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The couplings of the isosinglet axial-vector currents to the η and η0 mesons are evaluated in a stable,
model-independent way by use of polynomial kernels in dispersion integrals. The corrections to the
Gell-Mann–Oakes–Renner relation in the isoscalar channel are deduced. The derivative of the topological
susceptibility at the origin is calculated taking into account instantons and instanton screening.
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I. INTRODUCTION

The subject of η − η0 mixing has been a topic of
discussion since SUð3Þ flavor symmetry was proposed
[1–6]. The gluon axial anomaly and the corresponding
topological charges of the isoscalar mesons imply that the
SUð3Þ singlet axial-vector current is not conserved in the
chiral limit. Initially, the octet-singlet mixing was described
by an angle θ which was thought to be small and later given
larger values [1]. It was later realized that the couplings of
the isoscalar axial currents to the pseudoscalar mesons need
not be dependent and that the single-angle description is
inadequate. A number of theoretical approaches have been
used to compute these couplings. Apart from chiral
perturbation theory [7] and QCD sum rules [8], Shore
[9] has used the generalized Gell-Mann–Oakes–Renner
[10] relation to evaluate the couplings.
A related topic is the calculation of the topological

susceptibility and its derivative at zero momentum transfer.
The results obtained show a wide dispersion [11–13]. Such
a dispersion in the results and instabilities in the parameters
which enter the calculations is inherent in the Borel
(Laplace) sum rules [14] used by the authors.
This method starts from a dispersion integral,

Residue ¼ 1

π

Z
∞

th
dte−t=M

2

ImPðtÞ: ð1:1Þ

The residue contains the physical quantity of interest and
the integral runs from the physical threshold to infinity. The
integral is then split into two parts,

Z
∞

th
dte−t=M

2

ImPðtÞ ¼
Z

t0
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dte−t=M

2

ImPðtÞ

þ
Z

∞

t0

dte−t=M
2

ImPðtÞ; ð1:2Þ

where t0 signals the onset of perturbative QCD. In the first
integral on the rhs of the equation above ImPðtÞ describes
the unknown contribution of the resonances. The second
integral takes into account the contribution of the QCD part

of the amplitude when PðtÞ is replaced by its QCD
expression.M2, the square of the Borel mass, is a parameter
introduced in order to suppress the unknowns of the
problem. If M2 is small, the damping of the first unknown
integral is good but the contribution of the unknown higher-
order nonperturbative condensates increases rapidly. If M2

increases, the contribution of the unknown condensates
decreases but the damping in the resonances regionworsens.
An intermediate value ofM2 has to be chosen. BecauseM2

is a nonphysical parameter the results should be independent
of it in a relatively broad window; this is not the case in the
problems at hand. The choice of the parameter t0 which
signals the onset of perturbative QCD is another source of
uncertainty. In this work we shall use low-order polynomial
kernels in order to suppress the contribution of the unknown
continuum. The coefficients of these polynomials are
determined by the masses of the isoscalar resonances and
the method avoids the instabilities and arbitrariness which
accompany the use of exponential kernels. Having deter-
mined the couplings of the isoscalar currents to the η and η0
mesons, we shall turn to the study of the corrections to
the Gell-Mann–Oakes–Renner relation [10] in the isoscalar
channel and recover mη. Finally, we shall evaluate χ0ð0Þ—
the derivative of the topological susceptibility at zero
momentum transfer—taking into account the effect of
instantons and their possible screening which can be
important, as has been emphasized by Forkel [15].

II. AXIAL CURRENTS AND THEIR COUPLING
TO THE η − η0 MESONS

The isoscalar components of the octet of axial-vector
currents couple to the physical η and η0 mesons:

h0jAð8Þ
μ jηðpÞi ¼ 2if8ηpμ;

h0jAð0Þ
μ jηðpÞi ¼ 2if0ηpμ;

h0jAð8Þ
μ jη0ðpÞi ¼ 2if8η0pμ;

h0jAð0Þ
μ jη0ðpÞi ¼ 2if0η0pμ: ð2:1Þ
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In the SUð3Þ limit f8η ¼ fπ ¼ 92.4 MeV, and in the
two-mixing-angle description adopted here the coupling
constants above are independent quantities. The axial-
vector currents are written in terms of the quark fields:

Að8Þ
μ ¼ 1ffiffiffi

3
p ðūγμγ5uþ d̄γμγ5d − 2s̄γμγ5sÞ;

