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We develop computational tools for calculating supersymmetric higher-order derivative corrections to
eleven-dimensional supergravity using the action principle approach. We show that, provided the
superspace Bianchi identities admit a perturbative solution in the derivative expansion, there are at least
two independent superinvariants at the eight-derivative order of eleven-dimensional supergravity.
Assuming the twelve superforms associated to certain anomalous Chern-Simons terms are Weil trivial,
there will be a third independent superinvariant at this order. Under certain conditions, at least two
superinvariants will survive to all orders in the derivative expansion. However only one of them will be
present in the quantum theory: the supersymmetrization of the Chern-Simons terms of eleven-dimensional
supergravity required for the cancellation of the M5-brane gravitational anomaly by inflow. This
superinvariant can be shown to be unique at the eight-derivative order, assuming it is quartic in the
fields. On the other hand, a necessary condition for the superinvariant to be quartic is the exactness, in
τ-cohomology, of X0;8, the purely spinorial component of the eight superform related by descent to the
M5-brane anomaly polynomial. In that case it can also be shown that the solution of the Weil-triviality
condition of the corresponding twelve form, which is a prerequisite for the explicit construction of the
superinvariant, is guaranteed to exist. We prove that certain highly nontrivial necessary conditions for
the τ-exactness of X0;8 are satisfied. Moreover any potential superinvariant associated to anomalous Chern-
Simons terms at the eight-derivative order must necessarily contain terms cubic or lower in the fields.
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I. INTRODUCTION

Eleven-dimensional supergravity [1] is believed to be the
low-energy limit of M-theory [2], the conjectured non-
perturbative completion of string theory. As such it is
expected to receive an infinite tower of higher-order
corrections in an expansion in the Planck length or,
equivalently, in the derivative expansion. At present such
higher-order corrections cannot be systematically con-
structed within M-theory, so one must resort to indirect
approaches.
One such approach is to calculate the higher-order

corrections within perturbative string theory, in particular,
type IIA in ten dimensions, which is related to eleven-
dimensional supergravity by dimensional reduction. The
effective action of string theory can be systematically
constructed perturbatively in a loop expansion in the string
coupling,

Seff ¼
X∞

g¼0

g2g−2s

Z
d10x

ffiffiffiffi
G

p
Lg; ð1:1Þ

where g is the loop order (equivalently, the genus of the
Riemann surface), gs is the string coupling constant, G is

the spacetime metric, and Lg is the effective action at order
g. Each Lg admits a perturbative expansion in an infinite
series of higher-order derivative terms. Moreover it is
expected that each Lg should correspond to an independent
superinvariant in ten dimensions; see, e.g., [3].
The bosonic part of the tree-level effective action takes

schematically the following form,

L0 ¼ LIIA þ α03
�
I0ðRÞ −

1

8
I1ðRÞ þ � � �

�
þOðα04Þ;

ð1:2Þ

where LIIA is the (two-derivative) Lagrangian of ten-
dimensional IIA supergravity, and the ellipses stand for
terms that have not been completely determined yet. Unlike
the case of N ¼ 1 superstrings, the first higher-derivative
correction starts at order α03 (eight derivatives). The I0, I1 in
(1.2) are defined as follows,

I0ðRÞ ¼ t8t8R4 þ 1

2
ε10t8BR4;

I1ðRÞ ¼ −ε10ε10R4 þ 4ε10t8BR4: ð1:3Þ

These were constructed in [4], to which we refer for further
details, by directly checking invariance under part of the
supersymmetry transformations. The terms in (1.3) linear in
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B are, up to a numerical coefficient, Hodge dual to the
Chern-Simons term B ∧ X8 [5,6]. The eight form X8, see
(4.2) below, is related by descent to the M5-brane
anomaly polynomial and is a linear combination of
ðtrR2Þ2 and trR4. Note that the Chern-Simons (CS) term
drops out of (1.2).
The R4 part of the tree-level effective action was

determined in [7,8] via four-graviton scattering amplitudes
and in [9–11] from the vanishing of the world sheet beta-
function at four loops. The NSNS sector of the four-field
part of the effective action (common to all superstring
theories in ten dimensions) was determined in [12]: it is
captured by the simple replacement R → R̂, where R̂ is a
modified Riemann tensor with torsion that includes the
NSNS three form and the dilaton.1 The ε10ε10R4 term does
not contribute to tree-level four-point scattering amplitudes,
but gives a nonvanishing contribution to the five-graviton
scattering amplitude. The complete tree-level four-point
effective action for type-II superstrings was first determined
in [13] and, in addition to the NSNS sector, consists of
terms of the form ð∂FÞ2R̂2 and ∂4F4, where F stands for all
RR flux.
The superinvariant I0 can be further decomposed into

two separate N ¼ 1 superinvariants in ten dimensions [4],
I0 ¼ −6I0a þ 24I0b, where

I0a ¼
�
t8 þ

1

2
ε10B

�
ðtrR2Þ2 þ � � � ;

I0b ¼
�
t8 þ

1

2
ε10B

�
trR4 þ � � � ð1:4Þ

correspond to the supersymmetrization of the B ∧
ðtrR2Þ2 and B ∧ trR4 Chern-Simons terms, respectively.
As we show in the following, if the uplift of I0a, I0b
gives rise to two separate superinvariants in eleven
dimensions, they will necessarily have to be cubic or
lower in the fields.
The one-loop effective action takes the following

form [7,14]:

L1 ¼ α03
�
I0ðRÞ þ

1

8
I1ðRÞ þ � � �

�
þOðα04Þ: ð1:5Þ

In particular, we see that in this case the Chern-Simons term
does not drop out, cf., (1.3). The ellipses above indicate
terms that are not completely known, although partial
results exist thanks to five- and six-point amplitude

computations [15–18]. Contrary to the tree-level super-
invariant L0 that is suppressed at strong coupling, the uplift
of the one-loop superinvariant L1 is expected to survive in
eleven dimensions, and thus to be promoted to an eleven-
dimensional superinvariant. We refer to the latter as the
supersymmetrization of the Chern-Simons term C ∧ X8,
the uplift of the ten-dimensional Chern-Simons term, where
C is the three-form potential of eleven-dimensional
supergravity.
An argument of [19], which we review in the following,

guarantees that if the supersymmetrization of the Chern-
Simons term is quartic or higher in the fields, then it is
unique at the eight-derivative order.2 The uniqueness of this
superinvariant is also supported by the results of [20–22],
which use the Noether procedure to implement part of the
supersymmetry transformations of eleven-dimensional
supergravity. The results of these references constrain
the supersymmetrization of the Chern-Simons term to be
of the form

ΔL¼ l6
�
t8t8R4 −

1

4!
ε11ε11R4 −

1

6
ε11t8CR4 þR3G2 þ � � �

�

þOðl7Þ; ð1:6Þ

where l is the Planck length. The ellipses indicate terms that
were not determined by the analysis of [20–22], while the
R3G2 terms were only partially determined. The reduction
of the above to ten dimensions is consistent, as expected,
with the one-loop IIA superinvariant (1.5). In addition the
quartic interactions R2ð∂GÞ2 and ð∂GÞ4 were determined in
[23] by eleven-dimensional superparticle one-loop compu-
tations in the light cone, and in [24–26] by a different
method that uses tree amplitudes instead.3 The t8t8R4 terms
have also been obtained by four-graviton one-loop ampli-
tudes in eleven dimensions [27,28], while it can be shown
[29] that higher loops do not contribute to the super-
invariant (1.6).
In the present paper we reexamine the problem of

calculating supersymmetric higher-order derivative correc-
tions to eleven-dimensional supergravity from the point of
view of the action principle approach. This method relies
on the superspace formulation of the theory and is
particularly well suited to the supersymmetrization of
Chern-Simons terms. Given an eleven-dimensional
Chern-Simons term there is an associated gauge-invariant
twelve superform obtained by exterior differentiation. The
action principle approach can be carried out provided the
twelve form is Weil trivial, i.e., exact on the space of on-
shell superfields. Computing the superinvariant then boils1Note that [12] contains an error that has unfortunately caused

some confusion in the literature: the expansion of the t8t8R4

terms of Eq. (2.11) in that reference indeed has the form of the
term in the square brackets on the right-hand side of Eq. (2.13)
therein. However, if one replaces R by the modified Riemann
tensor R̂, given in Eq. (2.12) therein, Eq. (2.13) no longer gives
the correct expansion of t8t8R̂

4.

2The existence of independent superinvariants starting at an
order higher than eight in the derivative expansion course spoils
the uniqueness of the superinvariant at higher orders.

3There is disagreement between [23,25] concerning part of the
ð∂GÞ4 terms.
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down to explicitly solving the Weil-triviality condition for
the twelve form.
We show that, provided the superspace Bianchi identities

admit a perturbative solution in the derivative expansion,
there are at least two independent superinvariants at the
eight-derivative order. If we also assume that the twelve
superforms associated to the anomalous (in the presence of
an M5-brane) Chern-Simons terms, C ∧ ðTrR2Þ2 and
C ∧ TrR4, are separately Weil trivial, there is a third
independent superinvariant at this order. Moreover we
argue that, under certain conditions, at least two of the
superinvariants should be expected to survive to all orders
in the derivative expansion. However only one of those
would correspond to the supersymmetrization of C ∧ X8,
cf., (1.6).
As already noted this superinvariant can be shown to be

unique, assuming it is quartic in the fields. On the other
hand, a necessary condition for the superinvariant to be
quartic is the exactness, in the so-called τ-cohomology, of
X0;8, the purely spinorial component of X8. In that case we
also show that the solution of the Weil-triviality condition
of the corresponding twelve form is guaranteed to exist.
Proving the τ-exactness of X0;8 is the first and arguably
most difficult step in obtaining the explicit solution to the
Weil-triviality condition of the twelve form, and therefore
constructing the superinvariant using the action principle.
To tackle this computationally intensive problem we

have built on the computer program [30], to supplement it,
among other things, with functionalities related to Young
tableaux [31]. By a combination of calculational techniques
involving the implementation of Fierz identities and Young
tableaux projections we prove that certain highly nontrivial
necessary conditions for the τ-exactness of X0;8 are
satisfied. As a corollary of our work, it follows that any
potential superinvariant associated to the anomalous Chern-
Simons terms, C ∧ ðTrR2Þ2 and C ∧ TrR4, must neces-
sarily contain terms cubic or lower in the fields.
The plan of the rest of the paper is a follows. In Sec. II we

review the different superspace cohomologies that are
useful in the following. In Sec. III we introduce the action
principle approach and in Sec. III Awe show how to obtain
the eleven-dimensional supergravity of [1] in this frame-
work. In Sec. III B we apply the action principle to derive
the five-derivative correction. Section IV considers the
eight-derivative correction. In Sec. IVA we examine
the number of independent superinvariants at the eight-
derivative order. Section IV B addresses the problem of the
τ-exactness of X0;8. In Sec. IV C we discuss the conditions
for the existence of the superinvariants to all orders in the
perturbative expansion. We conclude in Sec. V. Further
technical details are included in the appendixes.

II. COHOMOLOGY IN SUPERSPACE

In this section we review the various superspace
cohomology groups that are useful in the following.

