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The couplings of the isosinglet axial-vector currents to the # and 7 mesons are evaluated in a stable,
model-independent way by use of polynomial kernels in dispersion integrals. The corrections to the
Gell-Mann—Oakes—Renner relation in the isoscalar channel are deduced. The derivative of the topological
susceptibility at the origin is calculated taking into account instantons and instanton screening.
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I. INTRODUCTION

The subject of n—# mixing has been a topic of
discussion since SU(3) flavor symmetry was proposed
[1-6]. The gluon axial anomaly and the corresponding
topological charges of the isoscalar mesons imply that the
SU(3) singlet axial-vector current is not conserved in the
chiral limit. Initially, the octet-singlet mixing was described
by an angle & which was thought to be small and later given
larger values [1]. It was later realized that the couplings of
the isoscalar axial currents to the pseudoscalar mesons need
not be dependent and that the single-angle description is
inadequate. A number of theoretical approaches have been
used to compute these couplings. Apart from chiral
perturbation theory [7] and QCD sum rules [8], Shore
[9] has used the generalized Gell-Mann—Oakes—Renner
[10] relation to evaluate the couplings.

A related topic is the calculation of the topological
susceptibility and its derivative at zero momentum transfer.
The results obtained show a wide dispersion [11-13]. Such
a dispersion in the results and instabilities in the parameters
which enter the calculations is inherent in the Borel
(Laplace) sum rules [14] used by the authors.

This method starts from a dispersion integral,

1 ©
Residue = —/ dte™ /™ ImP(z).
T Jth

(1.1)

The residue contains the physical quantity of interest and
the integral runs from the physical threshold to infinity. The
integral is then split into two parts,

o 2 ! 2
/ dte™/M ImP(1) = / " dte=t/M ImP(1)
th th
n / ® dte ™ Imp(r),  (1.2)
Ty

where 7, signals the onset of perturbative QCD. In the first
integral on the rhs of the equation above ImP(r) describes
the unknown contribution of the resonances. The second
integral takes into account the contribution of the QCD part
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of the amplitude when P(z) is replaced by its QCD
expression. M2, the square of the Borel mass, is a parameter
introduced in order to suppress the unknowns of the
problem. If M? is small, the damping of the first unknown
integral is good but the contribution of the unknown higher-
order nonperturbative condensates increases rapidly. If M?
increases, the contribution of the unknown condensates
decreases but the damping in the resonances region worsens.
An intermediate value of M? has to be chosen. Because M?
is anonphysical parameter the results should be independent
of it in a relatively broad window; this is not the case in the
problems at hand. The choice of the parameter 7, which
signals the onset of perturbative QCD is another source of
uncertainty. In this work we shall use low-order polynomial
kernels in order to suppress the contribution of the unknown
continuum. The coefficients of these polynomials are
determined by the masses of the isoscalar resonances and
the method avoids the instabilities and arbitrariness which
accompany the use of exponential kernels. Having deter-
mined the couplings of the isoscalar currents to the 77 and 7/
mesons, we shall turn to the study of the corrections to
the Gell-Mann—Oakes—Renner relation [10] in the isoscalar
channel and recover m,,. Finally, we shall evaluate y'(0)—
the derivative of the topological susceptibility at zero
momentum transfer—taking into account the effect of
instantons and their possible screening which can be
important, as has been emphasized by Forkel [15].

II. AXTAL CURRENTS AND THEIR COUPLING
TO THE 5 — ' MESONS

The isoscalar components of the octet of axial-vector
currents couple to the physical # and 7' mesons:

(2.1)
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In the SU(3) limit fg, = f, = 92.4 MeV, and in the
two-mixing-angle description adopted here the coupling
constants above are independent quantities. The axial-
vector currents are written in terms of the quark fields:

8 Ly d 5
AI(4 ) = ﬁ (l/l}/ﬂysl/l + d}’yy5d - 2S}’M75S)’
(2.2)

2, - _
AB = \/%(M]/MYSM + d]/,ﬂ/sd + s}/ﬂYSS)'

In the limit m, = m,; = 0, the divergences of these
currents are

2
9,A8 (=2im,3yss),

=V

2 L 2
o= ficaimirr+ o

where Q = 34%‘ GG is the anomaly with GG = Gﬂ,,(N}”’, with
G being the gluon field strength tensor and GW =

(2.3)

2 WWG’”’ its dual. Consider now the correlator

), — / dxei (OTAD (A9 (0))0),  (2.4)
where i, j =0, 8
It can be decomposed,
,,(4%) = (=9uq* + 4,4,)1(¢*)V
+ 4,q,11(¢*) ), (2.5)
and we let
(r = ¢%) =W (1) + 0O (7). (2.6)

Start with 188 (). At low energies it has two poles,

—4fr  4f3,
I8 (1) = Tor _ Yo T

I=—mp I—mp

(2.7)

and a cut on the real positive ¢ axis running from the
continuum threshold to oo.

