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We develop computational tools for calculating supersymmetric higher-order derivative corrections to
eleven-dimensional supergravity using the action principle approach. We show that, provided the
superspace Bianchi identities admit a perturbative solution in the derivative expansion, there are at least
two independent superinvariants at the eight-derivative order of eleven-dimensional supergravity.
Assuming the twelve superforms associated to certain anomalous Chern-Simons terms are Weil trivial,
there will be a third independent superinvariant at this order. Under certain conditions, at least two
superinvariants will survive to all orders in the derivative expansion. However only one of them will be
present in the quantum theory: the supersymmetrization of the Chern-Simons terms of eleven-dimensional
supergravity required for the cancellation of the MS5-brane gravitational anomaly by inflow. This
superinvariant can be shown to be unique at the eight-derivative order, assuming it is quartic in the
fields. On the other hand, a necessary condition for the superinvariant to be quartic is the exactness, in
7-cohomology, of X g, the purely spinorial component of the eight superform related by descent to the
MS5-brane anomaly polynomial. In that case it can also be shown that the solution of the Weil-triviality
condition of the corresponding twelve form, which is a prerequisite for the explicit construction of the
superinvariant, is guaranteed to exist. We prove that certain highly nontrivial necessary conditions for
the 7-exactness of X, g are satisfied. Moreover any potential superinvariant associated to anomalous Chern-
Simons terms at the eight-derivative order must necessarily contain terms cubic or lower in the fields.
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I. INTRODUCTION

Eleven-dimensional supergravity [1] is believed to be the
low-energy limit of M-theory [2], the conjectured non-
perturbative completion of string theory. As such it is
expected to receive an infinite tower of higher-order
corrections in an expansion in the Planck length or,
equivalently, in the derivative expansion. At present such
higher-order corrections cannot be systematically con-
structed within M-theory, so one must resort to indirect
approaches.

One such approach is to calculate the higher-order
corrections within perturbative string theory, in particular,
type IIA in ten dimensions, which is related to eleven-
dimensional supergravity by dimensional reduction. The
effective action of string theory can be systematically
constructed perturbatively in a loop expansion in the string
coupling,

Sefr = ngg_z / d'xVGe,, (1.1)
g=0

where g is the loop order (equivalently, the genus of the
Riemann surface), g, is the string coupling constant, G is
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the spacetime metric, and L, is the effective action at order
g. Bach £, admits a perturbative expansion in an infinite
series of higher-order derivative terms. Moreover it is
expected that each £, should correspond to an independent
superinvariant in ten dimensions; see, e.g., [3].

The bosonic part of the tree-level effective action takes
schematically the following form,

Lo = Lun-+ @ (10(R) = gL (®) + ) + Ot
(1.2)

where Ly is the (two-derivative) Lagrangian of ten-
dimensional ITA supergravity, and the ellipses stand for
terms that have not been completely determined yet. Unlike
the case of N' = 1 superstrings, the first higher-derivative
correction starts at order o> (eight derivatives). The I, I, in
(1.2) are defined as follows,

1
10<R) = tgth4 + EElothR4,
I](R) = —8108]0R4 +48]0t83R4. (13)

These were constructed in [4], to which we refer for further
details, by directly checking invariance under part of the
supersymmetry transformations. The terms in (1.3) linear in
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B are, up to a numerical coefficient, Hodge dual to the
Chern-Simons term B A Xg [5,6]. The eight form Xg, see
(4.2) below, is related by descent to the MS5-brane
anomaly polynomial and is a linear combination of
(trR?)? and trR*. Note that the Chern-Simons (CS) term
drops out of (1.2).

The R* part of the tree-level effective action was
determined in [7,8] via four-graviton scattering amplitudes
and in [9-11] from the vanishing of the world sheet beta-
function at four loops. The NSNS sector of the four-field
part of the effective action (common to all superstring
theories in ten dimensions) was determined in [12]: it is
captured by the simple replacement R — R, where R is a
modified Riemann tensor with torsion that includes the
NSNS three form and the dilaton." The &,ye,,R* term does
not contribute to tree-level four-point scattering amplitudes,
but gives a nonvanishing contribution to the five-graviton
scattering amplitude. The complete tree-level four-point
effective action for type-II superstrings was first determined
in [13] and, in addition to the NSNS sector, consists of
terms of the form (9F)2R? and 0* F*, where F stands for all
RR flux.

The superinvariant /, can be further decomposed into
two separate N = 1 superinvariants in ten dimensions [4],
IO = —610a + 24IOb’ where

1
IOLI = (tg + 58103) (trR2)2 —+ - s

1
IOh = (tg +581()B>'IR4+"' (14)

correspond to the supersymmetrization of the B A
(trR*)? and B A trR* Chern-Simons terms, respectively.
As we show in the following, if the uplift of Iy,, I,
gives rise to two separate superinvariants in eleven
dimensions, they will necessarily have to be cubic or
lower in the fields.

The one-loop effective action takes the following
form [7,14]:

L, =da? <IO(R) +%11(R) +> +0@*). (1.5

In particular, we see that in this case the Chern-Simons term
does not drop out, cf., (1.3). The ellipses above indicate
terms that are not completely known, although partial
results exist thanks to five- and six-point amplitude

"Note that [12] contains an error that has unfortunately caused
some confusion in the literature: the expansion of the rgtgR*
terms of Eq. (2.11) in that reference indeed has the form of the
term in the square brackets on the right-hand side of Eq. (2.13)
therein. However, if one replaces R by the modified Riemann
tensor R, given in Eq. (2.12) therein, Eq. (2.13) no longer gives
the correct expansion of fgrgR*.
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computations [15-18]. Contrary to the tree-level super-
invariant £, that is suppressed at strong coupling, the uplift
of the one-loop superinvariant £; is expected to survive in
eleven dimensions, and thus to be promoted to an eleven-
dimensional superinvariant. We refer to the latter as the
supersymmetrization of the Chern-Simons term C A Xg,
the uplift of the ten-dimensional Chern-Simons term, where
C is the three-form potential of eleven-dimensional
supergravity.

An argument of [19], which we review in the following,
guarantees that if the supersymmetrization of the Chern-
Simons term is quartic or higher in the fields, then it is
unique at the eight-derivative order.” The uniqueness of this
superinvariant is also supported by the results of [20-22],
which use the Noether procedure to implement part of the
supersymmetry transformations of eleven-dimensional
supergravity. The results of these references constrain
the supersymmetrization of the Chern-Simons term to be
of the form

1 1
AL = 16 <t8t8R4 —E€1181]R4 —gellISCR4 +R3G2 + .. >

+0((1"), (1.6)
where [ is the Planck length. The ellipses indicate terms that
were not determined by the analysis of [20-22], while the
R?*G? terms were only partially determined. The reduction
of the above to ten dimensions is consistent, as expected,
with the one-loop IIA superinvariant (1.5). In addition the
quartic interactions R?(0G)? and (OG)* were determined in
[23] by eleven-dimensional superparticle one-loop compu-
tations in the light cone, and in [24-26] by a different
method that uses tree amplitudes instead.’ The rgtgR* terms
have also been obtained by four-graviton one-loop ampli-
tudes in eleven dimensions [27,28], while it can be shown
[29] that higher loops do not contribute to the super-
invariant (1.6).

In the present paper we reexamine the problem of
calculating supersymmetric higher-order derivative correc-
tions to eleven-dimensional supergravity from the point of
view of the action principle approach. This method relies
on the superspace formulation of the theory and is
particularly well suited to the supersymmetrization of
Chern-Simons terms. Given an eleven-dimensional
Chern-Simons term there is an associated gauge-invariant
twelve superform obtained by exterior differentiation. The
action principle approach can be carried out provided the
twelve form is Weil trivial, i.e., exact on the space of on-
shell superfields. Computing the superinvariant then boils

The existence of independent superinvariants starting at an
order higher than eight in the derivative expansion course spoils
the uniqueness of the superinvariant at higher orders.

There is disagreement between [23,25] concerning part of the
(0G)* terms.
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down to explicitly solving the Weil-triviality condition for
the twelve form.

We show that, provided the superspace Bianchi identities
admit a perturbative solution in the derivative expansion,
there are at least two independent superinvariants at the
eight-derivative order. If we also assume that the twelve
superforms associated to the anomalous (in the presence of
an M5-brane) Chern-Simons terms, C A (TrR?)? and
C A TrR*, are separately Weil trivial, there is a third
independent superinvariant at this order. Moreover we
argue that, under certain conditions, at least two of the
superinvariants should be expected to survive to all orders
in the derivative expansion. However only one of those
would correspond to the supersymmetrization of C A Xg,
cf., (1.6).

As already noted this superinvariant can be shown to be
unique, assuming it is quartic in the fields. On the other
hand, a necessary condition for the superinvariant to be
quartic is the exactness, in the so-called z-cohomology, of
X 3, the purely spinorial component of Xg. In that case we
also show that the solution of the Weil-triviality condition
of the corresponding twelve form is guaranteed to exist.
Proving the r-exactness of X3 is the first and arguably
most difficult step in obtaining the explicit solution to the
Weil-triviality condition of the twelve form, and therefore
constructing the superinvariant using the action principle.

To tackle this computationally intensive problem we
have built on the computer program [30], to supplement it,
among other things, with functionalities related to Young
tableaux [31]. By a combination of calculational techniques
involving the implementation of Fierz identities and Young
tableaux projections we prove that certain highly nontrivial
necessary conditions for the r-exactness of X,g are
satisfied. As a corollary of our work, it follows that any
potential superinvariant associated to the anomalous Chern-
Simons terms, C A (TrR?)? and C A TrR*, must neces-
sarily contain terms cubic or lower in the fields.

The plan of the rest of the paper is a follows. In Sec. Il we
review the different superspace cohomologies that are
useful in the following. In Sec. III we introduce the action
principle approach and in Sec. III A we show how to obtain
the eleven-dimensional supergravity of [1] in this frame-
work. In Sec. Il B we apply the action principle to derive
the five-derivative correction. Section IV considers the
eight-derivative correction. In Sec. IVA we examine
the number of independent superinvariants at the eight-
derivative order. Section IV B addresses the problem of the
7-exactness of X g. In Sec. IV C we discuss the conditions
for the existence of the superinvariants to all orders in the
perturbative expansion. We conclude in Sec. V. Further
technical details are included in the appendixes.

II. COHOMOLOGY IN SUPERSPACE

In this section we review the various superspace
cohomology groups that are useful in the following.

PHYSICAL REVIEW D 95, 026013 (2017)

This is not new material, but we are including it here
to make the paper self-contained and for the benefit of the
readers who may not be familiar with the relevant
literature.

Let us start by explaining our conventions: Eleven-
dimensional superspace [32,33] consists of eleven even
(bosonic) and thirty-two odd (fermionic) dimensions,
with the structure group being the eleven-dimensional
spin group. Let A = (a,a) be flat tangent superindices,
where a =0, ...10 is a Lorentz vector index and a =
1,...32 is a Majorana spinor index. Curved superindices
are denoted by M = (m,u), with the corresponding
supercoordinates denoted by ZM = (x™,&"). The super-
coframe is denoted by EA = (E? E®) while the dual
superframe is denoted by E, = (E,, E,). We can pass
from the coframe to the coordinate basis using the
supervielbein, EA = dzME,A.