This is not new material, but we are including it here
to make the paper self-contained and for the benefit of the
readers who may not be familiar with the relevant
literature.
Let us start by explaining our conventions: Eleven-

dimensional superspace [32,33] consists of eleven even
(bosonic) and thirty-two odd (fermionic) dimensions,
with the structure group being the eleven-dimensional
spin group. Let A ¼ ða; αÞ be flat tangent superindices,
where a ¼ 0;…10 is a Lorentz vector index and α ¼
1;…32 is a Majorana spinor index. Curved superindices
are denoted by M ¼ ðm; μÞ, with the corresponding
supercoordinates denoted by ZM ¼ ðxm; θμÞ. The super-
coframe is denoted by EA ¼ ðEa; EαÞ while the dual
superframe is denoted by EA ¼ ðEa; EαÞ. We can pass
from the coframe to the coordinate basis using the
supervielbein, EA ¼ dzMEM

A.
We assume the existence of a connection one form ΩA

B

with values in the Lie algebra of the Lorentz group. In
particular, this implies that

ΩðacηbÞc ¼ 0; Ωα
β ¼ 1

4
ðγabÞαβΩa

b; Ωa
β ¼ 0 ¼ Ωα

b:

ð2:1Þ

The associated supertorsion and supercurvature tensors are
then given by

TA ¼ DEA ≔ dEA þ EB ∧ ΩB
A ¼ 1

2
EC ∧ EBTBC

A;

RA
B ¼ dΩA

B þ ΩA
C ∧ ΩC

B ¼ 1

2
ED ∧ ECRCDA

B; ð2:2Þ

where the exterior derivative is given by d ¼ dzM∂M.
The assumption of a Lorentzian structure group implies
that the components of the curvature two form obey a
set of equations analogous to (2.1). The super-Bianchi
identities (BI) for the torsion and the curvature,

DTA ¼ EB ∧ RB
A;

DRA
B ¼ 0; ð2:3Þ

follow from the definitions (2.2). Moreover, a theorem
due to Dragon [34] ensures that for a Lorentz structure
group the second BI above follows from the first and
need not be considered separately. Once constraints are
imposed the BI cease to be automatically satisfied. As
was shown in [33], by imposing the conventional
constraint

Tc
αβ ¼ iγcαβ; ð2:4Þ

and solving the torsion BI, one recovers ordinary
eleven-dimensional supergravity. In particular, one
determines in this way all components of the torsion.
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In addition one can construct a closed superfour form
G4 and a superseven form G7 obeying [35,36]4

dG4 ¼ 0; dG7 þ
1

2
G4 ∧ G4 ¼ 0; ð2:5Þ

whose bosonic components correspond to the eleven-
dimensional supergravity four form and its Hodge dual,
respectively,

Gm1…m7
¼ ð⋆GÞm1…m7

: ð2:6Þ

The solution of the eleven-dimensional superspace BI is
reviewed in Appendix E.

A. De Rham cohomology and Weil triviality

Let Ωn be the space of n superforms. Thanks to the
nilpotency of the exterior superderivative, one can define de
Rham cohomology groups in superspace in the same way
as in the case of bosonic space,

Hn ¼ fω ∈ Ωnjdω ¼ 0g=fω ∼ ωþ dλ; λ ∈ Ωn−1g: ð2:7Þ

The fact that the topology of the odd directions is trivial
means that the de Rham cohomology of a supermanifold
coincides with the de Rham cohomology of its underlying
bosonic manifold, also known as the body of the super-
manifold. In the remainder of the paper we assume that the
body has trivial topology. This is the simplest type of
supermanifold, sometimes called a graded manifold. It
implies, in particular, that every d-closed superform is
d exact.
There is an important caveat to the previous statement: it

is only valid when the cohomology is computed on the
space of unconstrained superfields. Once constraints are
imposed it ceases to be automatically satisfied. Adopting
the terminology of [37], we call Weil trivial those d-closed

superforms that are also d exact on the space of constrained
(also referred to as “on-shell,” or “physical”) superfields.
The cohomology groups computed on the space of con-
strained superfields are denoted byHnðphysÞ, as in [19]. As
already emphasized, there is no a priori reason why
HnðphysÞ should coincide with the cohomology of the
body of the supermanifold.

B. τ-cohomology

The space of superforms can be further graded according
to the even, odd degrees of the forms. We denote the space
of forms with p even and q odd components byΩp;q so that

Ωn ¼⊕
X

pþq¼n

Ωp;q: ð2:8Þ

A ðp; qÞ superform ω ∈ Ωp;q can be expanded as follows:

ω ¼ 1

p!q!
Eβq…Eβ1Eap…Ea1ωa1…apβ1…βq : ð2:9Þ

In the following we use the notation Φðp;qÞ ∈ Ωp;q for
the projection of a superform Φ ∈ Ωn onto its ðp; qÞ
component.
The exterior superderivative, d∶ Ωp;q → Ωpþ1;q þ

Ωp;qþ1 þΩp−1;qþ2 þΩpþ2;q−1, when written out in this
basis gives rise to components of the torsion as it acts on the
coframe. Following [38] we split d into its various
components with respect to the bigrading,

d ¼ db þ df þ τ þ t; ð2:10Þ

where db, df are even, odd derivatives respectively, such
that db∶ Ωp;q → Ωpþ1;q, df∶ Ωp;q → Ωp;qþ1. The opera-
tors τ and t are purely algebraic and can be expressed in
terms of the torsion. Explicitly, for any ω ∈ Ωp;q we have

ðdbωÞa1…apþ1β1…βq
¼ ðpþ 1ÞðD½a1ωa2…apþ1�β1…βq þ

p
2
T ½a1a2j

cωcja3…apþ1�β1…βq

þ qð−1ÞpT ½a1jðβ1j
γωja2…apþ1�γjβ2…βqÞÞ;

ðdfωÞa1…apβ1…βqþ1
¼ ðqþ 1Þðð−1ÞpDðβ1jωa1…apjβ2…βqþ1Þ þ

q
2
Tðβ1β2j

γωa1…apγjβ3…βqþ1Þ

þ pð−1ÞpTðβ1j½a1j
cωcja2…ap�jβ2…βqþ1ÞÞ;

ðτωÞa1…ap−1β1…βqþ2
¼ 1

2
ðqþ 1Þðqþ 2ÞTðβ1β2j

cωca1…ap−1jβ3…βqþ2Þ;

ðtωÞa1…apþ2β1…βq−1
¼ 1

2
ðpþ 1Þðpþ 2ÞT ½a1a2

γωa3…apþ2�γβ1…βq−1 : ð2:11Þ

The nilpotency of the exterior derivative, d2 ¼ 0, implies the following identities:

4The G7 BI receives a correction at the eight-derivative order, cf., (4.3) below.

BERTRAND SOUÈRES and DIMITRIOS TSIMPIS PHYSICAL REVIEW D 95, 026013 (2017)

026013-4



τ2 ¼ 0;

dfτ þ τdf ¼ 0;

d2f þ dbτ þ τdb ¼ 0;

dbdf þ dfdb þ τtþ tτ ¼ 0;

d2b þ dftþ tdf ¼ 0;

dbtþ tdb ¼ 0;

t2 ¼ 0: ð2:12Þ

The first and the last of these equations are algebraic
identities and are always satisfied. On the other hand, as a
consequence of the splitting of the tangent bundle into even
and odd directions, the remaining identities are only
satisfied provided the torsion tensor obeys its Bianchi
identity.
The first of the equations in (2.12), the nilpotency of the

τ operator, implies that we can consider the cohomology of
τ, as first noted in [38] (see also [35] for some related
concepts). Explicitly we set

Hp;q
τ ¼ fω ∈ Ωp;qjτω ¼ 0g=fω ∼ ωþ τλ; λ ∈ Ωpþ1;q−2g:

ð2:13Þ

As in the case of de Rham cohomology, one could make a
distinction between cohomology groups computed on the
space of unconstrained superfields and those computed on
the space of physical fields.
Suppose now that the conventional constraint (2.4) is

imposed so that τ reduces to a gamma matrix. It was
conjectured in [19], consistently with the principle of
maximal propagation of [39], that in this case the only
potentially nontrivial τ-cohomology appears as a result of
the so-called M2-brane identity,

ðγaÞðα1α2ðγabÞα3α4Þ ¼ 0: ð2:14Þ

Explicitly, for p ¼ 0, 1, 2, one may form the following
τ-closed ðp; qÞ superforms,

ωα1…αq ¼ Sα1…αq ; ωaα1…αq ¼ ðγabÞðα1α2Pb
α3…αqÞ;

ωabα1…αq ¼ ðγabÞðα1α2Uα3…αqÞ; ð2:15Þ

with S, P, U being arbitrary superfields. It can be seen
using (2.14) that the formsω above correspond to nontrivial
elements of Hp;q

τ with p ¼ 0, 1, 2. The conjecture of [19]
means that all nontrivial cohomology is thus generated, and
that all Hp;q

τ groups are trivial for p ≥ 3. This was
subsequently proven in [40–44].

C. Spinorial cohomology

Following [19], let us now define a spinorial
derivative ds that acts on elements of τ-cohomology,

ds∶ Hp;q
τ → Hp;qþ1

τ . For any ω ∈ ½ω� ∈ Hp;q
τ we

set

ds½ω� ≔ ½dfω�: ð2:16Þ

To check that this is well defined, one first shows that dfω
is τ closed,

τdfω ¼ −dfτω ¼ 0; ð2:17Þ

where we used the second equation in (2.12). Moreover,
ds½ω� is independent of the choice of representative,

½dfðωþ τλÞ� ¼ ½dfω − τdfλ� ¼ ½dfω�: ð2:18Þ

Furthermore it is simple to check that d2s ¼ 0,

d2s ½ω� ¼ ds½dfω� ¼ ½d2fω� ¼ −½ðdbτ þ τdbÞω� ¼ 0; ð2:19Þ

where we took into account the third equation in (2.12). We
can therefore define the corresponding spinorial cohomol-
ogy groups Hp;q

s as follows:

Hp;q
s ¼ fω ∈ Hp;q

τ jdsω ¼ 0g=fω ∼ ωþ dsλ; λ ∈ Hp;q−1
τ g:
ð2:20Þ

The notion of spinorial cohomology was originally intro-
duced in [39,45] and applied in a series of papers with the
aim of computing higher-order corrections to supersym-
metric theories [46–50], and more recently in [51–53]. The
spinorial cohomology as presented abovewas introduced in
[19] and is independent of the value of the dimension-zero
torsion. It reduces to the spinorial cohomology of [39,45]
upon imposing the conventional constraint (2.4).