A0
μ ¼

ffiffiffi
2

3

r
ðūγμγ5uþ d̄γμγ5dþ s̄γμγ5sÞ: ð2:2Þ

In the limit mu ¼ md ¼ 0, the divergences of these
currents are

∂μA8
μ ¼

2ffiffiffi
3

p ð−2imss̄γ5sÞ;

∂μA0
μ ¼ −

ffiffiffi
2

3

r
ð−2imss̄γ5sÞ þ

ffiffiffi
2

3

r
Q; ð2:3Þ

whereQ ¼ 3αs
4π G

~G is the anomaly withG ~G ¼ Gμν
~Grγ , with

Gμν being the gluon field strength tensor and ~Gμν ¼
1
2
ϵμνpσGpσ its dual. Consider now the correlator

Πij
μν ¼

Z
dxeiqxh0jTAðiÞ

μ ðxÞAðjÞ
ν ð0Þj0i; ð2:4Þ

where i, j ¼ 0, 8
It can be decomposed,

Πμνðq2Þ ¼ ð−gμνq2 þ qμqνÞΠðq2Þð1Þ
þ qμqνΠðq2Þð0Þ; ð2:5Þ

and we let

Πðt ¼ q2Þ ¼ Πð1ÞðtÞ þ Πð0ÞðtÞ: ð2:6Þ

Start with Π88ðtÞ. At low energies it has two poles,

Π88ðtÞ ¼ −4f28η
t −mη2

−
4f2

8η0

t −mη02
þ…; ð2:7Þ

and a cut on the real positive t axis running from the
continuum threshold to ∞.
The amplitude also possesses a QCD expansion, valid in

the complex t plane for jtj large and not too close to the
physical cut. The aim of the calculation is to relate the
residues of the poles to the QCD parameters,

Π88
QCDðtÞ ¼ Π88

pert þ
C88
1

t
þ C88

2

t2
þ… ð2:8Þ

The perturbative part is known to five loops in the chiral
limit [16],

1

π
ImΠ88
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1

4π2
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�
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2
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�
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5
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β31
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��
; ð2:9Þ

where as ¼ αsðμ2Þ
π , Lμ ¼ lnð−t

μ2
Þ, β1 ¼ − 1

2
ð11 − 2

3
nfÞ, β2 ¼

− 1
8
ð102 − 38

3
nfÞ, β3 ¼ − 1

32
ð2857

2
− 5033

18
nf þ 325

54
n2fÞ, F3 ¼

1.9857 − .1153nf, F4 ¼ 18.2427 − π2

3
ðβ1
2
Þ2 − 4.2158nf þ

.0862n2f, and k3 ¼ 49.076.
The strong coupling constant is likewise known to five-

loop order [17] in terms of α
ð1Þ
s
π ≡ −2

β1L
with L ¼ lnð−tΛ2Þ, where

Λ2 defines the standard MS scale to be used here.

C88
1 ¼ 2

π2
ð1þ 2asÞm2

s ð2:10Þ

is a correction to the perturbative part proportional to m2
s

[18] and

C88
2 ¼ 1

6

	
1−

11

18
as


hasG ~Giþ 8

3

�
1−

7

3
as −

75

6
a2s

�
hmss̄si;

C88
3 ¼ −448

π2
ashūui2: ð2:11Þ

Consider next the contour C shown in Fig. 1 consisting
of two straight lines parallel to the real axis, located just
above and just below the cut, and running from the

FIG. 1. The contour of integration C.
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continuum threshold to a large value R and the circle of
radius R.
And consider the integral

Z
c
dtfðtÞΠðtÞ;

where fðtÞ is an entire function. On the circle, ΠðtÞ can be
replaced by ΠQCDðtÞ to a good approximation.
Applying Cauchy’s theorem leads to

4f28ηfðm2
ηÞ þ 4f2

8η0fðm2
η0 Þ ¼ −

1

π

Z
R

th
dtfðtÞImΠðtÞ

−
1

2Mi

I
dtfðtÞΠpertðtÞ

−
1

2Mi

I
dtfðtÞΠrepðtÞ:

ð2:12Þ

The first term on the rhs of the equation above—which
represents the contribution of the physical continuum—
constitutes the main uncertainty of the calculation. The
choice of the so-far arbitrary function fðtÞ aims at reducing
this term as much as possible so that it may be neglected.
All that is known about the continuum is that it is
dominated by the pseudoscalar excitations ηð1295Þ and
ηð1440Þ, as well as the axial-vector isoscalars f1ð1285Þ and
f1ð1420Þ with practically the same masses.
We shall choose for fðtÞ a simple polynomial,

fðtÞ ¼ pðtÞ ¼ 1 − a1t − a2t2;

where the coefficients a1 and a2 annihilate pðtÞ at the
masses of the resonances, i.e.,

pðtÞ ¼ 1–1.090 GeV−2tþ .294 GeV−4t2: ð2:13Þ

With this choice the integrand is reduced to only a
few percent of its initial value on the interval 1.5 GeV2 ≤
t ≤ 2.5 GeV2 and the contribution of the continuum is thus
practically annihilated.
ΠpertðtÞ has a different analytical structure than the

physical amplitude: it has a cut on the real t axis which
starts at the origin so that 1

2πi

H
c0 dtfðtÞΠpertðtÞ ¼ 0, where

C0 is the contour shown in Fig. 2.
It then follows that

1

2Mi

I
dtfðtÞΠpertðtÞ ¼ −

1

π

Z
R

0

dtfðtÞImΠpertðtÞ: ð2:14Þ

Also,

1

2Mi

I
dtfðtÞΠrepðtÞ

¼ −
1

2Mi

I
dtð1− a1t− a2t2Þ

�
C88
1

t
þC88

2

t2
þC88

3

t3
þ � � �

�

¼ C88
1 − a1C88

2 − a2C88
3 : ð2:15Þ

The second term on the rhs of Eq. (2.12) equals the
contribution of the integral over the circle of ΠpertðtÞ and
provides the main contribution. The last two terms are
contributed by the corresponding ones in Eq. (2.8). Thus,

4f28ηpðm2
ηÞþ4f2

8η0pðm2
η0 Þ

¼ 1

π

Z
R

0

dtpðtÞImΠpertðtÞ−C88
1 þa1C88

2 þa2C88
3 : ð2:16Þ

The choice of R is determined by stability considerations.
It should not be too small as this would invalidate the
operator product expansion on the circle, nor should it be
too large because pðtÞ would start enhancing the contri-
bution of the continuum instead of suppressing it. We seek
an intermediate range of R for which the integral in
Eq. (2.16) is stable. This turns out to be the case for
1.5 GeV2 ≤ R ≤ 2.5 GeV2. The integral provides the main
contribution to the rhs of Eq. (2.16).
A similar treatment of the amplitude Π00ðtÞ leads to

4f20ηpðm2
ηÞ þ 4f2

0η0pðm2
η0 Þ

¼ 1

π

Z
R

0

dtpðtÞImΠ00
pertðtÞ − C00

1 þ a1C00
2

þ a2C00
3 ; ð2:17Þ

where Π00
pert ¼ Π88

pert, and C00
1 and C00

2 are the nonperturba-
tive coefficients of the QCD expansion,

FIG. 2. The contour of integration C0 used to transform the
integral ΠpertðtÞ over the circle into an integral over the real axis.
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Π00
QCDðtÞ ¼ Π00

pertðtÞ þ
C00
1

t
þ C00

2

t2
þ � � � ;

C00
1 ¼ 1

π2
ð1þ 2asÞm2

s ;

C00
2 ¼ 1

6

�
1 −

11

18
as

�
hasGGi

þ 4

3

�
1 −

7

3
as −

75

6
a2s

�
hmss̄si;

C00
3 ¼ −

448

81
π2ashūui2: ð2:18Þ

Finally, we turn to the mixed amplitude Π08ðtÞ, with the
result

4f8ηf0ηpðm2
ηÞ þ 4f8η0f0η0pðm2

η0 Þ
¼ −C08

1 þ a1C08
2 þ a2C08

3 ; ð2:19Þ

with

C08
1 ¼ −

ffiffiffi
2

p

π2
ð1þ 2asÞm2

s ;

C08
2 ¼ −8

ffiffiffi
2

p

3

�
1 −

7

3
as −

75

6
a2s

�
hmss̄si;

C08
3 ≃ 0: ð2:20Þ

Equation (2.20) is distinguished from Eqs. (2.16) and
(2.17) in that the dominant perturbative contribution is now
absent and the smallness of its rhs will result in the
smallness of the η − η0 mixing, i.e., of the couplings f0η
and f8η0 .
Equations (2.16), (2.17), and (2.19) are however

insufficient to determine all four couplings. An additional
equation is obtained by considering the integral
1
2πi

R
c dt tpðtÞΠ08ðtÞ.