We assume the existence of a connection one form €, 2
with values in the Lie algebra of the Lorentz group. In
particular, this implies that

Q(ucnb)c =0, Qaﬁ = (yab)aﬁgabv Quﬁ =0= Qab'

A=

(2.1)

The associated supertorsion and supercurvature tensors are
then given by

1
T" = DE" = dE* + E® A Q" = S EC A EPTpc!,

RyB =dQ, 8 + Q¢ A QL = %ED A ECRepaB,  (2.2)
where the exterior derivative is given by d = dz"d,,.
The assumption of a Lorentzian structure group implies
that the components of the curvature two form obey a
set of equations analogous to (2.1). The super-Bianchi
identities (BI) for the torsion and the curvature,

DTA = EB A R4,

DRAB - O, (23)
follow from the definitions (2.2). Moreover, a theorem
due to Dragon [34] ensures that for a Lorentz structure
group the second BI above follows from the first and
need not be considered separately. Once constraints are
imposed the BI cease to be automatically satisfied. As
was shown in [33], by imposing the conventional
constraint

Top = iVaps (2.4)
and solving the torsion BI, one recovers ordinary
eleven-dimensional supergravity. In particular, one
determines in this way all components of the torsion.
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In addition one can construct a closed superfour form
G, and a superseven form G, obeying [35,36]*

1
dG, =0, dG; + §G4 A Gy =0, (2.5)
whose bosonic components correspond to the eleven-
dimensional supergravity four form and its Hodge dual,
respectively,

Gu,..m, = (*G) (2.6)

my...my*
The solution of the eleven-dimensional superspace BI is
reviewed in Appendix E.

A. De Rham cohomology and Weil triviality

Let Q" be the space of n superforms. Thanks to the

nilpotency of the exterior superderivative, one can define de
Rham cohomology groups in superspace in the same way
as in the case of bosonic space,
H'={we Q'do =0}/{o~w+d1 1€ Q" '}. (2.7)
The fact that the topology of the odd directions is trivial
means that the de Rham cohomology of a supermanifold
coincides with the de Rham cohomology of its underlying
bosonic manifold, also known as the body of the super-
manifold. In the remainder of the paper we assume that the
body has trivial topology. This is the simplest type of
supermanifold, sometimes called a graded manifold. It
implies, in particular, that every d-closed superform is
d exact.

There is an important caveat to the previous statement: it
is only valid when the cohomology is computed on the
space of unconstrained superfields. Once constraints are
imposed it ceases to be automatically satisfied. Adopting

the terminology of [37], we call Weil trivial those d-closed
|

PHYSICAL REVIEW D 95, 026013 (2017)

superforms that are also d exact on the space of constrained
(also referred to as “on-shell,” or “physical”) superfields.
The cohomology groups computed on the space of con-
strained superfields are denoted by H" (phys), as in [19]. As
already emphasized, there is no a priori reason why
H"(phys) should coincide with the cohomology of the
body of the supermanifold.

B. z-cohomology

The space of superforms can be further graded according
to the even, odd degrees of the forms. We denote the space
of forms with p even and ¢ odd components by Q77 so that

Q=@ ) Qr

pta=n

(2.8)

A (p, q) superform @ € QP9 can be expanded as follows:

1
®=——E ENEY E%0, 5 5. (29)

plq!

In the following we use the notation @, , € Q7 for
the projection of a superform ® € Q" onto its (p,q)
component.

The exterior superderivative, d: Q79 — Qrtla 4
Qratl L Qr-lat2 4 Qp+2.4-1  \when written out in this
basis gives rise to components of the torsion as it acts on the
coframe. Following [38] we split d into its various
components with respect to the bigrading,

d:db+df+7,'+l‘, (210)
where d,, d; are even, odd derivatives respectively, such
that d,,: QP4 — QP4 d,: QP4 — QP41 The opera-
tors 7 and ¢ are purely algebraic and can be expressed in
terms of the torsion. Explicitly, for any w € Q77 we have

p
(dbw)al...alﬂrl/}’l.“ﬁq = (p + 1>(D[a1wa2...a[,+]]ﬂl.../iq +5T[alaz\cwc\a3...ap+l]ﬁl.../iq

T 4(=1)"T ()5, @\ay...ap . 111pr---5,))

q
(dr®)ay...appy...pyr = (@ + DD Dg @0y aipopy) T 5 Tl Q. aylps.. pye)

+ P(=DPT 3,110, @clay...a, o pyr))

(Tw)al--»ap—1ﬂ1~-ﬂq+2 =

N = N~

(ta))al...a,,ﬂ/}]‘../iq,] =

(p + 1)(]7 + 2)T[a1a2ya)a3...a,,+2]yﬂl...ﬂq,l-

(q + 1)(q + 2)T(ﬂ1ﬂz|cww1~~-llp—1|ﬁ3~~/3q+2)’

(2.11)

The nilpotency of the exterior derivative, d*> = 0, implies the following identities:

*The G5 Bl receives a correction at the eight-derivative order, cf., (4.3) below.
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2 =0,

dfT + Tdf = O,

d?p + de+ Tdb = 0,

dbdf + djdb ‘|‘ Tt + 1T = O,
dhl + tdb == O,

?=0. (2.12)
The first and the last of these equations are algebraic
identities and are always satisfied. On the other hand, as a
consequence of the splitting of the tangent bundle into even
and odd directions, the remaining identities are only
satisfied provided the torsion tensor obeys its Bianchi
identity.

The first of the equations in (2.12), the nilpotency of the
7 operator, implies that we can consider the cohomology of
7, as first noted in [38] (see also [35] for some related
concepts). Explicitly we set

HM = {w e QP|tw = 0} /{w ~ o + 14,4 € QPFT1472},
(2.13)

As in the case of de Rham cohomology, one could make a
distinction between cohomology groups computed on the
space of unconstrained superfields and those computed on
the space of physical fields.

Suppose now that the conventional constraint (2.4) is
imposed so that 7 reduces to a gamma matrix. It was
conjectured in [19], consistently with the principle of
maximal propagation of [39], that in this case the only
potentially nontrivial z-cohomology appears as a result of
the so-called M2-brane identity,

(ya)(alaz (}/ab)(z3r14) =0. (214)
Explicitly, for p =0, 1, 2, one may form the following
z-closed (p, ¢) superforms,

wa]...aq = Sa]...aq;

— b .
waal...aq - (Yab)(alazp az...a,)>

waba]...aq = (},(lb)(alflz Ua}...a,[)’ (215)
with S, P, U being arbitrary superfields. It can be seen
using (2.14) that the forms w above correspond to nontrivial
elements of HY? with p = 0, 1, 2. The conjecture of [19]
means that all nontrivial cohomology is thus generated, and
that all H?Y groups are trivial for p > 3. This was
subsequently proven in [40-44].

C. Spinorial cohomology

Following [19], let us now define a spinorial
derivative d, that acts on elements of z-cohomology,

PHYSICAL REVIEW D 95, 026013 (2017)

d,: H?Y — HPT' For any
set

w € [w] € H??  we

d,[o] := [dsw]. (2.16)
To check that this is well defined, one first shows that d @
is 7 closed,

where we used the second equation in (2.12). Moreover,
d,[w] is independent of the choice of representative,

ldp(@+ ) = [dyw — 7d 4] = [dyw].  (2.18)

Furthermore it is simple to check that d? = 0,
d?[w] = d[ds] = [d?a)] = —[(dpr + 7dy)w] =0, (2.19)

where we took into account the third equation in (2.12). We
can therefore define the corresponding spinorial cohomol-
ogy groups HY as follows:

HY = {w € H!|d,0 = 0} /{w ~ o + d,A. 4 € HP 'Y,
(2.20)

The notion of spinorial cohomology was originally intro-
duced in [39,45] and applied in a series of papers with the
aim of computing higher-order corrections to supersym-
metric theories [46—50], and more recently in [51-53]. The
spinorial cohomology as presented above was introduced in
[19] and is independent of the value of the dimension-zero
torsion. It reduces to the spinorial cohomology of [39,45]
upon imposing the conventional constraint (2.4).

D. Pure-spinor cohomology

It was first pointed out by P. Howe [54] and subsequently
elaborated in [19] that in the case where the dimension-zero
torsion is flat, cf., (2.4), the cohomology groups HYY are
isomorphic to Berkovits’s pure-spinor cohomology groups
[55]. Therefore, in view of what was said in Sec. II C, the
latter are also isomorphic to the spinorial cohomology
groups that had been computed a few months earlier in
[39]. In the following we briefly explain the equivalence
between the two formulations.

The pure-spinor cohomology groups are defined as
follows. Consider an eleven-dimensional pure spinor, A%,
a la Berkovits, i.e., such that it obeys5

27y, 2 = 0. (2.21)

>This definition is different from an eleven-dimensional pure
spinor a la Cartan, used in [56], which obeys A"ygg}/} =0 in
addition to (2.21).
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The pure spinor A% is assigned ghost number 1.
Furthermore we define a form of ghost number ¢ as a
multipure spinor,

(2.22)

— o a,
o= ...ﬂqwalmq

Note that the above definition implies that w € [w] € HYY:
indeed any shift of w,,, . by a z-exact term would drop out

of the right-hand side above due to the contractions with the
pure Spinors; MOreover, g, .., is trivially 7 closed.

The pure-spinor BRST operator is defined as follows,

Q0 :=1"D,, (2.23)
where D, is the spinor component of the covariant
derivative defined in flat superspace. Therefore the action
of QO on omega,

Qo = A" .. A% )%+ D (2.24)

A1 a)al P
corresponds precisely to the action of d defined in (2.16).
Indeed, for flat superspace the torsion terms drop out and
dy reduces to D,, cf., the second line of Eq. (2.11).
Moreover the contraction with the pure spinors on the

right-hand side above implies that Qw € [Qw] € HY*™",
for the same reasons noted below (2.22). In other words, in
the linearized limit the pure-spinor cohomology groups of
ghost number ¢ are isomorphic to the spinorial cohomol-

ogy groups HY4. For an extended review of pure-spinor
superfields, see [57].

III. THE ACTION PRINCIPLE

The action principle, also known as ectoplasmic inte-
gration, is a way of constructing superinvariants in D
spacetime dimensions as integrals of closed D superforms
[58,59]. Indeed if L is a closed D superform, the following
action is invariant under supersymmetry,

N dPxem--moL, (3.1)

= E ...mp |’
where a vertical bar denotes the evaluation of a superfield at
0* = 0. This can be seen as follows. Consider an infini-
tesimal superdiffeomorphism generated by a supervector
field & The corresponding transformation of the action
reads

where we took into account that L is closed. On the other
hand, local supersymmetry transformations and spacetime
diffeomorphisms are generated by £| and, in view of (3.2),
the integrand in (3.1) transforms as a total derivative under
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such transformations. The action is thus invariant assuming
boundary terms can be neglected.

This method is particularly well suited to actions with CS
terms and indeed has been used to construct all Green-
Schwarz brane actions [60,61]; see [62,63] for more recent
applications to other theories and [64] for applications to
higher-order corrections. The idea is as follows: let Z, be
the CS term and Wp,| = dZp be its exterior derivative.
Obviously Wp, is a closed form. On the other hand one
might be led to conclude that the de Rham cohomology
group of rank D + 1 must be trivial on a supermanifold
whose body is D dimensional; hence Wy, ; must also be
exact. This means that it can be written as Wp.; = dK)
where now, contrary to Zp, Kp is a globally defined
(gauge-invariant) superform. It follows that Lp == Zp, —
Kp is a closed superform, and can therefore be used to
construct a supersymmetric action as in (3.1).

Eleven-dimensional supergravity is another example
of an action with Chern-Simons terms, and we turn to
the application of the action principle to this case in the
following sections. Unfortunately there is a caveat to the
previous argument that Wp_ | is exact. As already noted in
Sec. IT A, this argument can be applied only in the case
where the cohomology is computed on the space of
unconstrained superfields, but is not a priori true on the
space of physical (on-shell) superfields. Interestingly it
does turn out to be true in all known cases. As we see in the
following this includes the case of ordinary eleven-dimen-
sional supergravity as well as its supersymmetric correc-
tions with five derivatives. In Sec. IV B we show that a
sufficient condition for the Weil triviality of the eight-
derivative correction is the r-exactness of X g.

