
Connecting the leptonic unitarity triangle to neutrino oscillation
with CP violation in the vacuum and in matter

Hong-Jian He1,2,* and Xun-Jie Xu1,†
1Institute of Modern Physics and Center for High Energy Physics, Tsinghua University,

Beijing 100084, China
2Center for High Energy Physics, Peking University, Beijing 100871, China

(Received 28 June 2016; published 14 February 2017)

Leptonic unitarity triangles (LUT) provide fundamental means to geometrically describe CP violation in
neutrino oscillation. In this work, we use LUT to present a new geometrical interpretation of
the vacuum oscillation probability and derive a compact new oscillation formula in terms of only three
independent parameters of the corresponding LUT. Then, we systematically study matter effects in the
geometrical formulation of neutrino oscillation with CP violation. Including nontrivial matter effects, we
derive a very compact new oscillation formula by using the LUT formulation. We further demonstrate that
this geometrical formula holds well for applications to neutrino oscillations in matter, including the long
baseline experiments T2K, MINOS, NOνA, and DUNE.
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I. INTRODUCTION

Discovering leptonic CP violation poses a major
challenge to particle physics today and may uncover the
origin of matter-antimatter asymmetry in the Universe [1].
Unitarity triangles provide the unique geometrical descrip-
tion of CP violations via 3 × 3 unitary matrix. They have
played a vital role for studying CP violation of Cabibbo-
Kobayashi-Maskawa (CKM) mixings in the quark sector
[2]. So far, various neutrino oscillation experiments have
been trying to precisely measure Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixings for the lepton-neutrino
sector [3]. Leptonic unitarity triangles (LUT) provide a
fundamental means to probe the leptonic CP violation,
complementary to the usual method of measuring the CP
asymmetry of neutrino oscillations, P½νl → νl0 � − P½νl →
νl0 � (l ≠ l0) [4,5]. Some LUT studies appeared in the
recent literature [6–9].
In Ref. [6], we found that LUT is directly connected to

neutrino oscillations in vacuum. We proved [6] that the
LUT angles exactly act as the CP-phase shifts of neutrino
oscillations. We proved [6] that vacuum oscillation only
depends on three independent geometrical parameters of
the corresponding LUT. Because matter effects [10,11] in
many current and future long baseline (LBL) oscillation
experiments (such as T2K [12], MINOS [13], NOνA [14],
and DUNE [15]) are non-negligible, it is important to
develop our geometrical LUT formulation for including
nontrivial matter effects.
In this work, we construct a new unified geometrical

LUT formulation for neutrino oscillations in vacuum and in
matter and study its applications. In Sec. II, we present a

new geometrical LUT formulation to dynamically describe
how a 3-neutrino system oscillates in vacuum. From this,
we derive a new compact oscillation formula, manifestly
in terms of only three independent parameters of the
corresponding LUT. In Sec. III, we systematically study
the LUT formulation for neutrino oscillations in matter. We
derive an approximate analytical LUT formula including
matter effects and further analyze its accuracy for the
current and future long baseline oscillation experiments, in
Sec. IV and Appendixes A and B. Finally, we conclude
in Sec. V.

II. GEOMETRICAL FORMULATION OF
NEUTRINO OSCILLATION IN VACUUM

From the unitarity of the PMNS matrix, U†U ¼
UU† ¼ 1, we have two sets of conditions,

P
jUljU�

l0j¼0

with l ≠ l0 (forming the row triangles or “Dirac triangles”)
and

P
lU

�
ljUlj0 ¼ 0 with j ≠ j0 (forming the column

triangles or “Majorana triangles”). For the flavor neutrino
oscillations, we consider the Dirac triangles (l ≠ l0),

Ul1U�
l01 þ Ul2U�

l02 þUl3U�
l03 ¼ 0; ð1Þ

as shown in Fig. 1.
The sides and angles of each LUT (1) can be defined as

follows,

ða; b; cÞ ¼ ðjUl1U�
l01j; jUl2U�

l02j; jUl3U�
l03jÞ; ð2aÞ

ðα; β; γÞ ¼ arg
�
−
Ul3U�

l03

Ul2U�
l02

;−
Ul1U�

l01

Ul3U�
l03

;−
Ul2U�

l02

Ul1U�
l01

�
:

ð2bÞ
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In Ref. [6], we proved that the conventional neutrino
oscillation probability in vacuum [4,5] can be fully
expressed in terms of the sides ða; b; cÞ and angles
ðα; β; γÞ of the corresponding LUT, among which only
three are independent.
In the following, we propose a new geometrical

approach. With this, we derive a new formula of vacuum
oscillations, which manifestly contains only three indepen-
dent parameters of the LUT for each given channel, say
ðb; c; αÞ, and takes a very compact form.
In the standard formulation, the neutrino oscillation in

space may be described by the following Schrödinger-like
evolution equation in flavor basis,

i
d
dL

jνðLÞi ¼ HjνðLÞi; ð3Þ

where H is the effective Hamiltonian and jνðLÞi denotes
the flavor state of the flying neutrino at a distance L
from the source. In vacuum, we can write the effective
Hamiltonian H0 in the following matrix form,

H0 ¼
1

2E
U

0
B@

m2
1

m2
2

m2
3

1
CAU†: ð4Þ

Solving Eq. (3) gives jνðLÞi ¼ e−iH0Ljνð0Þi. So, the
transition amplitude of νl → νl0 takes the form,
Al→l0 ¼

P
jUljU�

l0je
i2Δj , where Δj ≡m2

jL=ð4EÞ. Thus,
we deduce the oscillation probability Pl→l0 ¼ jAl→l0 j2 as

Pl→l0 ¼ jUl1U�
l01e

i2Δ1 þUl2U�
l02e

i2Δ2 þ Ul3U�
l03e

i2Δ3 j2
¼ jaþ beiðγ−πÞei2Δ21 þ ceiðπ−βÞei2Δ31 j2; ð5Þ

where in the second row we have used Eq. (2), and Δjk ≡
Δm2

jkL=ð4EÞ with Δm2
jk ¼ m2

j −m2
k (j, k ¼ 1, 2, 3).