D. Pure-spinor cohomology

It was first pointed out by P. Howe [54] and subsequently
elaborated in [19] that in the case where the dimension-zero
torsion is flat, cf., (2.4), the cohomology groups H0;q

s are
isomorphic to Berkovits’s pure-spinor cohomology groups
[55]. Therefore, in view of what was said in Sec. II C, the
latter are also isomorphic to the spinorial cohomology
groups that had been computed a few months earlier in
[39]. In the following we briefly explain the equivalence
between the two formulations.
The pure-spinor cohomology groups are defined as

follows. Consider an eleven-dimensional pure spinor, λα,
à la Berkovits, i.e., such that it obeys5

λαγaαβλ
β ¼ 0: ð2:21Þ

5This definition is different from an eleven-dimensional pure
spinor à la Cartan, used in [56], which obeys λαγabαβλ

β ¼ 0 in
addition to (2.21).
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The pure spinor λα is assigned ghost number 1.
Furthermore we define a form of ghost number q as a
multipure spinor,

ω ¼ λα1…λαqωα1…αq : ð2:22Þ

Note that the above definition implies that ω ∈ ½ω� ∈ H0;q
τ :

indeed any shift of ωα1…αq by a τ-exact term would drop out
of the right-hand side above due to the contractions with the
pure spinors; moreover, ωα1…αq is trivially τ closed.
The pure-spinor BRST operator is defined as follows,

Q ≔ λαDα; ð2:23Þ

where Dα is the spinor component of the covariant
derivative defined in flat superspace. Therefore the action
of Q on omega,

Qω ¼ λα1…λαqλαqþ1Dαqþ1
ωα1…αq ; ð2:24Þ

corresponds precisely to the action of ds defined in (2.16).
Indeed, for flat superspace the torsion terms drop out and
df reduces to Dα, cf., the second line of Eq. (2.11).
Moreover the contraction with the pure spinors on the
right-hand side above implies that Qω ∈ ½Qω� ∈ H0;qþ1

τ ,
for the same reasons noted below (2.22). In other words, in
the linearized limit the pure-spinor cohomology groups of
ghost number q are isomorphic to the spinorial cohomol-
ogy groups H0;q

s . For an extended review of pure-spinor
superfields, see [57].

III. THE ACTION PRINCIPLE

The action principle, also known as ectoplasmic inte-
gration, is a way of constructing superinvariants in D
spacetime dimensions as integrals of closed D superforms
[58,59]. Indeed if L is a closed D superform, the following
action is invariant under supersymmetry,

S ¼ 1

D!

Z
dDxεm1…mDLm1…mD

j; ð3:1Þ

where a vertical bar denotes the evaluation of a superfield at
θμ ¼ 0. This can be seen as follows. Consider an infini-
tesimal superdiffeomorphism generated by a supervector
field ξ. The corresponding transformation of the action
reads

δL ¼ LξL ¼ ðdiξ þ iξdÞL ¼ diξL; ð3:2Þ

where we took into account that L is closed. On the other
hand, local supersymmetry transformations and spacetime
diffeomorphisms are generated by ξj and, in view of (3.2),
the integrand in (3.1) transforms as a total derivative under

such transformations. The action is thus invariant assuming
boundary terms can be neglected.
This method is particularly well suited to actions with CS

terms and indeed has been used to construct all Green-
Schwarz brane actions [60,61]; see [62,63] for more recent
applications to other theories and [64] for applications to
higher-order corrections. The idea is as follows: let ZD be
the CS term and WDþ1 ¼ dZD be its exterior derivative.
Obviously WDþ1 is a closed form. On the other hand one
might be led to conclude that the de Rham cohomology
group of rank Dþ 1 must be trivial on a supermanifold
whose body is D dimensional; hence WDþ1 must also be
exact. This means that it can be written as WDþ1 ¼ dKD
where now, contrary to ZD, KD is a globally defined
(gauge-invariant) superform. It follows that LD ≔ ZD −
KD is a closed superform, and can therefore be used to
construct a supersymmetric action as in (3.1).
Eleven-dimensional supergravity is another example

of an action with Chern-Simons terms, and we turn to
the application of the action principle to this case in the
following sections. Unfortunately there is a caveat to the
previous argument that WDþ1 is exact. As already noted in
Sec. II A, this argument can be applied only in the case
where the cohomology is computed on the space of
unconstrained superfields, but is not a priori true on the
space of physical (on-shell) superfields. Interestingly it
does turn out to be true in all known cases. As we see in the
following this includes the case of ordinary eleven-dimen-
sional supergravity as well as its supersymmetric correc-
tions with five derivatives. In Sec. IV B we show that a
sufficient condition for the Weil triviality of the eight-
derivative correction is the τ-exactness of X0;8.
We parametrize the derivative expansion in terms of the

Planck length l, so that the Cremmer-Julia-Scherk two-
derivative action (CJS) corresponds to zeroth order in l. In
Sec. IV we show that, provided the four- and seven-form BI
are satisfied at order Oðl6Þ, cf., (4.3), there are at least two
Weil-trivial twelve forms W12 and hence at least two
independent supersymmetric actions with eight derivatives.
Provided the twelve forms associated to certain anomalous
CS terms are Weil trivial, cf., (4.16) below, there is a third
independent superinvariant at this order. We argue that at
least two of those superinvariants exist to all orders in the
derivative expansion.
As we see in detail in the following, in practice one

solves for the flat components of the closed superform LD
in a stepwise fashion in increasing engineering dimension.
Once all flat components of LD have been determined in
this way, the explicit form of the action (3.1) can be
extracted using the formula

Lm1…mD
j ¼ emD

aD � � � em1

a1La1…aD j
þDemD

aD � � � em2

a2ψm1

α1Lα1a2…aD j þ…

� � � þ ψmD
αD � � �ψm1

α1Lα1…αD j; ð3:3Þ
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where ψα
m ≔ Em

αj and ema ≔ Em
aj are identified as the

gravitino and the vielbein of (bosonic) spacetime, respec-
tively. In particular, the bosonic terms of the Lagrangian
can be read off immediately from La1…aD .

A. CJS supergravity in the action principle formulation

The eleven-dimensional supergravity action reads [1]

S ¼
Z �

R⋆1 − 1

2
G4 ∧ ⋆G4 −

1

6
C3 ∧ G4 ∧ G4

�����; ð3:4Þ

where dC3 ¼ G4 is the three-form potential; it is under-
stood that only the bosonic (11,0) components of the forms
enter the formula above, as in (3.1).
This action can also be understood from the point of

view of the action principle as follows. The twelve form
corresponding to the CS term reads

W12 ¼ −
1

6
G4 ∧ G4 ∧ G4 ¼ dZ11;

Z11 ¼ −
1

6
C3 ∧ G4 ∧ G4: ð3:5Þ

Using the BI (2.5) this can also be written in a manifestly
Weil-trivial form,

W12 ¼ dK11; K11 ¼
1

3
G4 ∧ G7: ð3:6Þ

Taking L11 ¼ Z11 − K11 we obtain that the following
action is invariant under supersymmetry:

S ¼
Z �

−
1

3
G4 ∧ G7 −

1

6
C3 ∧ G4 ∧ G4

�����. ð3:7Þ

This can then be put in the form (3.4) by using the on-shell
conditions ⋆G4 ¼ G7 and G4 ∧ ⋆G4 ¼ 6R⋆1, cf.,
Appendix A. Therein we also give the details of the
solution of the superspace equation W12 ¼ dK11 and we
show, as a byproduct, that the solution forK11 given in (3.6)
is unique up to exact terms.

B. The Oðl3Þ correction (five derivatives)

It was shown in [49], by directly computing the relevant
spinorial cohomology group, that there is a unique super-
invariant at the five-derivative level (order l3 in the Planck
length).6 The modified eleven-dimensional action to order
l3 reads

S ¼
Z �

R⋆1 − 1

2
G4 ∧ ⋆G4 −

1

6
C3 ∧ G4 ∧ G4

þ l3ðC3 ∧ G4 ∧ trR2 þ 2trR2 ∧ ⋆G4Þ
�����; ð3:8Þ

where an arbitrary numerical coefficient has been absorbed
in the definition of l and trR2 ≔ Ra

b ∧ Rb
a; it is under-

stood that only the bosonic (11,0) components of the forms
enter the formula above. This action can also be easily
understood from the point of view of the action principle as
follows. Consider the twelve form corresponding to the CS
term at order l3,

W12 ¼ G4 ∧ G4 ∧ trR2 ¼ dZ11; Z11 ¼ C3 ∧ G4 ∧ trR2:

ð3:9Þ

Using the BI (2.3) and (2.5) this can also be written in a
manifestly Weil-trivial form,

W12 ¼ dK11; K11 ¼ −2G7 ∧ trR2: ð3:10Þ

Taking L11 ¼ Z11 − K11 we obtain the following super-
invariant at order l3:

ΔS ¼
Z

ðC3 ∧ G4 ∧ trR2 þ 2G7 ∧ trR2

�����. ð3:11Þ

This can be seen, using the Hodge duality relation
G7 ¼ ⋆G4, to precisely correspond to the order-l3 terms
in (3.8).7

In Appendix B we work out in detail the superspace
equation W12 ¼ dK11 and confirm that the solution (3.10)
for K11 is unique up to exact terms, in accordance with the
spinorial cohomology result of [49].

IV. THE Oðl6Þ CORRECTION (EIGHT
DERIVATIVES)

As was shown in [6,65], the requirement that the
M5-brane gravitational anomaly is canceled by inflow
from eleven dimensions implies the existence of certain
CS terms Z11 at the eight-derivative order in the eleven-
dimensional theory. The corresponding twelve form reads

W12 ¼ l6G4 ∧ X8 ¼ dZ11; Z11 ¼ l6C3 ∧ X8; ð4:1Þ

where X8 is related to the M5-brane anomaly polynomial
by descent,

6As explained in [49], on a topologically trivial spacetime
manifold this superinvariant can be removed by an appropriate
field redefinition of the three-form superpotential. However on a
spacetime with nonvanishing first Pontryagin class the super-
invariant cannot be redefined away without changing the quan-
tization condition of the four-form field strength.