We parametrize the derivative expansion in terms of the
Planck length [, so that the Cremmer-Julia-Scherk two-
derivative action (CJS) corresponds to zeroth order in /. In
Sec. IV we show that, provided the four- and seven-form BI
are satisfied at order O([°), cf., (4.3), there are at least two
Weil-trivial twelve forms W, and hence at least two
independent supersymmetric actions with eight derivatives.
Provided the twelve forms associated to certain anomalous
CS terms are Weil trivial, cf., (4.16) below, there is a third
independent superinvariant at this order. We argue that at
least two of those superinvariants exist to all orders in the
derivative expansion.

As we see in detail in the following, in practice one
solves for the flat components of the closed superform L,
in a stepwise fashion in increasing engineering dimension.
Once all flat components of L, have been determined in
this way, the explicit form of the action (3.1) can be
extracted using the formula
L,

— dap . .
1...mD| €mp

a
+De}nD D ...

. ap |
€m, Lal..AaD

ap ay |
€y Ym, Lalaz...aD + ...

, (3.3)

a a
e +l//mD b Y, lLal...aD
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where w4 = E,%| and e, := E,,*| are identified as the
gravitino and the vielbein of (bosonic) spacetime, respec-
tively. In particular, the bosonic terms of the Lagrangian
can be read off immediately from L, .

A. CJS supergravity in the action principle formulation

The eleven-dimensional supergravity action reads [1]

1 1
S_/<R*1—§G4/\*G4—6C3/\G4/\G4> 5 (34)

where dC; = G, is the three-form potential; it is under-
stood that only the bosonic (11,0) components of the forms
enter the formula above, as in (3.1).

This action can also be understood from the point of
view of the action principle as follows. The twelve form
corresponding to the CS term reads

1
Wi = _6G4 NGy NGy =dZyy;

1
le :—6C3 /\G4/\G4. (35)
Using the BI (2.5) this can also be written in a manifestly
Weil-trivial form,

1
W12:dK11; K11:§G4/\G7. (36)

Taking L;; = Z;; — K;; we obtain that the following
action is invariant under supersymmetry:

1 1
S—/<—§G4/\G7—6C3/\G4/\G4>" (3.7)

This can then be put in the form (3.4) by using the on-shell
conditions *Gy =G; and Gy A xG4 = 6R*1, cf,
Appendix A. Therein we also give the details of the
solution of the superspace equation W, = dK;; and we
show, as a byproduct, that the solution for K; given in (3.6)
is unique up to exact terms.

B. The O(I®) correction (five derivatives)

It was shown in [49], by directly computing the relevant
spinorial cohomology group, that there is a unique super-
invariant at the five-derivative level (order 2 in the Planck
length).6 The modified eleven-dimensional action to order
P reads

®As explained in [49], on a topologically trivial spacetime
manifold this superinvariant can be removed by an appropriate
field redefinition of the three-form superpotential. However on a
spacetime with nonvanishing first Pontryagin class the super-
invariant cannot be redefined away without changing the quan-
tization condition of the four-form field strength.
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1 1
S_/(R*1_§G4/\*G4_6C3 /\G4/\G4

+ B(Cy A Gy AR + 20R2 A *G4)> , (3.8)

where an arbitrary numerical coefficient has been absorbed
in the definition of / and trR” := R,> A R,%; it is under-
stood that only the bosonic (11,0) components of the forms
enter the formula above. This action can also be easily
understood from the point of view of the action principle as
follows. Consider the twelve form corresponding to the CS
term at order I,

W12:G4/\G4/\trR2:dZ“; le :C3/\G4/\trR2.

(3.9)

Using the BI (2.3) and (2.5) this can also be written in a
manifestly Weil-trivial form,

W12 = dK”; K” = —2G7 VAN trRz. (310)
Taking L = Z;; — K;; we obtain the following super-

invariant at order [°:

AS = /(c3 A Gy A tR? + 2G5 A trRZ) . (3.11)

This can be seen, using the Hodge duality relation
G; = *G,, to precisely correspond to the order-I° terms
in (3.8).

In Appendix B we work out in detail the superspace
equation W, = dK;; and confirm that the solution (3.10)
for K, is unique up to exact terms, in accordance with the
spinorial cohomology result of [49].

IV. THE O(I°) CORRECTION (EIGHT
DERIVATIVES)

As was shown in [6,65], the requirement that the
MS5-brane gravitational anomaly is canceled by inflow
from eleven dimensions implies the existence of certain
CS terms Z;; at the eight-derivative order in the eleven-
dimensional theory. The corresponding twelve form reads
Wi, = 1G4, A X3 = dZyy; Z, =1°C3 A Xg,  (4.1)
where Xj is related to the M5-brane anomaly polynomial
by descent,

"The Hodge duality relation between G5 and G, is expected to
receive higher-order corrections [see below (4.11)]. These can be
neglected here since AS is already a higher-order correction.
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1
Xg = trR* — 1 (rR?)?, (4.2)

and we have set (trR?)?:=tR> A tR?, rR* :=R," A
R, A R4 A R, At eight derivatives the modified four-
and seven-form BI read

1
dG4 = 0, dG7 + 5G4 VAN G4 = Z6X8, (43)

where a numerical coefficient has been absorbed in the
definition of /. We expand the forms perturbatively in [,

G, =GV 116" + ...
(4.4)

Gy =G + 16! + ..

and similarly for the supercurvature R,5. Note that in the
expansion above the bosonic components of the lowest-

order fields, G\ ., etc., are identified with the field
strengths of the supergravity multiplet, while the higher-

order fields Gf‘” etc. are composite higher-derivative fields
that are polynomial in the field strengths of the supergravity
fields.

Solving perturbatively the BI at each order in /, taking
into account that the exterior superderivative d = dz¥ 9, is
zeroth order in [/, implies

¥ =0; 46\ =o0;
1
465" + 26 G =00 4G+ G A G =Xy,
(4.5)

where we have set X = ZGXE(;]) + - - -. Note that Xél) only
involves the lowest-order curvature R(). Let us expand the

twelve-form Wy, perturbatively in [, Wi, = l6W§lz) 4+
so that

W =x" A6 =dz,;;  z =x{ A Y.

(4.6)

It then follows from (4.5) that this can also be written in a
manifestly Weil-trivial form as follows:

Ky =GY AGY —260 A G,
(4.7)

Wiy = dK s

In particular, we see that it suffices to solve the four- and
seven-form BI in order to determine the order-I% super-
invariant corresponding to Ly = Z;; — Ky,

AS=1° [(x(" A CP =G A G

(4.8)
+26% A G

’
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where it is understood that only the bosonic (11,0)
components of the forms enter. This is the superinvariant
corresponding to the supersymmetrization of the CS term
(4.1). The action would then read to this order,

1 1
S = / (R(())*l - EGf{’) A*GY - gc§°> AGY AGY

’

+ 15X A Y =G A G 26 A Gfﬁ))

(4.9)

where R, G(©) are identified with the field strengths of the
physical fields in the supergravity multiplet, while the first-
order fields R, GV should be thought of as gauge-
invariant functions of the physical fields. We see that the
action above is in agreement with the expectation that the
bosonic part of the derivative-corrected supergravity action
should be of the form

1 1
S_/(R*1_§G4/\*G4_8C3 /\G4/\G4

+5(Xg A C3 + AL*I)), (4.10)

with AL being a function of R, G and their derivatives.
Since AL is gauge invariant, we see, in particular, that the
CS terms do not receive higher-order corrections beyond
eight derivatives.

Varying (4.10) with respect to C5 implies

1 1)
d*G4 +§G4 AN G4 :Xg +5—Q(AL*1)

(4.11)

It is straightforward to see that the second term on the right-
hand side above is exact by virtue of the fact that AL is
gauge invariant and thus only depends on Cj through Gy.
Indeed the variation of the Cs-dependent terms in the AL
part of the action (4.10) can be written (possibly up to
integration by parts) in the form f P; A doCs, for some
seven-form ®,. Therefore by appropriately correcting the
lowest-order duality relation by higher-derivative terms,
G; = *G, + O(I%), one arrives at the modified BI (4.3).

A. How many superinvariants?

We have seen that provided the modified BI (4.3) are
satisfied, there will be at least one superinvariant at eight
derivatives, cf., (4.8). A second independent superinvariant
can also be similarly constructed as follows. Consider the
twelve form,

1
/12 - 6G4 VAN G4 A\ G4. (412)
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Expanding perturbatively to order /® we obtain
1
Wi =267 A G A G = dzy:

1
Zy =G AGY A CY.

5 (4.13)

The above can also be written in a manifestly Weil-trivial
form using (4.5),
1 0 1
WY =dk,;; Ky =-GY AGY. (4.14)
The order-/° superinvariant corresponding to Z;; — K,
then reads

]
AS = If / GV A <—G§{’) A Cy +G§°)>,

5 (4.15)

where it is understood that only the bosonic (11,0)
components of the forms enter. The above superinvariant
does not contain the correct CS terms required by anomaly

|
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cancelation, cf., (4.10), and should therefore be excluded
by the requirement of quantum consistency of the theory.
However if one is only interested in counting superinvar-
iants at order /° in the classical theory, the above super-
invariant is perfectly acceptable and its existence is
guaranteed provided the BI are obeyed to order [°.

Dropping the requirement of quantum consistency,
relying on classical supersymmetry alone, one may also
consider the following two twelve forms,

Uy, = I°G, A trR%; Vi, = I°G, A (rR?)?,  (4.16)

so that U — 1V is the Weil-trivial twelve form correspond-
ing to the CS terms of eleven-dimensional supergravity
required for anomaly cancellation, cf., (4.1). It follows that
U and V are both Weil trivial, or neither U nor V is Weil
trivial. If the former is true, there would exist gauge-
invariant eleven forms K, K so that at order [° we have

UM =dK,, V() =dKy,. One can then construct two
corresponding superinvariants using the action principle,

ASy = I° / (rR* A CY — K )

ASy = I° / (rR2)2 A CY — Ky). (4.17)

By the argument at the end of the last section, ASy, ASy,
should correspond to a modified BI obtained by replacing
the right-hand side of the second equation in (4.3) by
trR*, (trR?)? respectively. Then K, Ky would still be

given by (4.7) but with G\, G!" solutions of the new
modified BIL.

Together with the superinvariant AS’ of (4.15), we would
then have a total of at least three independent super-
invariants at the eight-derivative order, with only one linear
combination thereof, AS of (4.8), corresponding to the
quantum-mechanically consistent eight-derivative correc-
tion. As we see in Sec. IV B, if ASy, ASy exist they must
necessarily be cubic or lower in the fields.

B. 7-exactness of Xjg

Based on what is known about superinvariants in
D < 11 dimensions [66], it is plausible to assume that
the superinvariant (4.8) corresponding to the supersym-
metrization of the CS term (4.1) should be quartic or
higher in the fields. As pointed out in [19], a necessary
condition for the superinvariant to be quartic is that
the order-/° seven form should be quartic or higher in the

fields. Since G((f; cannot be quartic or higher in the
fields, as can be seen by dimensional analysis, the order-
5 seven-form BI (4.5) must be solved for Gy) = 0. It
then follows that the purely spinorial component of the

|

M5-brane anomaly eight form X, g is 7-exact. Explicitly,
the first nontrivial component (at dimension four) of the
seven-form BI then reads

(1) _ v
y{alaﬂGﬂa;mag) = Xa'...a- (418)
As explained in detail in Appendix E, taking the form of
G into account, cf., (El), it follows that the Weil-
triviality condition,

W12 - dKll? (419)
is solved up to dimension 7/2 for Ky =K 0=
K>9 = 0. At dimension 4, condition (4.19) then takes
the form

=w'l (4.20)

aba,...ay "

7f{ozlotﬂI(f1117|013»--0110)
From this it follows that (4.19) is solved, up to z-exact
terms, for K;g given in terms of Gg%g, cf., (4.18),

1
Kabca]“.ag = 3<yab)a]azG£a)3...a8, (421)

where it is understood that all bosonic (spinor) indices
are antisymmetrized (symmetrized). Note that the solu-
tion for K5 g above relies on the M2-brane identity (2.14).
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Moreover, it can be shown that all higher components
of Ky; solving (4.19) are automatically guaranteed to exist.
To see this, let us define the twelve form,

Ly =Wy, —dKyy, (4.22)
which is closed by construction,
0= (dI)p,13—p =tly01-p Tdelp 00—,
+ dblp—l.13—1) + [Ip—2,14—p' (423)

On the other hand, as we saw above, provided (4.18)
holds, condition (4.19) is solved up to dimension 4, i.e.,
I,12-, =0 for p=0, 1, 2. Setting p =2 in (4.23) then
gives /5 g = 0, which implies /5 ¢ = 0 up to a 7-exact piece
that can be absorbed in K4 7, since all z-cohomology groups
H?'*™7 are trivial for p > 3, cf., Sec. Il B. By induction we
easily see that 1, ;,_, = 0, for all p > 3. In other words,
provided (4.18) holds, the Weil-triviality condition (4.19) is
guaranteed to admit a solution.

