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Bose-Einstein correlations and v,, and v,,_; in hadron and nucleus collisions
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We show that Bose-Einstein correlations of identical particles in hadron and nucleus high-energy
collisions, lead to long-range rapidity correlations in the azimuthal angle. These correlations are inherent
features of the CGC/saturation approach, however, their origin is more general than this approach. In
framework of the proposed technique both even and odd v, occur naturally, independent of the type of
target and projectile. We are of the opinion that it is premature to conclude that the appearance of azimuthal

correlations are due to the hydrodynamical behavior of the quark-gluon plasma.
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One of the most intriguing experimental observations
made at the LHC and RHIC, is the occurrence of the same
pattern of azimuthal angle correlations in the three types of
interactions: hadron-hadron, hadron-nucleus and nucleus-
nucleus collisions. In all three reactions, correlations in the
events with large density of produced particles, are observed
between two charged hadrons, which are separated by large
values of rapidity [1-7], these correlations do not depend on
the rapidity separation of the particles. Due to causality
arguments [8], two hadrons with large difference in rapidity
between them, could only correlate at the early stage of the
collision and, therefore, we expect that the correlations
between two particles with large rapidity difference (at least
the correlations in rapidity) are due to the partonic state with
large parton density. The CGC/saturation approach (see [9]
for a review) appears to be a natural candidate for the descri-
ption of these correlations, as these correlations are signifi-
cant in the dense colliding systems. However, unlike the
large rapidity correlations, the azimuthal angle correlations
can originate from the collective flow in the final state [10].
At first sight, this source appears even more plausible, since
v,, with odd n do not appear in the CGC/saturation approach.

In this article, we show that the long-range rapidity
correlations in the azimuthal angle, arise naturally from the
Bose-Einstein correlations of produced identical particles in
high-energy collisions. They originate from the initial state
wave function of the colliding particles, and they are features
characteristic of the CGC/saturation approach. However, their
occurrence is more general, and can be estimated in other
frameworks. In this paper, we estimate these correlations in
the framework of the Pomeron calculus. We will show that
this approach leads to the azimuthal correlations, with the
correlation length (R,.), which increases with energy (s) being
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proportional to R? « o, Ins/ so.l Due to such a large corre-
lation length, these correlations do not depend on the trans-
verse momenta behavior of different vertices of Pomeron
interactions, which have only phenomenological sources in
the Pomeron calculus. We will estimate the values of v,
and demonstrate that v,, with odd n appear naturally in this
framework.

In the framework of the Pomeron calculus, the long-range
rapidity correlations stem from the production of two parton
showers (see Fig. 1). The structure of the parton shower is
described by the exchange of a Pomeron, while the upper
and lower blobs in Fig. 1(c) as well as the vertex of parton
emission require modeling in the framework of the Pomeron
calculus. However, if two produced patrons have the same
quantum numbers, we need to take into account interference
diagrams [see Fig. 2(a) and Fig. 2(b)], which lead to an
additional Mueller diagram [12] of Fig. 2(c) in which two
partons with (y,,p7») and (y;,pr;) are produced. When
Pr1 — P2, the two production processes become identical,
leading to the cross section o(two identical patrons) =
20(two different partons), as one expects. However, when
P2 —pr1| > 1/R where R is the size of the emitter, the
interference diagram becomes small and can be neglected.

For the general case of y; # y,, the interference diagram
has a more complicated structure than the Mueller diagram
of Fig. 2(c). The general parton diagrams are shown in
Fig. 3(a) and Fig. 3(b) for the case of A|y, — y,| > 1. In the
parton approach, the emission of every parton leads to
the factor Ay;, where A is the Pomeron intercept, and y; is
the rapidity difference of the order of AY > 1. In the
diagram of Fig. 3(a) and Fig. 3(b), we can see that the
emitted partons for each parton shower can be divided in
three groups:

'"The soft Pomeron trajectory has the form: a(r) = 1 + A +
aplt] with the intercept A =0.1-0.14 and the slope ap =
0.2-0.32 GeV~? from high-energy phenomenology [11].
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(a)
Production of two patrons with (y,,p7;) and (y,,pz») in two parton showers, (a) and (b); (c) shows the Mueller diagrams [12]

FIG. 1.
for the double inclusive cross section. The wavy lines denote the soft Pomerons.