The amplitude also possesses a QCD expansion, valid in
the complex ¢ plane for [¢| large and not too close to the
physical cut. The aim of the calculation is to relate the
residues of the poles to the QCD parameters,

C88 C88

&% (1) = TI58, +—+ + .. (2.8)

The perturbative part is known to five loops in the chiral
limit [16],
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+ as [k3 - —ﬂ%Fs - _”zﬁlﬂZ

< PrFs+ ok +ﬂ23)

ﬂ1< ﬂ1>F3+ ﬁz)L3+ﬂ; ]} (2.9)

where a, = a,() L,=In(z), p =

T °

%(11 _%”f), pr=

ﬂ
=5 (102 =Fny), fy = =5 (557 =g ny + 53 nf), Fs =
1.9857 — 11530, F, = 182427 — = (4)2 — 42158n, +

.0862n?., and k3 = 49.076.
The strong coupling constant is likewise known to five-

loop order [17] in terms of “S = /}_2L with L =

A? defines the standard MS scale to be used here.

In(5%), where

2
C¥ == (1 + 2a,)m? (2.10)
T

is a correction to the perturbative part proportional to m?
[18] and

1/ 11 W 8T 5
ng :6 <l —Eas> <aSGG> +§ (1 _gas _za?> <mS§S>’

—448

CP =——a,(u)*. (2.11)
3

Consider next the contour C shown in Fig. 1 consisting
of two straight lines parallel to the real axis, located just
above and just below the cut, and running from the

Complex t-plane

22
my my

FIG. 1. The contour of integration C.
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continuum threshold to a large value R and the circle of
radius R
And consider the integral

/ def (n)I(t),

where f (1) is an entire function. On the circle, I1(¢) can be
replaced by Ilgcp(f) to a good approximation.
Applying Cauchy’s theorem leads to

) = —% / * deF (0 ImII()

th

413, (m3) + 412, f(

e At ()Tl (1)

dif (1) ey ().
(2.12)

2M

The first term on the rhs of the equation above—which
represents the contribution of the physical continuum—
constitutes the main uncertainty of the calculation. The
choice of the so-far arbitrary function f() aims at reducing
this term as much as possible so that it may be neglected.
All that is known about the continuum is that it is
dominated by the pseudoscalar excitations #7(1295) and
1(1440), as well as the axial-vector isoscalars f(1285) and
f1(1420) with practically the same masses.

We shall choose for f(¢) a simple polynomial,

f)=p)=1-ait—a’,

where the coefficients a; and a, annihilate p(r) at the
masses of the resonances, i.€.,

p(1) = 1-1.090 GeV~21 4 294 GeV~*2.  (2.13)

With this choice the integrand is reduced to only a
few percent of its initial value on the interval 1.5 GeV? <
t < 2.5 GeV? and the contribution of the continuum is thus
practically annihilated.

e (¢) has a different analytical structure than the
physical amplitude: it has a cut on the real ¢ axis which

starts at the origin so that 5 §, dif (1)[1yex (1) = 0, where

C' is the contour shown in Fig. 2.
It then follows that

. f? dtf (T (1) = — - / ® ()T (1), (2.14)

T Jo

Also,
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Complex t-plane

FIG. 2. The contour of integration C’" used to transform the
integral IT,,.,(¢) over the circle into an integral over the real axis.

v P A

1 C88 C88 C88
_ 2
_2Mi7{dt(1—a1z—a2z )( Tt )

=CP—q,C8 —a,CP. (2.15)

The second term on the rhs of Eq. (2.12) equals the
contribution of the integral over the circle of IT,..(¢) and
provides the main contribution. The last two terms are
contributed by the corresponding ones in Eq. (2.8). Thus,