In the present paper we provide highly nontrivial
evidence corroborating (4.18). We give the outline of the
argument here, relegating the technical details to
Appendix C. The component X(g of the anomaly poly-
nomial in (4.18) contains a large number of terms of the
form G*, which can be organized in terms of irreducible
representations of Bs. Using certain Fierz identities, cf.,
Appendix D, we have been able to show that almost all of
these terms are indeed 7 exact. There are only three
irreducible representations of Bs corresponding to terms
that can potentially be present in X, ¢ and are not 7 exact.
These are (04000), (03002), and (02004), where we use the
Dynkin notation for Bs; see, e.g., Appendix C of [19].

On the other hand we show that, after Fierzing, X, g can
be put in the form

XO,S = (yala2><7aza4)(7a5a6><ya7a8)Gilaz;a3a4;a5aﬁ;a7a8
+ (y9192) (y ) (%) (r*“2) G4, aysasasiasagiay...ans
+ (y@192) (y%) (yfs @) (yhio--ie)

4
X Gal02§a3a4§a5~~a92“1o~~ﬂ14’

(4.24)

where Gilaz;...;mag’ szlaz;...;a7...a12’ Gélaz;...;am...am denote
certain sums of G* terms with 8,4,2 indices contracted
respectively, cf., (C6), and we have suppressed spinorial
indices for simplicity of notation. Furthermore we show
that (04000) can only be potentially present in the projec-
tion of Gﬁlaz;“_;awg onto the Young diagram associated to
the partition [4, 4], while (02004) can only be potentially
present in the projection of Giluz;..i;am.i.u, , onto the Young
diagram [4, 4, 2, 2, 2]. Therefore a necessary condition for
X g to be 7 exact is that the two aforementioned projections

should vanish identically up to z-exact terms,
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I..G4 ~0; I=G? ~0.
- E

a1az;...;arag a1a2;...;a10..-a14

(4.25)

In the above =~ denotes equality up to z-exact terms. These
two constraints are highly nontrivial, involving seemingly
miraculous cancellations between hundreds of terms. We
have shown that, remarkably, (4.25) are indeed identically
satisfied.

Furthermore we show that the required cancellations for
(4.25) to hold crucially rely on the relative coefficient
between trR* and (trR?)? in Xg. In other words we show
that the purely spinorial components of trR*, (trR?)? are not
separately 7 exact. Consequently, if the twelve forms U, V
are Weil trivial, the corresponding modified order-1° BI is

(1)

solved for some G5 that are cubic or lower in the fields.

[Indeed if G%l) were quartic or higher, Gé{; would vanish
and the purely spinorial components of trR*, (trR?)?> would
be 7 exact.] It then follows from (4.7) that also K, Ky are

cubic or lower, and similarly for AS;, ASy, cf., (4.17).

C. Integrability
The perturbative expansion of the curved components
following from (4.4) reads
0 1
Gy,..m, = GEVI?...M4 + IGGz(vl?...m + (4.26)
and similarly for G; and R,Z. Note that in terms of flat

components there is a mixing between zeroth order and
order [ due to

® = EAD, = B0 4+ S(EOA) 1 EWAY) ...
(4.27)

where we have expanded the coframe, EA = E(0A 4
I°EMA ... and we have considered an arbitrary one-
form @ for simplicity. However, if one restricts to the top
bosonic component of a superform at @ = 0 as in (3.1), then
there is no mixing,

‘I>;(19)| — e aq)go)| oy <I>,(,0)|'

| = e, @4 | + i@, (4.28)
where e,,%, w?% were defined below (3.3). Indeed the O(1°)
corrections to the coframe E* only start at higher orders in
the #-expansion and could be systematically determined as
in, e.g., [67] once the O(I°) corrections to the torsion
components have been determined.

In practice the BI are solved for the flat components of
the superforms involved, G A01>__ a0 O Al, .4, ©tc., at each
order in /. Consequently the corresponding BI, dG, =0
etc., are only shown to be satisfied up to terms of the next
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order in [. In principle, there may be an integrability
obstruction to the solution of the BI at next-to-leading
order in the derivative corrections, although that would
most probably be prohibitively difficult to check in prac-
tice. In the following we see that the integrability of a
certain superinvariant is guaranteed provided the BI admit
solutions to all orders in /. Note however that all-order
integrability need not be a consequence of the BL

The phenomenon of inducing a higher-order correction
at next-to-leading order is also well understood at the level
of the component action, S = SO 4 68 4 ..., The
condition of invariance of the action under supersymmetry
transformations & = §©) 4 166(1) + - .. reads

8050 =0; 5050 4550 =0, (4.29)
and similarly at higher orders. The term §()S® in the
second equation above is proportional to the lowest-order
equations of motion. Therefore in constructing S(!) we only
need to check its invariance with respect to the lowest-order
supersymmetry transformations 8(°) and only up to terms
that vanish by virtue of the lowest-order equations of
motion. This corresponds, in the superspace approach, to
the fact that in solving the first-order BI one uses the zeroth-
order equations for the various superfields. Once S(!) is thus
constructed, the correction 8(!) to the supersymmetry
transformations can be read off. Since §VSM) #£0 in
general, this induces a correction S to the action and a
corresponding correction 82) to the supersymmetry trans-
formations, and so on.

The existence of an integrability obstruction can also be
understood in the context of the Noether procedure. Indeed
at next-to-leading order we have

280 455 4 5052 =0, (4.30)
Therefore there must exist an action S such that its
variation with respect to lowest-order supersymmetry
transformations is equal to —6(S(), up to terms that
vanish by virtue of the lowest-order equations of motion.
This condition is not automatically satisfied for every S(!).

In particular, one would like to know how many of the
independent superinvariants at order [° presented in
Sec. IV A survive to all orders in the derivative expansion.
Assuming M-theory is a nonpertubatively consistent
theory, we expect the superinvariant (4.8), corresponding
to the supersymmetrization of the CS term required for
anomaly cancellation, to be integrable to all orders.
Moreover, assuming this superinvariant is at least quartic
in the fields, a similar argument as the one detailed below
(4.23) shows that it must be unique at order /¢ [19].

In addition, if one assumes that the BI admit a solution to
all orders in a perturbative expansion in /, then there is one
linear combination of the superinvariants presented in
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Sec. IVA that is guaranteed to exist to all orders in /.
Indeed in that case the twelve form,

1
W12 = <I6X8 —§G4 A G4) A\ G4 = d(G7 A\ G4),
(4.31)

is Weil trivial by virtue of (4.3), which should now be
considered valid to all orders in /. However this is not the
superinvariant that corresponds to the supersymmetrization
of the anomaly term, cf., (4.8). Indeed by the usual action
principle procedure the twelve form above would give rise
to the superinvariant,

1
AS = / <16X8 A C3—§G4 AN G4 AN C3 —G7 VAN G4>‘
(4.32)

Expanding to order [° and assuming G, receives a non-
vanishing correction at this order, we see that (4.32) does
not coincide with (4.8) and the corresponding /°-corrected
action is different from (4.9).

In conclusion, under the aforementioned assumptions,
we would then expect (at least) two independent super-
invariants to exist to all orders in a perturbative expansion
in [. Only one of these, the one corresponding to the
supersymmetrization of the CS anomaly term, is quantum-
mechanically consistent.

V. DISCUSSION

We have shown that the highly nontrivial constraints
(4.25) are satisfied, corroborating the expectation that the
purely spinorial component of Xy is 7 exact. Furthermore
we have seen that the 7 exactness of X g suffices for the
existence of the superinvariant at order /°. Solving the 7
exactness of X, ¢ is the first step, and arguably the most
difficult, towards the explicit construction, via the action
principle approach, of the supersymmetrization of the
Chern-Simons term C A Xg of eleven-dimensional super-
gravity required for the quantum consistency of the theory.

Conclusively proving the 7z exactness of X,g would in
addition require checking that the representation (03002) is
absent from X . This representation is potentially present
in two different Young diagrams. As a consequence,
showing the cancellation would involve, after projecting
onto the appropriate Young diagram, Fierzing hundreds of
four-y terms. This is equivalent to eight-spinor Fierzing, as
opposed to the four-spinor Fierzing that is sufficient in
order to show the absence of the (04000) and (02004)
representations. At present, this seems prohibitively diffi-
cult even with the help of a computer.

As a corollary of this work, we have shown that if
the anomalous Chern-Simons terms C A (TrR?)?> and
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C A TrR* can be supersymmetrized independently, the
corresponding superinvariants must necessarily contain
terms cubic or lower in the fields. The existence of
eleven-dimensional cubic superinvariants at the eight-
derivative order has not been examined in the past.
Their existence would presumably imply, by dimensional
reduction, the presence of cubic terms in the ten-dimen-
sional superinvariants /,, I, mentioned in the introduc-
tion. This would not be inconsistent with the results of [4]
whose authors have excluded from the outset such terms in
their analysis. This is an interesting open question to which
we hope to return in the future.
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APPENDIX A: WEIL TRIVIALITY AT [/°

In this section we give the details of the solution of the
superspace equation W, = dK;; at lowest order in the
Planck length. As a byproduct we see that the solution for
K, given in (3.6) is unique up to exact terms. We look for
the solution to

1
dK11:—6G4/\G4/\G4, (Al)
with K, gauge invariant, i.e., function of the field strengths

of the physical fields. The explicit construction of K; in
|

7 5
EDalKaz...aml...as - EDa

1 Ray...asa;...ap

2 \33

. -1/2 -1 -3/2
and involves® K&l,,{agal,,,ab, folu).aﬁal...as, fol o

fields: the equation is thus trivially satisfied.
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flat components proceeds by solving the BI at each
engineering dimension in a stepwise fashion, from dimen-
sion =3 to 2 (i.e., from K, , to K, ., ).Incomponents
the BI (A1) reads

11
Dip Ka,..a,) T ?TQIA2|KF|A3...A]2)
11!
= _W .4, 045..4,G .. A1) (A2)

where the torsion term arises from the action of the exterior
derivative on the supervielbein. The [ABC) notation stands
for symmetrization or antisymmetrization, depending on
the bosonic or fermionic nature of the indices. In the
following, antisymmetrization of the indices a; and sym-
metrization of the indices «; is always implied.

