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We study N ¼ 4 supersymmetric QED in three dimensions, on a 3-sphere, with 2N massive
hypermultiplets and a Fayet-Iliopoulos parameter. We identify the exact partition function of the theory
with a conical (Mehler) function. This implies a number of analytical formulas, including a recurrence
relation and a second-order differential equation, associated with an integrable system. In the large N limit,
the theory undergoes a second-order phase transition on a critical line in the parameter space. We discuss
the critical behavior and compute the two-point correlation function of a gauge invariant mass operator,
which is shown to diverge as one approaches criticality from the subcritical phase. Finally, we comment on
the asymptotic 1=N expansion and on mirror symmetry.
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The study of quantum electrodynamics in three dimen-
sions (QED3) has been a subject of interest since the early
1980s, due to its connection to finite-temperature QCD via
dimensional reduction and the fact that, as QCD in four
dimensions, QED3 also exhibits spontaneous chiral sym-
metry breaking and confinement [1].
The theory has experienced a remarkably renewed

interest in recent years due to, in great part, the relevance
of relativistic field theories of particles moving in two
dimensions in the description of the pseudogap phase of
cuprates [2], the spin-liquid phase of quantum antiferro-
magnets [3] and the low-energy electronic excitations of
graphene [4]. This reinvigorated relevance of the dynamics
of a Uð1Þ gauge field and Nf fermions in three dimensions
extends to the case with supersymmetry, where the theory
appears for example in descriptions of the physics of
half-filled Landau levels in terms of Dirac fermions [5],
in 3D Bosonization [6] and nonperturbative descriptions
of renormalization group flows [7]. Supersymmetric Uð1Þ
theories in three dimensions can be related to the study of
quantum phase transitions in quantum antiferromagnets
and provide examples of quantum phase transitions beyond
the Landau-Ginzburg paradigm [8]. In these discussions,
the existence of mirror symmetry in the supersymmetric
gauge theory is important [6,8] and it is precisely the recent,
more detailed, analysis of dualities that has bolstered great
interest in QED3. In particular for example, it has been
recently shown that the fermionic vortex of QED3 is a free
Dirac fermion [9,10]. Around this result lurks a number of
connections between topological insulators, spin liquids
and quantum Hall physics, making QED3 a subject of
considerable physical interest.
At the same time, the development of tools for studying

supersymmetric gauge theories on curved manifolds, in

particular localization [11,12], has increased the means at
our disposal to obtain exact analytical results. Examples
of works that use localization and the F-theorem in the
study of QED3 (with or without supersymmetry) includes
Refs. [13–15]. In this paper, we shall study supersymmetric
Uð1Þ gauge theory on S3, but, instead of massless matter as
in Ref. [14], or the cases studied in Refs. [7,15], we include
massiveN ¼ 4 hypermultiplets and a Fayet-Iliopoulos (FI)
term. As we will see, this leads to a dramatic change in the
dynamics of the theory. For the sake of simplicity, we
consider the case of N hypermultiplets with mass m and N
hypermultiplets with mass −m. More general mass con-
figurations will be discussed at the end. The total number of
flavors Nf is therefore 2N. In addition, as mentioned, there
is a FI term, and it is actually the interplay between the
difference of masses and the FI parameter η, the one which
is responsible for producing novel behavior. In particular, it
is responsible for the emergence of a second-order quantum
phase transition in the large N limit.
We thus consider anN ¼ 4 supersymmetricUð1Þ theory

consisting of 2N massive N ¼ 4 (flavor) hypermultiplets
(N of mass m and N of mass −m), coupled to an N ¼ 4
vector multiplet. Localization readily leads to an integral
representation for the partition function [16]

ZQED3
¼

Z
∞

−∞
dx

eiηx

½2 coshðxþm
2
Þ2 coshðx−m

2
Þ�N

¼ 2−N
Z

∞

−∞
dx

eiηx

½cosh xþ coshm�N : ð1Þ

In what follows, we drop the 2N factor, which is inessential
to our discussion, and we have set the radius of S3 to
r ¼ 1=ð2πÞ. In the case when the hypermultiplets have
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masses m1 and m2, the parameter m is m ¼ ðm1 −m2Þ=2.
Thus, in the discussion below, increasing m corresponds to
separating the two mass scales. It is important to note that
the parameters m, while they correspond to mass defor-
mations of the Lagrangian, represent curved-space analogs
of the more familiar flat space mass parameters, as here
they are measured in units of the radius of the S3 (the
partition function only depends on the combination mr).
Notice that, by writing the integral representation (1)

in the latter form, one can immediately identify it as the
integral representation of a conical (Mehler) function [17],
which is an associated Legendre function with a complex
index. We find

