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Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP
phase δCP of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of
probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to
demonstrate the degeneracy between the “standard” (or “unitary”) and “nonunitary” CP phases. We find,
under the assumption of nonunitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the
TNT2K proposal of supplementing T2(H)K with a μDAR source for better measurement of δCP can
partially break the CP degeneracy by probing both cos δCP and sin δCP dependences in the wide spectrum
of the μDAR flux. We also show that the further addition of a near detector to the μDAR setup can eliminate
the degeneracy completely.
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I. INTRODUCTION

The search for leptonic CP violation constitutes one of
the major challenges in particle physics today [1]. Although
CP violation studies are interesting in their own right, they
may also shed light upon the general CP symmetries of the
neutrino mass matrices in a rather model-independent way
[2], such as the case of the generalized μ − τ reflection
symmetry [3]. Likewise, they can probe the predictions
made by specific flavor models and hence put to test the
structure of the corresponding symmetries [4,5].
This type of CP violation is associated with the Dirac

phase δCP present in the simplest three-neutrino mixing
matrix, which is simply the leptonic analogue of the phase
in the Cabibbo-Kobayashi-Maskawa matrix, describing the
quark weak interactions [6–8]. It is known to directly affect
lepton number conserving processes such as neutrino
oscillations. So far neutrino oscillation experiments have
measured the two squared neutrinomass differences, as well
as the three corresponding mixing angles [9]. These mea-
surements provide a rather precise determination of all
neutrino oscillation parameters, except for the atmospheric
mixing angle θ23, whose octant is still uncertain, and the
leptonic Dirac CP phase δCP, which is poorly determined
[10]. The precision era in neutrino physics has come with
new experimental setups that will provide enough statistics
for measuring all of the neutrino parameters to an unprec-
edented level of accuracy. These include T2K [11], Hyper-K

[12], and TNT2K [13]. The TNT2K (Tokai ’N Toyama to
Kamioka) project is a combination of μKam [with μDAR
source and Super-K (μSK) or Hyper-K (μHK) detectors at
Kamioka] and T2(H)K.
All of the above facilities aim at measuring this single

Dirac phase δCP. However, one is likely to depart from such
a simple picture, if neutrinos get their mass a la seesaw. In
this case, neutrino mass arises through the tree level
exchange of heavy, so far undetected, SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY singlet messenger fermions such as “right-handed”
neutrinos, as in the type-I seesaw mechanism. If the seesaw
scheme responsible for generating neutrino mass is acces-
sible to the LHC, then it is natural to expect that neutrino
oscillations will be described by a nonunitary mixing
matrix. Examples of such mechanisms are the inverse
and linear seesaw schemes [14–19]. In these schemes
one expects sizeable deviations from the simplest three-
neutrino benchmark, in which there are only three families
of orthonormal neutrinos.
The generic structure of the leptonic weak interaction

was first given in Ref. [7] and contains new parameters in
addition to those of the simplest three-neutrino paradigm.
In this case the description of neutrino oscillations involves
an effectively nonunitary mixing matrix [20,21]. As a
consequence, there are degeneracies in the neutrino oscil-
lation probability involving the “standard” three-neutrino
CP phase and the “new” phase combination arising from
the nonunitarity of the neutrino mixing matrix [22,23]. In
this paper we examine some strategies to lift the degen-
eracies present between “standard” and “new” leptonic CP
violation effects, so as to extract with precision the Dirac
CP phase from neutrino oscillations in the presence of
nonunitary mixing. Such effort also provides an indirect
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way to help probing the mass scale involved in neutrino
mass generation through the seesaw mechanism. A precise
measurement of the genuine Dirac CP phase would also
provide direct tests of residual symmetries that can predict
correlation between the Dirac CP phase and the mixing
angles [24–30].
Note also that probing the nonunitarity of the neutrino

mixing matrix in oscillation searches could provide indirect
indications for the associated (relatively low–mass) seesaw
messenger responsible for inducing neutrino mass. This
would also suggest that the corresponding charged lepton
flavor violation and CP violation processes could be
sizeable, irrespective of the observed smallness of neutrino
masses [31–35]. The spectrum of possibilities becomes
even richer in low-scale seesaw theories beyond the
SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY gauge structure [36,37].
Unfortunately, however, no firm model-independent pre-
dictions can be made in the charged sector. As a result
searches for the exotic features such as nonunitary neutrino
propagation effects may provide a unique and irreplaceable
probe of the theory that lies behind the canonical three-
neutrino benchmark.
This paper is organized as follows. In Sec. II we

summarize the generalized formalism describing neutrino
mixing in the presence of nonunitarity. This convenient
parametrization is then used to derive the nonunitarity
effects upon the three-neutrino oscillation probabilities, by
decomposing their dependence on the CP phases and the
atmospheric mixing angle θa, see details in Appendix A.
This is useful to demonstrate, in Sec. III, that the size of the
nonunitary CP effects can be as large as the standard CP
terms, given the current limits on leptonic unitarity viola-
tion. In addition, we also implement the inclusion of matter
effects [38,39], as detailed in Appendix B, and illustrate
how they can modify the oscillation probabilities. With the
formalism established, we show explicitly in Sec. IV how
the “nonunitary” CP phase can fake the standard “unitary”
one at accelerator neutrino experiments like T2(H)K. In
Sec. V we show that the degeneracy between unitary and
nonunitary CP phases can be partially resolved with
TNT2K. Moreover, we further propose a near detector
μNear, with 20 ton of liquid scintillator and 20 m of
baseline, in order to disentangle the effects of the two
physical CP phases and recover the full δCP sensitivity at
TNT2K. Our numerical simulations for T2H(K), μSK,
μHK, and μNear are carried out with the NuProuPro package
[40]. The conclusion of this paper can be found in Sec. VI.