The engineering (mass) dimensions of the physical fields
that are involved in the construction of Ki; are

[Dal] =1
[Dal] = 1/2

[Talaza] = 3/2
[Tl =1

[Gabaﬂ] = [Ta/ia] =0
[Gabcd] =1

1. From dimension -3 to —1/2

From dimension —3 (12 odd indices) to —1/2 (seven odd
and five even indices), the right-hand side of (A1) always
vanishes. Given the dimensions of the field strengths of the
physical fields, the first nonvanishing component of Ky,
is Ky aa,..q,» appearing for the first time in the O-
dimensional equation (six fermionic indices and six
bosonic indices). For example, the equation (A2) at
dimension —1/2 reads

11/5 X 7 35
+ = ( Ta]aszfa3.‘.a7a1...a5 - ﬁ Ta]aQyKya3‘..a5a].‘.a7 - % Tala]yKyaz..‘amz...aS) = O’

&ay...a,, and Ké?,z,),agal ...as» Which cannot be expressed in terms of the physical

2. Dimension 0 (A{...Ag — ay...a¢, A7...A1p = ay...ag)

At dimension 0, Eq. (A2) reads

0 0
1 — 1 —_— 11 /5
EDalKaz...aﬁal...a(, + EDalKaz...aéal...aﬁ =+ 7

11! 18

— G
ajayo o Y asasazay M asagasog
6(4!)377 14201 304030 5060506

5 12
22 Talaszfa3...a6a1.,.a6 + 22 TalazyKya3...aéal...aG + 22 TalalyKyaz...aGaz.,.aé)
———— —_———

0 0

¥In the following we use superscripts to indicate the dimension. This should not be confused with the notation in the main text, e.g.,
(4.4) where the superscript denotes the order in the derivative expansion.
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Most terms vanish and the equation simplifies as follows:

PHYSICAL REVIEW D 95, 026013 (2017)

it is easy to check that the solution is given by

f . —
(7/ )alaszal...a(,a3...a6 90(7111:12)(11012 (Ya3a4)a3a4 (}/a5a6)a5a6' Klll...d70£1...0£4 — 42(},01'”“5)0!1&2 (ytl5a7)a3a4' (A4)
Using the M2-brane identity as well as the so-called M5-
brane identity, 3. Dimension 1/2 (A{...A5 = ay...as,
A6-..A12 - al...a7)
(ye)a]az (Yeal...a4)a3a4 = 3(7(11412)0510:2 (ya3a4)a3a4’ <A3) At dimension 1/2, Eq (A2) reads
|
Dy(yVy®)=0 0
5 ——r— 7 —l
EDalKaz...a5a1...a7 _EDQ]K02...117(11...(15
11 /5 35 7
+ 7 <§ Talaz faz...asa;...a; % TalazyKya3...a7a1...a5 - ﬁ TalalyKyaz...aﬁaz...aé) = O’
0 0
[
which simplifies to K asay.ay =0. (A5)

(yf)a]aszal..‘a7a3‘..a5 =0.
Since [K f4,  4ya...0;] = 1/2 and there is no gauge-invariant

field with that dimension, we conclude that
|

d,, (707@)=0

0
4 8
EDal Kaz‘..az;al.“as + EDalKazn-agalm%
el f 14
+ ? ﬁ T(l](lz Kfag{zw] ...ag + g T“lllz

12

- _6(4!)35 ajaxazay asaﬁfllazGaﬂsdﬂM’

which becomes, using (El),

56 .
- ? lGa1a2a3f(7f)a]a2 (7114...113)0:30:4

(yf>a1a2Kfa1 ..agozay

7. )
+ 1_8 leghi (}/al ...a(,fghl)alaz (ya7ag )(13(14

+ 7Oi(},a1a2)a]az (7a3a4 )(13(14 Gasu.ag .
(A6)

The last term above can be expanded as

70i(7a1 a, )051 I (}/a3a4)a3a4 Ga5 ...ag
70

= ? i(yf)alaz (yfll]-~~“4)(13a4G“5-~“8
= 421-(]/]”)0:]0!2 (]/[fal_‘.a4|)a3a4G\a5...a8]
56 .

- ? l(}/f)a]az (Y[al ...a5|)a3a4G|a6a7ag]f'

},K]/a:;“.ax(h L0y + g
—— —

4. Dimension 1 (A...A4 — ay...ay,
AS"'AIZ g al...as)

At dimension 1, Eq. (A2) reads

16 ,
Ta]al Kyaz...mluzn.ug

0

|
Similarly, the second term on the right-hand side of (A6)
can be written in a manifestly z-exact form,

7 )
E (yal ...aﬁfghl )a, a (7/07{18 )(13(14

7 A
- 18 €ja, ..Aaf,fghl (7/])0(10!2 (y‘”"s )"30‘4

1 o
h
- E €ja, ...aﬁ\fg l(}/])alaz <y|a7a3])a3a4

1 o
+ § ea] ‘,,a7fghl (yj)a]az (yagj)a3a'4 :
—_———
0

Then Eq. (A6) takes the following form:

= (7j>a1a2 (42i(7[ja1 ...a4)a3a4Ga5.,.a8]
1

h 2 ie[jal ...d6|il o (y|a7”x])0’30‘4 Gil '“i4)'

(yj)a]aszal,..aga3a4
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Since the cohomology group H?? is trivial, the solution to the above equation reads

1

— P : iy...0
Ka]...agalaz - 421(}’a14..a5)alazGa64..ag _Elea,...m ! 4(7a3ag)a,azGi1“.i4’

up to z-exact terms.

5. Dimension 3/2 (Ay...A3 = ay...a3, A4...A1; = ay...aq)
At dimension 3/2, Eq. (A2) reads

0

3 9 e N
EDa] Ka2a3al...a9 - EDalKaQ...agal...o@
11 /1 6 9
- 7 (Z Talaszfal...aga3 + HTalazyK;/a3..,a9al...a3 + ZTHIGI}/K}/G?_Q?,QZH.QQ) = 07
0
I
which becomes, using (El), whereas T,,” is in the representation (01001). It follows
that
(yf)alasza]...a9a3 = +252(}/al...a5)a2a3 (ya6a7)a]yTa3a9y K 0 (Ag)
_3€u]...a7ilmu(Yagug)alaz(Yi|i2)a3yTi3i4y drethom
+ 504(Va,0,) (5] (T a0 ) arsy) T gy and moreover the right-hand side of (A7) must vanish

identically. This can be verified by, e.g., taking the Hodge
dual of (¥;,,),,, in the second term of (A7), and using the
y-tracelessness of 7,7, cf., (E3).

(A7)

The decomposition of K¢, 4,4, in irreducible components
is given by
6. Dimension 2 (A4, - a;a3, A3...Aq; = a;...ay9)

(10000) ® (00001) = (10001) & (00001), At dimension 2, Eq. (A2) reads

2 10

EDm K(lzll] ...ay + ED(I, Kuzu.um(z]az

i, 0., S0y
+7 %Talaz Kfal...alo +§Talaz Kytlsuﬂloalaz +ZT‘110‘1 KV“2a2~~“10
11! 18

6(4!)3% ajarazay a5a6a7asGa9a10fllaz’

which becomes, using (El),

K a0 = 1008200 )b G vy = 30 00" Vo s G 1)
20T (42070 Gor vy = 30" V)G 1)
—1575G,..0,Gas...a5 (Y agary )y (A9)
Multiplying by y(!) and taking the trace leads to
1 d;...d
K . a, :ﬁeal.“aHGdl‘..dé‘G e (A10)

On the other hand contracting (A9) with y® or y©®) imposes that the contraction of the right-hand side must be identically 0.
This can indeed be straightforwardly verified using (E3).
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7. Dimension 5/2 (Al — Ky, AZ"'AIZ - al...all)

The equation at dimension 5/2 does not contain any
additional information, but serves as a consistency check
for the expressions we found for K, . It reads

1 11

EDalKal...a“ - 12

11 2T K IOT K _ 0
2 12 aax ras...apo 12 apa vas...dap -

D, K

a,...a; o

which becomes, using (E1) and (A10),

1
7_2€a1..
+23 IOiGal...a4 (7a5...a9 Taloa“ )a, :

.ap Da, Gabchade - 330iGa1azgh (ygha3...ag Tamall )

a;

Using (E2) and (D1) we then obtain the constraint

0= €a4,...ay Td1d25(7d3d4)5al G-
71

by...b
+Z€a1...a5 ! G(ybl...bﬁTabw)al Gag...all

- 990€a|...mblhzgh(thszagug) (All)

!Xlelmall.‘lh’
which can be seen to be automatically satisfied by
contracting (All) with €, , . The next equation (of
dimension 3) is trivially satisfied, since the purely bosonic
|

1
G A xG = WGQIHJM

Moreover, taking the trace of the third relation of (E3) gives

1 1
Rx1 = —Gdlu_dA‘Gdl“'d“dV = EG A *G.

144

APPENDIX B: WEIL TRIVIALITY AT at I3

In this section we are looking for the solution to the
equation,

dKll :G4/\G4/\Rab/\Rba. (Bl)

We construct all components of K;; explicitly and confirm

that the solution of Sec. III B is unique up to exact terms. In
components the equation above takes the following form:

11
D[A] KAz--~A|2) + ? TQIAZ\KF|A3--~A12)

it

- WR[AlAz\ClczR\AsAMCZCl G|A5~~-A8 GA9~~-A12)' (B2)

PHYSICAL REVIEW D 95, 026013 (2017)

component of a twelve form vanishes automatically in
eleven dimensions.

8. Action at O(I°)

We have thus constructed the explicit expression of all
components of K, and have seen that it is unique up to
exact terms. Its purely bosonic component in particular
takes the following form,

1
K(2) - Weal..‘anGd]...d4Gd]..'d4dxal A A dxth
1
:§G/\ *G (A12)
1
= —Rx1 +§G A *G, (A13)

where in this subsection we have reverted to bosonic
conventions for bosonic forms. Using the action principle
then leads to the CJS action of Sec. IIT A.

The last two equalities in (A12) above can be seen as
follows. The volume element is defined as

1
dV =x1 =—

ll‘eal__.a“dx"l A oo Adx®n

from which it follows that

—e1-a1dy

1
€a5“.a11blmb4Gb1.ub4dxal A oo Adxt = mGdl‘..d;‘Gdl”.dA‘dV.

[
The dimensions of the physical fields are the same as
before, with the addition of [R,;.4] = 2. The dimensions of
the various components of K range from —1/2 (K, _,,,) to
5 (Kq,...ap,)-

1. Dimension 0 to 3/2

Since the dimension of K, _,,, is —1/2, it must be set to
0 as it cannot be expressed in terms of the physical fields.
The equation of dimension O then takes the form

11
Da] Kaz...a]z + Ta]aszf'(x3...a12
——

2
0
1 e
= m a0 ¢ 0, N30y Ga5...agGag...a12’
! e —

0

which simplifies to

(y‘f)alasz(l:;“.(llz =0. (B3)
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Since [Ky,  4,,] = 0 and H'° is nontrivial, a z-nonexact
solution involving only y-matrices could exist. In that case
K ¢q, .., Would necessary transform as a scalar, since the
only available gauge-invariant superfield of zero dimension
is a constant. On the other hand,

(10000) ® (00001)®s!% = 1 x (00000) + - - -,

i.e., the decomposition of K¢, ,,, contains a unique scalar
combination. It follows that

Kfag...alz & (yf)a3a4 (}/a)q;a(, (}/a)(l7(lg (yb)agam (}/b)a“alz .

(B4)
J
0 0
8 ———— 4 ———
EDa] Kaz...aga]...m + EDalKaz...a4al...a8
+11 14T K 1
2 \33
4 11!

PHYSICAL REVIEW D 95, 026013 (2017)

However it can be verified that this expression does not
satisfy Eq. (B3), unless K, o, 4, = 0.

The right-hand side of Eq. (B2) vanishes from dimension
0 to dimension 3/2, and the equations to solve are all

similar to (B3): The component Kﬁ@,l,__m} are set to O

because there is no gauge-invariant field of dimension 1/2.

1 3/2

The components Kt(zl)azaw]...asv ngl/azlzwmmav are set to 0,

up to exact terms, as a consequence of the triviality of
38 4.7

Hy®°, H".