We inspect Eq. (5) and find a new way to demonstrate its
geometry graphically. For L=E ¼ 0, we have Pl→l0 ¼ 0
and Δ21 ¼ Δ31 ¼ 0. Hence, under L=E ¼ 0, Eq. (5)
reduces to

aþ beiðγ−πÞ þ ceiðπ−βÞ ¼ 0: ð6Þ

This just corresponds to the geometry of the LUT
△ABC shown in Fig. 1. We re-present this picture in
Fig. 2, where we have ðjBCj; jCAj; jABjÞ ¼ ða; b; cÞ,
and ð∠CAB;∠ABC;∠BCAÞ ¼ ðα; β; γÞ. We see that the

triangle geometry BC
�!þ CA

�!þ AB
�! ¼ 0 just gives the

equality (6).
The generical case of L=E ≠ 0 has nonzero oscillation

factors ei2Δ21 and ei2Δ31 . This will modify the equality (6),
in which eiðγ−πÞ is replaced by eiðγ−πÞei2Δ21 and eiðπ−βÞ

by eiðπ−βÞei2Δ31, causing nonzero probability (5).
Geometrically, the phase factors ei2Δ21 and ei2Δ31 will

change orientations of vectors CA
�!

and BA
�!

by holding their

lengths. This will rotate CA
�!

to CE
�!

and BA
�!

to BF
�!

, both
counterclockwise. Denoting the angles ∠ABF ¼ φ1 and
∠ACE ¼ φ2, we have the following relations,

φ1 ¼ 2Δ31; φ2 ¼ 2Δ21: ð7Þ
This shows that the triangle is unfolded to become a
quadrangle ECBF, and the side EF just equals the
amplitude,

EF
⟶ ¼ aþ beiðγ−πÞei2Δ21 þ ceiðπ−βÞei2Δ31 : ð8Þ

Comparing this with Eq. (5), we conclude that

jEFj2 ¼ Pl→l0 ; ð9Þ
just gives the oscillation probability. When the quadrangle
ECBF reduces to a closed triangle △ABC, the oscillation
probability would vanish. When L=E increases, point E
and point F in Fig. 2 will circle around the corresponding
dashed arcs. Thus, the distance jEFj oscillates, and its
square jEFj2 exactly equals the oscillation probability (5)
via Eq. (9). Hence, we have demonstrated that Fig. 2 and
Eq. (9) give a new geometrical presentation of neutrino
oscillations in vacuum.

FIG. 2. New geometrical presentation of neutrino oscillation,
where the angles ∠ABF ¼ φ1 and ∠ACE ¼ φ2 are evolving
phases φ1 ¼ LΔm2

31=ð2EÞ and φ2 ¼ LΔm2
21=ð2EÞ in Eq. (7).

The squared-distance jEFj2 just gives the oscillation probability
(5) via Eqs. (9) and (12). If the triangle is closed, jEFj ¼ 0 and
the probability vanishes. When L increases, point E and point F
will circle around the corresponding dashed arcs, and the
distance jEFj oscillates. This means that the transition probability
oscillates.

FIG. 1. The leptonic unitarity triangle (LUT), where l ≠ l0,
ða; b; cÞ denote lengths of the three sides, and ðα; β; γÞ represent
the three angles.
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We can directly compute the oscillation probability by
using the above geometrical formulation. As shown below,
it is striking that by using this geometrical formulation
we can derive a very compact new formula of neutrino
oscillations, manifestly in terms of only three LUT param-
eters. Without losing generality, we assign CA

�!
as the x-axis

and its orthogonal direction as the y-axis. Thus, we can
derive the following coordinates for points E and F in the
x-y plane,

E∶ ðb cosφ2; b sinφ2Þ;
F∶ ðb − 2c sin

φ1

2
cos∠FAC; − 2c sin

φ1

2
sin∠FACÞ;

ð10Þ

where the angle ∠FAC ¼ αþ 1
2
ðφ1 − πÞ. With these, we

compute the length of the line segment EF as

jEFj2 ¼ 4c2sin2
φ1

2
þ 4b2sin2

φ2

2

− 8bc sin
φ1

2
sin

φ2

2
cos

�
φ1 − φ2

2
þ α

�
: ð11Þ

Using Eqs. (7), (9), and (11), we derive an elegant and very
compact new formula of vacuum oscillations,