(a)
FIG. 2. Production of two identical partons with (y;,py;) and (y,pz>) in two parton showers (a) and (b). The diagrams in the Mueller
diagram technique [12] are shown in (c). The wavy lines denote the soft Pomerons [13,14].
first parton shower = ¥V > ... >y, > ... >y, >y >y,0, > ... >y >>y; > ... >0;
) ) )
second parton shower = Y > ... >y, > ... >y, >y > Y,0, > ... >y, >>y; > ... > 0. (1)
&) n® n®

m

Integrating over y;, and neglecting y; dependence of the production amplitude [13,14], we obtain the contribution

dG o0 (59
dy,d’ pr dy,d*p - Z /dq)(l>dq)(2)|A<{yi’pTi};YI7pT1;YvaT2)|2
1 71402 T2 n<]1)+}1;1)+ng]>—2>2n(]2)+n;2)+n;2)_2>2
(1) ) (1) ) (1) @)

:Zz(A(Y—yl))n‘ (AY=y))" (A=) (Aly1—x2)" (A(y2—0))" (A(y,—0))"
n(ll)! n(]2>! n(zl)! ngz) ! ngl)! ngz)!

integral over longitudinal phase space
(2)

X/HdsziM({yi:O,pTi};yl:Oval;yZZO’pT2)|2

where d®!) and d®? denote the phase space of the produced partons in the first and second parton showers.
1, Pr2)

\(Vn Pr1),

A

(73 pTZ)\ (Y2: P2)

ly, -y, I<1/A
(©)

(b)

Production of two identical partons with (y;,p7) and (y,,pr;) for Aly, —y;| > 1 in two parton showers (a) and (b);
(a) shows the Mueller diagram [12] for A)|y, — y;| << 1. The Pomeron intercept ap = 1 + A. The wavy lines denote the soft

FIG. 3.

Pomerons [13,14].
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FIG. 4. The Mueller diagrams for production of two identical z~ with (y,,pz;) and (y,pz>), in two parton showers [see (a)—(c)]. The

zigzag lines denote the soft Pomerons.

The cross section of Eq. (2) displays several general
features:

(1) Equation (2) shows the factorization of the longi-
tudinal and transverse degrees of freedom, which is
the principle characteristic of the parton approach, as
well as LLA of QCD [13,14].

After summation over nl.1 and n;”, the cross section
turns out to be proportional to exp(A(2(Y —y;) +
2(y1 = y2) +2(y, —0))) = exp(2AY), and it does
not depend on y; and y,.

The factorization allows us to rewrite the general
formula for the correlation of the identical particles
[15] with the coordinates r; and rs:

(@)

3

d’c
dy, d)’zdzprl dzprz
o (1 4 eulu),

(identical partons)
(3)

where averaging (...) includes the integration over
ry ="y ="y For Y1 =X Qﬂ =DPiy— Poyu de-
generates to Q = pr 1. Due to factorization of the
longitudinal and transverse degrees of freedom in
Eq. (2), the amplitude can be written in the factor-
ized form A = Ay (r,, r_)Az(ry) leading to
<eirﬂQu> _ <eifT'Qr>
——

averaging over ry

X <eir+Q,+ir’Q+> .

4)

averaging overr,r_

The first factor is a constant with respect to y; and
¥,, since the cross section does not depend on the
rapidities of the emitted partons.