2. Dimension 2 (A;...Ag — oq...ag,

A9...A12 Ed al...a4)

This is the first equation with a nonzero right-hand side,

16

- Y — Y
ajay” N fay...as0;...08 + 11 Ta]az Kyal...aga3a4 + 33 Ta,al Kya3...a3a24..a4>
N e’ N———’

0 0

— cc
- 54(402 ajmcier M azay 2 ]GalazasaGGa3a4a7ag’

which becomes, using (E1),

(yf)alasza]...a4a3...a3
Since H2'6 is trivial, the solution reads

2)
1

= _180i<yf)a1a2 (}/fa] ...a4)a3a4Ra5aﬁclczRa7agczcl .

( — / 162
Ka ...asoy...Qg _1801(7a1“.a5)a1a2Ra3a4 RasaeczCl’

up to z-exact terms.

3. Dimension 5/2 (A{...A7 = ay...a7, Ag...A1; — a1...as)

At dimension 5/2, Eq. (B2) reads

0
7 5 ———
EDO’I Kazma7a1..‘a5 - EDa]Kaz‘..a5a1.“a7

117 5 35
- 7 (E Ta]az K.fal..4a5{13...(17 + gTalazyKJ’(ll---(lW}mas + %Tul"lyKV"3~-”7”2-“”5>

0 0

11! 1
= m <2 ﬁ Ra]azclczRa3a1 “a Ga2a3a4a5 Ga4a5aﬁa7) >

which becomes, using (E1),

1
24

(yf)alazl(fu] ..A503...00 = _]2Oi(},a14..u5)(1|(12R(t3a4C]L‘2 <(ye]ez)a5aﬁ (y[clcz Telé’z])(l7 + (yclczelme“)asaﬁ (},e|ez T€3£’4)(l7>

+ 1800i(}/a]a2)a]a2 (ya3a4)a3a4Ra5aﬁclczRa7aSCzcl .

The second term in (B5) can be written as
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18001( ﬂlaz|)0!102 (y\”3a4|)0!30!4R0’5%ClczRaﬂas]C‘zCl

PHYSICAL REVIEW D 95, 026013 (2017)

= 6001(7 )alaz (yg a1a2a3a4\)a3a4Ra;a(,C C2Ra7\a5]czcl

7 6 cyc 1 c|c
= 6001(7g)a1a2 <§ (y[!lul“2a3a4|)0!30!4R‘15(ls ] 2R“7\as]0261 + § (yulazawws)m%R”s“é : 2Ra7gC2Cl> ‘ (B6)

One can then verify that the second term on the right-hand side of (B6) cancels with the first term on the right-hand side of
(B5). Since the first term on the right-hand side of (B6) is in a z-exact form and Hf’s is trivial, the solution reads

(5/2) _ ; e
Ka]...a(,al...a5 - 7201(}’(11...a5)alazRa3a4L]L2Rasa6026‘1’
up to r-exact terms.
4. Dimension 3 (A{...Ag — ay...a¢, A7...A1; = ay...ag)

At dimension 3, Eq. (B2) reads

0
1 1  —
ED(ll Kaz ..Qedy ...dg + EDu]Kaz.“aﬁa]...%
11 /5 5
+- 2 <22 ayax Kfal AeA3...0g +55 22 T“lﬂz

I arC2C

_ 11! 12R e
_4(4y)2 _ﬁ ara

cic
+2-— 154 alaz ! 2Ra3a4czclGa1a2a5aGGa3.,.

3
+2 Rala2

which becomes, using (El),

— 2y
l(y )a]az fay...aga3...a4

1
=—-D, K

2 az...064] ..
_dalKaz...a6a1...a6

— 3T

ayoy eaz...abaz..‘aﬁ

— 2700R 0, Reyarere, G G

azagozoy Y asagasag

+225R 4,0, " Royayere, G G

ajayasag P as...ag

+ 1350R,, 4, * Ry gy, G G

azagozay Jasagasag

Let us now examine separately each group of terms in the
equation above with the same type of field content. There
are four G° terms that read

- 225iGa1 ...ay (ya5a6 )(XlazRa3(l4ClCzRas(l(,CICQ
- 360(ya1 .as )alazRa3a4clc2 czas ( )/iaﬁ
+ 720(ya1 .as )alazRa3a4clcz cla5 (

- 54Ol<7a1 ...a5)(ale|Ta6a2 R\a3a4\

)ﬁ%
R\asae)CzCl . <B7)

azaq a3y

6
14 — 14
Kyal...a6a3,..a6 + 11 Talal Kya3...a6a2...a6
N—_——— N————
0 0
5060506

Ra] ac)cy Ga3a4a3a4 Ga5a6a5a6) ’

[
The last term in (B7) can be split in two parts,

(2 .
— 540i <6 (ya] 4..a5)aleTa(,az R{13(146162Ra5(16c201

4

€ cic
+ 8 (yal...a5)a1a2Ta6a3 R€a4 ! 2Ra5a60261>'

The first one leads to

5.
(yg)alaz <§ 1€4a,...q
+225iG,, 4

by...by c1c;
6 Gbl ..‘b4Ra3a4 Ra5a6czc1

162
4 (Yasué )alaz R(l3(l4 Ra5a(,czcl ’

where the first term is 7 exact, and the second term cancels
with the first one in (B7). It can then be verified that the
three remaining G° terms cancel out.

Moreover there are three terms of the schematic form
G(DG),

= 360i(7 ) g o Ry, 2, Ty (V)

- 720i(}’al”'a5)ala2 aza4£|( d Taﬁa5ﬁ(yCz)ﬁ(X()
— 180i(y®

R LlczduﬁRusaﬁcch (BS)

. )(ll a0y

which cancel out.
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There are two RG terms that read
- 1350(},11](12)0:]0(2 (ya3a4)a3a4Ra5a6clc2Ra5a(,czcl
+45(a;...a5)ayar Ry, > (7Y g asrg Resererer = 205V ey ) asag Rerageren)- (B9)
The first term of (B9) can be put in a z-exact form,
- 1350(7(1]:12)011052 (}/a3a4)a3a4Ra5aGC1C2Ra5a(,czcl

= (7g)a1a2(_630i<7[ga1...a4|)a3a4R\a5aﬁ]ClczRa5a(,czc] + 180(7(11...a5)a]azRa(,gclczRo@a()czcl)v

while the remaining RG terms cancel out.
There are two T2 terms that read

+ 2700(7a1a2 )alaz (ya3a4 )a3a4Ra5a5 e Ra6a60201

: 1 e
+ IOSOZ(J/a]‘..%)aIaZ ((},e|ffz)a3a4 (y[clcz Telez])aS + ﬂ (YCICZLIN 4)(13(14 (yelez Te3e4)a5)Ra(,a()czc| : (BIO)

The first term can be put in a z-exact form,
2700(7alaz)a1a2 (703a4)a3a4Rasllsc]czRaeasczcl

1 , 7 e 2 ere
252700(}/ )alaz g(ygal...a4)a3a4Ra5a5 ! ZRasaﬁczcl +§(}/a14..a5)a3a4Ra5a6 ! zRaﬁgczcl s

while the remaining 77 terms cancel out. Taking the triviality of H I+ into account, the nonvanishing terms extracted from
the RG, T2, and G terms lead to the solution,

3 . . -
KEll)...a7al...a4 = 5041(7’(11...115)051&2 (_Ra5a7ClC2Ra5abczcl + 2Ra5a6‘]c2Raba7czcl)

1
: by...b cic
- Eleal.,.zﬁ ! 4Gbl...b4Rotlozz ! zRa3a4czcl7 (Bll)

up to r-exact terms.

5. Dimensions 7/2 (A{...A5 = ay...0t5, Ag...A15 = @y...a7)
At dimension 7/2, Eq. (B2) reads

5 7

EDalKag...asal...m _EDalKaz...a7a]...a5
11 /5 7 7 , 35 ,
- 7 ﬁTa]az Kfal...a7a3...u,'5 - ﬁTalaz Kya]‘..asag.‘.w + %Talal Ky(13..‘(15a2...a7

1 /1 .
= m (ZﬁRalal ! 2R02a3czclGa4a5a3a4GaGa7a5a6

1
+4—R, , 1R

66 aa, aa3c)Cy Ga2a3(14a5 Ga44..u7> .

The right-hand side of the equation above contains terms of the form G(DT), T(DG), TR, and TG?. The first two groups of
terms simply vanish (without the use of any equations of motion or BI). Two z-exact terms can be extracted from R7T and
TG?, and the remaining terms cancel out. This leads to the solution,

7/2 .
Ksz/..)agal...og = 20161(}/a,...a5) Ra6a7clczRa3azczCl

ajoy

by...b cpc
+4€a1...a7 ! 4Gb]...b4Ra1a2 ! zRa3agczcl’

up to z-exact terms.
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6. Dimensions 4 (Al...A4 > Ap...0y, As...A12 - al...ag)
At dimension 4, Eq. (B2) reads

4
EDa] KaQ...oua]...ag + EDalKaz...agal...ou

/o, 4., 16,
+7 ﬁT(l](lz Kfa]..,u3{13a4 +§Ta|uz K71114..(l4(13'--08 +ﬁTfllU’l K}’(lz'--“4“2“'“8

11!
= W (1260Ra1a201C2Ra3a40201 Ga5a6a3a4 Ga7a3a5a6
+ 35Ra]azclczRa3a4c2c] Ga1a2a3a4 GaS..Aag
+4- 210Ra]azclczRa,a2czcl Ga3a4a5a6Ga7a8a3a4

c|C
— 2 . 84ORalal ! zRazazCzCl Ga3a4a3a4G515“6a7a8)'

The terms in the equation above can be cast in eight groups: R?, RG?, R(DG), G*, G*(DG), GT?, T(DT), and G(DR).
Parts of the terms of the form R2, G*R, and GT? can be put in a z-exact form, while the remaining terms cancel out. Taking
into account the BI,

D, R = —T,4'R (B12)

a;”"aa3¢1 6y rascicy?

we see that the term G(DR) cancels against a term from GT?. Taking into account the equation of motion of G we see that a
term from G?(DG) cancels against a term in G*,

bhiD, Gy =
€4 .ap ag bl..‘b4__€a

) ..agblmbSDchbl..‘bg = IOSGal...a4Ga5...a8' (B13)

1e- 1.

We are thus led to the solution,

(4) _ ; e
Kalu.aga].“az - _15121<ya1...a5)(zlazRaﬁéh : 2Raxas»czcl
by...b cic
_6€a1...a7 ! 4Gb]...b4Ra1a2 ! zRagangCl

by...b cic
+ 12€a1...a7 ! 4Gb]...b4Rozlag ! zRazangCl’

up to z-exact terms.

7. Dimensions 9/2 (Al...A3 — Xp...03, A4...A12 - al...ag)
At dimension 9/2, Eq. (B2) reads

3 9

EDa] Ka2a3a1...a9 - EDalKaz...agal...og

11 /1 7 6 v 9 ’
_7 ﬁTalaz Kfal.‘.agog +HT<11112 K7a1~~a3a3~~a9 +£T‘lla1 Kya2a3a2.“a9

1 /o1
- 4(41)? <2mRalaz '*Razarese, Oay...a5G ...

3 .
+ 4%Rala2c]L2Ral ascycy Ga2a3a4a5 Gaﬁ...ag) .