II. NEUTRINO MIXING FORMALISM

Within the standard three-neutrino benchmark scheme
the neutrino flavor and mass eigenstates are connected by a
unitary mixing matrix U [41],

να ¼ Uαiνi; ð1Þ

where we use the subscript α for flavor and i for mass
eigenstates. This lepton mixing matrix may be expressed as

U¼P

0
B@

cscr sscr sre−iδCP

−cass−sasrcseiδCP cacs−sasrsseiδCP sacr
sass−casrcseiδCP −sacs−casrsseiδCP cacr

1
CAQ:

ð2Þ

in which we have adopted the PDG variant [42] of the
original symmetric parametrization of the neutrino mixing
matrix [7], with the three mixing angles θ12, θ23, and
θ13 denoted as θs, θa, and θr, for solar, atmospheric,
and reactor, respectively. Within this description, three
of the CP phases in the diagonal matrices P ≡
diagfe−iβ1 ; e−iβ2 ; e−iβ3g and Q≡ diagfe−iα1 ; e−iα2 ; e−iα3g
can be eliminated by redefining the charged lepton fields,
while one is an overall phase that can be rotated away. The
remaining phases correspond to the two physical Majorana
phases [7]1. This leaves only the Dirac CP-phase δCP
characterizing CP violation in neutrino oscillations.
If neutrinos acquire mass from the general seesaw

mechanism through the exchange of SUð3Þc ⊗ SUð2ÞL ⊗
Uð1ÞY singlet heavy messenger fermions, these extra neu-
trino states mix with the standard νe, νμ, ντ, and then the
neutrino mixing needs to be extended to go beyond 3 × 3,

Un×n ¼
�
N W

V T

�
; ð3Þ

Note that the total mixing matrix Un×n (with n > 3) shall
always be unitary, regardless of its size. The leptonic weak
interaction mixing matrix is promoted to rectangular form
[7] where each block can be systematically determined
within the seesaw expansion [46]. However if the extra
neutrinos are heavy they cannot be produced at low energy
experiments nor will be accessible to oscillations. In such
case only the first 3 × 3 block N can be visible [47–49]. In
other words, the original 3 × 3 unitary mixing U in (2) is
replaced by a truncated nonunitary mixing matrix N which
will effectively describe neutrino propagation. This can be
written as

N ¼ NNPU ¼

0
B@

α11 0 0

α21 α22 0

α31 α32 α33

1
CAU: ð4Þ

This convenient parametrization follows from the symmet-
ric one in [7] and applies for any number of additional

1The absence of invariance under rephasings of the Majorana
neutrino Lagrangean leaves these extra two physical Majorana
phases [7]. They do not affect oscillations [43,44], entering only
in lepton number violation processes, such as neutrinoless double
beta decay or 0νββ [45].
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neutrino states [20]. Irrespective of the number of heavy
singlet neutrinos, it involves three real parameters (α11, α22,
andα33, all close to one) and three small complex parameters
(α21, α31, and α32). In the standard model one has, of course,
αii ¼ 1 and αij ¼ 0 for i ≠ j. Current experiments, mainly
involving electron andmuon neutrinos, are sensitive to three
of these parameters: α11, α22, and α21. Note that the latter is
complex and therefore we end up with three additional real
parameters and one new complex phase

ϕ≡ −argðα21Þ:
The above definition matches the notation in Refs. [20,22].
There are a number of constraints on nonunitarity, such

as those that follow from weak universality considerations.
In [20] updated constraints on unitarity violation param-
eters at 90% C.L. have been given as

α211 ≥ 0.989; α222 ≥ 0.999; jα21j2 ≤ 6.6 × 10−4:

ð5Þ
These include both universality as well as oscillation limits.
Concerning the former, these constraints are all derived
on the basis of charged current induced processes and
under the assumption that there is no new physics other
than that of nonunitary mixing. Such bounds rely on many
simplifying assumptions. Departure from such simplifying
approximations could result in different bounds on the
nonunitarity parameters.
Indeed, although naively one might think that new

physics interactions would always enhance the deviation
from the standard model prediction, strengthening the
nonunitarity bounds, the opposite can happen. For exam-
ple, new physics can weaken the nonuniversality bounds as
a result of subtle cancellations involving the new physics
effects contributing to the relevant weak processes.2 It is not
inconceivable that such cancellations amongst new physics
contributions might even result from adequately chosen
symmetry properties of the new interactions.
Given the fragility of existing constraints, the main

emphasis of our paper will be on experiments providing
robust model-independent bounds on nonunitarity relying
only on neutrino processes. For this reason here we will
concentrate on the following bound on α21 due the non-
observation of νμ to νe conversion at the NOMAD experi-
ment, only relevant neutrino oscillation experiment. We
implement this bound as prior in the NuPro package [40] as

½sin2ð2θμeÞ�eff ¼ 2jα21j2 ≤ 0.0014 @90% C:L: ð6Þ
In contrast to nonoscillation phenomena, the NOMAD

experiment puts direct constraints on neutrino oscillations,

which can be used as a prior in our simulation. Indeed, the
presence of new physics affecting the charged lepton sector
would not change the previous bound, since NOMAD
results were derived by assuming the standard model values
for observables such as Rπ

eμ. These values are in agreement
with current experimental observations and therefore they
will not be affected by any other process of new physics in
the charged sector. In contrast, new physics in the neutrino
sector such as nonstandard interactions with matter or light
sterile neutrinos could affect the bound in Eq. (6). Besides,
these additional physics phenomena would have in general
different effects in NOMAD and T2K and therefore the
above limit will not be directly applicable to T2K. In order
to simplify the physics scenario, here we focus on non-
unitarity as the only source of new physics in the neutrino
sector. Since no sensitivity on the nonunitary CP phase ϕ
has been obtained so far so we will take this parameter free
in our analysis. We will show how nonunitary mixing can
deteriorate the CP measurement in neutrino oscillation
experiments under the current model-independent con-
straints. What we propose in this paper can improve not
only the constraint on nonunitary mixing but also the
resulting CP sensitivity [22]. As a reference benchmark
value for α21 we may take the above bound given by the
NOMAD experiment.

III. EFFECT OF THE NONUNITARITY
CP PHASE

As demonstrated in [50], the three currently unknown
parameters in neutrino oscillations, the neutrino mass
hierarchy, the leptonic Dirac CP phase δCP, and the octant
of the atmospheric angle θa, can be analytically disen-
tangled from each other. This decomposition formalism is
extremely useful to study the effect of different unknown
parameters in various types of neutrino oscillation experi-
ments. Here, we generalize the formalism to accommodate
the effect of nonunitary neutrino mixing, N ¼ NNPU, as
parametrized in Eq. (4). This extra mixing can be factorized
from the Hamiltonian HNP and the oscillation amplitude
SNP, together with U23ðθaÞ, which is the 2–3 mixing due to
the atmospheric angle θa, and the rephasing matrix
Pδ ≡ diagð1; 1; eiδCPÞ,

HNP ¼ ½NNPU23ðθaÞPδ�H0½NNPU23ðθaÞPδ�†; ð7aÞ

SNP ¼ ½NNPU23ðθaÞPδ�S0½NNPU23ðθaÞPδ�†: ð7bÞ

With less mixing parameters, it is much easier to first
evaluate S0 with the transformed HamiltonianH0. The effect
of the nonunitary mixing parameters in NNP, the atmos-
pheric angle θa and the Dirac CP phase δCP can then be
retrieved in an analytical way (see Appendix A for more
details).