7The Hodge duality relation between G7 and G4 is expected to
receive higher-order corrections [see below (4.11)]. These can be
neglected here since ΔS is already a higher-order correction.
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X8 ¼ trR4 −
1

4
ðtrR2Þ2; ð4:2Þ

and we have set ðtrR2Þ2 ≔ trR2 ∧ trR2, trR4 ≔ Ra
b ∧

Rb
c ∧ Rc

d ∧ Rd
a. At eight derivatives the modified four-

and seven-form BI read

dG4 ¼ 0; dG7 þ
1

2
G4 ∧ G4 ¼ l6X8; ð4:3Þ

where a numerical coefficient has been absorbed in the
definition of l. We expand the forms perturbatively in l,

G4 ¼ Gð0Þ
4 þ l6Gð1Þ

4 þ…; G7 ¼ Gð0Þ
7 þ l6Gð1Þ

7 þ…;

ð4:4Þ
and similarly for the supercurvature RA

B. Note that in the
expansion above the bosonic components of the lowest-

order fields, Gð0Þ
m1…m4

etc., are identified with the field
strengths of the supergravity multiplet, while the higher-

order fields Gð1Þ
4 etc. are composite higher-derivative fields

that are polynomial in the field strengths of the supergravity
fields.
Solving perturbatively the BI at each order in l, taking

into account that the exterior superderivative d ¼ dzM∂M is
zeroth order in l, implies

dGð0Þ
4 ¼ 0; dGð1Þ

4 ¼ 0;

dGð0Þ
7 þ 1

2
Gð0Þ

4 ∧ Gð0Þ
4 ¼ 0; dGð1Þ

7 þ Gð1Þ
4 ∧ Gð0Þ

4 ¼ Xð1Þ
8 ;

ð4:5Þ

where we have set l6X8 ¼ l6Xð1Þ
8 þ � � �. Note that Xð1Þ

8 only
involves the lowest-order curvature Rð0Þ. Let us expand the

twelve-form W12 perturbatively in l, W12 ¼ l6Wð1Þ
12 þ � � �,

so that

Wð1Þ
12 ¼ Xð1Þ

8 ∧ Gð0Þ
4 ¼ dZ11; Z11 ¼ Xð1Þ

8 ∧ Cð0Þ
3 :

ð4:6Þ

It then follows from (4.5) that this can also be written in a
manifestly Weil-trivial form as follows:

Wð1Þ
12 ¼ dK11; K11 ¼ Gð1Þ

7 ∧ Gð0Þ
4 − 2Gð0Þ

7 ∧ Gð1Þ
4 :

ð4:7Þ

In particular, we see that it suffices to solve the four- and
seven-form BI in order to determine the order-l6 super-
invariant corresponding to L11 ¼ Z11 − K11,

ΔS ¼ l6
R ðXð1Þ

8 ∧ Cð0Þ
3 −Gð1Þ

7 ∧ Gð0Þ
4

þ 2Gð0Þ
7 ∧ Gð1Þ

4 Þj;
ð4:8Þ

where it is understood that only the bosonic (11,0)
components of the forms enter. This is the superinvariant
corresponding to the supersymmetrization of the CS term
(4.1). The action would then read to this order,

S ¼
Z �

Rð0Þ⋆1 − 1

2
Gð0Þ

4 ∧ ⋆Gð0Þ
4 −

1

6
Cð0Þ
3 ∧ Gð0Þ

4 ∧ Gð0Þ
4

þ l6ðXð1Þ
8 ∧ Cð0Þ

3 −Gð1Þ
7 ∧ Gð0Þ

4 þ 2Gð0Þ
7 ∧ Gð1Þ

4 Þ
�����;

ð4:9Þ

where Rð0Þ,Gð0Þ are identified with the field strengths of the
physical fields in the supergravity multiplet, while the first-
order fields Rð1Þ, Gð1Þ should be thought of as gauge-
invariant functions of the physical fields. We see that the
action above is in agreement with the expectation that the
bosonic part of the derivative-corrected supergravity action
should be of the form

S ¼
Z �

R⋆1 − 1

2
G4 ∧ ⋆G4 −

1

6
C3 ∧ G4 ∧ G4

þ l6ðX8 ∧ C3 þ ΔL⋆1Þ
�
; ð4:10Þ

with ΔL being a function of R, G and their derivatives.
Since ΔL is gauge invariant, we see, in particular, that the
CS terms do not receive higher-order corrections beyond
eight derivatives.
Varying (4.10) with respect to C3 implies

d⋆G4 þ
1

2
G4 ∧ G4 ¼ X8 þ

δ

δC3

ðΔL⋆1Þ: ð4:11Þ

It is straightforward to see that the second term on the right-
hand side above is exact by virtue of the fact that ΔL is
gauge invariant and thus only depends on C3 through G4.
Indeed the variation of the C3-dependent terms in the ΔL
part of the action (4.10) can be written (possibly up to
integration by parts) in the form

R
Φ7 ∧ dδC3, for some

seven-form Φ7. Therefore by appropriately correcting the
lowest-order duality relation by higher-derivative terms,
G7 ¼ ⋆G4 þOðl6Þ, one arrives at the modified BI (4.3).

A. How many superinvariants?

We have seen that provided the modified BI (4.3) are
satisfied, there will be at least one superinvariant at eight
derivatives, cf., (4.8). A second independent superinvariant
can also be similarly constructed as follows. Consider the
twelve form,

W0
12 ¼

1

6
G4 ∧ G4 ∧ G4: ð4:12Þ
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Expanding perturbatively to order l6 we obtain

W0ð1Þ
12 ¼ 1

2
Gð0Þ

4 ∧ Gð0Þ
4 ∧ Gð1Þ

4 ¼ dZ11;

Z11 ¼
1

2
Gð1Þ

4 ∧ Gð0Þ
4 ∧ Cð0Þ

3 : ð4:13Þ

The above can also be written in a manifestly Weil-trivial
form using (4.5),

W0ð1Þ
12 ¼ dK11; K11 ¼ −Gð0Þ

7 ∧ Gð1Þ
4 : ð4:14Þ

The order-l6 superinvariant corresponding to Z11 − K11

then reads

ΔS0 ¼ l6
Z

Gð1Þ
4 ∧

�
1

2
Gð0Þ

4 ∧ Cð0Þ
3 þGð0Þ

7

�
; ð4:15Þ

where it is understood that only the bosonic (11,0)
components of the forms enter. The above superinvariant
does not contain the correct CS terms required by anomaly

cancelation, cf., (4.10), and should therefore be excluded
by the requirement of quantum consistency of the theory.
However if one is only interested in counting superinvar-
iants at order l6 in the classical theory, the above super-
invariant is perfectly acceptable and its existence is
guaranteed provided the BI are obeyed to order l6.
Dropping the requirement of quantum consistency,

relying on classical supersymmetry alone, one may also
consider the following two twelve forms,

U12 ¼ l6G4 ∧ trR4; V12 ¼ l6G4 ∧ ðtrR2Þ2; ð4:16Þ

so that U − 1
4
V is the Weil-trivial twelve form correspond-

ing to the CS terms of eleven-dimensional supergravity
required for anomaly cancellation, cf., (4.1). It follows that
U and V are both Weil trivial, or neither U nor V is Weil
trivial. If the former is true, there would exist gauge-
invariant eleven forms KU, KV so that at order l6 we have
Uð1Þ ¼ dKU, Vð1Þ ¼ dKV . One can then construct two
corresponding superinvariants using the action principle,

ΔSU ¼ l6
Z

ðtrR4 ∧ Cð0Þ
3 − KUÞ; ΔSV ¼ l6

Z
ððtrR2Þ2 ∧ Cð0Þ

3 − KVÞ: ð4:17Þ

By the argument at the end of the last section, ΔSU, ΔSV
should correspond to a modified BI obtained by replacing
the right-hand side of the second equation in (4.3) by
trR4, ðtrR2Þ2 respectively. Then KU, KV would still be

given by (4.7) but with Gð1Þ
4 , Gð1Þ

7 solutions of the new
modified BI.
Together with the superinvariantΔS0 of (4.15), we would

then have a total of at least three independent super-
invariants at the eight-derivative order, with only one linear
combination thereof, ΔS of (4.8), corresponding to the
quantum-mechanically consistent eight-derivative correc-
tion. As we see in Sec. IV B, if ΔSU, ΔSV exist they must
necessarily be cubic or lower in the fields.

B. τ-exactness of X8

Based on what is known about superinvariants in
D < 11 dimensions [66], it is plausible to assume that
the superinvariant (4.8) corresponding to the supersym-
metrization of the CS term (4.1) should be quartic or
higher in the fields. As pointed out in [19], a necessary
condition for the superinvariant to be quartic is that
the order-l6 seven form should be quartic or higher in the

fields. Since Gð1Þ
0;7 cannot be quartic or higher in the

fields, as can be seen by dimensional analysis, the order-

l6 seven-form BI (4.5) must be solved for Gð1Þ
0;7 ¼ 0. It

then follows that the purely spinorial component of the

M5-brane anomaly eight form X0;8 is τ-exact. Explicitly,
the first nontrivial component (at dimension four) of the
seven-form BI then reads

γfðα1α2jG
ð1Þ
fjα3…α8Þ ¼ Xð1Þ

α1…α8 : ð4:18Þ

As explained in detail in Appendix E, taking the form of
Gð0Þ into account, cf., (E1), it follows that the Weil-
triviality condition,

W12 ¼ dK11; ð4:19Þ

is solved up to dimension 7=2 for K0;11 ¼ K1;10 ¼
K2;9 ¼ 0. At dimension 4, condition (4.19) then takes
the form

γfðα1α2jKfabjα3…α10Þ ¼ Wð1Þ
abα1…α10

: ð4:20Þ

From this it follows that (4.19) is solved, up to τ-exact

terms, for K3;8 given in terms of Gð1Þ
1;6, cf., (4.18),

Kabcα1…α8 ¼ 3ðγabÞα1α2G
ð1Þ
cα3…α8 ; ð4:21Þ

where it is understood that all bosonic (spinor) indices
are antisymmetrized (symmetrized). Note that the solu-
tion for K3;8 above relies on the M2-brane identity (2.14).
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Moreover, it can be shown that all higher components
of K11 solving (4.19) are automatically guaranteed to exist.
To see this, let us define the twelve form,

I12 ≔ W12 − dK11; ð4:22Þ

which is closed by construction,

0 ¼ ðdIÞp;13−p ¼ τIpþ1;11−p þ dfIp;12−p

þ dbIp−1;13−p þ tIp−2;14−p: ð4:23Þ

On the other hand, as we saw above, provided (4.18)
holds, condition (4.19) is solved up to dimension 4, i.e.,
Ip;12−p ¼ 0 for p ¼ 0, 1, 2. Setting p ¼ 2 in (4.23) then
gives τI3;9 ¼ 0, which implies I3;9 ¼ 0 up to a τ-exact piece
that can be absorbed inK4;7, since all τ-cohomology groups
Hp;12−p

τ are trivial for p ≥ 3, cf., Sec. II B. By induction we
easily see that Ip;12−p ¼ 0, for all p ≥ 3. In other words,
provided (4.18) holds, the Weil-triviality condition (4.19) is
guaranteed to admit a solution.
In the present paper we provide highly nontrivial

evidence corroborating (4.18). We give the outline of the
argument here, relegating the technical details to
Appendix C. The component X0;8 of the anomaly poly-
nomial in (4.18) contains a large number of terms of the
form G4, which can be organized in terms of irreducible
representations of B5. Using certain Fierz identities, cf.,
Appendix D, we have been able to show that almost all of
these terms are indeed τ exact. There are only three
irreducible representations of B5 corresponding to terms
that can potentially be present in X0;8 and are not τ exact.
These are (04000), (03002), and (02004), where we use the
Dynkin notation for B5; see, e.g., Appendix C of [19].
On the other hand we show that, after Fierzing, X0;8 can

be put in the form

X0;8 ¼ ðγa1a2Þðγa3a4Þðγa5a6Þðγa7a8ÞG4
a1a2;a3a4;a5a6;a7a8

þ ðγa1a2Þðγa3a4Þðγa5a6Þðγa7…a12ÞG4
a1a2;a3a4;a5a6;a7…a12

þ ðγa1a2Þðγa3a4Þðγa5…a9Þðγa10…a14Þ
× G4

a1a2;a3a4;a5…a9;a10…a14 ; ð4:24Þ

where G4
a1a2;…;a7a8 , G

4
a1a2;…;a7…a12 , G

4
a1a2;…;a10…a14 denote

certain sums of G4 terms with 8,4,2 indices contracted
respectively, cf., (C6), and we have suppressed spinorial
indices for simplicity of notation. Furthermore we show
that (04000) can only be potentially present in the projec-
tion of G4

a1a2;…;a7a8 onto the Young diagram associated to
the partition [4, 4], while (02004) can only be potentially
present in the projection of G4

a1a2;…;a10…a14 onto the Young
diagram [4, 4, 2, 2, 2]. Therefore a necessary condition for
X0;8 to be τ exact is that the two aforementioned projections
should vanish identically up to τ-exact terms,

ð4:25Þ

In the above ≈ denotes equality up to τ-exact terms. These
two constraints are highly nontrivial, involving seemingly
miraculous cancellations between hundreds of terms. We
have shown that, remarkably, (4.25) are indeed identically
satisfied.
Furthermore we show that the required cancellations for

(4.25) to hold crucially rely on the relative coefficient
between trR4 and ðtrR2Þ2 in X8. In other words we show
that the purely spinorial components of trR4, ðtrR2Þ2 are not
separately τ exact. Consequently, if the twelve forms U, V
are Weil trivial, the corresponding modified order-l6 BI is

solved for some Gð1Þ
7 that are cubic or lower in the fields.