Af5,p(my)+4fg, p(my)
I
- A i p(H) I (1) = CB 4+ a, CH + a,CH. (2.16)

The choice of R is determined by stability considerations.
It should not be too small as this would invalidate the
operator product expansion on the circle, nor should it be
too large because p(r) would start enhancing the contri-
bution of the continuum instead of suppressing it. We seek
an intermediate range of R for which the integral in
Eq. (2.16) is stable. This turns out to be the case for
1.5 GeV? < R < 2.5 GeV?. The integral provides the main
contribution to the rhs of Eq. (2.16).
A similar treatment of the amplitude 1% (¢) leads to

Af5,p(my) + 415, p(my)

:% A dtp(£)TmIT%, () —

00
+ 25 C3 B

P +a,CY
(2.17)

where I19%, = IT55,, and C{° and C° are the nonperturba-
tive coefficients of the QCD expansion,
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P
Mgen (1) = Moen (1) + ==+ -+,
1
CcP = = (1 +2a,)m?2,
1 11
I T
Y = 5 <1 18aS> (a,GG)
4 7 75
+ 3 (1 3% €a§> (m5s),
448
Cg() = —gﬂ'zas<ﬁu>2 (218)

Finally, we turn to the mixed amplitude 1% (¢), with the
result

4f8nf0np(m%) + 4f817’f011’p<m$’)

= —C% 4 4,C% + a,C, (2.19)
with
-2
C(1)8 = 7 (1 + 2a )m%,
—8v2 7 75
C(2)8 = T\/_ < — gas - ?a%> <mq§S>»
B =0 (2.20)

Equation (2.20) is distinguished from Egs. (2.16) and
(2.17) in that the dominant perturbative contribution is now
absent and the smallness of its rhs will result in the
smallness of the 7 —#' mixing, i.e., of the couplings f,
and fg,.

Equations (2.16), (2.17), and (2.19) are however
insufficient to determine all four couplings. An additional
equation is obtained by considering the integral
s [ dr tp()T1%(1).

The fast convergence of the amplitude—due to the absence
of the perturbative part in the asymptotic expansion—
guarantees the reliability of the result. This yields

1 R
[ dep© i Terec)
o

= N W

i

0.034 Gev’
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4f811f011p(m%)m% + 4f8n’f0n’p<m§’)mi’

= —C® 4 a,CPB. (2.21)

The numbers used for the condensates are
my, = (.10 +.01) GeV,
—(5s) = (.012 £.002) GeV3,
{a,GG) = .013 GeV*,
and the value of the integral in Egs. (2.16) and (2.17) at the
stability values of Ris 1 [ dip(1)ImI]e. (1) = .034 GeV?,
as shown in Fig. 3.

These finally yield for the couplings

fay = .104 GeV, Sfay = —.046 GeV,
Sfoy, =.042 GeV, Sfoy =160 GeV, (2.22)
which correspond to the mixing angles
0g = tan™! (fﬁ> — —24° and
8n
0, = tan™! <ﬂ> = —14.7°. (2.23)
(74

The values obtained above can be used in the calculation
of the corrections to the Gell-Mann—QOakes—Renner relation
[10] in the isoscalar channel. A Ward identity introduces a
subtraction which improves the convergence of the
dispersion relation and therefore its reliability.

Start with the correlator

T38(1) = / idxe'*(0|TD®) (x)D®)(0)[0),  (2.24)
where D(®) = B”Af,g),
—4f2 m* Af2 omY,
T38(1) = Tsn - (2.25)
t - m” t - mnr

which satisfies the Ward identity

/

Ao b o4

! ! ! !

1
22 2.4 2.6 2.8 3 RinGeV?

FIG. 3. The variation of 1 [R dtf(r)ImII(z) as a function of R.
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T88(0) = —1?6<msfvs>.

Introducing a subtraction consists in considering the

integral - [ 4 p(1)I1%8(¢).
This gives

symyp(my) + fg,me p(my)

4 1 17 R
—(m,5s W (1+— dip(t
Hmss) +mt{ ot (1450 ) [Manto

4 1 ~
+ 34 <2(ms§s> ~ (aSGG)) } (2.26)
Numerically,
faymyp(my) = .002 Gev*
which results in recovering m,),
m, = (500 + 30) MeV. (2.27)

The uncertainly is estimated from the one in the
parameters.