2Though less likely, cancellations between new physics and
standard model contributions to a given weak process can also be
envisaged.
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Here, we find that the key oscillation probability Pμe for
the νμ → νe channel is given by,

PNP
μe ¼ α211fα222½c2ajS012j2 þ s2ajS013j2

þ 2casaðcos δCPR − sin δCPIÞðS012S0�13Þ� þ jα21j2Pee

þ 2α22jα21j½caðcϕR − sϕIÞðS011S0�12Þ
þ saðcϕþδCPR − sϕþδCP IÞðS011S0�13Þ�g: ð8Þ

The choice of this parametrization is extremely convenient
to separate the neutrino oscillation probabilities into several
terms, as we further elaborate in Appendix A. In this
formalism, the transition probability PNP

μe relevant for the
CP studies can be decomposed into several terms,

PNP
μe ¼ P

kfkðαij; θa;ϕÞPðkÞ
μe ðS0Þ. It contains six terms

Pð2;3;7;8;9;10Þ
μe involving the Dirac CP phases δCP and ϕ

(see Table I in Appendix A). The standard phase δCP
is modulated by Pð2;3Þ

μe , which are mainly controlled
by the matrix elements ðR; IÞðS012S0�13Þ, while the

nonunitarity counterparts Pð7;8;9;10Þ
μe involve the elements

ðR; IÞðS011S0�12; S011S0�13Þ.
If ðR; IÞðS011S0�12; S011S0�13Þ are of the same size as

ðR; IÞðS012S0�13Þ, the effect of the nonunitary CP phase ϕ
is then suppressed by the constraint jα21j≲ 0.026.
Nevertheless, S011 has much larger magnitude than S012
and S013 which becomes evident by calculating the ampli-
tude matrix S0 in the basis in which the atmospheric angle
θa and the Dirac CP phase are factorized. Since the matter
effects are small for the experiments under consideration,
here we can illustrate the picture with the result in vacuum,3

S0 ¼ I3×3− 2isinΦae−iΦa

0
B@

s2r crsr
0

crsr c2r

1
CA

− 2i sinΦse−iΦs

0
B@

c2rs2s crcsss −crsrs2s
crcsss c2s −srcsss
−crsrs2s −srcsss s2rs2s

1
CA; ð9Þ

where I3×3 is the 3 × 3 identity matrix and Φa;s ≡
Δm2

a;s=4Eν denote the solar and atmospheric oscillation
phases. One can see explicitly that the amplitude matrix S0
is symmetric in the absence of matter potential as well as
for symmetric matter profiles. For CP measurements at
accelerator experiments, the neutrino energy and baseline
are usually configured around the first oscillation peak,
Φa ≈ π

2
. Correspondingly, Φs ≈ π

2
× Δm2

s=Δm2
a, has a small

value. Up to leading order, S011 ≈ 1, in comparison with
S012 ≈−2isinΦse−iΦscrcsss and S013 ≈ −2i sinΦae−iΦacrsr.
The S012 element is suppressed by Δm2

s=Δm2
a while S013 is

suppressed by the reactor angle θr. Consequently, the
nonunitary elements IðS011S0�12Þ and ðR; IÞðS011S0�13Þ are
expected to be at least one order of magnitude larger
than the unitary elements ðR; IÞðS012S0�13Þ. Note that S012 is
mainly imaginary, which makes RðS011S0�12Þ to almost
vanish. Among the remaining nonunitary terms, there is
still a hierarchical structure. Since S012 is suppressed by
Δm2

s=Δm2
a while S013 is suppressed by sr, the relative size is

roughly jS012=S013j ∼ 1=5. In short, there are five indepen-
dent CP terms in Pμe, in full agreement with the result in
[20]. To give an intuitive picture, we plot in Fig. 1 the six
CP related decomposition coefficients at T2(H)K [13] for
illustration. The relative size of the coefficients can then be
measured by,

TABLE I. The decomposed coefficients PðkÞ
ee , P

ðkÞ
eμ , and PðkÞ

μe as an extension to the results first derived in [50]. For
symmetric matter potential profile, the amplitude matrix S0 is also symmetric.

PðkÞ
ee PðkÞ

eμ PðkÞ
μe

(0) α411jS011j2 α211½α
2
22

2
ð1 − jS011j2Þ þ jα21j2jS011j2� α211½α

2
22

2
ð1 − jS011j2Þ þ jα21j2jS011j2�

(1) 0 α2
11
α2
22

2
ðjS021j2 − jS031j2Þ α2

11
α2
22

2
ðjS012j2 − jS013j2Þ

(2) 0 α211α
2
22RðS021S0�31Þ α211α

2
22RðS012S0�13Þ

(3) 0 α211α
2
22IðS021S0�31Þ −α211α222IðS012S0�13Þ

(4) 0 0 0

(5) 0 0 0

(6) 0 0 0

(7) 0 þ2α211α22jα21jRðS011S0�21Þ þ2α211α22jα21jRðS011S0�12Þ
(8) 0 þ2α211α22jα21jIðS011S0�21Þ −2α211α22jα21jIðS011S0�12Þ
(9) 0 þ2α211α22jα21jRðS011S0�31Þ þ2α211α22jα21jRðS011S0�13Þ
(10) 0 þ2α211α22jα21jIðS011S0�31Þ −2α211α22jα21jIðS011S0�13Þ

3Although our results are obtained under the assumption that
there is no matter effect, they also apply when the matter effect is
not significant. See Appendix B for details.
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Ra ≡ 2jα21j
α22

RðS011S0�1aÞ þ IðS011S0�1aÞ
RðS012S0�13Þ þ IðS012S0�13Þ

; ð10Þ

where a ¼ 2, 3. We plot the ratio Ra for 2jα21j=α222 ¼ 5%

on Fig. 2, where it is even clearer that IðS011S0�12Þ and
ðR; IÞðS011S0�13Þ are typically ∼10–20 times larger than
ðR; IÞðS012S0�13Þ, as expected. These considerations show
that the size of the standard and the nonunitary contribution
can be of the same order. As a result, it can easily mimic the
shape of the oscillation curve visible to the experimen-
tal setup.
Another intuitive way to observe this is through the plot

of oscillation probability as a function of L=E as in Fig. 3.
Notice how a nonzero value of ϕ can mimic the behavior of
δCP ¼ 3π=2 (dashed blue line) even with δCP ¼ 0 (solid
red line). Later on, it will become clear that if the magnitude
of the nonunitarity CP effect jα21j is as large as 5%, the
standard CP phase δCP will not be distinguishable from
its nonunitary counterpart ϕ, unless the experiment can

measure neutrino oscillations over a wide range of L=E.
This issue will be taken up and elaborated in Sec. IV.
It should be pointed out that although in the T2K

experiment the matter effect is small, it is not completely
negligible when considering the sensitivity on the CP
phases. The effect of the nonunitary mixing and the matter
potential in the electron neutrino appearance probability is
shown in Fig. 4. This means that a CP analysis should take
matter effects into account: in Appendix B we present a
formalism to deal with matter effects in the context of
nonunitary neutrino mixing. As a good approximation, one
can assume an Earth profile with constant density ρearth ¼
3 g=cm3 throughout this paper.