[Indeed if Gð1Þ
7 were quartic or higher, Gð1Þ

0;7 would vanish
and the purely spinorial components of trR4, ðtrR2Þ2 would
be τ exact.] It then follows from (4.7) that also KU, KV are
cubic or lower, and similarly for ΔSU, ΔSV , cf., (4.17).

C. Integrability

The perturbative expansion of the curved components
following from (4.4) reads

GM1…M4
¼ Gð0Þ

M1…M4
þ l6Gð1Þ

M1…M4
þ � � � ; ð4:26Þ

and similarly for G7 and RA
B. Note that in terms of flat

components there is a mixing between zeroth order and
order l6 due to

Φ ¼ EAΦA ¼ Eð0ÞAΦð0Þ
A þ l6ðEð0ÞAΦð1Þ

A þ Eð1ÞAΦð0Þ
A Þ þ � � � ;

ð4:27Þ

where we have expanded the coframe, EA ¼ Eð0ÞA þ
l6Eð1ÞA þ � � �, and we have considered an arbitrary one-
form Φ for simplicity. However, if one restricts to the top
bosonic component of a superform at θ ¼ 0 as in (3.1), then
there is no mixing,

Φð0Þ
m j ¼ emaΦð0Þ

a j þ ψα
mΦ

ð0Þ
α j;

Φð1Þ
m j ¼ emaΦð1Þ

a j þ ψα
mΦ

ð1Þ
α j; ð4:28Þ

where ema, ψα
m were defined below (3.3). Indeed the Oðl6Þ

corrections to the coframe EA only start at higher orders in
the θ-expansion and could be systematically determined as
in, e.g., [67] once the Oðl6Þ corrections to the torsion
components have been determined.
In practice the BI are solved for the flat components of

the superforms involved, Gð0Þ
A1…A4

, Gð1Þ
A1…A4

, etc., at each
order in l. Consequently the corresponding BI, dG4 ¼ 0
etc., are only shown to be satisfied up to terms of the next
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order in l. In principle, there may be an integrability
obstruction to the solution of the BI at next-to-leading
order in the derivative corrections, although that would
most probably be prohibitively difficult to check in prac-
tice. In the following we see that the integrability of a
certain superinvariant is guaranteed provided the BI admit
solutions to all orders in l. Note however that all-order
integrability need not be a consequence of the BI.
The phenomenon of inducing a higher-order correction

at next-to-leading order is also well understood at the level
of the component action, S ¼ Sð0Þ þ l6Sð1Þ þ � � �. The
condition of invariance of the action under supersymmetry
transformations δ ¼ δð0Þ þ l6δð1Þ þ � � � reads

δð0ÞSð0Þ ¼ 0; δð0ÞSð1Þ þ δð1ÞSð0Þ ¼ 0; ð4:29Þ

and similarly at higher orders. The term δð1ÞSð0Þ in the
second equation above is proportional to the lowest-order
equations of motion. Therefore in constructing Sð1Þ we only
need to check its invariance with respect to the lowest-order
supersymmetry transformations δð0Þ and only up to terms
that vanish by virtue of the lowest-order equations of
motion. This corresponds, in the superspace approach, to
the fact that in solving the first-order BI one uses the zeroth-
order equations for the various superfields. Once Sð1Þ is thus
constructed, the correction δð1Þ to the supersymmetry
transformations can be read off. Since δð1ÞSð1Þ ≠ 0 in
general, this induces a correction Sð2Þ to the action and a
corresponding correction δð2Þ to the supersymmetry trans-
formations, and so on.
The existence of an integrability obstruction can also be

understood in the context of the Noether procedure. Indeed
at next-to-leading order we have

δð2ÞSð0Þ þ δð1ÞSð1Þ þ δð0ÞSð2Þ ¼ 0: ð4:30Þ

Therefore there must exist an action Sð2Þ such that its
variation with respect to lowest-order supersymmetry
transformations is equal to −δð1ÞSð1Þ, up to terms that
vanish by virtue of the lowest-order equations of motion.
This condition is not automatically satisfied for every Sð1Þ.
In particular, one would like to know how many of the

independent superinvariants at order l6 presented in
Sec. IVA survive to all orders in the derivative expansion.
Assuming M-theory is a nonpertubatively consistent
theory, we expect the superinvariant (4.8), corresponding
to the supersymmetrization of the CS term required for
anomaly cancellation, to be integrable to all orders.
Moreover, assuming this superinvariant is at least quartic
in the fields, a similar argument as the one detailed below
(4.23) shows that it must be unique at order l6 [19].
In addition, if one assumes that the BI admit a solution to

all orders in a perturbative expansion in l, then there is one
linear combination of the superinvariants presented in

Sec. IVA that is guaranteed to exist to all orders in l.
Indeed in that case the twelve form,

W12 ¼
�
l6X8 −

1

2
G4 ∧ G4

�
∧ G4 ¼ dðG7 ∧ G4Þ;

ð4:31Þ

is Weil trivial by virtue of (4.3), which should now be
considered valid to all orders in l. However this is not the
superinvariant that corresponds to the supersymmetrization
of the anomaly term, cf., (4.8). Indeed by the usual action
principle procedure the twelve form above would give rise
to the superinvariant,

ΔS ¼
Z �

l6X8 ∧ C3 −
1

2
G4 ∧ G4 ∧ C3 −G7 ∧ G4

�����:

ð4:32Þ

Expanding to order l6 and assuming G4 receives a non-
vanishing correction at this order, we see that (4.32) does
not coincide with (4.8) and the corresponding l6-corrected
action is different from (4.9).
In conclusion, under the aforementioned assumptions,

we would then expect (at least) two independent super-
invariants to exist to all orders in a perturbative expansion
in l. Only one of these, the one corresponding to the
supersymmetrization of the CS anomaly term, is quantum-
mechanically consistent.

V. DISCUSSION

We have shown that the highly nontrivial constraints
(4.25) are satisfied, corroborating the expectation that the
purely spinorial component of X8 is τ exact. Furthermore
we have seen that the τ exactness of X0;8 suffices for the
existence of the superinvariant at order l6. Solving the τ
exactness of X0;8 is the first step, and arguably the most
difficult, towards the explicit construction, via the action
principle approach, of the supersymmetrization of the
Chern-Simons term C ∧ X8 of eleven-dimensional super-
gravity required for the quantum consistency of the theory.
Conclusively proving the τ exactness of X0;8 would in

addition require checking that the representation (03002) is
absent from X0;8. This representation is potentially present
in two different Young diagrams. As a consequence,
showing the cancellation would involve, after projecting
onto the appropriate Young diagram, Fierzing hundreds of
four-γ terms. This is equivalent to eight-spinor Fierzing, as
opposed to the four-spinor Fierzing that is sufficient in
order to show the absence of the (04000) and (02004)
representations. At present, this seems prohibitively diffi-
cult even with the help of a computer.
As a corollary of this work, we have shown that if

the anomalous Chern-Simons terms C ∧ ðTrR2Þ2 and
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C ∧ TrR4 can be supersymmetrized independently, the
corresponding superinvariants must necessarily contain
terms cubic or lower in the fields. The existence of
eleven-dimensional cubic superinvariants at the eight-
derivative order has not been examined in the past.
Their existence would presumably imply, by dimensional
reduction, the presence of cubic terms in the ten-dimen-
sional superinvariants I0a, I0b mentioned in the introduc-
tion. This would not be inconsistent with the results of [4]
whose authors have excluded from the outset such terms in
their analysis. This is an interesting open question to which
we hope to return in the future.
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APPENDIX A: WEIL TRIVIALITY AT l0

In this section we give the details of the solution of the
superspace equation W12 ¼ dK11 at lowest order in the
Planck length. As a byproduct we see that the solution for
K11 given in (3.6) is unique up to exact terms. We look for
the solution to

dK11 ¼ −
1

6
G4 ∧ G4 ∧ G4; ðA1Þ

withK11 gauge invariant, i.e., function of the field strengths
of the physical fields. The explicit construction of K11 in

flat components proceeds by solving the BI at each
engineering dimension in a stepwise fashion, from dimen-
sion −3 to 2 (i.e., from Kα1…α11 to Ka1…a11). In components
the BI (A1) reads

D½A1
KA2…A12Þ þ

11

2
TF
½A1A2jKFjA3…A12Þ

¼ −
11!

6ð4!Þ3G½A1…A4
GA5…A8

GA9…A12Þ; ðA2Þ

where the torsion term arises from the action of the exterior
derivative on the supervielbein. The ½ABCÞ notation stands
for symmetrization or antisymmetrization, depending on
the bosonic or fermionic nature of the indices. In the
following, antisymmetrization of the indices ai and sym-
metrization of the indices αi is always implied.
The engineering (mass) dimensions of the physical fields

that are involved in the construction of K11 are

½Da1 � ¼ 1 ½Ta1a2
α� ¼ 3=2 ½Gabαβ� ¼ ½Tαβ

a� ¼ 0

½Dα1 � ¼ 1=2 ½Taα
β� ¼ 1 ½Gabcd� ¼ 1:

1. From dimension −3 to −1=2
From dimension −3 (12 odd indices) to −1=2 (seven odd

and five even indices), the right-hand side of (A1) always
vanishes. Given the dimensions of the field strengths of the
physical fields, the first nonvanishing component of K11

is Kα1…α4a1…a7 , appearing for the first time in the 0-
dimensional equation (six fermionic indices and six
bosonic indices). For example, the equation (A2) at
dimension −1=2 reads

7

12
Dα1Kα2…α7a1…a5 −

5

12
Da1Ka2…a5α1…α7

þ 11

2

�
5

33
Tα1α2

fKfα3…α7a1…a5 −
7

22
Ta1a2

γKγa3…a5α1…α7 −
35

66
Ta1α1

γKγα2…α7a2…a5

�
¼ 0;

and involves8 Kð−1=2Þ
α1…α5a1…a6 ,K

ð−1Þ
α1…α6a1…a5 ,K

ð−3=2Þ
α1…α7a1…a4 , andK

ð−2Þ
α1…α8a1…a3 , which cannot be expressed in terms of the physical

fields: the equation is thus trivially satisfied.