From Eq. (2), we can conclude that the emission of
partons with rapidities y, < y; < y; give negligible
contributions for A(y; —y,) < 1. Since the phe-
nomenological value [11] for A = 0.1-0.14, we can
simplify our approach for wide range of rapidities
lyi — | < 1/A~7-10. For such rapidities,
Fig. 3(b) can be reduced to the Mueller diagram
of Fig. 3(c), which has the same expression as the
Mueller diagram of Fig. 2(c), since the transverse

“

amplitudes A({y;=0,pz;};y1=0,p71:y2=0,pz,) in
Eq. (2) are the same in these two cases.
Therefore, to recover the correlation function, we can
restrict ourselves to calculating the cross section at y; = y,.
The cross section for double pion production has the
following generic form (see Fig. 4):

d*c
dy,dy,d®* pr1d® prs
B d*c
dyld)’2d2PT1d2PT2

d*c
+ 2 2
dy dy,d”pr1d°pr,

(identical pions)

[Fig.4(a) and (b)]

[Fig.4(c)]

B d*c
d)dd}’zdzpnaaprz
x [l + C(Rlpr2 = pr1l)]

(different pions)

(6)

The second term in Eq. (5) describes the interference
diagram in which one 7~ is produced in one parton shower,
but it is absorbed by another parton shower. C(R|pr,—
pri|) is the correlation function we wish to calculate.
The angular correlation of two idential pions stems from
the diagram of Fig. 4(c) (see diagrams of Fig. 2(c) and
Fig. 3(c) for partons) where the upper BFKL Pomerons
carry momentum ky — pr 1, with py1, = pry — pro, while
the lower BFKL Pomerons have momenta k;. As has been
mentioned in this article, we demonstrate a mechanism for
the appearance of these angular correlations in the frame-
work of a simple approach: the soft Pomeron calculus.” The
Mueller diagrams for the correlation between two 7~ are
shown in Fig. 4. This approach is based on Gribov Pomeron

*The correlation of identical particles was investigated in the
framework of the soft Pomeron calculus and the mechanism of
the azimuthal angle correlation that we discuss here, has been
proposed in Ref. [16] for hadron and nucleus interactions.
Recently, it has been re-discovered in Ref. [17] in the framework
of the CGC approach. We revisit this formalism for calculations
of v, for odd and even n.
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calculus [18] and the Mueller diagram technique [12], g pr(k) 9 pl’(k)
which has a general origin in the analyticity and unitarity of Y Y
strong interaction (see [19]) and which has been proven in

the leading log approximation of perturbative QCD [20]. K Gop 1. Pr)

The exchange of the soft Pomeron leads to the following

contribution to the elastic scattering amplitude [19] 0 0
Itr(k) Ir(k)

Ael(Y? kT) = igpr(kT)gtr(kT)P(Y’ kl)
with the Pomeron propagator

P(Y,k,) = ebe=aVh,

(a) (b)

(7) FIG.5. The contribution of the Pomeron exchange to the elastic
scattering amplitude at momentum transferred k> (a) and the
Mueller diagram for the inclusive production of a pion at rapidity

, .
where Ap and ap denote the intercept and slope of the y, and transverse momentum pry (b).

Pomeron trajectory, and from the phenomenological
description of experimental data have the values Ap =

0.1-0.14 and aj = 0.1-0.25 GeV™2 (see Ref. [I1]). Gor(kr) = ghe™Bkis g (ky) = ghe ek (8)

Vertices gy, (kr) and g,(k7) can only be functions of k.

Their dependence on k% cannot be found in the framework As we will show below, the azimuthal angle correlations

of the Reggeon approach, but the exponential form is used  do not depend on the form of the parametrization of the

in the phenomenology that describes the current exper-  Pomeron vertices. The inclusive cross section is described

imental data on soft interaction [11], viz., by the Mueller diagram of Fig. 5(b), and it takes the form
|

do

= gpr(kT = O)gtr<kt = O)aP[P’(pTl)P(Y = Vi, kr = O)P()’h ky = O)

= gpr(kT = 0)gu(k; = 0)app (pr1)P(Y, kr = 0) )

One can see that the inclusive cross section does not depend on rapidity y;, which corresponds to the production of pions in
a one parton shower.
The sum of the diagrams of Fig. 4 can be written as

dyldzpn

do
dyldszldyZszTZ

Yi=)2

= 2/dszNpr(kT)P(Y_ylykT)a[FD,P(plekT)P(yl’kT)P(Y_ylvkT)a[P’,[P’(pT%kT)P(yhkT)Npr(kT)