Pl→l0 ¼ 4c2sin2Δ − 8bc sinΔ sin ϵΔ cos½ð1 − ϵÞΔþ α�
þ 4b2sin2ϵΔ; ð12Þ

where we have defined

Δ≡ Δ31 ¼
Δm2

31L
4E

; ϵ≡ Δ21

Δ31

¼ Δm2
21

Δm2
31

: ð13Þ

The antineutrino oscillation probability Pl→l0 can be
obtained from Eq. (12) under the replacement α → −α.
The new oscillation formula (12) invokes only three
independent geometrical parameters ðb; c; αÞ of the corre-
sponding LUT, while the other three nonindependent
parameters ða; β; γÞ have been explicitly removed in
Eq. (12). Furthermore, this explicitly proves that the four
PMNS-parameters ðθ13; θ23; θ12; δÞ could enter the oscil-
lation probability (12), only via their three independent
combinations in terms of the geometrical parameters of
LUT, such as ðb; c; αÞ. Note that Eq. (12) makes no
approximation. But it may be regarded as a Taylor
expansion in terms of sin ϵΔ or ϵ, which is small due to
ϵ ≈ 0.03 [16,17] and Δ ∼Oð1Þ for all known accelerator
oscillation experiments [12–15]. In Eq. (12), the first row is
ofOðϵ0Þ, serving as the leading order (LO). The second and
third rows, of Oðϵ1Þ and Oðϵ2Þ, belong to the next-to-
leading order (NLO) and next-to-next-to-leading order
(NNLO), respectively. No other higher order terms exist
because Eq. (12) is exact.

Using our new Eq. (12), we can rederive the oscillation
CP asymmetry All0

CP ¼ Pl→l0 − Pl→l0,

All0
CP ¼ 32S△ sinΔ sin ϵΔ sinð1 − ϵÞΔ

¼ 4Jðsin 2Δ21 þ sin 2Δ13 þ sin 2Δ32Þ; ð14Þ

where ðΔ; ϵÞ are defined in Eq. (13), and the Jarlskog
invariant J [18] equals twice of the LUT area,
J ¼ 2S△ ¼ bc sin α. The last line of Eq. (14) agrees to
the conventional CP asymmetry formula [5].
As a final remark, we consider the conventional vacuum

oscillation formula [4,5],

Pl→l0 ¼
X3
j¼1

jUl0jUljj2

þ 2
X
j<k

jUl0jUljUlkUl0kj cosð2Δjk ∓ ϕl0l;jkÞ;

ð15Þ
where the signs “∓” correspond to νlðνlÞ oscillations.
Equation (15) contains the CP phase angle [4,5],
ϕl0l;jk ≡ argðUl0jU�

ljUlkU�
l0kÞ. As we proved in

Ref. [6], each CP-phase shift ϕl0l;jk exactly equals the
corresponding angle of the LUT (modulo π), i.e.,
ðϕl0l;23;ϕl0l;31;ϕl0l;12Þ ¼ ðα; β; γÞ þ π, where the conven-
tion of each LUTangle ðα; β; γÞ in Eq. (2b) differs from that
of [6] by a minus sign. With this, we derived the vacuum
oscillation probability P½νl → νl0 �, fully in terms of the
geometrical parameters of the corresponding LUT [6],

Pl→l0 ¼ 4ab sinðΔ12 ∓ γÞ sinΔ12

þ 4bc sinðΔ23 ∓ αÞ sinΔ23

þ 4ca sinðΔ31 ∓ βÞ sinΔ31; ð16Þ

according to the current convention of Eq. (2). Although
Eq. (16) contains all six parameters (a, b, c) and ðα; β; γÞ of
the LUT, only three are independent. Hence, if we choose
three of them, say ðb; c; αÞ, the remaining parameters
ða; β; γÞ can all be expressed in terms of ðb; c; αÞ,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2 − 2bc cos α

p
;

β ¼ π − ðαþ γÞ;

γ ¼ arccos

�
a2 þ b2 − c2

2ab

�
: ð17Þ

We could try to eliminate the nonindependent parameters
ða; β; γÞ by substituting Eq. (17) into Eq. (16). But the
resultant form is very complicated and lengthy. Only after
we obtain the new formula (12) by the current geometrical
approach [Fig. 1 and Eq. (9)], we could use Eq. (12) as the
final answer (guideline) and eventually reduce Eq. (16) to
Eq. (12) after tedious derivations. Our new formula (12) is
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important because extending it we can further successfully
construct the LUT formulation of neutrino oscillations
including nontrivial matter effects, as we present in
Secs. III and IV.

III. NEUTRINO OSCILLATIONS IN MATTER
AND EFFECTIVE LEPTONIC

UNITARITY TRIANGLE

Including matter effects requires adding the following
new term Hi into the effective Hamiltonian H which
appears in the evolution equation (3),

Hi ¼
ffiffiffi
2

p
GFNe

0
B@

1

0

0

1
CA; ð18Þ

where the electron density Ne ¼ ðZ=AÞρNA, with ρ the
matter density, Z (A) the atomic number (atomic mass
number), and NA the Avogadro constant. Equation (18) is
for neutrino oscillations in matter, and for antineutrino
oscillations the matter term (18) flips sign [5]. Including
this matter term (18), we need to solve Eq. (3) with H
given by

H ¼ H0 þHi: ð19Þ
For the current LBL experiments, neutrino beams only pass
through the crust of the Earth. So Ne is well approximated
as a constant. Thus, we derive the solution of Eq. (3),
jνðLÞi ¼ e−iHLjνð0Þi. The Hamiltonian H0 can be dia-
gonalized by the PMNS matrix U, but H cannot, i.e.,
U†H0U is diagonal, but U†HU ¼ U†H0U þ U†HiU is
not. Hence, we need to rediagonalize H by an effective
mixing matrix Umð≡U þ δUÞ, which results in the effec-
tive neutrino masses ~mi. Thus, we have