The terms in the equation above can be cast in seven groups: R(DT), RTG, G*(DT), G°T, T?, TG(DG), and T(DR). One
term of the form RT'G is 7 exact, while all the remaining terms can be seen to cancel out, using (B12) and (B13) to convert a
term of the form T(DR) to the form T2, and a term of the form TG(DG) to the form G*T. Up to 7-exact terms, the
component of dimension 9/2 then reads
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9/2)

PHYSICAL REVIEW D 95, 026013 (2017)

( _ : by...b cic
Kal...aga]az - 601€a14..a7 ! 4Gb|...b4Raga9 ! ZRalamczc]'

8. Dimensions 5 (4,4, — aja;, Az...A; = ay...ay)

At dimension 5, Eq. (B2) reads

2 10
EDalKazal...ag + EDalKaz...amalaz

11 /1 f 15
+? %Talaz' Kfa|...a|0 +

:&<2LR ¢
4402 \"66
2
- lﬁRalal
1

12 R

11

The terms in the equation above can be cast in nine groups:
RT?, GT(DT), G*T?, GR?>, GR(DG), RG’, R(DR),
G?(DR), and T?(DG). One term in GR? is 7 exact, while
all the remaining terms cancel out, as can be seen using
Eqgs. (B12) and (B13) to convert a term of the form R(DR)
to the form RT?, a term of the form G*>(DR) to the form
G?T?, and a term of the form 7% (DG) to the form G>T2. Up
to 7-exact terms, the component of dimension 5 then reads

Kglsl)n-all = _1656(11.. a

by...by c1c;
-ay Gb]...b4Raga9 Raloﬂnczcl'

(B14)

9. Dimensions 11/2 (A; — oy, Ay...A1y = ay...ay;)

Since there is no new component of K appearing, this
equation should be satisfied automatically,

1 11

_D(l Ka a __Du ay...apa
12 1 1---411 12 1 2---A110]

11 /1 7 5 ,
_7 gTﬂlaz Kfaz...a” _gTalﬂz Kyalas--»all

2
4412 \6
The equation contains six types of terms: TR?, GR(DT),
G’TR, GT(DR), RT(DG), and T3G. As expected all the
terms cancel out, as can be seen using (B12) and (B13) to

convert a term of the form GT(DR) to the form TG, and a
term of the form RT(DG) to the form G>TR.

c1cy
Ralal : Ru2a352qGa4..4a7Ga8...a“)'

10. Action at O(I®)

We have constructed the explicit expression of each
component of K;; and showed that it is unique up to exact

ﬁTﬂllaz

10

14 — 14
Ky(z,(12u3...u|0 + 33 Talal Ky(lzaz.“am)

Ralazczcl Ga3...a6 Ga7...a10

a0 a,cycy Ga3a4a5a6 Ga7 ...ayg

cic
+ 2_Rala2 ! 2Ra3a4czcl Ga5a6alazGa7a8a3a4> .

terms. In particular, the top component, given in Eq. (B14),
precisely agrees with (3.10), leading to the superinvariant
of Sec. IIIB.

APPENDIX C: WEIL TRIVIALITY AT /¢

The same method is used to generate the corrections at /6
order, cf., Sec. IV. We look for the solution to the equation

dK|; =Gy A X;l). In components this reads

11 P
1KA2~~A12) +7T[A1A2|KF\A3~~A12)

— ce3 cyC
(4')42(G[Al...A4RA5A6c1c2RA7Ag RigonsgleseiRianan ™

2

1
I cie dd
4G[A1---A4R|A5A6\C102R|A7Ax\ ] R|A9Am|d|dzR\AuA12) ] :

(C1)

The dimensions of the various components of K;; now
range from [K, .. ]=3t0 [K, . ]=S8.

1. Dimension 3 and 7/2

If we assume that the superinvariant at O(1°) is quartic or
higher in fields, the first potentially nonvanishing compo-
nent of K, appears at dimension 4 (it is of the form G*).
We thus obtain

K/ (7/2)

(3)
ap...a;, — Ka,al...alo = Ka,azaln.ag =0.

This is consistent with (C1), whose right-hand side van-
ishes for dimensions lower than 4.
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2. Dimension 4 (Al'“AlO > dq...0qy A11A12 - a1a2)

Equation (C1) takes the following form,

0 0
2 () 10, %0/2)
EDalKaza]...am + ﬁDalKaz.“amalaz
0 0
2\ M fajazas...a5 33" an Ya...a0a; 66 wa yay...ap

11! 1
— ' c1c) 3¢y _ c1cy dd,
4'42 aja,a,a; Ra3a4 Ras% cC3 Raﬂlx Raoa10c4c, 4 Ra3a4 Ra5a6 c,czRaﬂs Raaalodldz ’

which simplifies to

(4> _ cicy C3Cy 1 C1C did,
(7/ )alaz fajayos...ap 2520(7/(11112)0!1052 Ra3a4 Ras%czqR‘has ‘ Ra9a106461 ZR%OM Ra5a(,chZRa7a8 Ragalodldz

— (8)
- (yalaz)alazx%malo' (Cz)

Explicitly, the term (trR?)? reads (omitting the factor —1/4)

1 0y
@ (yuoul ) (7M2u3 ) (7/'44145 ) (;,M@Lh ) Guoul Jon Gu2u3y0y] Gu4u51011 Guﬁu7 oz

2% . 64 (7u0u1 ) (yu2u3 ) (7144”5 ) (yyo".vs)Guoul o Gu2u3y0yl Gu4u5vovl sz,..vs

24264 (yuoul ) (},u2u3 ) (yvo..4v3x0x1 )(},WO.“W'}xoxl )Guoul Ny Gu2u3y1y2 G110...1;3 Gwo.“w_;

24264 (yuoul ) (}/uzug)(}/’Uo...US)(}/WO...WS )Guoulvovl Gu2u3w0w, sz...vs Gwz...ws

24364 (yuoul )(},vo...vs)(ywo...w3y0y] )(yxo..‘)@yoyl )Guouluov] GUQ...Us Gwo...w3 Gxo...x3

W (yuomuwnyl )(yvg.“v‘;yoyl )(yWOMWﬂOZI ) (YJCO.A.X3ZOZ] )Guo.“u_g G110...1)3 GWQ...W3 Gxo.“)@ ’

while the term trR* reads

1
4 (}/M(]Ml ) (}/MQMB ) (yuws ) (},u(,u7 ) Guoul o Gu2u3y020 Gu4u5y1 73 Gu6u7 “ot

6
s gd ) ) () G, Gugus vy Gugusvin G-
sazgd ) o) () Gugu vy Guesnn Go..ovs Gosows
St (P )P )G G G 11 Go
5 4264 (yromn) (yroe=-20) (o0 ) (o3 ) Guguy vy Grgooxs Gy ooy Gy oy
St 7 ) () ) G G G G

Suppose now that the purely femionic component of Xg can be cast in the z-exact form of Eq. (4.18). The right-hand side of
Eq. (C2) would then take the form
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8
(7a|az)ala2X¢<13)~-alo = <7a1a2)a1a2 (7f)a3a4Gfas...am

= (yf)alaz (S(Y[alaz\)(13r14G\f](15...am
= (yf>a1a2 <3(7/[a1a2\)a3a4G\f]a5...am)’

- 2(7/)‘11[ )(13(14 Ga2a5 .. .am)

which yields

= 3()/[“1“2\)(13fl4G\f]as---‘lm‘

Kfalaz(l:;.“(llo

In the following we examine whether X g can be 7 exact.
Since (C2) contains many different types of terms, it is
useful to reduce this expression by simplifying every pair of
y-matrices whose bosonic indices contain contractions,
using the decompositions in Appendix D. When applied
to (trR?)?, this method gives three terms of the form
y@y@y@y2)y(2)y2)y2)y0) and y2)y@)y(0),(0) together
with several manifestly 7-exact terms. Applied to trR*, this
method gives several terms of the form previously encoun-
tered, plus some new terms of the form y2y2y®)y (),
which are equivalent to y(2)y(2)y()y(®) by Hodge duality. In

PHYSICAL REVIEW D 95, 026013 (2017)

order to compare (trR?)? with trR*, all the y(®y©® terms
must be converted into the form y5)y(). This creates new
y-matrices with contracted bosonic indices, which are
simplified as before using Appendix D. At the end of this

process all the terms have the form y(3y(2y2y2),
y@yRy2)y0) or y2)y2)y5)y5) contracted with G* (with-
out any contractions among y-matrices),

(r2) (y9 ) (r*s% ) (r7 ) G2, ay:asasasagsaras» (C3)
(y92) (y) (y%s9) (y97-2)Ga 4y asasasagar...aps  (C4)

(yalag)(ya3a4) (yasmag)(yalomam)G21az;a3a4;a5...ag;alo...amv
(C5)

up to manifestly z-exact terms that we do not need to write
out explicitly. In the above, G% Gy aps
G i ay...a;, denote certain sums of G* terms with 8,4,2

indices contracted, respectively. More explicitly,

7
4 —— G, g h
Gﬂlaz§a3a4;asﬂ62a7as ~ 9733 Gﬂl Ga2a7ageGa3a5a6 Ga4f9h to
25
4 - g
Galﬂz;u3“4;asae§ﬂ7~-ﬂ|2 - 2934 Gala’f Gazanulszawwt)aloG”s“sus.‘/ +
1

(Co)

4 -
Galaz;a3a4;as~--09;010~--014 - 21136 ayaxayg a3a5a11fGa4a12a]3a14Ga6a7a8ag +o

where the ellipses stand for more than a hundred terms of this form. No obvious cancellations appear between these three
types of terms at this point.

Let us further analyze how X g is decomposed into irreducible components. First, the product of four y-matrices contains
a symmetric product of eight spinor indices that can be decomposed as follows in irreps of Bs:

(00001)®5% = 1(00000) @ ... @ 1(40000) & 2(00004) & 2(10002) & 2(01002).

45 terms with multiplicity 1

3 terms with multiplicity 2

Each irrep on the right-hand side above corresponds to a y-structure that can be thought of as a Clebsch-Gordan coefficient:
the y-structure corresponding to (00000) can be thought of as a Clebsch-Gordan coefficient from the scalar to
(00001)®s8, etc.

Next, the product of four four forms G can be decomposed as follows in irreps of Bs,

(00010)®s* = 4(00000) @ ... @ 6(00004) @ ... & 3(40000),

95 terms, various multiplicites

and all 95 terms except (00006), (00008), (01006), and (10006) can be found in (00001)®s8. This analysis implies that the
contraction of four y-matrices with four four forms G can be decomposed into 51y-structures, each contracted with
(multiple) G* terms corresponding to the same irrep of Bs.

For example, the term (00000) in the decomposition of (00001)®s® gives rise to a single y-structure contracted with the
four possible G* terms giving rise to a scalar. Explicitly we have

e e ai...a by...b b b °1C didyaa
(]/ 1)(}’61)(7 2)(7/e2)(a1Ga1...a4G ! 4Gb1...b4G et +a2Ga1a2 ! sz]bzclchclczdlde 15
ci6) ayd; 919201f1 by...bs a cdy...ds
+ a3Ga1b1 GClCzdlflG glng + a4Ga1 GblmbsClG dl---d3G )’
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for some constants ay, ..., a,. Similarly, the (00004) gives rise to the following term,

by...b b by...b
Br(r) (re, ) (=) (rr--26) + Bo(r) (r2- o) (y1Pr) (2ol
X (alGaluzhlelGa3h2h3e|Ga4..4a6eth4..4hﬁez + aZGaluzhlelGa3u4h262Ga5h3h4elGa6b5h6(32
+ aSGa] ...a4Ga5b3h4el Ga6b5b6€2Gblbze]ez + a4Ga|h]bze] Gazﬂ.a_g Ga6h6elez Gb3...b5e]
+ 5G4, 0,Gush, " *Gaghree,Gby.bg T %6Ga, . asbsGay...aghyGiyby 2 Chsbgerer )

for some constants S, 5, @, ..., a. The 51y-structures involved in the decomposition of X® can all be found explicitly,
and only three of them are not 7z exact: (04000), (03002), and (02004). In other words, except for the structures

corresponding to these three irreps all other y-structures appearing in X g involve at least one contraction with a y.
Going back to (C3), the G2]a2~ .a;a; term, by virtue of its contraction with the four y-matrices, transforms in the

,,,,,

symmetrized product of four Young diagrams |-, cf., Appendix F. Decomposing in irreducible representations of Sg,

[ (C7)
@l E = 1]
H = ® L& @ L] @ L[] (5 terms) .