+ z/koTNpr(kT —pr12)P(Y =i, kr _pT,IZ)aP,P(pThpTkaT)P(ylva)
X P(Y =i ky _pT,IZ)aP.P(pThpTZvkT)Pb’lva)Npr(kT)
= ZezApY/koT{Npr(kT)aP,P(PThkT)aP,P(Pn,kT)Ntr(kT)e_z%Yk%‘
+ Ny (k7 = pr.12)a p(Pr1- Pras kr )Ny (kp) e @iki=20my)lkr=pri2) } (10)

The first observation that at large Y the typical k> and |k; — Pr.12| in both integrals turns out to be of the order of
1/(ap2(Y — y1)) < any dimensional parameters in app and N. In other words, both k7 and py 1, are proportional to 1/ (oY)
which make them smaller than the typical values of the radii, both in the Pomeron-hadron vertices and in vertex app.
Therefore, we can neglect the k and pr;, dependences of the vertices. From the second term, one can see that p%12 ~

1/(2ap(Y — y1)) < p3; and p3,. Hence, at ultrahigh energies, the double inclusive cross section for identical pions is equal:

do 1 (Y —yi)yi
= 2N2(0)a2p(p eZAPY—{l +exp (-20/ A4 VA4 BY 11
dyldszldyzdszz s (0) [P’[F"( T1) ZaﬁmY P Y T,12 (11)
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Therefore, at ultrahigh energy, the azimuthal angle (¢)
dependence is determined by (i) the correlation length R? =
2aﬁmw and since p} , ~ 1/R? < p?, where y is the
sale of soft interaction which does not depend on energy,
the correlations do not depend on the form of the vertices
and N(Qy), which can only be treated phenomenologically
in the framework of the Pomeron calculus, (ii) no symmetry
with respect to ¢p — —¢, and (iii) Eq. (11) includes all the
powers of cos ¢ and, therefore, we obtain v,, with both even
and odd n.

For realistic estimates, we need to use a more phenom-
enological approach. The amplitude N(Q7) can be written
in the form [11] (see Fig. 6):

Ne(Qr) = Gep(Qr) . (12)

diffraction contribution

g:(0r) +
———

eikonal contribution

For the simplest estimates, we take into account only
the first term in Eq. (12). In other words, we use the
eikonal model for estimates of the amplitude for two
soft Pomeron production. In the case of the nucleus
|

do (gpr)*(gr)°

_ 2
= app(Pr1, P2

dY1d2PT1d)’2d2PT2 4

o BPEGRS
"7 4n(By + Byr)

where
B R —

Recall that By, = B), + ap(Y — y;) and B, = Bj + apy;.
The sum of all diagrams of Fig. 4 leads to

do 0 \2 (ggr)z(g?r)z 2ApY
D prdnd ) B B¢
y1a priay2d-pr 7(By + Byy)

BprBtr
B, + B,

PHYSICAL REVIEW D 95, 034005 (2017)

target and/or projectile, this corresponds to the Glauber
model.

For the vertices of the soft Pomeron interaction with the
projectile and target we use Eq. (8), and for the vertex of
pion emission from the Pomeron we use the simplest
parametrization:

app(Pr1, P12) = au%ume_%B"(piﬁpz”)- (13)

We have neglected the possible dependence of app on
k?, as follows from the phenomenological models [11], and
on pri,. It should be stressed that the more general
form, for example app(pr1, pr2) = app(Pr1 — Pr2)app X
(pr1 +P1), even in the case when app = app and this
vertex is symmetric with respect to ¢p — —¢, as has been
suggested in perturbative QCD [17], does not change the
conclusion that the resulting expression has no such
symmetry.