H ¼ 1

2E
Um

0
B@

~m2
1

~m2
2

~m2
3

1
CAU†

m: ð20Þ

From the effective mixing matrix Um, we can construct the
effective leptonic unitarity triangles (ELUT), in the same
way as we did for analyzing the vacuum LUT in Sec. III.
When neutrino energy E is very low, H0 ≫ Hi and Um is
fairly close to U. Hence, in the limit E → 0, the ELUT
simply reduce to the corresponding LUT. When E
increases, ELUT gradually deviates from LUT since Um
deviates from U. Thus, the forms of ELUTwill vary under
the change of neutrino energy E.
The oscillation formula in matter is obtained by just

replacing the original LUT parameters, say ðb; c; αÞ, by the
new ELUT parameters ðbm; cm; αmÞ. We make the same
replacements for effective neutrino masses in Eq. (20).
This means that the geometrical presentation of neutrino

oscillations in Fig. 2 still holds after including the matter

effects. The only difference is to replace the vacuum LUT
by the ELUT in matter and the neutrino masses m1;2;3
by ~m1;2;3. When a neutrino propagates in matter and its
distance L increases, Point E and Point F in Fig. 2 will
circle around the corresponding arcs in the ELUT frame.
Then, the distance jEFj oscillates, and jEFj2 gives the
oscillation probability in matter. Hence, including matter
effects into Eq. (12), we deduce the oscillation formula,

Pl→l0 ¼ 4c2msin2Δm

− 8bmcm sinΔm sinðϵmΔmÞ cos½ð1 − ϵmÞΔm þ αm�
þ 4b2msin2ðϵmΔmÞ; ð21Þ

where parameters with subscripts “m” denote the corre-
sponding effective parameters in matter. For instance,
bm is the b-side of the ELUT from Um in Eq. (20).
Here, ðΔm; ϵmÞ are obtained from ðΔ; ϵÞ [cf. Eq. (13)]
under the replacements m1;2;3 → ~m1;2;3 [cf. Eq. (20)].
Note that Eq. (21) is an exact formula, and so far, we

have not made any approximation. When neutrino energies
lie between the solar resonance and atmospheric resonance,
0.1 GeV≲ E≲ 3 GeV [19], one has the matter density
ρ≃ 2.6 g=cm3 [20] for the Earth’s crust, and the averaged
ratio Z=A≃ 1=2, where Z and A are the atomic number
and mass number, respectively. With these, we deduce
the approximate relations after a nontrivial and lengthy
derivation,

cm ≃ c
1 − nE

; bm ≃ ϵb
nE

; αm ≃ α� π; ð22aÞ

ϵm ≃ −nE
1 − nE

; Δm ≃ ð1 − nEÞΔ; ð22bÞ

where nE is defined as

nE ¼ 2
ffiffiffi
2

p
GFNeE=Δm2

31. ð22cÞ

For clarity, we present the nontrivial derivation of
Eq. (22) in Appendix A. These are important relations
connecting the ELUT parameters in matter to the corre-
sponding LUT parameters in vacuum. They allow us to use
the vacuum LUT parameters to directly compute the
oscillation probability in matter. This makes our LUT
formulation applicable to the current and future LBL
oscillation experiments [12–15]. In the following Sec. IV
and Appendix B, we perform numerical analysis to
explicitly test the accuracy of the above matter formulas
(21) and (22) and discuss their validity.

IV. APPLICATIONS: TESTING THE PRECISION
OF GEOMETRICAL OSCILLATION FORMULA

So far, most of the LBL experiments measure neutrino
appearance via the oscillation channel νμ → νe. Using
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our general geometrical equation (21) together with the
approximate relations (22a) and (22b), we derive the
following analytical LUT formula for the appearance
oscillation probability,

PLUTðνμ → νeÞ

¼ 4c2

ð1 − nEÞ2
sin2½ð1 − nEÞΔ� þ

4ϵ2b2

n2E
sin2ðnEΔÞ

−
8ϵbc sin½ð1 − nEÞΔ� sinðnEΔÞ cosðΔþ αÞ

nEð1 − nEÞ
: ð23Þ

The antineutrino oscillation probability PLUTðνμ → νeÞ is
obtained from Eq. (23) under the replacement ðα; nEÞ →
ð−α;−nEÞ. We stress that the new formula (23) is fully
expressed in terms of only three independent parameters
ðb; c; αÞ of the LUT and is manifestly rephasing invariant.
We also note that the form of Eq. (23) holds for both
neutrino mass orderings. For the normal mass ordering
(m1 < m2 ≪ m3),Δ and ϵ are positive,while for the inverted
mass ordering (m2 > m1 ≫ m3), they are both negative.
In the following, we analyze the accuracy of Eq. (23)

for practical applications. We first compute the probability
from Eq. (23) and compare it with the exact numerical
result from solving the neutrino evolution equation (3). We
present this comparison in Fig. 3(a) and 3(b) for the on-
going NOνA experiment with baseline L ¼ 810 km. In plot
(a), the red dashed curves depict the prediction PLUT of our
LUT formula (23), and the green curve stands for the exact
numerical result PExact. In Fig. 3(b), we further present the
difference ΔP ¼ PLUT − PExact by the red dashed curve.
For the comparison in Fig. 3, we further examine the