2. Dimension 0 (A1…A6 → α1…α6, A7…A12 → a1…a6)

At dimension 0, Eq. (A2) reads

1

2
Dα1Kα2…α6a1…a6

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 1

2
Da1Ka2…a6α1…α6

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 11

2

�
5

22
Tα1α2

fKfα3…α6a1…a6 þ
5

22
Ta1a2

γKγa3…a6α1…α6|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ 12

22
Ta1α1

γKγα2…α6a2…a6|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�

¼ −
11!

6ð4!Þ3
18

77
Ga1a2α1α2Ga3a4α3α4Ga5a6α5α6 :

8In the following we use superscripts to indicate the dimension. This should not be confused with the notation in the main text, e.g.,
(4.4) where the superscript denotes the order in the derivative expansion.
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Most terms vanish and the equation simplifies as follows:

ðγfÞα1α2Kfa1…a6α3…α6 ¼ 90ðγa1a2Þα1α2ðγa3a4Þα3α4ðγa5a6Þα5α6 :

Using the M2-brane identity as well as the so-called M5-
brane identity,

ðγeÞα1α2ðγea1…a4Þα3α4 ¼ 3ðγa1a2Þα1α2ðγa3a4Þα3α4 ; ðA3Þ

it is easy to check that the solution is given by

Ka1…a7α1…α4 ¼ 42ðγa1…a5Þα1α2ðγa6a7Þα3α4 : ðA4Þ

3. Dimension 1=2 (A1…A5 → α1…α5,
A6…A12 → a1…a7)

At dimension 1=2, Eq. (A2) reads

5

12
Dα1Kα2…α5a1…a7

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Dαðγð5Þγð2ÞÞ¼0

−
7

12
Da1Ka2…a7α1…α5

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 11

2

�
5

33
Tα1α2

fKfα3…α5a1…a7 −
35

66
Ta1a2

γKγa3…a7α1…α5|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

−
7

22
Ta1α1

γKγα2…α6a2…a6|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�
¼ 0;

which simplifies to

ðγfÞα1α2Kfa1…a7α3…α5 ¼ 0:

Since ½Kfa1…a7α3…α5 � ¼ 1=2 and there is no gauge-invariant
field with that dimension, we conclude that

Ka1…a8α1…α3 ¼ 0: ðA5Þ

4. Dimension 1 (A1…A4 → α1…α4,
A5…A12 → a1…a8)

At dimension 1, Eq. (A2) reads

4

12
Dα1Kα2…α4a1…a8

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 8

12
Da1Ka2…a8α1…α4

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{da1 ðγð5Þγð2ÞÞ¼0

þ 11

2

�
1

11
Tα1α2

fKfα3α4a1…a8 þ
14

33
Ta1a2

γKγa3…a8α1…α4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ 16

33
Ta1α1

γKγα2…α4a2…a8

�

¼ −
11!

6ð4!Þ3
12

55
Ga1a2a3a4Ga5a6α1α2Ga7a8α3α4 ;

which becomes, using (E1),

ðγfÞα1α2Kfa1…a8α3α4 ¼ −
56

3
iGa1a2a3fðγfÞα1α2ðγa4…a8Þα3α4

þ 7

18
iGfghiðγa1…a6

fghiÞα1α2ðγa7a8Þα3α4
þ 70iðγa1a2Þα1α2ðγa3a4Þα3α4Ga5…a8 :

ðA6Þ

The last term above can be expanded as

70iðγa1a2Þα1α2ðγa3a4Þα3α4Ga5…a8

¼ 70

3
iðγfÞα1α2ðγfa1…a4Þα3α4Ga5…a8

¼ 42iðγfÞα1α2ðγ½fa1…a4jÞα3α4Gja5…a8�

−
56

3
iðγfÞα1α2ðγ½a1…a5jÞα3α4Gja6a7a8�f:

Similarly, the second term on the right-hand side of (A6)
can be written in a manifestly τ-exact form,

7

18
ðγa1…a6

fghiÞα1α2ðγa7a8Þα3α4
¼ −

7

18
ϵja1…a6

fghiðγjÞα1α2ðγa7a8Þα3α4
¼ −

1

2
ϵ½ja1…a6j

fghiðγjÞα1α2ðγja7a8�Þα3α4
þ 1

9
ϵa1…a7

fghiðγjÞα1α2ðγa8jÞα3α4|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
0

:

Then Eq. (A6) takes the following form:

ðγjÞα1α2Kja1…a8α3α4 ¼ ðγjÞα1α2ð42iðγ½ja1…a4Þα3α4Ga5…a8�

−
1

2
iϵ½ja1…a6j

i1…i4ðγja7a8�Þα3α4Gi1…i4Þ:
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Since the cohomology group H9;2
τ is trivial, the solution to the above equation reads

Ka1…a9α1α2 ¼ 42iðγa1…a5Þα1α2Ga6…a9 −
1

2
iϵa1…a7

i1…i4ðγa8a9Þα1α2Gi1…i4 ;

up to τ-exact terms.

5. Dimension 3=2 (A1…A3 → α1…α3, A4…A12 → a1…a9)

At dimension 3=2, Eq. (A2) reads

3

12
Dα1Kα2α3a1…a9 −

9

12
Da1Ka2…a9α1…α3

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

−
11

2

�
1

22
Tα1α2

fKfa1…a9α3 þ
6

11
Ta1a2

γKγa3…a9α1…α3 þ
9

22
Ta1α1

γKγα2α3a2…a9|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

�
¼ 0;

which becomes, using (E1),

ðγfÞα1α2Kfa1…a9α3 ¼ þ252ðγa1…a5Þα2α3ðγa6a7Þα1γTa8a9
γ

− 3ϵa1…a7
i1…i4ðγa8a9Þα1α2ðγi1i2Þα3γTi3i4

γ

þ 504ðγa1a2Þðα1α2jðγa3…a7Þjα3γÞTa8a9
γ:

ðA7Þ

The decomposition of Kfa1…a9α3 in irreducible components
is given by

ð10000Þ ⊗ ð00001Þ ¼ ð10001Þ ⊕ ð00001Þ;

whereas Tab
α is in the representation (01001). It follows

that

Ka1…a10α1 ¼ 0; ðA8Þ

and moreover the right-hand side of (A7) must vanish
identically. This can be verified by, e.g., taking the Hodge
dual of ðγi1i2Þα3γ in the second term of (A7), and using the
γ-tracelessness of Tab

γ, cf., (E3).

6. Dimension 2 (A1A2 → α1α2, A3…A12 → a1…a10)

At dimension 2, Eq. (A2) reads

2

12
Dα1Kα2a1…a10 þ

10

12
Da1Ka2…a10α1α2

þ 11

2

�
1

66
Tα1α2

fKfa1…a10 þ
10

33
Ta1a2

γKγa3…a10α1α2 þ
15

22
Ta1α1

γKγα2a2…a10

�

¼ −
11!

6ð4!Þ3
18

66
Ga1a2a3a4Ga5a6a7a8Ga9a10α1α2 ;

which becomes, using (E1),

ðγfÞα1α2Kfa1…a10 ¼ −10ið42iðγa2…a6Þα1α2da1Ga7…a10 −
1

2
iϵa2…a8

i1…i4ðγa9a10Þα1α2da1Gi1…i4Þ

− 20iTa1α1
ϵð42iðγa2…a6Þϵα2Ga7…a10 −

1

2
iϵa2…a8

i1…i4ðγa9a10Þϵα2Gi1…i4Þ
− 1575Ga1…a4Ga5…a8ðγa9a10Þα1α2 : ðA9Þ

Multiplying by γð1Þ and taking the trace leads to

Ka1…a11 ¼
1

72
ϵa1…a11Gd1…d4G

d1…d4 : ðA10Þ

On the other hand contracting (A9) with γð2Þ or γð5Þ imposes that the contraction of the right-hand side must be identically 0.
This can indeed be straightforwardly verified using (E3).
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7. Dimension 5=2 (A1 → α1, A2…A12 → a1…a11)

The equation at dimension 5=2 does not contain any
additional information, but serves as a consistency check
for the expressions we found for Ka1…a11. It reads

1

12
Dα1Ka1…a11 −

11

12
Da1Ka2…a11α1

−
11

2

�
2

12
Ta1a2

γKγa3…a11α1 −
10

12
Ta1α1

γKγa2…a11

�
¼ 0;

which becomes, using (E1) and (A10),

1

72
ϵa1…a11Dα1GabcdGabcd − 330iGa1a2ghðγgha3…a9Ta10a11Þα1
þ 2310iGa1…a4ðγa5…a9Ta10a11Þα1 :

Using (E2) and (D1) we then obtain the constraint

0 ¼ ϵa1…a11Td1d2
δðγd3d4Þδα1Gd1…d4

þ 77

4
ϵa1…a5

b1…b6ðγb1…b6Ta6a7Þα1Ga8…a11

− 990ϵa1…a7
b1b2ghðγb1b2Ta8a9Þα1Ga10a11gh; ðA11Þ

which can be seen to be automatically satisfied by
contracting (A11) with ϵa1…a11 . The next equation (of
dimension 3) is trivially satisfied, since the purely bosonic

component of a twelve form vanishes automatically in
eleven dimensions.

8. Action at Oðl0Þ
We have thus constructed the explicit expression of all

components of K11 and have seen that it is unique up to
exact terms. Its purely bosonic component in particular
takes the following form,

Kð2Þ ¼ 1

72 · 11!
ϵa1…a11Gd1…d4G

d1…d4dxa1 ∧ … ∧ dxa11

¼ 1

3
G ∧ ⋆G ðA12Þ

¼ −R⋆1þ 1

2
G ∧ ⋆G; ðA13Þ

where in this subsection we have reverted to bosonic
conventions for bosonic forms. Using the action principle
then leads to the CJS action of Sec. III A.
The last two equalities in (A12) above can be seen as

follows. The volume element is defined as

dV ¼ ⋆1 ¼ 1

11!
ϵa1…a11dx

a1 ∧ … ∧ dxa11 ;

from which it follows that

G ∧ ⋆G ¼ 1

7!ð4!Þ2Ga1…a4ϵa5…a11
b1…b4Gb1…b4dx

a1 ∧ … ∧ dxa11
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{−ϵa1…a11dV

¼ 1

4!
Gd1…d4G

d1…d4dV:

Moreover, taking the trace of the third relation of (E3) gives

R⋆1 ¼ 1

144
Gd1…d4G

d1…d4dV ¼ 1

6
G ∧ ⋆G:

APPENDIX B: WEIL TRIVIALITY AT at l3

In this section we are looking for the solution to the
equation,

dK11 ¼ G4 ∧ G4 ∧ Rab ∧ Rba: ðB1Þ

We construct all components of K11 explicitly and confirm
that the solution of Sec. III B is unique up to exact terms. In
components the equation above takes the following form:

D½A1
KA2…A12Þ þ

11

2
TF
½A1A2jKFjA3…A12Þ

¼ 11!

4ð4!Þ2 R½A1A2jc1c2RjA3A4j
c2c1GjA5…A8

GA9…A12Þ: ðB2Þ

The dimensions of the physical fields are the same as
before, with the addition of ½Rabcd� ¼ 2. The dimensions of
the various components of K range from −1=2 (Kα1…α11) to
5 (Ka1…a11).