In the eikonal approximation, the contribution of the
interference diagram of Fig. 4(c) to the double inclusive
cross section for y; = y, is equal to

Yexp(—(B, + Br)(P7, + p}y) — 2Brp71 P12 €08(90)), (14)

(15)

exp(—=B,(p3, + p},)){1 + exp(—Br(p% — 2p71p12 cOS(0) + PF2))}-

(16)

The expansion of Eq. (16) contains all powers of cos(¢) or, in other words, all cos (ng) with even and odd n.
We can rewrite Eq. (16) in terms of the observables which can be measured: the slopes of elastic scattering and the

rapidity correlation function C(yy, y,) defined as

(k)
(a) (b)

1

gp(k)

FIG. 6. The structure of the Pomeron-proton amplitude: (1b) figure illustrates the contribution of the eikonal approach, while (1c)
gives the diffraction dissociation contribution, and (2) shows the contribution to N (k7 ), the production of large mass. The black blob in

(2) denotes the triple Pomeron vertex.
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V1, 32) Gm/ PP 4 P prdyadpra
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1 do 1 do
— &l ——— V| — | &Prry——— ). 17
/ Oin / b dyldszl> (Uin / br dyzdzpr,z) ( )

It is more convenient to introduce a correlation function C(yy, pr;ya, pr2) as

1 do
Gin dy1d° pridy,d* pra

C(}’1,PT1§)’2,PT2):(1 do )(1 do

Gin dy1dpr1/ \in dy,d pry
= C(ylv)’z){l +BRlifexp(—BR(p%1 —2pri1pracos(e) + P%z))} (18)
Using
/O " dperrrpreoso) cos (np) = 2n1,(2pr1P12), (19)

where [,,(z) is the modified Bessel function of the first kind, we will decompose the termin {...} in C(yy, pri; ¥2, pr2) into
Fourier modes in the relative azimuthal angle ¢ between two produced pions:

C(y1.Pr13y2, Pr2) x 1 +2

n=1

Vua(Pr1s Pr2) cOs (ng)

e_BR ([7%-] +p%2>

1
with V , =-1,02B —, 20
(P11, P12) 3 n(2BRrp11D72) 1 +IO<ZBRPTIPT2)6_BR('D%I+P‘T2) (20)
assuming that B, < Bg.
The coefficients v, (py) are equal to
N . _ ef )2
( ) VnA(PT,Pl}ef) 1 In(ZBRpTIPI;"St) \/1 +IO(ZBR(pI}Sf)2)e 2Be(prs) (21)
v p - = — = = - e )
m Vaa(P7, PF) 1,(2Br(PFSN2) 1+ 1o(2Bgpr phsh) e~ Prlpin (7))
where the value of p%°f is determined by the experimental procedure. Fixing p&ef = p;, we obtain
1 2 1,(2Bgp7)

v e p— e_BRpT n r . 22

Equation (22) stems from the diagrams of Fig. 4. However, like-sign pion pairs contribute a third of the total contribution to
pion-pair production. This means that the double inclusive cross section is equal to

do do (unlike pairs) + do (identical pairs)
= unli i 1 1 1
dyldszldy2d2pT2 dyldzpﬂdyzdzpm dyldzpﬂdyzdzpn
do 1
= (unlike pairs) (1 +=C(pri;p )) . (23)
dyldzprld)bdzprz 3 e

Therefore, Eq. (22) has to be multiplied by a factor
of 1/3.

In Eq. (15) By, and By, can be expressed in terms of the
slope for the elastic cross section for y; =y, = Y /2 for
projectile-projectile and target-target scattering, respec-
tively: By, =3B%_, and B, = 1B .

For proton-proton scattering at W=7GeV, B, = B, =
1BS_, =10 GeV~? [21], which leads to Bg =5 GeV~2.
Note that the value of Bp turns out to be rather large
By > u?, where u is the scale for N(Q7) and Pomeron
vertices, which is less than or equal to 1 GeV2. This fact

guarantees that the form of the vertices is not essential in

|
the estimates of »,,. However, we would like to again stress
that the appearance of v,, with odd n does not depend on the
structure of the vertices, but stems from the Pomeron
propagator. Plugging this value into Eq. (22), we obtain the
v,, shown in Fig. 7. One can see that we obtain sufficiently
large values of v,,, which are concentrated at rather large
values of p7. The width of the p; distribution will increase
if we use a more complicated structure of the Pomeron-
hadron amplitude (see Fig. 6) and include diffraction
dissociation processes [see Fig. 6(c)], parametrizing
gg(k) = g% exp (—1Bpk?); Eq. (22) will have the follow-
ing form:

034005-6
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0.30;
0.25}
0.20} |

< 0.15¢}
0.10} |
0.05}
0.00}

0 1 2 3 4

pr
(a)

FIG. 7.
process of diffraction dissociation [see Fig. 6(c)].
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0.30f
0.25!}
0.20} ;
S015} |
0.10} |
0.05»:.-"'
0.001
0 1 2 3 4

pr

(b)

v, vs pr using Eq. (22): (a) using the eikonal structure of Pomeron-hadron amplitude [see Fig. 6(b)] while (b) includes the

1 I, (ZBRP%>6—ZBRP%' + ouBy I, (QBDP%)E—zBng.

”elBEl

v (pT) = 51 ’
' 3V2N\ 1+ Iy(2Bgpd)e2Bart + 2455 1 (2B, p2)e~2Bort

where o, denotes the cross section of the single diffractive
production,3 B3¢ the slope of the differential cross section
for diffraction dissociation is roughly equal to %Bel, Bp is
the slope of Pomeron-hadron vertex for diffraction disso-
ciation [see Fig. 6(c)]. The value of B}, has been evaluated
in Ref. [23], and it is equal ~1 GeV~2. Figure 7(b) shows
0By
0‘ng81 .
the p; distribution becomes broader. We need to include
the diffraction contribution to N (kz) for large mass, which
is related to the enhanced diagrams of Fig. 6(2). It is known
that the triple Pomeron vertex has very mild dependence on
the value of transverse momenta, which will be translated in
a much broader distribution of v, with respect to the
transverse momentum. However, to take these diagrams
into account, one needs to rely more on a model, and we
postpone this to a separate paper.

In this article, our goal was not to describe the exper-
imental data, but to demonstrate that a simple model leads to
reasonable values of v, for proton-proton scattering. From
the general expression of Eq. (22), we see that the estimates
are independent of the type of projectile and target. We have
not attempted to obtain an estimate for hadron-nucleus and
nucleus-nucleus scattering, since the Gaussian approxima-
tion for g(k?) is not suitable for these reactions. Nevertheless,
in this oversimplified model, Eq. (15) shows that for the
hadron-nucleus interaction, the value and p; dependence of
v, are determined by the size of proton, rather than the size of
the nucleus. Realistic estimates from a model based on CGC/
saturation approach, in which we successfully described the
diffractive physics, as well as main features of the

One can see that

the calculation using Eq. (24) with

3For our estimates, we took all cross sections from Ref. [22].

o_dBeI

|
multiparticle production reaction [22,24-26] will follow in
the near future. We wish to point out that in the CGC
approach, pions originate from the gluon jet decay, and we
expect the same strength of correlations both for like-like and
unlike-like pion pairs, as is seen in experiments. To illustrate
this, itis sufficient to note, that the production of two like-like
pairs of p-resonances, that dominate the inclusive produc-
tion, say p°p° + p*p™, generate the same numbers of 777"
and 7z~ pairs. It is worthwhile mentioning, that we obtain
the correlation function in the limited region of rapidities
Yi2 = [y1 — ¥2| < 1/A but, since for large y;, the cross
section of Eq. (2) does not depend on y,,, we believe that our
estimates are valid in the wider range of rapidities.

We proposed a mechanism for the long-range rapidity
azimuthal angle correlations which is general, simple, and
has a clear relation to diffractive physics, unlike the
hydrodynamic approach, which is suited to describe only
processes of multiparticle generation. We demonstrated that
this mechanism leads to a value of v, both for even and odd
n, which are of the order of measured values for proton-
proton collisions. We believe that it is premature to
conclude that the occurrence of angular correlations is a
strong argument in support of the hydrodynamical behavior
of the quark-gluon plasma.
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