approximate formula used by the Particle Data Group
(PDG) [5,19,21],

PPDGðνμ → νeÞ

¼ 1

ð1 − nEÞ2
sin2θasin22θxsin2½ð1 − nEÞΔ�

−
ϵ

nEð1 − nEÞ
sin 2θs sin 2θa sin 2θx cos θx sin δ

× sinΔ sinðnEΔÞ sin½ð1 − nEÞΔ�
þ ϵ

nEð1 − nEÞ
sin 2θs sin 2θa sin 2θx cos θx cos δ

× cosΔ sinðnEΔÞ sin½ð1 − nEÞΔ�

þ ϵ2

n2E
sin22θscos2θasin2ðnEΔÞ; ð24Þ

where ðθs; θa; θxÞ≡ ðθ12; θ23; θ13Þ and δ is the CP angle.
Equation (24) is widely adopted by LBL experiments for
data analysis, including the recent work of T2K [20].
(Some other approximate formulas using the conventional
PMNS parametrization appeared in the literature [22].)
Equation (24) is much more complex than our LUT
Eq. (23). For comparison, we plot the probability PPDG

by blue dashed curves in Fig. 3(a). We further depict
the difference ΔP ¼ PPDG − PExact (blue dashed curve) in
Fig. 3(b). For illustrating the applications of Eqs. (23) and
(24) in Fig. 3, we have input central values of the current
global fit [16] for neutrino parameters under the normal
mass ordering. We have also made similar comparisons
under the inverted mass ordering.
Figure 3 demonstrates that for applications to LBL

experiments (such as NOνA [14]) our LUT formula (23)
is very accurate, and its error is negligible for the current
experimental precision. It shows that Eq. (23) is as precise
as or better than the widely used PDG Eq. (24).
Equation (23) contains only three independent LUT
parameters ðb; c; αÞ and is manifestly rephasing invariant.
In contrast, Eq. (24) depends on all four PMNS-
parameters ðθs; θa; θx; δÞ.
Note that Eq. (23) is derived from our independent new

LUTapproach and stands on its own, even though Fig. 3(a)
shows that Eqs. (23) and (24) are in main agreement.

NO A L 810km

PPDG

PLUT

PExact

1 2 3 4 5 6
0.00

0.02

0.04

0.06

0.08

0.10

0.12

E GeV

P

PPDG PExact

PLUT PExact

NO A L 810km
JY19931126

1 2 3 4 5 6
0.010

0.005

0.000

0.005

0.010

E GeV

P

(a)

(b)

FIG. 3. Comparison of the approximate analytical oscillation
formulas (23) and (24) with the exact numerical result (green
curve) for the case of NOνA experiment (L ¼ 810 km). Equa-
tion (23) is plotted in the red curve, and Eq. (24) is in blue curve.
Plot (a) shows that both Eqs. (23) and (24) are fairly accurate, and
their errors are negligible for practical use. Plot (b) depicts the
differences ΔP ¼ PLUT − PExact (red curve) and ΔP ¼ PPDG −
PExact (blue curve), showing that our LUT formula (23) is as
accurate as (or better than) Eq. (24).
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We stress that Eqs. (23) and (24) have their own advantages
via two independent formulations of ν-oscillation; they are
complementary for studying different aspects of neutrino
oscillations. For current illustrations, we mainly consider
the important on-going experiment NOνA (L ¼ 810 km)
[14] as an example. We have also reached similar con-
clusions by analyzing other LBL experiments MINOS
(L ¼ 735 km) [13] and T2K (L ¼ 295 km) [20], as well
as the planned future experiment DUNE (L ¼ 1300 km)
[15]. For further justifications of our LUT matter for-
mula (23), we present explicit analyses for both T2K and
DUNE experiments in Appendix B, covering a wide
baseline range of L ¼ 295–1300 km.
In passing, we note that, in principle, both formulas (23)

and (24) require ϵ ≪ nE, which corresponds to a lower
bound on neutrino energy,

E≳ 0.34 GeV

�
Δm2

21

7.6 × 10−5 eV2

1.4 cm−3NA

Ne

�
; ð25Þ

as given in Ref. [19] and updated by PDG [5] (cf. the note
below Eq. (14.76) in Ref. [5]). For the NOνA experiment,
the selected neutrino energy range is 1.5 GeV ≤ E ≤
2.7 GeV [14], which well obeys the lower bound (25).
For the case of the T2K experiment, it has a neutrino energy
range of 0.1 GeV ≤ E ≤ 1.2 GeV [12]. So we may con-
cern the validity of our formula for E ¼ ð0.1–0.34Þ GeV.
Our derivation in Sec. III has made the ϵ expansion, which
requires ϵ ≪ nE. We note that the approximate Eq. (22a)
for bm is singular in the limit E → 0 (which causes
nE → 0). But our Eq. (23) is free from this singularity
because its nE ¼ 0 poles are actually canceled in the limit
nE → 0. So, Eq. (23) still holds well around this limit. Also,
a singularity nE ¼ 1 appears in Eq. (22a) for cm. Again, it is
fully canceled in Eq. (23) and is harmless. Note that the
PDG Eq. (24) is also singularity-free in the limit nE → 1,
or, nE → 0 [even though the perturbative expansion
requires ϵ ≪ nE and thus the bound (25)]. But exact
numerical calculations have verified that Eq. (24) remains
fairly accurate below the bound (25). Hence, Eq. (24) was
safely adopted by T2K analysis [12]. Reference [23]
recently explained why Eq. (24) still holds at energies
below the bound (25). For our LUT Eq. (23), we have
demonstrated its validity for various oscillation experi-
ments by comparing it with the exact numerical results in
Fig. 3 and in Appendix B. We also expect similar reasons to
explain the high numerical precision of our LUT Eq. (23)
and will study the details of this issue elsewhere.