1. Dimension 0 to 3=2

Since the dimension of Kα1…α11 is −1=2, it must be set to
0 as it cannot be expressed in terms of the physical fields.
The equation of dimension 0 then takes the form

Dα1Kα2…α12|fflfflfflffl{zfflfflfflffl}
0

þ 11

2
Tα1α2

fKfα3…α12

¼ 11!

4ð4!Þ2 Rα1α2c1c2
Rα3α4

c2c1Gα5…α8Gα9…α12|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
0

;

which simplifies to

ðγfÞα1α2Kfα3…α12 ¼ 0: ðB3Þ
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Since ½Kfα3…α12 � ¼ 0 and H1;10
τ is nontrivial, a τ-nonexact

solution involving only γ-matrices could exist. In that case
Kfα3…α12 would necessary transform as a scalar, since the
only available gauge-invariant superfield of zero dimension
is a constant. On the other hand,

ð10000Þ ⊗ ð00001Þ⊗S10 ¼ 1 × ð00000Þ þ � � � ;

i.e., the decomposition of Kfα3…α12 contains a unique scalar
combination. It follows that

Kfα3…α12 ∝ ðγfÞα3α4ðγaÞα5α6ðγaÞα7α8ðγbÞα9α10ðγbÞα11α12 :
ðB4Þ

However it can be verified that this expression does not
satisfy Eq. (B3), unless Ka1α3…α12 ¼ 0.
The right-hand side of Eq. (B2) vanishes from dimension

0 to dimension 3=2, and the equations to solve are all

similar to (B3): The component Kð1=2Þ
a1a2α1…α9 are set to 0

because there is no gauge-invariant field of dimension 1=2.

The components Kð1Þ
a1a2a3α1…α8 , K

ð3=2Þ
a1a2a3a4α1…α7 are set to 0,

up to exact terms, as a consequence of the triviality of
H3;8

τ , H4;7
τ .

2. Dimension 2 (A1…A8 → α1…α8,
A9…A12 → a1…a4)

This is the first equation with a nonzero right-hand side,

8

12
Dα1Kα2…α8a1…a4

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 4

12
Da1Ka2…a4α1…α8

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 11

2

�
14

33
Tα1α2

fKfa1…a4α3…α8 þ
1

11
Ta1a2

γKγα1…α8a3a4|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
0

þ 16

33
Ta1α1

γKγα3…α8a2…a4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�

¼ 3
4

55

11!

4ð4!Þ2 Rα1α2c1c2Rα3α4
c2c1Ga1a2α5α6Ga3a4α7α8 ;

which becomes, using (E1),

ðγfÞα1α2Kfa1…a4α3…α8 ¼ −180iðγfÞα1α2ðγfa1…a4Þα3α4Rα5α6
c1c2Rα7α8c2c1 :

Since H5;6
τ is trivial, the solution reads

Kð2Þ
a1…a5α1…α6 ¼ −180iðγa1…a5Þα1α2Rα3α4

c1c2Rα5α6c2c1 ;

up to τ-exact terms.

3. Dimension 5=2 (A1…A7 → α1…α7, A8…A12 → a1…a5)

At dimension 5=2, Eq. (B2) reads

7

12
Dα1Kα2…α7a1…a5 −

5

12
Da1Ka2…a5α1…α7

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

−
11

2

�
7

22
Tα1α2

fKfa1…a5α3…α7 þ
5

33
Ta1a2

γKγα1…α7a3…a5|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ 35

66
Ta1α1

γKγα3…α7a2…a5|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�

¼ 11!

4ð4!Þ2
�
2
1

11
Rα1α2c1c2Rα3a1

c2c1Ga2a3α4α5Ga4a5α6α7

�
;

which becomes, using (E1),

ðγfÞα1α2Kfa1…a5α3…α7 ¼ −120iðγa1…a5Þα1α2Rα3α4
c1c2

�
ðγe1e2Þα5α6ðγ½c1c2Te1e2�Þα7 þ

1

24
ðγc1c2e1…e4Þα5α6ðγe1e2Te3e4Þα7

�

þ 1800iðγa1a2Þα1α2ðγa3a4Þα3α4Rα5α6
c1c2Rα7a5c2c1 : ðB5Þ

The second term in (B5) can be written as

BERTRAND SOUÈRES and DIMITRIOS TSIMPIS PHYSICAL REVIEW D 95, 026013 (2017)

026013-16



1800iðγ½a1a2jÞα1α2ðγja3a4jÞα3α4Rα5α6
c1c2Rα7ja5�c2c1

¼ 600iðγgÞα1α2ðγg½a1a2a3a4jÞα3α4Rα5α6
c1c2Rα7ja5�c2c1

¼ 600iðγgÞα1α2
�
6

5
ðγ½ga1a2a3a4jÞα3α4Rα5α6

c1c2Rα7ja5�c2c1 þ
1

5
ðγa1a2a3a4a5Þα3α4Rα5α6

c1c2Rα7gc2c1

�
: ðB6Þ

One can then verify that the second term on the right-hand side of (B6) cancels with the first term on the right-hand side of
(B5). Since the first term on the right-hand side of (B6) is in a τ-exact form and H6;5

τ is trivial, the solution reads

Kð5=2Þ
a1…a6α1…α5 ¼ 720iðγa1…a5Þα1α2Rα3α4

c1c2Rα5a6c2c1 ;

up to τ-exact terms.

4. Dimension 3 (A1…A6 → α1…α6, A7…A12 → a1…a6)

At dimension 3, Eq. (B2) reads

1

2
Dα1Kα2…α6a1…a6 þ

1

2
Da1Ka2…a6α1…α6

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{0

þ 11

2

�
5

22
Tα1α2

fKfa1…a6α3…α6 þ
5

22
Ta1a2

γKγα1…α6a3…a6|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

þ 6

11
Ta1α1

γKγα3…α6a2…a6|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
0

�

¼ 11!

4ð4!Þ2
�
−
12

77
Rα1a1

c1c2Rα2a2c2c1Ga3a4α3α4Ga5a6α5α6

þ 2
1

154
Rα1α2

c1c2Rα3α4c2c1Ga1a2α5α6Ga3…a6

þ 2
3

77
Ra1a2

c1c2Rα1α2c2c1Ga3a4α3α4Ga5a6α5α6

�
;

which becomes, using (E1),

−
5

4
iðγfÞα1α2Kfa1…a6α3…α6

¼ −
1

2
Dα1Kα2…α6a1…a6

−
1

2
da1Ka2…a6α1…α6

− 3Tϵ
a1α1Kϵα2…α6a2…a6

− 2700Rα1a1
c1c2Rα2a2c2c1Ga3a4α3α4Ga5a6α5α6

þ 225Rα1α2
c1c2Rα3α4c2c1Ga1a2α5α6Ga3…a6

þ 1350Ra1a2
c1c2Rα1α2c2c1Ga3a4α3α4Ga5a6α5α6 :

Let us now examine separately each group of terms in the
equation above with the same type of field content. There
are four G3 terms that read

− 225iGa1…a4ðγa5a6Þα1α2Rα3α4
c1c2Rα5α6c1c2

− 360ðγa1…a5Þα1α2Rα3α4c1c2Tc2α5
ϵTc1ϵ

βðγa6Þβα6
þ 720ðγa1…a5Þα1α2Rα3α4c1c2Tc1α5

ϵTa6ϵ
βðγc2Þβα6

− 540iðγa1…a5Þðα1ϵjTa6α2
ϵRjα3α4j

c1c2Rjα5α6Þc2c1 : ðB7Þ

The last term in (B7) can be split in two parts,

− 540i

�
2

6
ðγa1…a5Þα1ϵTa6α2

ϵRα3α4
c1c2Rα5α6c2c1

þ 4

6
ðγa1…a5Þα1α2Ta6α3

ϵRϵα4
c1c2Rα5α6c2c1

�
:

The first one leads to

ðγgÞα1α2
�
5

8
iϵga1…a6

b1…b4Gb1…b4Rα3α4
c1c2Rα5α6c2c1

�

þ 225iGa1…a4ðγa5a6Þα1α2Rα3α4
c1c2Rα5α6c2c1 ;

where the first term is τ exact, and the second term cancels
with the first one in (B7). It can then be verified that the
three remaining G3 terms cancel out.
Moreover there are three terms of the schematic form

GðDGÞ,
− 360iðγa1…a5Þα1α2Rα3α4

c1c2dc2Tc1α5
βðγa6Þβα6

− 720iðγa1…a5Þα1α2Rα3α4
c1c2dc1Ta6α5

βðγc2Þβα6
− 180iðγa1…a5Þα1α2Rα3α4

c1c2da6Rα5α6c2c1 ; ðB8Þ
which cancel out.
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There are two RG terms that read

− 1350ðγa1a2Þα1α2ðγa3a4Þα3α4Ra5a6
c1c2Rα5α6c2c1

þ 45ðγa1…a5Þα1α2Rα3α4
c1c2ððγe1e2γa6Þα5α6Rc2c1e1e2 − 2ðγe1e2γc2Þα5α6Rc1a6e1e2Þ: ðB9Þ

The first term of (B9) can be put in a τ-exact form,

− 1350ðγa1a2Þα1α2ðγa3a4Þα3α4Ra5a6
c1c2Rα5α6c2c1

¼ ðγgÞα1α2ð−630iðγ½ga1…a4jÞα3α4Rja5a6�
c1c2Rα5α6c2c1 þ 180ðγa1…a5Þα1α2Ra6g

c1c2Rα5α6c2c1Þ;

while the remaining RG terms cancel out.
There are two T2 terms that read

þ 2700ðγa1a2Þα1α2ðγa3a4Þα3α4Rα5a5
c1c2Rα6a6c2c1

þ 1080iðγa1…a5Þα1α2ððγe1e2Þα3α4ðγ½c1c2Te1e2�Þα5 þ
1

24
ðγc1c2e1…e4Þα3α4ðγe1e2Te3e4Þα5ÞRα6a6c2c1 : ðB10Þ

The first term can be put in a τ-exact form,

2700ðγa1a2Þα1α2ðγa3a4Þα3α4Rα5a5
c1c2Rα6a6c2c1

¼ 1

3
2700ðγgÞα1α2

�
7

5
ðγga1…a4Þα3α4Rα5a5

c1c2Rα6a6c2c1 þ
2

5
ðγa1…a5Þα3α4Rα5a6

c1c2Rα6gc2c1

�
;

while the remaining TT terms cancel out. Taking the triviality of H7;4
τ into account, the nonvanishing terms extracted from

the RG, T2, and G3 terms lead to the solution,

Kð3Þ
a1…a7α1…α4 ¼ 504iðγa1…a5Þα1α2ð−Ra6a7

c1c2Rα5α6c2c1 þ 2Rα5a6
c1c2Rα6a7c2c1Þ

−
1

2
iϵa1…a7

b1…b4Gb1…b4Rα1α2
c1c2Rα3α4c2c1 ; ðB11Þ

up to τ-exact terms.