At the same time Gi,az;...;uw , admits a decomposition into modules of Bs x Sg, >z Vg X R, where V is the plethysm of the

.....

the module V corresponding to each R on the right-hand side of (C7), using [68], with the result that only the plethysm
corresponding to Y71 contains (04000), while neither (02004) nor (03002) is contained in any of the plethysms
corresponding to the Young diagrams on the right-hand side of (C7).

The G‘a‘l,h;m;a%,,12 term of (C4) admits the following decomposition in irreps of Sy:

H@S?’ . _

D... (16 terms) .

Lo

YT2

Only the plethysms corresponding to the Young diagrams on the right-hand side of (C8) appear in the decomposition of
G4 \ay:.car...ap, UNAET Bs X Sp5. On the other hand it can be shown that only the plethysm corresponding to Y72 contains
(03002), while neither (04000) nor (02004) is contained in any of the plethysms corresponding to the Young diagrams on
the right-hand side of (C8).

,,,,, ..., term of (C5) admits the following decomposition in irreps of §4:

9s2 []

) ]
H®S ® = [1] @

[T TT1]
-
@)
\O
>

D ... (23 terms) .

YT3 contains (02004); only the plethysm corresponding to Y74 contains (03002), while (04000) is not contained in any of
the plethysms corresponding to the Young diagrams on the right-hand side of (C9).
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Using the method of Appendix F, the y-matrices in (C3)
and (C5) can be projected respectively onto Y7'1 and Y773.
The terms (C3), (C5) can thus be shown to vanish.
Moreover, it can be seen that the cancellations are sensitive
to the relative coefficient between (trR?)? and trR* inside
Xg. In other words, it can be shown that (trR?)? and trR* are
not separately 7z exact.

APPENDIX D: ELEVEN-DIMENSIONAL
7-MATRICES

In this section we give our conventions for the eleven-
dimensional y-matrices, and list a number of Fierz identities
used in the analysis presented in the main text.

Hodge duality for y-matrices is defined as follows,

ey = (=1l (11-m) (D1)

(r* =) (Vb,...bse,) =
1208985 () (r,,)

+1(r a: as)(l’b, .h5)
=600 8,3 (7, ) (Y41 b 15)
+255"‘ (ye,)(y“"""“mm)
—1503 (65! ( “2”3)(%’4”*;,2 bs) T (a < b))

+600 8,3 (1% ) (Vb,5)

(rU B ) (Y, brey.es) =
+365, b;(}/el)(yel)

-108 5“1 (yel)(yel“z“*b by)
+216 8! (%) (,0,)
=365 ((r)(r "y, . b;) + (a < b))
+324.6,0: (r®) (rs,)

() (Ve o) =
+240 8% (7)) (r*))
+1680(r) (14,)

(},alazel e ) (Yblbzel...q) =
=368, (v, ) (r")
+24(y., ) (r 1 p,,)
—42(y"12) (7, , )
+168 ' (r*)(vs,)

() by bye,) =
+65((re2)(y%,, 5,) + (a < b))
=72 521122 (r=) (Yby0,)
—485 (63! (r*) (r*“s,..p,) + (a < b))
+968, 1 (r*) (vs,)
—1(7e1)( jeran. e by)
+T728, 2 (re, ) (1 9% . 5,)
=248, (r ) (ve,)
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where our definition of the Hodge operator reads

1

(*S)ay.a, = ai=n

by...by_
€u]...ak ' " kSh,...h“,k'

The symmetry properties of the y-matrices are given
by
(yal...a,,)a/} —_ (_1)%(n—1)(n—2) (},al...a,, )ﬂa’

where y(© is identified with the charge conjugation
matrix.

The following Fierz identities were used in the analysis.
Antisymmetrization over the a; and b; indices is always
understood, as well as symmetrization over all fermionic

indices of the y-matrices (which are suppressed here to
avoid cluttering the notation),

(7‘1["'“46]82)(yh]...b4elez) =
125 ((r92) (y%y,  p,) + (a < b))
+2885,' ( a’““)(l’b;m)
=963 (8, (r*>) (r**%p,..5,) + (@ < b))
+1928, 0 (r“) (vs,)
+2(7e1)( . o by)
— 144552 (1, ) (r % ,,)
+48.8, 7 (r) (ve,)

(yhraica)(yy, bre, .. 24) =
+488,1 2 (ve, ) (")
—=96(y. )( andy )
+168(7a1a2)(7h|b2)
+67268,' (y)(y")

() (e ee) =
+4320(7,,)(r*")

) Woer o) = (eresy(y, )=

a (r°
=965, (7e,)(r') _ e
+336(y% )( ) 720(y, ) (r')

(yalm%elez)(}/h]...b3elez) =
=248, (re ) (r)
+368,! (7, ) (1% ,5,)
=54 5al( D) (Y bybs )
=125 ((y )(Y“Z“*b. b3)+(a<—>b))
+108 5,1 (r*) (75,
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) Iy by, ) =
) )
+126, (v5,) (Yb0,)

(yul...cmel)(yblu.bsel) _
—60 ”al by (yagag ) (ya4b2...b5 )
=607, () (y"025)
=720 5872 perbipebagab (yo) (ybabs)
+240 5“' gﬁ by n"ZbZ ;7"3173 (y“4 ) (}/bztbs)
+140 nalbl (y[ﬂz ) (ya3a4b2...b5] )
—120 52‘1?2 '1”b1 ﬂczbz (},el )(yela3cz4b34..b5 )

APPENDIX E: ELEVEN-DIMENSIONAL
SUPERSPACE

In this section we review the properties of on-shell
eleven-dimensional superspace at lowest order in the
Planck length [33]. The theory thus obtained is equivalent
to CJS supergravity [1].

The nonzero superfield components are as follows:

abaﬁ - ( )aﬂ’
(1/)’ - ( )a/}’
T p — 1 ( bcd) ﬁG + 1( bcde) ﬂG
aa 36 abed ] a bede | >

i 1 L
Ropar = 3 <(7/gh)a/}Gghab + 7 (Yabgh”)(,/;Ggmj>,

i
Raape = 5 ((7/11Tbc)a - 2(y[ch]a)a)' (El)

The action of the spinorial derivative on the superfields
reads

D,Gapeq =61 (V[ab\)aeT\cd]e’
DR upea = d[a|Ra\b]cd =T Regea + 2T[a|a€R

1
DaTab/j - ZRabcd(yCd) p— 2D[ Tb] F— 2T[ [b]e .

elblcd>

(E2)

The equations of motion for the field strengths G, R, and T
are given by
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(r ) (Yoye,) = +1r™) (vs,)
=18, (re,) (")

(yalel)(yhl.“b;el) —
_6( [01)( by. ~-b5])
—57]01 1( l)(}/flbzmbs)
+Hr ) ")

1
by...by (3Cy...C
Dfoalazaz 1152€a|a203h| bycy <C4G PG,
(ya)aeTah - Oa
1 1
R _E”IabR 12 <Gafgth g — ﬂabegthfg ’)

(E3)

APPENDIX F: TENSOR REPRESENTATION OF A
YOUNG DIAGRAM

A Young diagram with n boxes, see [69] for a review,
represents an irreducible representation of the symmetric
group S,,. Itis possible to give explicit expressions for Young
diagrams in the form of tensors. The method is more easily
understood using a specific example. Consider a tensor
T4, aya5a, Withoutany a priori symmetry properties, and let us

construct its projection onto EFD Several symmetry

operations have to be applied on the tensor, but the Young
diagram does not state which indices correspond to its
different boxes. First one must determine all the standard
tableaux, i.e., all the Young diagrams with numbered boxes,
with increasing numbers in all rows and columns. Different
Young tableaux corresponding to the same Young diagram
give equivalent but distinct representations of the symmetric

group. The diagram EFD has three standard tableaux, ,
, and , to which correspond three tensors, 7(!),

T®, and T®), respectively.

To obtain the tensor corresponding to a given standard
tableau, one must first symmetrize over the indices indicated
in each row, and then antisymmetrize over the indices
indicated in each column. For example, (7)), , , . is
obtained by first symmetrizing over the indices a,, a,, and a5,

(Ta1a2a3a4 + Ta1a3a2a4 + Ta2a1a3a4 + Ta2a3a1a4 + Ta3a1a2a4 + Ta3a2a1a4)1

and then antisymmetrizing over a; and ay,
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1
@mT)
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_ 1 _
ajayasa, (T )a1a2a3a4 - ] (Tu]a2u3a4 + Tu]a3u2a4 + Tu2a|u3a4 + Tu2a3u]a4 + Tu2u3a4u] + Ta2u4a3u]

+ Ta3a]a2a4 + Ta3a2a|a4 =+ Ta3a2a4a] + Ta3a4a2a] + Ta4a2a3a| + Ta4a3aza| )

The overall normalization above can be straightforwardly
determined by imposing MWINT =TIMT,  where
T =T is the projection of the tensor T onto the
Young tableau .

For example, the tensors T(") and T(®), associated with
and , respectively, obey the following properties:

(T (aplela) = O
(T(l))[a|bc|d] = (T<1>)ahcd
(T(l))a(bc)d = (T(l))abcd

(T<2))[ahc]d =0
(T(z))[ab]cd = (T<2>)abcd
(T(z))ab(cd) = (T(2))abcd'

More generally, each 70 has exactly three independent

orderings of indices, which can be taken to be TE,ll)awm,

Téﬁ’alm, and T(alz)a3ala4. Any symmetry operation on the
indices of T() can be expressed as a linear combination of
these three orderings, e.g.,

1 1 L L a
T((ll)(aza3a4) = Tl<l]>a4(l3az + 5T512>511Q4u3 + gTElz)!lsalazt
(1) _1

[aiaz]azay — 5

1
s+ 3T+ 0TS

A tensor T projected onto a nonstandard tableau can be
expressed as a linear combination of the three standard ones.
For example, it is straightforward (but tedious) to check that

the projection onto the nonstandard tableau can be
decomposed as

(T 4 rasas = Torogasas + Tovtasay + 0T ovbsaa,
- T5122)111514a3 + T5122)613a1a4

3
- Tt(12)113al ay+

(F1)

+ 0T v,
T s + 0T ara

Every other tableau (corresponding to the same Young
diagram B:D) and any symmetry operation on the indices

can be expressed as a linear combination of those nine
elements. The automatization of general decompositions
onto Young tableaux, such as the one above, has been
implemented in the computer program [31].

More generally a tensor 7, 4,4,4, Without any a priori
symmetry properties can be decomposed into ten Young
tableaux,

D®4 Djjj@3Bjj@2E@ @j E/

W—’

T T(1 2,3) T’(l 2) T1(1,2,3) TA
(F2)
where T("), T and T® are the Young tableaux appearing

on the right-hand side of (F1) above, and correspond to the
term 3 B:D The remaining Young tableaux in the
decomposition can be explicitly constructed using the same
method.

Consider now a tensor 7' with a symmetry structure given
by, e.g., Hj @ [ The previous decomposition of []®4
can also be used to decompose 7T into its irreducible
components. Indeed, a tensor with structure Bj ®
can be viewed as a particular set of symmetry operations
performed on the indices of a tensor without any symmetry
(i.e., with structure ®4), Therefore T can be expressed as

a linear combination of the tensors already used in the
decomposition (F2).

The following example shows the decomposition of the
symmetric product of two three forms H,

SR @j
Tay...as = HayasasHagasae — = ® :

There are five standard tableaux corresponding to each

of the Young diagrams @ Ej The tensors corresponding

to these Young tableaux can be denoted by 7("), ...T®) and

7'M, ... T'®), respectively. In the particular example above,
it can be shown that

_ () (1)
alazasHawsas - Ta1a2a3a4a5a6 + Talazazawsas

(1)
- Ta]a2a3a5a6a4 )

/(1)
+ Ta,a2a3a4aﬁa5

. . [1]4]
i.e., only the tensors T(") and T"(!), corresponding to
and g , respectively, enter the decomposition.

1
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