The fast convergence of the amplitude—due to the absence
of the perturbative part in the asymptotic expansion—
guarantees the reliability of the result. This yields

4f8ηf0ηpðm2
ηÞm2

η þ 4f8η0f0η0pðm2
η0 Þm2

η0

¼ −C08
2 þ a1C08

3 : ð2:21Þ

The numbers used for the condensates are
ms ¼ ð.10� .01Þ GeV,
−hs̄si ¼ ð.012� .002Þ GeV3,
hasG ~Gi ¼ .013 GeV4,
and the value of the integral in Eqs. (2.16) and (2.17) at the
stability values of R is 1

π

R
R
0 dtpðtÞImΠpertðtÞ ¼ .034 GeV2,

as shown in Fig. 3.
These finally yield for the couplings

f8η ¼ .104 GeV; f8η0 ¼ −.046 GeV;

f0η ¼ .042 GeV; f0η0 ¼ .160 GeV; ð2:22Þ

which correspond to the mixing angles

θ8 ¼ tan−1
�
f8η0

f8η

�
¼ −24° and

θ0 ¼ tan−1
�
−f0η
f0η0

�
¼ −14.7°: ð2:23Þ

The values obtained above can be used in the calculation
of the corrections to the Gell-Mann–Oakes–Renner relation
[10] in the isoscalar channel. AWard identity introduces a
subtraction which improves the convergence of the
dispersion relation and therefore its reliability.
Start with the correlator

T88ðtÞ ¼
Z

idxeiqxh0jTDð8ÞðxÞDð8Þð0Þj0i; ð2:24Þ

where Dð8Þ ¼ ∂μA
ð8Þ
μ ,

T88ðtÞ ¼ −4f28ηm4
η

t −m4
η

−
4f2

8η0m
4
η0

t −m4
η0

þ…; ð2:25Þ

which satisfies the Ward identity

FIG. 3. The variation of 1
π

R
R
0 dtfðtÞImΠðtÞ as a function of R.
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T88ð0Þ ¼ −
16

3
hmss̄si:

Introducing a subtraction consists in considering the
integral 1

2π

R
c
dt
t pðtÞΠ88ðtÞ.

This gives

f28ηm
2
ηpðm2

ηÞ þ f2
8η0m

2
η0pðm2

η0 Þ

¼ −
4

3
hmss̄si þm2

s

�
1

2π2

�
1þ 17

3
as

�Z
R

0

dtpðtÞ

þ 4

3
a1

�
2hmss̄si −

1

4
hasG ~Gi

��
: ð2:26Þ

Numerically,

f28ηm
2
ηpðm2

ηÞ ¼ .002 GeV4

which results in recovering mη,

mη ¼ ð500� 30Þ MeV: ð2:27Þ

The uncertainly is estimated from the one in the
parameters.

III. THE TOPOLOGICAL SUSCEPTIBILITY
AND ITS DERIVATIVE AT ZERO

MOMENTUM TRANSFER

The topological susceptibility

χðtÞ ¼ i
Z

dxeiqxh0jTQðxÞQð0Þj0i ð3:1Þ

has poles at the pseudoscalar mesons

χðtÞ ¼ −
h0jQjπi2
t −m2

π
−
h0jQjηi2
t −m2

η
−
h0jQjη0i2
t −m2

η
þ… ð3:2Þ

Consider again the integral 1
2Mi

R
c
dt
t pðtÞχðtÞ with the

same polynomial pðtÞ introduced in order to suppress the
contribution of the physical continuum. It gives

χð0Þ ¼ h0jQjπ0i2
m2

π
þ h0jQjηi2

m2
η

pðm2
ηÞ þ

h0jQjη0i2
m2

η0
pðm2

η0 Þ

þ 1

2πi

I
dt
t
pðtÞχQCDðtÞ; ð3:3Þ

and the derivative is

χ0ð0Þ − a1χð0Þ ¼
h0jQjπ0i2

m4
π

þ h0jQjηi2
m4

η
pðm2

ηÞ þ
h0jQjη0i2

m4
η0

þ 1

2πi

I
dt
t2
pðtÞχQCDðtÞ: ð3:4Þ

The coupling h0jQjπ0i was given in Ref. [19],

h0jQjπ0i ¼ i
4
fπm2

π

�
md −mu

md þmu

�
; ð3:5Þ

and the couplings h0jQjηi and h0jQjη0i are obtained by
sandwiching Eq. (2.3) between the vacuum and the η; η0
states,

h0jQjηi ¼
ffiffiffiffiffi
1

12

r
ðf8η −

ffiffiffi
2

p
f0ηÞm2

η;

h0jQjη0i ¼
ffiffiffiffiffi
1

12

r
ðf8η0 −

ffiffiffi
2

p
f0η0 Þm2

η0 : ð3:6Þ

The QCD expression is [11–13]