V. CONCLUSIONS

Leptonic unitarity triangles (LUT) provide fundamental
means to geometrically describe CP violation in neutrino
oscillations. In this work, we presented a new unified
geometrical formulation for connecting the LUT to
neutrino oscillations in vacuum and in matter. We

demonstrated that the dependence of the vacuum oscillation
probability on the PMNS mixing matrix can be reformu-
lated in terms of only three independent geometrical
parameters of the corresponding LUT, which are rephasing
invariant. We further constructed the geometrical formu-
lation of oscillations in matter and derived a very compact
and accurate new oscillation formula.
In Sec. II, we proposed a new geometrical LUT

formulation of the dynamical 3-neutrino oscillations. We
proved that the vacuum oscillation probability can be
derived by directly computing the distance of two points
circling around a vertex of the LUT, as shown in Fig. 2 and
given in Eqs. (9) and (12). Formula (12) manifestly
depends on only three independent parameters of the
corresponding LUT, and takes a much simpler form than
Eqs. (16) and (17) which we derived before [6]. For
neutrino oscillations in matter, we constructed the corre-
sponding Effective LUT (ELUT) in Sec. III, which is a
deformed LUT by including matter effects. Equations (21)
and (22) presented a new geometrical oscillation formula
including matter effects. Note that Eqs. (12) and (21)
exhibit a LOþ NLOþ NNLO structure, but hold exactly
without approximation. To analytically connect the ELUT
parameters in Eq. (21) to the vacuum LUT parameters,
we deduced new relations (22a) and (22b) under proper
expansions, as shown in Appendix A. With these, we
further derived a very compact analytical formula (23) in
Sec. IV. We demonstrated that Eq. (23) has high accuracy
for applications to long baseline experiments, such as
NOνA (Fig. 3) and MINOS, as well as T2K and DUNE
(cf. Figs. 4 and 5 in Appendix B). We showed that the
numerical precision of our LUT formula (23) is as good as
(or better than) the widely used PDG Eq. (24) [5], for the
long baseline oscillation experiments T2K, MINOS,
NOνA, and DUNE.
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APPENDIX A: DERIVATION
OF MATTER FORMULA (22)

In this appendix, we present the highly nontrivial
derivation of the matter formula (22), shown at the end
of Sec. III in the main text.
Inspecting the effective Hamiltonian H ¼ H0 þHi in

Eqs. (4) and (18), we can separate out a diagonal term
ðm2

1=2EÞI and express H as follows:
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H ¼ m2
1

2E
Iþ Δm2

31

2E
UKU†; ðA1Þ

where I is the 3 × 3 unit matrix. The dimensionless matrix
K takes the following convenient form and needs to be
diagonalized,

K ¼

0
B@

0

ϵ

1

1
CAþ nEueu

†
e; ðA2Þ

where u†e is the first row of U. To be concrete, we
parametrize U as

U ¼

0
B@

cscx sscx sx
−e−iδssca − cssasx e−iδcsca − sssasx sacx
e−iδsssa − cscasx −e−iδcssa − sscasx cacx

1
CA;

ðA3Þ

where we have used notations, ðsj; cjÞ ¼ ðsin θj; cos θjÞ
and ðθs; θa; θxÞ ¼ ðθ12; θ23; θ13Þ. Thus, we have

ue ¼ ðcscx; sscx; sxÞT; ðA4Þ

where ue is real under this convention, and thus u†e ¼ uTe .
Hence, we are actually going to diagonalize a real matrixK.
The final result of computing the ELUT does not depend
on the parametrization of U. Note that Eq. (A3) can be
obtained from the standard parametrization of PMNS
matrix US [5] via simple rephasing,

U ¼ diagð1; e−iδ; e−iδÞUSdiagð1; 1; eiδÞ; ðA5Þ

where US is given by [5],

US¼

0
B@

cscx sscx e−iδsx
−ssca − eiδcssasx csca − eiδsssasx sacx
sssa − eiδcscasx −cssa − eiδsscasx cacx

1
CA:

ðA6ÞUsing the following 1-2 rotation

O12 ¼

0
B@

cs −ss 0

ss cs 0

0 0 1

1
CA; ðA7Þ

we can rotate ue into a vector containing only two nonzero
elements,

u†eO12 ¼ uTeO12 ¼ ðcx; 0; sxÞ: ðA8Þ

Then, we find that nEueu
†
e in Eq. (A2) will be rotated into a

matrix having only two off-diagonal elements,

nEOT
12ðueu†eÞO12 ¼ nE

0
B@

c2x 0 sxcx
0 0 0

sxcx 0 s2x

1
CA: ðA9Þ

For ϵ ¼ 0, after the 1–2 rotation O12, Eq. (A2) will be
rotated to

OT
12K0O12 ¼

0
B@

0

0

1

1
CAþ nE

0
B@

c2x 0 sxcx
0 0 0

sxcx 0 s2x

1
CA;

ðA10Þ
where K0 is defined as, K0 ¼ Kjϵ¼0. Thus, to diagonalize
the matrix in Eq. (A10), we just need a 1–3 rotation,

