�½ðp − lÞ2 þ iϵ�PþiðlÞ

¼ g2CF

P− qTðxBj; k⊥Þ
Z
lþ>0

d2l⊥dlþ
ð2πÞ3

ūpγ−l⊥ · γ⊥l⊥ · γ⊥up
l2⊥ð−2lþp− − l2⊥Þlþ

: ðA11Þ
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Since p− ≈ −q−, one has

C ≈
g2CF

P− qTðxBj; k⊥Þ
Z
l−>q−

d2l⊥dlþ
ð2πÞ3

ūpγ−up
l2⊥lþ

¼ αsCF

π
xBjqTðxBj; k⊥Þ

Z
Q2

0

dl2⊥
l2⊥

Z l2⊥
Q2

0

dð1 − ξÞ
1 − ξ

: ðA12Þ

Similarly, including the contribution from (D) gives

CþD ¼ αsCF

π
xBjqTðxBj; k⊥Þ

Z
Q2

k2⊥

dl2⊥
l2⊥

Z l2⊥
Q2

0

dð1 − ξÞ
1 − ξ

:

ðA13Þ

At the end, the Sudakov double log at NLO is given by

Aþ Bþ CþD ¼ −
αsCF

2π
xBjqTðxBj; k⊥Þln2

Q2

k2⊥
: ðA14Þ

In the above calculation, we have neglected transverse
momentum conservation when gluons are emitted. It is
straightforward to repeat the above calculation in transverse
coordinate space in order to restore transverse momentum
conservation for arbitrary number of gluon emission. In this
case, it is convenient to combine the amplitudes and
conjugate amplitudes of the diagrams in Fig. 8 into a
dipole-like picture [6,36]. Then, the inverse of the dipole
size x⊥ ∼ 1

k⊥ plays the same role as k⊥ in the above
discussion. Therefore, one arrives at

Aþ Bþ CþD ¼ −
αsCF

2π
xBjqTðxBj; 1=x⊥Þln2Q2x2⊥

ðA15Þ

with xBjqTðxBj; 1=x⊥Þ the quark distribution in the coor-
dinate space.
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