ZQED3
¼

ffiffiffiffiffiffi
2π

p ΓðN þ iηÞΓðN − iηÞ
ΓðNÞðsinhðmÞÞN−1

2

P
1
2
−N
−1
2
þiη

ðcoshðmÞÞ: ð2Þ

It can also be conveniently represented in terms of a
hypergeometric function,

ZQED3
¼

ffiffiffiffiffiffi
2π

p
ΓðN þ iηÞΓðN − iηÞ

ΓðNÞΓðN þ 1
2
Þð1þ zÞN−1

2

× 2F1

�
1

2
− iη;

1

2
þ iη; N þ 1

2
;
1

2
ð1 − zÞ

�
; ð3Þ

with z≡ coshðmÞ. In specific cases, the expression sim-
plifies. In particular, for two and four flavors, we find

ZN¼1
QED3

¼ 2π sin ðmηÞ
sinhðmÞ sinh ðπηÞ ; ð4Þ

ZN¼2
QED3

¼ 2πðcoshm sin ðmηÞ − η sinhm cos ðmηÞÞ
sinh3ðmÞ sinh ðπηÞ : ð5Þ

These can also be obtained from residue integration [18].
The expression (4) already exhibits some of the general
properties of the conical function and, hence, of the
partition function, such as the oscillatory behavior, which
depends on both m and η. It is well known that super-
symmetric QED3 with two flavors is self-dual [19]. Notice
that indeed we find that (4) is invariant under the exchange
m ↔ πη implied by the duality transformation.
The oscillatory behavior is related to the fact that the

function has an infinite number of zeros, all of them real,
precisely in the physical regionm ≥ 0 [17] and the function
is monotonic until the appearance of the first zero of the
function, after which the behavior is oscillatory. This
transition between a monotonic and an oscillatory region
when the first zero appears, in the large N limit, becomes a
phase transition, which we characterize below by comput-
ing the saddle points of (1).
The identification with a conical function and the

ensuing hypergeometric representation has interesting
consequences. To begin with, from a standard recurrence

relation for the Legendre functions, we obtain that the
partition function also satisfies a recurrence relation:

ð2N − 1Þ coshðmÞZN

¼ ðN − 1Þ2 þ η2

N − 1
ZN−1 þ Nsinh2ðmÞZNþ1: ð6Þ

For short, here we defined ZN ≡ ZQED3
ðm; η; NÞ. By this

formula, we can easily generate any ZN from the above
expressions (4) and (5) for N ¼ 1 and N ¼ 2. In addition,
the representation (3) can be used to study a small mass
expansion, since the radius of convergence of a Gauss
hypergeometric function is jxj < 1 in the variable. In the
massless limit, the hypergeometric becomes 1, and ZQED3

is
given by the first line in (3). In order to find the large mass
behavior, we use an Euler hypergeometric transformation
and write the partition in the form

ZQED3
¼ Γð−iηÞΓðN þ iηÞ

2iηΓðNÞðcoshðmÞ þ 1ÞNþiη

× 2F1

�
1

2
þ iη; N þ iη; 1þ 2iη; sech2

m
2

�
þ c:c:

ð7Þ

Using (7), we then obtain

Zmr≫1
QED3

¼ 2NΓð−iηÞΓðN þ iηÞ
ΓðNÞ e−mrðNþiηÞ þ c:c: ð8Þ

Here, we have restored the S3 radius dependence to exhibit
the fact that this regime can also be interpreted as a
decompactification limit. Another nontrivial consequence
of the relation of the partition function to a hypergeometric
function is the fact that then ZN satisfies a second-order
differential equation:

d2ZN

dm2
þ 2N cothðmÞ dZN

dm
þ ðη2 þ N2ÞZN ¼ 0: ð9Þ

By defining ~ZQED3
¼ ðsinhðmÞÞNZQED3

, this equation can
be written as a Schrödinger equation with a hyperbolic
Pöschl-Teller potential [20], which is a well-known solv-
able one-dimensional quantum mechanical problem,

d2 ~ZQED3

dm2
þ
�
η2 þ Nð1 − NÞ

sinh2m

�
~ZQED3

¼ 0:

The present theory has a large N limit, with fixed
λ≡ η=N. In this limit, the partition function (1) can be
computed by the saddle-point method. The integrand in (1)
can be written as e−NSðλÞ where the action S is

Sðλ; x; zÞ ¼ −iλxþ logðcosh xþ coshmÞ:
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The saddle-point equation is then

−iλþ sinh x
cosh xþ coshm

¼ 0;

which has as solutions

x1;2 ¼ log

�
−λ coshm� iΔ

iþ λ

�
þ 2πin; ð10Þ

where n ∈ Z and Δ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2 sinh2 m

p
. In what follows,

we show that the theory undergoes a large N phase
transition at λc ≡ 1= sinhm, or, more generally, at the
critical line λ sinhðmÞ ¼ 1 in the ðλ; mÞ space, where
Δ ¼ 0.
Subcritical phase (λ sinhðmÞ < 1).—In this case, all

saddle points lie on the imaginary axis. We find that the
saddle point x1 with n ¼ 0 is the relevant one, and, to
leading order for large N, the partition function becomes