IV. FAKING THE DIRAC CP PHASE
WITH NONUNITARITY

As depicted in Figs. 1 and 2, the size of the amplitude
matrix elements IðS011S0�12Þ and ðR; IÞðS011S0�13Þ that contrib-
ute to the CP terms associated to unitarity violation are
typically ∼10–20 times larger than their unitary counter-
parts ðR; IÞðS012S0�13Þ. According to the prior constraint in
Eq. (6), the magnitude of the nonunitary CP term jα21j is
about 2.6% at 90% C.L. Consequently, after taking into
account the extra factor of 2 associated with jα21j in Table I,
one finds that the nonunitary CP coefficients Pð8;9;10Þ

μe can

be as large as the unitary ones Pð2;3Þ
μe . Hence there is no

difficulty for the nonunitary CP phase ϕ to fake the effects
normally ascribed to the conventional CP phase δCP, given
the currently available prior constraint on nonunitarity.
In order to study to what extent the standard CP phase

δCP can be faked by the nonunitary CP phase ϕ, we
simulate, for illustration, the T2(H)K experiment, as shown
in Fig. 5. The pseudodata are simulated with the true value
of δCP ¼ 3π=2, under the assumption of unitary mixing,
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FIG. 1. The decomposed CP coefficients for the neutrino
oscillation probability Pμe for T2(H)K.

FIG. 2. Ra ratio as given in Eq. (10) for the T2(H)K exper-
imental setup, setting 2jα21j=α22 ¼ 5%. The solid red line
corresponds to R2, while R3 is given by the dashed blue line.

FIG. 3. Electron antineutrino appearance probability as a
function of L=E for three different assumptions: (i) black solid
line: unitary case with δCP ¼ 0, (ii) blue dashed line: unitary with
δCP ¼ 3π=2, (iii) red solid line: nonunitary case with δCP ¼ 0,
jα21j ¼ 0.02 and ϕ ¼ 0.1π.
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δtrueCP ¼ 3π=2; αtrue11 ¼ αtrue22 ¼ 1; jα21jtrue ¼ 0: ð11Þ

In other words, there is no unitarity violation in the
simulated pseudodata. We assume that the 7.8×1021POT
flux of T2K [51], corresponding to 6 years of running, is
equally split between the neutrino and antineutrino modes,
while the same configuration is assigned for T2HK in this
section.
To extract the sensitivity on the leptonic Dirac CP phase

δCP, we fit the pseudodata with the following χ2 function,

χ2 ≡ χ2stat þ χ2sys þ χ2prior; ð12Þ

where the three terms (χ2stat, χ2sys, χ2prior) stand for the
statistical, systematical, and prior contributions. The stat-
istical contribution χ2stat comes from the experimental data
points,

χ2stat ¼
X
i

�
Npred

i − Ndata
iffiffiffiffiffiffiffiffiffiffi

Ndata
i

p
�2

; ð13Þ

with summation over energy bins, for a specific experi-
ment. For the combined analysis of several experiments,
the total χ2stat will be a summation over their contributions.
In the systematical term χ2sys we take into account the
flux uncertainties. For T2(H)K, we assume a 5% flux
uncertainty for the neutrino and antineutrino modes
independently,

χ2sys ¼
�
fν − 1

0.05

�
2

þ
�
fν̄ − 1

0.05

�
2

: ð14Þ

Note that both the statistical χ2stat and systematical χ2sys parts
need to be extended when adding extra experiments. In
contrast, the prior knowledge is common for different
experimental setups. For the discussion that follows, it
consists of two parts,

FIG. 4. Left: muon to electron neutrino appearance probability at a baseline of 295 km. Right: the corresponding CP asymmetry
between neutrino and antineutrino oscillations. We compare three assumptions: unitary mixing in vacuum (red), unitary mixing in matter
(blue) and nonunitary mixing in matter with jα21j ¼ 0.02 and ϕ ¼ 3π=2 (green). In all cases we take δCP ¼ 3π=2.
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χ2prior ¼ χ2unitary þ χ2nonunitary: ð15Þ

The first term χ2unitary contains the current measurement of
the three-neutrino oscillation parameters [10], as summa-
rized in the Sec. 2.1 of [13], while the contribution
χ2nonunitary accounts for the current constraint on the unitarity
violating parameters in Eq. (6). Note that the unitary prior
contribution χ2unitary is always imposed while χ2nonunitary is
only considered when fitting the data under the nonun-
itarity assumption with prior constraint.
We then fit the data under different assumptions. For

each value of the CP phase δCP, the marginalized value of
χ2 in Fig. 5 is obtained by first fixing the fit value of δCP
and then minimizing the χ2 function over the other
oscillation parameters. Depending on the assumption, the
parameter list includes the three mixing angles, the two
mass squared differences, and the nonunitary parameters.
The blue curves in Fig. 5 are obtained by assuming
standard unitary mixing, with minimization over the three
mixing angles (θa, θr, θs) and the two mass splittings (Δm2

a,
Δm2

s). The result is the marginalized χ2ðδCPÞ function from
which we can read off the CP measurement sensitivity,
χ2ðδCPÞ ¼ 1 for 1σ. One can see that T2K can distinguish
reasonably well a nonzero Dirac CP phase from zero, while
T2HK can further enhance this sensitivity, under the
unitarity assumption. We then turn on the nonunitarity
parameters and χ2nonunitary. As we can see, the situation
totally changes once nonunitarity is introduced. The inclu-
sion of the nonunitarity degrees of freedom (α11, α22, jα21j,
and ϕ) requires the marginalization over nine parameters.
Given a nonzero fitting value δfitCP, one can find a counter-

term from the nonunitarity terms Pð8;9;10Þ
μe that cancel theCP

effect arising from the standard terms Pð2;3Þ
μe , leading to

better agreement with the pseudodata. In other words, the
effect of the CP phase δCP can be faked by its nonunitary
counterpart ϕ. The resulting χ2ðδCPÞ becomes nearly flat,
as shown by the red curves in Fig. 5. Under the assumption
of nonunitary mixing, there is almost no CP sensitivity in
either T2K or T2HK. Imposing the correlated prior con-
straint (6) as χ2nonunitary slightly improve the situation, shown
as the black curves in Fig. 5. Nevertheless, the CP
sensitivity is still much worse than the standard case.
The difference between δtrueD ¼ −90° and δfitD ¼ 180°
reduces from 2σ to less than 1σ. With or without the prior
constraint, the CP sensitivity at T2(H)K is significantly
reduced by the presence of nonunitary mixing.
An intuitive plot to illustrate this fact is presented in