III. THE TOPOLOGICAL SUSCEPTIBILITY
AND ITS DERIVATIVE AT ZERO
MOMENTUM TRANSFER

The topological susceptibility

£ =i [ @ oirowoo) (3.1
has poles at the pseudoscalar mesons
__{0lg|=)* _ {0[@ln)* _(0lQln")?
x(1) = - i t-ml  i-md +.. (32

Consider again the integral 51— [ % p(r)y(r) with the
same polynomial p(7) introduced in order to suppress the
contribution of the physical continuum. It gives
(0]Q[n)*

(0]Q]=°)? (olQlr)?

x(0) = R s p(m%)+7m$/ p(my)
1 dt
R S QCD
b o (0r%P(), (33)
and the derivative is
(0[Q|=%)* _(0|Q[n)* (0|Qln')?
)(/<O) - al)((o) = mi + m: p(m,%) + m;/
dt
— P — QCD (), 4
b PP (34)
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The coupling (0|Q|z°) was given in Ref. [19],

R ]

3.5
mg + m, ( )

and the couplings (0|Q|n) and (0|Q|y') are obtained by
sandwiching Eq. (2.3) between the vacuum and the 7, #/
states,

(0[Q[n) = \/lzz(fgn - V2fo,)m2,
(01Qn') = \/g(fgn' - \/ifon’)mi/-

The QCD expression is [11-13]

(3.6)

){QCD(t) = C21t2 In—t + C22t2(ln —t>2 + COI In -t + COO
c., C.,

—l—T—l—t—z—i—I(z‘), (3.7)
where /() stands for the instanton contribution and
ag\ 2 83 a;
Y R N S
€ (871’) 71’2( T3 ﬂ)’
9 (a,
Cyn = 1 <;> Gy,
9 (a,\?/a,  ~
Co=—(2) {%66),
ol 64(71’) <n’ >
1 .
cr-i(5)0e)
8\ 7 b2
15 ag\ [ag =\?
C,=-—n(2) (256G,
? 128" <ﬂ><ﬂ' >
1 _
Coo=—— (E V(%L 66 (3.8)
16 \ « b2

When calculations are carried out and numbers are inserted,
Eq. (3.3) yields

x(0) = .94 x 1073 GeV* + 6, (3.9)
where
1 dt
6 =— Q@ —p(0)I(t 3.10
=5 PO (3.10)
denotes the instanton contribution. The derivative is
7' (0) = ay(0) + 1.30 x 1073 GeV? + 6,, (3.11)

where
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1 dt

8, = T t—zp(t)l(t). (3.12)

The instanton term /(¢) is model dependent; the form
used by loffe and Samsonov [11] is

10 = [ dpnlp)o*K3(0p).
where

n(p) =nedlp—pc).  pe=15GeV™",  (3.13)
and K, (Qp) is the MacDonald function. It should be noted
however that important screening corrections (as has been
emphasized by Forkel [15]) can considerably modify
Eq. (3.13).

I shall take the screening corrections into account simply
by considering the overall factor as a free parameter to be
determined by the calculation. Thus, let

I(1) = ct>K3(p/—1). (3.14)

Asymptotic forms of K,(x) were given by Dwight [20]:
these are used to compute integrals of the form 7, =
s [ dit"K3(t), which give the ratio

52 o IO _alll —0212 o

= = —.53 GeV2
o ILi—al,—ayls

(3.15)
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and yield

2(0) = 1.75 x 1073 GeV*2 + .55 GeV=24(0). (3.16)

x(0) has been computed on the lattice [21] with the
result y(0) = —1.33 x 107 GeV*. Another value is the
one given by the Witten-Veneziano [22,23] formula
obtained in the large-N . limit,

10) = =12 o+ = 2
= —1.05 x 1073 GeV*, (3.17)
yielding finally
7(0) = (1.1 £.1) x 1073 GeV?2. (3.18)

IV. RESULTS AND CONCLUSION

The subject of octet-singlet mixing of the pseudoscalar
mesons has been studied and the couplings of the n and #/
mesons to the axial currents A) and A3 were evaluated,
yielding the mixing angles 3 = —24° and 6, = —14.7°.
The corrected Gell-Mann—Oakes—Renner relation reprodu-
ces the value of m,. The topological susceptibility at the
origin has also been computed with the effects of instantons
and instanton screening taken into account, resulting
in ¥/(0) = (1.1 &.1) x 1073 GeV>.
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