ZQED3
≈

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS00ðx1Þ

p exp ð−NSðx1ÞÞ; ð11Þ

where S00ðz; xÞ ¼ ðz coshðxÞ þ 1Þ=ðcoshðxÞ þ zÞ2. We
numerically checked that, for large N, this formula repro-
duces the analytic expression (3) with great accuracy. In the
subcritical phase, the large N free energy F ¼ − logZQED3

is given by NSðx1Þ. We obtain

Fsub ¼ −
iλN
2

log

�ð−zλþ iΔÞði − λÞ
ðzλþ iΔÞðiþ λÞ

�
þ N log

�
zþ Δ
1þ λ2

�
:

Supercritical phase (λ sinhðmÞ > 1).—The two saddle
points move to the complex plane, with x2 ¼ −x�1.
The action is complex, with ReðSðx1ÞÞ ¼ ReðSðx2ÞÞ,
ImðSðx1ÞÞ ¼ −ImðSðx2ÞÞ. Therefore, both saddle points
contribute with equal weights and need to be taken into
account. The partition function Z ¼ ZQED3

is now

Z ≈
ffiffiffiffiffiffi
2π

N

r
e−NReðSðx1ÞÞ

�
e−iNImðSðx1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffi

S00ðx1Þ
p þ c:c:

�
:

For N ≫ 1, this expression agrees with the exact analytic
expression (3). For large mass, it is also in precise agree-
ment with the large mass formula (8). Taking the log to
get the free energy, we see that at large N, the leading
contribution proportional to N is given by the real part of
the action F ≈ NReðSðx1ÞÞ, giving

Fsuper ¼
N
4

�
2 log

z2 − 1

1þ λ2
− 2iλ log

λ − i
λþ i

�
:

The free energy and its first derivative are continuous at the
critical point, while the second derivative gives

d2F
dλ2

¼ N
1þ λ2

�
1þ coshðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − λ2sinh2ðmÞ
p

�
; λ < λc;

d2F
dλ2

¼ N
1þ λ2

; λ ≥ λc:

Thus, d2F=dλ2 is discontinuous, implying a second-
order phase transition. In addition, in the subcritical regime,
the susceptibility χ ¼ − d2F

dλ2 diverges as the critical line is
approached, χ ∼ ðλc − λÞ−γ , γ ¼ 1=2, which is a recurrent
behavior in second-order phase transitions. The critical
behavior is shown in Figs. 1(a) and 1(b) for fixed m ¼ 1
and in Fig. 2 for the whole phase diagram.
Next, consider the analytic properties of the free energy

in crossing the critical line by varying the mass parameter at
fixed coupling λ. By differentiating the free energy with
respect to the mass m, one generates correlators of the
gauge invariant mass operator [15]

J3 ¼
1

N
ð ~Q1;iQi

1 − ~Q2;iQi
2Þ;

where Q1 are the hypermultiplets of mass m and Q2 are the
hypermultiplets of mass −m. Because of supersymmetry,
these correlators are independent of the position [15]. For
example, for the simple N ¼ 1 case, we have that

FIG. 1. (a) Behavior of dF=dλ. (b) Discontinuity of d2F=dλ2 at
the transition point (m ¼ 1).
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hJ3i ∝
dF
dm

¼ η cot ðmηÞ − cothðmÞ;

hJ3J3i − hJ3ihJ3i ∝
d2F
dm2

¼ −
η2

sin2ðmηÞ þ
1

sinh2ðmÞ :

This extends a result of Ref. [15] to the case η ≠ 0.
Returning to the large N free energy, we find that hJ3i
is continuous, whereas

�
d2F
dm2

�
λ<λc

¼ 1

N sinh2m

�
1 −

coshmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − λ2 sinh2m

p
�

�
d2F
dm2

�
λ>λc

¼ 1

N sinh2m
:

Thus, d2F=dm2 is discontinuous, implying a discontinuity
in the two-point function of the operator J3. Moreover, the
two-point correlation function diverges as the critical line is
approached from the subcritical phase.
The theory has an asymptotic 1=N expansion, which

we now briefly outline. For concreteness, we consider the
subcritical phase. The first 1=N correction arises from the
term ðx − x1Þ4 in the expansion of the integrand of (1) around
x1. A closely related expansion of the conical functions in
inverse powers of ðN − 1=2Þwas discussed in Refs. [17,21].
An interesting approach is described in Ref. [7].
An elegant treatment, which exhibits the asymptotic

character of the 1=N series, is as follows. We introduce a
new integration variable by the transformation