Fig. 6 where we show the event rates for the neutrino and
antineutrino appearance channel in T2K for two different
assumptions: the standard three-neutrino case with varying
δCP (black line), and the alternative nonunitary case with
fixed δCP and varying ϕ (color lines). The variation of the
atmospheric angle θa has been also considered in the

nonunitary case. In particular, dashed lines in the plot
correspond to maximal mixing, sin2θa ¼ 0.5, while
solid lines cover approximately the 1σ allowed range,
sin2θa ¼ 0.5� 0.055. A similar plot was presented in
[22] for L=E ¼ 500, in order to understand the origin of
the ambiguity in parameter space which is inherent to the
problem. Now we show that, for the same baseline
L=E ≈ 500 m=MeV, the uncertainties in the atmospheric
mixing angle spoil the good sensitivity to δCP found after
the combination of neutrino and antineutrino channel in
Ref. [22]. Moreover, one should keep in mind that, in a
realistic case, the existence of flux uncertainties would
change each of the ellipses of Fig. 6 into bands.
The reason that the leptonic Dirac CP phase δCP can be

faked by nonunitarity at T2(H)K is due to the choice of
narrow neutrino energy spectrum with peak around
550 MeV and baseline at 295 km. With this choice, the
oscillation phase Φa ≈ π=2 is almost maximal and the
cos δCP term vanishes with its coefficient cosΦa. It is still
easy for theCP phaseϕ associated to nonunitarity to fake the
standardDirac phase δCP, even at the special point pointed in
[22], where the degeneracies cancel out in the ideal case of
precisely known θa and monochromatic energy spectrum.
The faking of the standard Dirac CP phase comes from the
interplay of various elements. Around the maximal oscil-
lation phase, Φa ≈ π=2, the oscillation probability for
neutrinos and antineutrinos can be approximated by,

Pμe ≈ 4s2ac2rs2rsin2Φa þ 2jα21jRðS011S0�13Þ cosðϕþ δCPÞ
− IðS012S0�13Þ sin δCP þ 2jα21jIðS011S0�12Þ sinϕ; ð16aÞ

Pμ̄ ē ≈ 4s2ac2rs2rsin2Φa þ 2jα21jRðS011S0�13Þ cosðϕþ δCPÞ
þ IðS012S0�13Þ sin δCP − 2jα21jIðS011S0�12Þ sinϕ; ð16bÞ

FIG. 6. Bi-event rate plot for T2K for standard three-neutrino
mixing with varying δCP (black line), and nonunitary mixing with
fixed δCP value and varying ϕ (color lines). Dashed lines
correspond to sin2θa ¼ 0.5 while solid lines correspond to
sin2θa ¼ 0.5� 0.055.
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where the first line is the same both for neutrino and
antineutrino modes, while the second receives a minus sign.
To fit the current experimental best value δtrueCP ¼ −π=2with
the opposite δfitCP ¼ π=2, the major difference is introduced
by the sin terms in the second line. The CP sensitivity is
spoiled by freeing θa and jα21j and it can be faked by
varying ϕ. This introduces a common correction via the
cosðϕþ δCPÞ term for both neutrino and anti-neutrino
channels. The large uncertainty in the atmospheric angle,
which can reach 10% in s2a, helps to absorb this common
correction. The remaining sinϕ and sinðϕþ δCPÞ terms can
then fake the genuine CP term sin δCP. Although the
coefficients of sinϕ and sinðϕþ δCPÞ are relatively small,
they are not zero. As long as α21 is large enough, CP can be
faked. This can explain the behavior seen in Fig. 5 andFig. 6.

V. PROBING CP VIOLATION WITH μDAR
AND NEAR DETECTOR

In order to fully resolve the degeneracy between the
unitary and nonunitary CP phases, it is necessary to bring
back the cos δCP dependence by carefully choosing the
energy spectrum and baseline configuration. A perfect
candidate for achieving this is to use muon decay at rest
(μDAR) which has a wide peak and shorter baseline around
15–23 km. The TNT2K experiment [13] is proposed to
supplement the existing Super-K detector and the future
Hyper-K detector with a μDAR source. Since the accel-
erator neutrinos in T2(H)K have higher energy than those
of the μDAR source, the two measurements can run
simultaneously. Note that for T2K we use the current
configuration as described in Sec. IV, while for T2HK the
7.8 × 1021 POT flux is assigned to neutrino mode only. On
the other hand, the μDAR source can contribute a flux of
1.1 × 1025 POT [13]. Notice that this experiment has
backgrounds from atmospheric neutrinos, from the elastic
scattering with electrons, and the quasielastic scattering

with heavy nuclei. In addition, the μDAR flux can have
20% uncertainty if there is no near detector.
Note also that the sensitivity to break the degeneracy

between δCP and π − δCP at T2(H)K, arising from the
single sin δCP dependence, can be improved because of the
wide spectrum of μDAR, which has both cos δCP and
sin δCP dependences as shown in Fig. 7. For the μDAR
flux, the spectrum peaks around 40–50 MeV. In this energy

range, the decomposed coefficients Pð2Þ
μe;eμ for the cos δCP

dependence have comparable magnitude with the sin δCP
term coefficients Pð3Þ

μe;eμ. In contrast, for T2(H)K the

coefficients Pð2Þ
μe;eμ vanish around the spectrum peak

∼550 MeV while Pð3Þ
μe;eμ have sizable magnitude, as shown

in Fig. 1.
The property of having both cos δCP and sin δCP depend-

ences is exactly what we need also to break the degeneracy
between the unitary and nonunitary CP phases. As shown
in Fig. 8, supplementing T2K with μSK can preserve the
CP sensitivity at the T2K level even if not imposing the
prior constraint (6). With the prior constraint, the CP
sensitivity can further improve beyond that of T2K alone
for unitary mixing. The same holds for the T2HK con-
figuration. Nevertheless, the advantage of μDAR is still not
fully utilized.
An important difference between T2(H)K in Fig. 5 and