χQCDðtÞ ¼ C21t2 ln−tþ C22t2ðln−tÞ2 þ C01 ln−tþ C00

þ C−1

t
þ C−2

t2
þ IðtÞ; ð3:7Þ

where IðtÞ stands for the instanton contribution and

C21 ¼ −
�
αs
8π

�
2

π2

�
1þ 83

4

αs
π

�
;

C22 ¼
9

4

�
αs
π

�
C21;

C01 ¼
9

64

�
αs
π

�
2
�
αs
π
G ~G

�
;

C−1 ¼
1

8

�
αs
π

��
9s

αs
π
G ~G

�
;

C−2 ¼ −
15

128
π2
�
αs
π

��
αs
π
G ~G

�
2

;

C00 ¼ −
1

16

�
αs
π

��
αs
π
G ~G

�
: ð3:8Þ

When calculations are carried out and numbers are inserted,
Eq. (3.3) yields

χð0Þ ¼ .94 × 10−3 GeV4 þ δ1; ð3:9Þ

where

δ1 ¼
1

2πi

I
dt
t
pðtÞIðtÞ ð3:10Þ

denotes the instanton contribution. The derivative is

χ0ð0Þ ¼ a1χð0Þ þ 1.30 × 10−3 GeV2 þ δ2; ð3:11Þ

where
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δ2 ¼
1

2πi

I
dt
t2
pðtÞIðtÞ: ð3:12Þ

The instanton term IðtÞ is model dependent; the form
used by Ioffe and Samsonov [11] is

IðtÞ ¼ t2
Z

dpnðρÞρ4K2
2ðQρÞ;

where

nðρÞ ¼ n0δðρ − ρcÞ; ρc ¼ 1.5 GeV−1; ð3:13Þ

and K2ðQρÞ is the MacDonald function. It should be noted
however that important screening corrections (as has been
emphasized by Forkel [15]) can considerably modify
Eq. (3.13).
I shall take the screening corrections into account simply

by considering the overall factor as a free parameter to be
determined by the calculation. Thus, let

IðtÞ ¼ ct2K2
2ðρc

ffiffiffiffiffi
−t

p Þ: ð3:14Þ

Asymptotic forms of K2ðxÞ were given by Dwight [20]:
these are used to compute integrals of the form In ¼
1
2πi

R
dttnK2

2ðtÞ, which give the ratio

δ2
δ1

¼ I0 − a1I1 − a2I2
I1 − a1I2 − a2I3

¼ −.53 GeV−2 ð3:15Þ

and yield

χ0ð0Þ ¼ 1.75 × 10−3 GeVþ2 þ .55 GeV−2χð0Þ: ð3:16Þ

χð0Þ has been computed on the lattice [21] with the
result χð0Þ ¼ −1.33 × 10−3 GeV4. Another value is the
one given by the Witten-Veneziano [22,23] formula
obtained in the large-Nc limit,

χð0Þ ¼ −
f2π
2nf

ðm2
η0 þm2

η − 2m2
kÞ

¼ −1.05 × 10−3 GeV4; ð3:17Þ

yielding finally

χ0ð0Þ ¼ ð1.1� .1Þ × 10−3 GeV2: ð3:18Þ

IV. RESULTS AND CONCLUSION

The subject of octet-singlet mixing of the pseudoscalar
mesons has been studied and the couplings of the η and η0

mesons to the axial currents A0
μ and A8

μ were evaluated,
yielding the mixing angles θ8 ¼ −24° and θ0 ¼ −14.7°.
The corrected Gell-Mann–Oakes–Renner relation reprodu-
ces the value of mη. The topological susceptibility at the
origin has also been computed with the effects of instantons
and instanton screening taken into account, resulting
in χ0ð0Þ ¼ ð1.1� .1Þ × 10−3 GeV2.
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