O13 ¼

0
B@

cθ 0 sθ
0 1 0

−sθ 0 cθ

1
CA; ðA11Þ

where ðsθ; cθÞ ¼ ðsin θ; cos θÞ. Under the rotation (A11),
Eq. (A8) is transformed to

u†eO12O13 ¼ ðcy; 0; syÞ; ðA12Þ
where ðsy; cyÞ ¼ ðsin θy; cos θyÞ, and θy ¼ θ þ θx. Then,
the matrix (A10) is rotated to

OT
13O

T
12K0O12O13 ¼

0
B@

s2θ 0 −sθcθ
0 0 0

−sθcθ 0 c2θ

1
CA

þ nE

0
B@

c2y 0 sycy
0 0 0

sycy 0 s2y

1
CA

¼

0
B@

λ− 0 0

0 0 0

0 0 λþ

1
CA; ðA13Þ

where we have defined

λ− ¼ s2θ þ nEc2y; λþ ¼ c2θ þ nEs2y: ðA14Þ
In the second equality of Eq. (A13), we have imposed the
following condition on the (1,3) and (3,1) elements to
ensure full diagonalization,

nEsycy − sθcθ ¼ 0: ðA15Þ
This leads to

sinð2θÞ ¼ nE sinð2θyÞ: ðA16Þ
Given the relation θy ¼ θ þ θx, we can solve θ as a function
of θx,
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tan 2θ ¼ nE sinð2θxÞ
1 − nE cosð2θxÞ

: ðA17Þ

Hence, we have determined the 1–3 rotation and diagon-
alized the matrix K under ϵ ¼ 0 limit. The diagonalization
matrix is O12O13, and the effective mixing matrix in this
case corresponds to Um0 ≡Umjϵ¼0, as given by

Um0 ¼ UO12O13 ¼

0
B@

cy 0 sy

−sysa cae−iδ cysa

−syca −sae−iδ cyca

1
CA: ðA18Þ

Hence, when ϵ ¼ 0, the effective unitarity triangle
extracted from Eq. (A18) is actually a line for νe − νμ or
νe − ντ oscillations, since in either case the length of the b
side vanishes,

bm0 ¼ 0: ðA19Þ

The other two sides of this LUT have the same length,

am0 ¼ cm0 ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − nEÞ2 þ 4nEs2x
p ; ðA20Þ

where c ¼ sxcxsa (or c ¼ sxcxca) is the length of c side of
the vacuum LUT for νe − νμ (or, νe − ντ) oscillations. We
have made use of Eqs. (A16) and (A17) for deriving the
formula (A20).
Next, we compute the corrections from nonzero ϵ. For

ϵ ≠ 0, we can split the matrix K in Eq. (A2) as follows:

K≡ K0 þKϵ; ðA21Þ

where

K0 ¼

0
B@

0

0

1

1
CAþ nEueuTe ; Kϵ ¼

0
B@

0

ϵ

0

1
CA:

ðA22Þ
Then, under the rotation O12O13, the matrix Kϵ transforms
as

OT
13O

T
12KϵO12O13 ¼ ϵ

0
B@

s2s sscs 0

sscs c2s 0

0 0 0

1
CAþOð10−3Þ;

ðA23Þ
where the corrections due toO13 rotation are suppressed by
ϵθ13 ¼ Oð10−3Þ and are negligible in the final result.
Hence, under the rotations O12O13, we have the matrix
K transform as

K →

0
B@

λ− 0 0

0 0 0

0 0 λþ

1
CAþ ϵ

0
B@

s2s sscs 0

sscs c2s 0

0 0 0

1
CAþOð10−3Þ:

ðA24Þ
We can further diagonalize the right-hand side of

Eq. (A24) by a rotation O0
12,

O0
12 ¼

0
B@

cr −sr 0

sr cr 0

0 0 1

1
CA; ðA25Þ

where ðsr; crÞ ¼ ðsin θr; cos θrÞ. Thus, we can determine
the angle θr as follows:

tan 2θr ¼
ϵ sinð2θsÞ

λ− − ϵ cosð2θsÞ
: ðA26Þ

With these, we combine the above rotationO0
12 withUm0 in

Eq. (A18) and deduce the following rotation for full
diagonalization:

Um ¼ Um0O0
12

¼

0
B@

cycr −srcy sy

srcae−iδ − crsasy crcae−iδ þ srsysa cysa
× × ×

1
CA;

ðA27Þ
where × stands for the elements irrelevant to our current
concern. For the νe − νμ LUT, using Eqs. (A27) and (A26),
we derive

bm ¼ srcyjcrcae−iδ þ srsysaj
¼ ϵs2scacy

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðλ− − ϵc2sÞ2 þ ϵ2s22s

p ½1þOðϵθxÞ�; ðA28Þ

where ðs2s; c2sÞ ¼ ðsin 2θs; cos 2θsÞ. This gives a small but
nonzero length for the b-side of the deformed effective
unitarity triangle,

bm ≃ ϵ

λ−
b: ðA29Þ

The length of c-side is not changed from the leading order
result because the last column of Um equals that of Um0,

cm ≃ cm0; ðA30Þ
with cm0 given by Eq. (A20). Since the current global
fits of neutrino data [16,17] restrict the 3σ range of
θ13 ≡ θx ≃ 0.137–0.158 ¼ Oð0.1Þ ≪ 1, we see that s2y ∼
s2θ ∼ s2x ¼ Oð10−2Þ are fairly small. This applies toEqs. (A20)
and (A14). Hence, we derive the approximate relations,
bm ≃ ϵb=nE and cm ≃ c=ð1 − nEÞ, which lead to Eq. (22a).
From the definition of α in Eq. (2b), and using the

formulas (A3) and (A27), we have α ¼ − argð−Uμ2Þ and
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αm ¼ − argððUmÞμ2Þ, where the expression of αm does not
have a “−” sign in front of ðUmÞμ2 because it is canceled by
the negative sign in ðUmÞe2. Ignoring sx; sy ¼ Oð0.1Þ, we
have argðUμ2Þ≃ argððUmÞμ2Þ, and thus αm ≃ α� π, which
reproduces the third relation of Eq. (22a). Hence, the final
ELUT is approximately given by Eq. (22a). To derive
Eq. (22b), we note that at Oðϵ0Þ the eigenvalues of the
matrix K in Eq. (A24) are ðλ−; 0; λþÞ. Accordingly, the
effective Hamiltonian (A1) has three eigenvalues,

�
m2

1 þ Δm2
31λ−

2E
;
m2

1

2E
;
m2

1 þ Δm2
31λþ

2E

�
; ðA31Þ

which should equal the corresponding eigenvalues
ð ~m2

1; ~m
2
2; ~m

2
3Þ=ð2EÞ as defined in Eq. (20). Hence, we

deduce the effective mass squared differences at Oðϵ0Þ,

Δ ~m2
31 ≃ ðλþ − λ−ÞΔm2

31;

Δ ~m2
21 ≃ ð−λ−ÞΔm2

31: ðA32Þ

Using this and Eq. (A14), we derive the approximate
formulas, ϵm ≃ −nE=ð1 − nEÞ and Δm ≃ ð1 − nEÞΔ, by
dropping smallOðs2xÞ terms. This just reproduces Eq. (22b)
in the main text.
In summary, we have proven the approximate formulas

(22a) and (22b) in the main text.

APPENDIX B: FURTHER TESTS
OF MATTER FORMULA (23)

In this appendix, we further present two important tests
of our new LUT formula (23) by using the LBL oscillation
experiments T2K [20] and DUNE [15].

PPDG

T2K L 295km

PLUT

PExact

0.5 1.0 1.5 2.0
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0.02
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0.12

E GeV

P

T2K L 295km

PPDG PExact

PLUT PExact

0.5 1.0 1.5 2.0
0.010

0.005

0.000

0.005

0.010

E GeV

P
(a)

(b)

FIG. 4. Same as Fig. 3 in the main text, except changing the
baseline length to L ¼ 295 km, representing the case of T2K
experiment. In plot (a), the green solid curve stands for the exact
numerical result PExact, the red dashed curve denotes the
prediction PLUT of the approximate analytical LUT formula
(23), and the blue dashed curve depicts the result PPDG of the
approximate analytical PDG formula (24). Plot (b) depicts the
differences ΔP ¼ PLUT − PExact (red curve) and ΔP ¼ PPDG −
PExact (blue curve), showing that our LUT formula (23) is as
accurate as (or better than) Eq. (24) for the case of T2K
experiment.

DUNE L 1300km

PPDG

PLUT

PExact

1 2 3 4 5 6
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1 2 3 4 5 6
0.010

0.005

0.000

0.005

0.010

E GeV

P

(a)
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FIG. 5. Same as Fig. 3 in the main text, except changing the
baseline length to L ¼ 1300 km, representing the case of DUNE
experiment. In plot (a), the green solid curve stands for the exact
numerical result PExact, the red dashed curve denotes the
prediction PLUT of the approximate analytical LUT formula
(23), and the blue dashed curve depicts the result PPDG of the
approximate analytical PDG formula (24). Plot (b) depicts the
differences ΔP ¼ PLUT − PExact (red curve) and ΔP ¼ PPDG −
PExact (blue curve), showing that our LUT formula (23) is as
accurate as (or better than) Eq. (24) for the case of DUNE
experiment.
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The baselines of the T2K and DUNE experiments are
L ¼ 295 km and L ¼ 1300 km, respectively. We present
the predictions of our Eq. (23) for the T2K experiment in
Fig. 4(a) and for DUNE experiment in Fig. 5(a), by the
red dashed curves. Then, we compare them with the
exact numerical results (green solid curves) in each
plot. For comparison, we further show the results of the
conventional formula (24) (used by the PDG [5]) in the

blue dashed curves. We see that in each case the
three curves agree with each other to high precision,
similar to our findings in Fig. 3 for NOνA experiment.
In Figs. 4(b) and 5(b), we further compare the differences,
ΔP ¼ PLUT − P (red dashed curves) and ΔP ¼ PPDG − P
(blue dashed curves). Again, these comparisons explicitly
demonstrate that our LUT formula (23) is as accurate as (or
better than) the conventional PDG formula (24).
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