TNT2K in Fig. 8 is the effect of adding the prior constraint.
At T2(H)K, the prior constraint can only add some
moderate improvement. On the other hand, its effect can
be maximized at TNT2K after including μKam. We find
that the CP sensitivity is significantly improved by the
combination of μKam and prior constraints. Notice in
Fig. 9 that the ambiguity of the ellipses was not improved
by having another experiment, nevertheless one can dis-
tinguish the standard case from the nonunitary case by
taking a closer look at the neutrino spectrum which
contains more information. Indeed, the advantage of
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μKam is not fully explored with the current prior constraint
in (6). Since the nonunitary CP effect is modulated by jα21j,
a more stringent constraint on jα21j would effectively
suppress the size of the faked CP violation. From the
expression of PNP

μe in Eq. (A7c), one sees that if the
oscillation baseline is extremely short, it is dominated by
the last term

PNP
μe ≈ α211jα21j2; ð17Þ

which is a nonzero constant. Such “zero–distance effect” is
a direct measure of the effective nonorthonormality of
weak-basis neutrinos [47,48]. Although PNP

μe is suppressed
by jα21j2, which is smaller than 6.6 × 10−4 at 90% C.L., a
near detector with a very short baseline can still collect
enough number of events to provide information of this
parameter.
We propose a near detector μNear, with a 20 ton scin-

tillator detector and a 20 m baseline to the μDAR source, to

supplement the μKam part of TNT2K. By selecting events
with double coincidence, the scintillator can identify the
oscillated electron antineutrinos. Most of the events come
from two sources: the signal from μþ decay and the back-
ground from μ− decay. For both signal and background, the
parent muons decay at rest and hence have well-defined
spectrum as shown in the left panel of Fig. 10. For a
background-signal flux ratio μ−DAR=μþDAR ¼ 5 × 10−4

[13] and nonunitary size jα21j ¼ 0.02, the signal and back-
ground have roughly the same number of events, Nsig ¼
1446 and Nbkg ¼ 1234. If the neutrino mixing is unitary,
only background is present. Based on this we can roughly
estimate the sensitivity at μNear to be,

ffiffiffiffiffiffiffiffiffi
Nbkg

p
=Nsig ≈ 2.4%,

for jα21j2 ¼ ð0.02Þ2. When converted to jα21j, the limit can
be improved by a factor of 1=

ffiffiffiffiffiffiffiffiffiffi
2.4%

p
≈ 6.5 on the basis of

0.02 around 1σ. In addition, the spectrum shape is quite
different between the signal and background. The signal
peak appears around 50 MeV where the background event
rate is much smaller. This feature of different energy
spectrum can further enhance the sensitivity than the rough
estimation from total event rate. The constraint on jα21j can
be significantly improved beyond the current limit in (6).
In the right panel of Fig. 10 we show the sensitivity on

jα21j as a function of the background rate and the detector
size from a simplified template fit. The result for 5 × 10−4

of background and 20 ton detector is of the same size as the
rough estimation. The concrete value, jα21j < 0.004 at 1σ,
is lightly larger due to marginalization. In Fig. 10 we
assumed systematic errors to be 20% for the μDAR flux
normalization and 50% for the background-signal flux
ratio. The solid contours in the right panel are obtained with
both systematic errors imposed while the dashed ones with
only the 20% uncertainty in flux normalization. The
difference in the sensitivity on jα21j only appears in the
region of small detector size or small background rate. For
the 20 ton detector and background rate larger than 10−4,
the difference is negligibly small. In the full simulation, we
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FIG. 8. The marginalized χ2ðδCPÞ function at TNT2K under the assumptions of unitarity (blue), nonunitary mixing with (red) or
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FIG. 9. Bi-event rate plot for TNT2K for standard three-
neutrino mixing with varying δCP (black line), and nonunitary
mixing with fixed δCP value and varying ϕ (color lines). Dashed
lines correspond to sin2 θa ¼ 0.5 while solid lines correspond to
sin2 θa ¼ 0.5� 0.055.
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only implement the 20% uncertainty in flux normalization
for simplicity. In Fig. 11 we show the CP sensitivity at
TNT2K plus μNear once a full simulation is performed.
Imposing all the information we can get from TNT2K,
μNear, and the prior constraint on the nonunitary mixing
parameters (6), the CP sensitivity can match the full
potential of TNT2K under the assumption of unitary
mixing. Even without the prior constraint, the CP sensi-
tivity at TNT2K plus μNear is very close to the full reach of
TNT2K with unitary mixing. Imposing the prior constraint
(6) has little effect since the constraint on α21 from the
μNear detector can be better by one order of magnitude.
This combination of CP measurements, TNT2K plus
μNear, can determine the leptonic Dirac CP phase δCP
unambiguously and hence provide an ultimate solution to
the degeneracy between unitary and nonunitary CP viola-
tion parameters.

VI. CONCLUSION

Our interpretation of experimental data always relies on
theoretical assumptions. Unambiguous understanding of
reality always requires distinguishing alternative assump-
tions through careful experimental design. The degeneracy
between unitary and nonunitary CP phases in neutrino
mixing provides a perfect example. In this paper we have
confirmed, in agreement with Ref. [22], that, for values of
jα21j of the order of a few %, one can have unitarity
violating CP oscillation amplitudes of the same order, or
possibly larger, than the standard one associated to δCP. We
have illustrated how the CP sensitivity at accelerator
neutrino experiments like T2(H)K is severely degraded
in the presence of nonunitarity. Indeed, in addition to the
standard leptonic Dirac CP phase δCP if neutrino mixing is
nonunitary there is an extra CP phase ϕ characterizing
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deviations from unitarity and affecting the neutrino appear-
ance probability. The effect of such unitary phase δCP can
be easily faked by the nonunitarity phase ϕ if only the
sin δCP dependence is probed, as in the T2(H)K configu-
ration. Probing the interplay with the cos δCP dependence
can help to lift the degeneracy.
A perfect solution comes from the TNT2K project with