SðxÞ − S0 ¼ βt: ð12Þ
This leads to

ZQED3
¼ βe−NS0

Z
C
dte−NβtBðtÞ; BðtÞ≡ 1

S0ðxðtÞÞ ;

ð13Þ

with S0 ≡ Sðx1Þ, β≡ S00ðx1Þ=2. The contour C in the
complex t-plane is determined by the transformation
(12) in varying x from −∞ to ∞ (see Fig. 3). The contour

surrounds singularities at tðnÞ1 and tðnÞ2 lying on the positive
real axis, which are associated with the saddles at x1, with
n ¼ 0; 1; 2;…, x2, with n ¼ 1; 2;…. All singularities in

BðtÞ are branch points of the form ðt − tðnÞ1;2Þ−1=2. The 1=N
expansion is generated upon Taylor expanding BðtÞ in
powers of t,

BðtÞ ¼ 1

2β
ffiffi
t

p
X∞
k¼0

bktk; b0 ¼ 1:

This expansion has a finite radius of convergence, deter-
mined by the location of the singularity that is closest to the
origin. We are left with the integralZ

C
dte−Nβttk−

1
2 ¼ 2

Z
∞

0

dte−Nβttk−
1
2 ¼ 2Γðkþ 1=2Þ

ðβNÞkþ1
2

;

where we have deformed the contour to the positive real
axis (note that in this integral, there is no singularity on the
positive real axis). Thus, we get the asymptotic series

ZQED3
¼ e−NS0

ðβNÞ12
X∞
k¼0

bk
Γðkþ 1=2Þ

βkNk : ð14Þ

The term k ¼ 0 just reproduces the earlier formula (11).
Here, we have expanded BðtÞ around t ¼ 0. By expand-

ing BðtÞ around some tðnÞ1;2, n ¼ 1; 2;… one finds an extra
factor e−2πnλ coming from e−NSðtÞ. The presence of an
infinite number of saddle points suggests that the 1=N
expansion can be more conveniently treated in terms of
resurgent trans-series. In deforming the contour, one
crosses Stokes discontinuities which may imply resurgent
relations in the different trans-series coefficients (see
Refs. [22–26] for examples). It would be extremely
interesting to understand the origin of nonperturbative
effects that render the large N expansion asymptotic, as
well as the resurgent properties of the series and how the
existence of a phase transition is encoded in the 1=N
expansions below and above the phase transition.

FIG. 2. Phase diagram. The critical line (dashed) λ sinhðmÞ ¼ 1
separates the two phases. The plot also shows the contour lines of
d2F=dλ2 (increasing from dark to light).

FIG. 3. Integration contour C in (13) and location of singular-
ities of the integrand (m ¼ 1, λ ¼ 0.3λc).
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Now, consider more general masses. The theory with N
hypermultiplets of mass m1 and N hypermultiplets of
massm2 is equivalent to the one we discussed. By a shift in
the integration variable, one gets the same partition
function (1) with an extra phase e−iηmþ and m replaced
by m−, with m� ¼ ðm1 �m2Þ=2. In general, for Nf

flavors, there are Nf − 1 mass parameters associated with
the Cartan generators of SUðNfÞ flavor symmetry, satisfy-
ing

P
imi ¼ 0. One can have independent parameters m1

and m2 by adding an extra hypermultiplet of mass
m3¼−Nðm1þm2Þ. At large N, this decouples (its one-
loop partition function becomes a constant, 1= coshm3),
and the large N physics is then the same as in (1). More
general mass assignments with similar phase transition are
possible. The reason is that the mechanism that triggers the
phase transition is also at work in more general cases: on
the imaginary axis, the one-loop partition function pro-
vides a periodic potential with infinite number of vacua;
as the constant force, represented by the FI parameter, is
increased, there is a critical point where this overcomes the
maximum force from the periodic potential. Beyond this
point, equilibrium is not possible, and the saddle points
move to the complex plane.
For 3D N ¼ 4 theories, mirror symmetry involves two

or more theories with a different UV description flowing to
the same superconformal point in the IR. Mirror symmetry

interchanges Coulomb and Higgs branches of the theory,
where FI parameters are interchanged with some linear
combination of mass parameters [19]. The present theory is
known to be dual to a AN−1 quiver gauge theory [19,27].
Particularizing to our model, we see that the dual theory is a
Uð1Þ2N−1 quiver gauge theory with a FI parameter 2m and
a single mass for all hypermultiplets −η=2N. Our results
show that the quiver gauge theory also has a novel type of
phase transition in the limit when the number of quiver
nodes goes to infinity.
To conclude, the partition function of supersymmetric

QED3 with the FI term is given in terms of the conical
function (3). It is remarkable that this simple formula
encapsulates very rich physical phenomena such as large N
phase transitions, asymptotic 1=N expansion, the emer-
gence of complex saddle points, nonperturbative effects
and aspects of mirror symmetry.
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