T2(H)K supplemented by a μDAR source. Thanks to the
different energy scale of the accelerator and μDAR neutrino
fluxes, two different measurements can proceed at the same
time, using Super-K and Hyper-K detectors simultane-
ously. In its original proposal, the goal was to get better
measurement of the Dirac CP phase δCP within the
standard three-neutrino mixing benchmark. We find that
it also has the potential of breaking the degeneracy between
standard and nonunitary CP phases. However, TNT2K can
fully explore its advantage only in combination with a near
detector. We propose using μNear, with only 20 ton of
scintillator and 20 m of baseline, to monitor the size of the
nonunitary CP violating term for the μ → e transition,
jα21j. Our simplified template fit shows that μNear, with
an expected background-signal flux ratio in the μDAR
source of 5 × 10−4, can constrain jα21j to be smaller than
4 × 10−3 at 1σ, which corresponds to almost one order of
magnitude improvement with respect to the current model-
independent bound obtained from NOMAD data. This
estimate is stable against the large uncertainty in the
background-signal flux ratio. When implemented in a full
simulation, μNear can almost retrieve the CP sensitivity of
TNT2K, providing an ultimate solution to the degeneracy
between unitary and nonunitary mixing parameters.
In short, nonunitary neutrino mixing is expected in a

large class of seesaw schemes at LHC-accessible mass
scales. This implies extra mixing parameters, and a new CP
phase, that can fake the standard leptonic CP phase δCP
present in the simplest three-neutrino paradigm. As a result,
probing for CP violation in accelerator-type experiments
can be misleading. We have considered T2(H)K as an
example to illustrate the degeneracy between the “stan-
dard” and “nonunitary” CP phases. Despite the complete
loss in its CP sensitivity we note that supplementing T2(H)
K with a μDAR source can help breaking the CP
degeneracy, by probing separately both cos δCP and
sin δCP dependences in the wide energy spectrum of the
μDAR flux. We have seen that the further addition of a near
detector to the μDAR setup has the potential of removing
the degeneracy rather well.
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APPENDIX A: DECOMPOSITION FORMALISM
FOR NONUNITARY MIXING

The parametrization in Eq. (4) isolates the effect of
nonunitarity as a multiplicative matrix on the left-hand side
of the unitary mixing matrix U. This choice is extremely
convenient to separate the neutrino oscillation probabilities
into several terms, using the decomposition formalism [50].
The latter has a huge benefit for the case of nonunitary
mixing, characterized by the parameters αij in NNP. Indeed
it simplifies considerably the calculation of the oscillation
amplitudes as we demonstrate below.
The neutrino oscillation amplitude can always be evalu-

ated as,

Sn×n ≡ e−itH
n×n
; ðA1Þ

no matter in which basis. It is convenient to first diago-
nalize the Hamiltonian,

Hn×n ¼ Un×n

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

1

p

. .
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

n

p

1
CCCAðUn×nÞ†

≡Un×nHn×n
D ðUn×nÞ†; ðA2Þ

and evaluate the oscillation in the mass eigenstate basis,

Sn×n ¼ Un×nSn×nD ðUn×nÞ†: ðA3Þ

For neutrinooscillation at lowenergy,E < M4;…;n, the heavy
state decays with an imaginary Hamiltonian. In other words,
the oscillation amplitude matrix Sn×nD ≡ e−itH

n×n
D in the mass

eigenstate basis has nontrivial elements only in the 3 × 3
light block. The oscillation within the three light neutrinos
can then be described by the effective amplitude matrix,

SNP ¼ NNPSNNP†; ðA4Þ

where S is the standard amplitude matrix corresponding to
unitary mixing U. Note that the extra neutrinos are much
heavier than the energy scale under discussion and hence
decouple from the (low-energy) neutrino oscillations. Their
low-energy effect is just a basis transformation which also
applies to the oscillation amplitudes. The neutrino oscillation
probability is given by the squared magnitude of the
corresponding amplitude matrix element, PNP

αβ ¼ jSNP
βα j2,

PNP
ee ¼ α411Pee; ðA5aÞ
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PNP
eμ ¼ α211½α222Peμ þ 2α22Reðα21S�eeSμeÞ þ jα21j2Pee�;

ðA5bÞ

PNP
μe ¼ α211½α222Pμe þ 2α22Reðα�21SeeS�eμÞ þ jα21j2Pee�;

ðA5cÞ

PNP
μμ ¼ α422Pμμ þ jα221jα222ðPμe þ PeμÞ þ jα21j4Pee

þ
X

fa1;b1g≠fa2;b2g
Re½α2a1α�2b1α�2a2α2b2Sa1b1S�a2b2 �:

ðA5dÞ

Here Pαβ is the oscillation probability with unitary mixing
and ða; bÞ ¼ ð1; 2Þ for αab while ða; bÞ ¼ ðe; μÞ for Sab.
Note that the remaining five oscillation probabilities (PNP

eτ ,
PNP
τe ,PNP

μτ ,PNP
τμ ,PNP

ττ ) cannot be derived from the four in (A5)
by unitarity conditions since these do not hold in our case.
Instead, they need to be calculated directly from SNP

elements in a similar way as the above four.
In addition, the atmospheric mixing angle and the Dirac

CP phase δCP can also be factorized out as transformations,

H ¼ ½U23ðθaÞPδ�H0½U23ðθaÞPδ�†;
S ¼ ½U23ðθaÞPδ�S0½U23ðθaÞPδ�†; ðA6Þ

where U23ðθaÞ is the 2–3 mixing parameter and Pδ ≡
diagð1; 1; eiδCPÞ is a rephasing matrix. Those quantities with
prime, H0 and S0, are defined in the so-called “propagation
basis” [52,53]. The connection between the nonunitary
flavor basis and the “propagation basis” is NNPU23ðθaÞPδ.
Replacing the unitary oscillation amplitude S in the flavor
basis by S0 [50] in the “propagation basis” with θa and δCP
rotated away, the nonunitary oscillation probabilities (A5)
become,

PNP
ee ¼ α411Pee; ðA7aÞ

PNP
eμ ¼ α211fα222Peμ þ 2α22jα21j½caðcϕRþ sϕIÞðS011S0�21Þ

þ saðcϕþδCPRþ sϕþδCP IÞðS011S0�31Þ� þ jα21j2Peeg;
ðA7bÞ

PNP
μe ¼ α211fα222Pμe þ 2α22jα21j½caðcϕR − sϕIÞðS011S0�12Þ

þ saðcϕþδCPR − sϕþδCP IÞðS011S0�13Þ� þ jα21j2Peeg;
ðA7cÞ

PNP
μμ ¼ jα222Sμμ þ α22ðα21Seμ þ α�21SμeÞ þ α211Seej2 ðA7dÞ

For convenience, we have denoted ðcϕ; sϕÞ≡ ðcosϕ;
sinϕÞ and ðcϕþδCP ;sϕþδCPÞ≡ðcosðϕþδCPÞ;sinðϕþδCPÞÞ,
where δCP and ϕ are the leptonic Dirac CP phase and

the nonunitary phase associated with α21 ≡ jα21je−iϕ,
respectively. The real and imaginary operators, R and I,
extract the corresponding part of the following terms. The
general expression (A7) reproduces the fully expanded
form in [20] up to the leading order of sin θr ∼ 0.15
and Δm2

s=Δm2
a ∼ 3%.

The oscillation probabilities PNP
eμ and PNP

μe in (A7) are not
just functions of their unitary counterparts Peμ and Pμe, but
they also contain nonunitary CP terms involving ϕ.
Therefore, the nonunitarity of the neutrino mixing matrix
introduces extra decomposition coefficients in addition to
those proposed in [50],

PNP
αβ ≡Pð0Þ

αβ þPð1Þ
αβ xaþPð2Þ

αβ cosδ
0
CPþPð3Þ

αβ sinδ
0
CP

þPð4Þ
αβ xa cosδ

0
CPþPð5Þ

αβ x
2
a þPð6Þ

αβ cos
2δ0CPþPð7Þ

αβ cacϕ

þPð8Þ
αβ casϕþPð9Þ

αβ sacϕþδCP þPð10Þ
αβ sasϕþδCP : ðA8Þ

Here, we have expanded the atmospheric angle θa around
its maximal value c2a ¼ ð1þ xaÞ=2 and rescaled Dirac CP
functions ðcos δ0CP; sin δ0CPÞ≡ 2casaðcos δCP; sin δCPÞ. The
explicit form of these decomposition coefficients is shown
in Table I. For simplicity, we show just the three channels
(PNP

ee , PNP
eμ and PNP

μe ) in Table I to illustrate the idea.
Ignoring matter effects (or if these can be approximated by
a symmetric/constant potential), the amplitude matrix S0 is
then symmetric, S0ij ¼ S0ji. To obtain the antineutrino
coefficients P̄NP

αβ , the CP phases (δCP and ϕ) as well as
the matter potential inside the S0 matrix elements should
receive a minus sign.

APPENDIX B: MATTER EFFECT
WITH NONUNITARY MIXING

The decomposition formalism presented in Appendix A
is a powerful tool to obtain a complete formalism for
neutrino oscillations. It factorizes the mixings efficiently in
different bases and treats their effects independently. For
example, the matter potential does not spoil the relations
(A5) that follow from the general parametrization (4).
Although the previous results are obtained for vacuum
oscillations, one can still use (A5) for neutrino oscillation
through matter, as long as Sij is replaced by the corre-
sponding amplitude matrix in matter, Smatter

ij . In this
appendix we will show how the presence of nonunitary
neutrino mixing results in a rescaling of the standard matter
potential. Our result applies generally for any number of
heavy neutrinos.4

4An expansion in the mass hierarchy parameter α≡
Δm2

s=Δm2
a and the unitarity violation parameters up to first

order can also be found in [21], where they are denoted as s2ij, for
i ¼ 1, 2, 3 and j ¼ 4, 5, 6.
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In order to further develop the formalism established in
Appendix A to introduce matter effects with nonunitary
mixing, it is extremely useful to use the symmetrical
parametrization method for unitary matrices. We start by
recalling that its main ingredient consists in decomposing
Un×n in terms of products of effectively two-dimensional
complex rotation matrices ω1j, in which each factor is
characterized by both one rotation angle and one CP phase,
see Eqs. (3.9)–(3.15) and (3.19)–(3.22) in [7]. The method
is equivalent to the procedure of obtaining the current PDG
form of the lepton mixing matrix and any generalization
thereof. In the presence of SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY
singlet neutrinos, it can be used to describe the mixing
matrix Un×n as follows

Un×n ¼ ðΠn
i>j>3ωijÞðΠn

j¼4ω3jÞðΠn
j¼4ω2jÞðΠn

j¼4ω1jÞ

×

�
ω23Pδω13ω12 0

0 1

�
; ðB1Þ

in the same way as for its 3 × 3 counterpart U. With such
parametrization for the extended mixing matrix, one can
still resort to the “propagation basis.” This can be achieved
by dividing the full mixing matrix Un×n ≡R0U0,

R0 ¼ UNP

�
ω23Pδ 0

0 1

�
; U0 ¼

�
ω13ω12 0

0 1

�
: ðB2Þ

The “propagation basis” is connected to the nonunitary
flavor basis with the transformation matrix R0 and the
remaining mixing is U0.
The original n × n Hamiltonian is given by

Hn×n ¼ Un×n

0
BBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

1

p

. .
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

n

p

1
CCCAðUn×nÞ†

þ

0
BBBB@

Vcc

0

0

. .
.

1
CCCAþ Vnc

0
BBBB@

1

1

1

. .
.

1
CCCCA
:

ðB3Þ

We denote the matter potential matrices as V ≡ Vcc þ Vnc
in latter discussions. For heavy mass eigenstates with
Mi > MZ ≫ E, the oscillation will decay out very quickly

since the oscillation phase
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

n

p
is imaginary. For

convenience, we separate the matrices into light and heavy
blocks,

Hn×n ¼ R0

2
64U0

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

l

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p

1
CAU0†

þR0†
�
V

0

�
R0

3
75R0† ðB4Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −M2

l

q
is the standard momentum matrix in the

“propagation basis”, with the solar and reactor angles θs
and θr incorporated, while

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p
is already diagonal.

As long as V ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p
, the mixing between the light

and heavy blocks inside the bracket is highly suppressed
by a factor of V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p
. For CP measurement

experiments, V ≲ Δm2
a=2E ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p
with Δm2

a ∼
Oð0.01 eV2Þ, 10 MeV≲ E≲ 1 GeV, and D2

h > M2
Z, the

induced mixing V=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − D2

h

p ≲ 10−19 is negligibly small.
In addition, the mixing term is further suppressed by the
small nonunitary mixing contained in R0. As a good
approximation for low-energy neutrino oscillation experi-
ment, the light and heavy blocks decouple from each other.
We have showed that the “propagation basis” [52,53] can
still be established in the presence of nonunitary mixing.
Note that R0 is exactly NNPU23ðθaÞPδ that already used in
Appendix A to relate the nonunitary flavor basis and the
“propagation basis” through (A4) and (A6). In other words,
as long as the mass of heavy neutrino is much larger than
the oscillation energy and matter effect, the same “propa-
gation basis” can be generalized for nonunitary mixing.
Since the light and heavy blocks effectively decouple

from each other, the oscillation probability can be evaluated
independently. For the light block, we can first evaluate the
amplitude matrix S0 ¼ e−iH

0t in the “propagation basis” and
transform back to the flavor basis with R0 in the same way
as (A7). The only change is a modified matter potential,

~M2
l ¼ M2

l − 2ER0†VR0; ðB5Þ

where R0 is the light block of R0. Here we have expanded
the neutrino momentum of light neutrinos in relativistic
limit. The potential matrix in the “propagation basis” is
replaced by V → R0†VR0.
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