5. Dimensions 7=2 (A1…A5 → α1…α5, A6…A12 → a1…a7)

At dimension 7=2, Eq. (B2) reads

5

12
Dα1Kα2…α5a1…a7 −

7

12
Da1Ka2…a7α1…α5

−
11

2

�
5

33
Tα1α2

fKfa1…a7α3…α5 −
7

22
Ta1a2

γKγα1…α5a3…a7 þ
35

66
Ta1α1

γKγα3…α5a2…a7

�

¼ 11!

4ð4!Þ2
�
2
1

11
Rα1a1

c1c2Ra2a3c2c1Ga4a5α3α4Ga6a7α5α6

þ 4
1

66
Rα1a1

c1c2Rα2α3c2c1Ga2a3α4α5Ga4…a7

�
:

The right-hand side of the equation above contains terms of the formGðDTÞ, TðDGÞ, TR, and TG2. The first two groups of
terms simply vanish (without the use of any equations of motion or BI). Two τ-exact terms can be extracted from RT and
TG2, and the remaining terms cancel out. This leads to the solution,

Kð7=2Þ
a1…a8α1…α3 ¼ 2016iðγa1…a5Þα1α2Ra6a7

c1c2Rα3a8c2c1

þ 4ϵa1…a7
b1…b4Gb1…b4Rα1α2

c1c2Rα3a8c2c1 ;

up to τ-exact terms.

BERTRAND SOUÈRES and DIMITRIOS TSIMPIS PHYSICAL REVIEW D 95, 026013 (2017)

026013-18



6. Dimensions 4 (A1…A4 → α1…α4, A5…A12 → a1…a8)

At dimension 4, Eq. (B2) reads

4

12
Dα1Kα2…α4a1…a8 þ

8

12
Da1Ka2…a8α1…α4

þ 11

2

�
1

11
Tα1α2

fKfa1…a8α3α4 þ
14

33
Ta1a2

γKγα1…α4a3…a8 þ
16

33
Ta1α1

γKγα2…α4a2…a8

�

¼ 11!

4ð4!Þ2 ð1260Ra1a2
c1c2Ra3a4c2c1Ga5a6α3α4Ga7a8α5α6

þ 35Rα1α2
c1c2Rα3α4c2c1Ga1a2a3a4Ga5…a8

þ 4 · 210Rα1α2
c1c2Ra1a2c2c1Ga3a4a5a6Ga7a8α3α4

− 2 · 840Rα1a1
c1c2Rα2a2c2c1Ga3a4α3α4Ga5a6a7a8Þ:

The terms in the equation above can be cast in eight groups: R2, RG2, RðDGÞ, G4, G2ðDGÞ, GT2, TðDTÞ, and GðDRÞ.
Parts of the terms of the form R2, G2R, and GT2 can be put in a τ-exact form, while the remaining terms cancel out. Taking
into account the BI,

Da1Ra2a3c1c2 ¼ −Ta1a2
γRγa3c1c2 ; ðB12Þ

we see that the termGðDRÞ cancels against a term fromGT2. Taking into account the equation of motion ofG we see that a
term from G2ðDGÞ cancels against a term in G4,

ϵa1…a7
b1…b4Da8Gb1…b4 ¼

1

2
ϵa1…a8

b1…b3DcGcb1…b3 ¼ 105Ga1…a4Ga5…a8 : ðB13Þ

We are thus led to the solution,

Kð4Þ
a1…a9α1…α2 ¼ −1512iðγa1…a5Þα1α2Ra6a7

c1c2Ra8a9c2c1

− 6ϵa1…a7
b1…b4Gb1…b4Rα1α2

c1c2Ra8a9c2c1

þ 12ϵa1…a7
b1…b4Gb1…b4Rα1a8

c1c2Rα2a9c2c1 ;

up to τ-exact terms.

7. Dimensions 9=2 (A1…A3 → α1…α3, A4…A12 → a1…a9)

At dimension 9=2, Eq. (B2) reads

3

12
Dα1Kα2α3a1…a9 −

9

12
Da1Ka2…a9α1…α3

−
11

2

�
1

22
Tα1α2

fKfa1…a9α3 þ
6

11
Ta1a2

γKγα1…α3a3…a9 þ
9

22
Ta1α1

γKγα2α3a2…a9

�

¼ 11!

4ð4!Þ2
�
2

1

110
Rα1α2

c1c2Rα3a1c2c1Ga2…a5Ga6…a9

þ 4
3

55
Ra1a2

c1c2Rα1a3c2c1Gα2α3a4a5Ga6…a9

�
:

The terms in the equation above can be cast in seven groups: RðDTÞ, RTG, G2ðDTÞ, G3T, T3, TGðDGÞ, and TðDRÞ. One
term of the form RTG is τ exact, while all the remaining terms can be seen to cancel out, using (B12) and (B13) to convert a
term of the form TðDRÞ to the form T3, and a term of the form TGðDGÞ to the form G3T. Up to τ-exact terms, the
component of dimension 9=2 then reads
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Kð9=2Þ
a1…a9α1α2 ¼ 60iϵa1…a7

b1…b4Gb1…b4Ra8a9
c1c2Rα1a10c2c1 :

8. Dimensions 5 (A1A2 → α1α2, A3…A12 → a1…a10)

At dimension 5, Eq. (B2) reads

2

12
Dα1Kα2a1…a9 þ

10

12
Da1Ka2…a10α1α2

þ 11

2

�
1

66
Tα1α2

fKfa1…a10 þ
15

22
Ta1a2

γKγα1α2a3…a10 þ
10

33
Ta1α1

γKγα2a2…a10

�

¼ 11!

4ð4!Þ2
�
2
1

66
Rα1α2

c1c2Ra1a2c2c1Ga3…a6Ga7…a10

− 1
2

33
Rα1a1

c1c2Rα2a2c2c1Ga3a4a5a6Ga7…a10

þ 2
1

11
Ra1a2

c1c2Ra3a4c2c1Ga5a6α1α2Ga7a8α3α4

�
:

The terms in the equation above can be cast in nine groups:
RT2, GTðDTÞ, G2T2, GR2, GRðDGÞ, RG3, RðDRÞ,
G2ðDRÞ, and T2ðDGÞ. One term in GR2 is τ exact, while
all the remaining terms cancel out, as can be seen using
Eqs. (B12) and (B13) to convert a term of the form RðDRÞ
to the form RT2, a term of the form G2ðDRÞ to the form
G2T2, and a term of the form T2ðDGÞ to the formG2T2. Up
to τ-exact terms, the component of dimension 5 then reads

Kð5Þ
a1…a11 ¼ −165ϵa1…a7

b1…b4Gb1…b4Ra8a9
c1c2Ra10a11c2c1 :

ðB14Þ

9. Dimensions 11=2 (A1 → α1, A2…A12 → a1…a11)

Since there is no new component of K appearing, this
equation should be satisfied automatically,

1

12
Dα1Ka1…a11 −

11

12
Da1Ka2…a11α1

−
11

2

�
1

6
Ta1α2

fKfa2…a11 −
5

6
Ta1a2

γKγα1a3…a11

�

¼ 11!

4ð4!Þ2
�
2

6
Rα1a1

c1c2Ra2a3c2c1Ga4…a7Ga8…a11

�
:

The equation contains six types of terms: TR2, GRðDTÞ,
G2TR, GTðDRÞ, RTðDGÞ, and T3G. As expected all the
terms cancel out, as can be seen using (B12) and (B13) to
convert a term of the form GTðDRÞ to the form T3G, and a
term of the form RTðDGÞ to the form G2TR.

10. Action at Oðl3Þ
We have constructed the explicit expression of each

component of K11 and showed that it is unique up to exact

terms. In particular, the top component, given in Eq. (B14),
precisely agrees with (3.10), leading to the superinvariant
of Sec. IIIB.

APPENDIX C: WEIL TRIVIALITY AT l6

The same method is used to generate the corrections at l6

order, cf., Sec. IV. We look for the solution to the equation

dK11 ¼ G4 ∧ Xð1Þ
8 . In components this reads

D½A1
KA2…A12Þþ

11

2
TF
½A1A2jKFjA3…A12Þ

¼ 11!

ð4!Þ42
�
G½A1…A4

RjA5A6jc1c2RjA7A8j
c2c3RjA9A10jc3c4RjA11A12Þ

c4c1

−
1

4
G½A1…A4

RjA5A6jc1c2RjA7A8j
c1c2RjA9A10jd1d2RjA11A12Þ

d1d2

�
:

ðC1Þ

The dimensions of the various components of K11 now
range from ½Kα1…α12 � ¼ 5

2
to ½Ka1…a11 � ¼ 8.

1. Dimension 3 and 7=2

If we assume that the superinvariant atOðl6Þ is quartic or
higher in fields, the first potentially nonvanishing compo-
nent of K11 appears at dimension 4 (it is of the form G4).
We thus obtain

Kð5=2Þ
α1…α11 ¼ Kð3Þ

a1α1…α10 ¼ Kð7=2Þ
a1a2α1…α9 ¼ 0:

This is consistent with (C1), whose right-hand side van-
ishes for dimensions lower than 4.
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2. Dimension 4 (A1…A10 → α1…α10, A11A12 → a1a2)

Equation (C1) takes the following form,

2

12
Da1K

ð3Þ
a2α1…α10

zfflfflfflfflffl}|fflfflfflfflffl{0

þ 10

12
Dα1K

ð7=2Þ
α2…α10a1a2

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{0

þ 11

2

�
15

22
Tα1α2

fKð4Þ
fa1a2α3…α10

þ 10

33
Ta1α1

γKð3Þ
γα2…α10a2

zfflfflfflfflfflffl}|fflfflfflfflfflffl{0

þ 1

66
Ta1a2

γKð5=2Þ
γα1…α10

zfflfflfflffl}|fflfflfflffl{0 �

¼ 11!

4!42
Ga1a2α1α2

�
Rα3α4

c1c2Rα5α6c2c3
Rα7α8

c3c4Rα9α10c4c1
−
1

4
Rα3α4

c1c2Rα5α6c1c2
Rα7α8

d1d2Rα9α10d1d2

�
;

which simplifies to

ðγfÞα1α2K
ð4Þ
fa1a2α3…α10

¼ 2520ðγa1a2Þα1α2
�
Rα3α4

c1c2Rα5α6c2c3
Rα7α8

c3c4Rα9α10c4c1
−
1

4
Rα3α4

c1c2Rα5α6c1c2
Rα7α8

d1d2Rα9α10d1d2

�

¼ ðγa1a2Þα1α2X
ð8Þ
α3…α10 : ðC2Þ

Explicitly, the term ðtrR2Þ2 reads (omitting the factor −1=4)

1

64
ðγu0u1Þðγu2u3Þðγu4u5Þðγu6u7ÞGu0u1

y0y1Gu2u3y0y1Gu4u5z0z1Gu6u7
z0z1

4

24 · 64
ðγu0u1Þðγu2u3Þðγu4u5Þðγv0…v5ÞGu0u1

y0y1Gu2u3y0y1Gu4u5v0v1Gv2…v5

2

24264
ðγu0u1Þðγu2u3Þðγv0…v3x0x1Þðγw0…w3

x0x1ÞGu0u1
y1y2Gu2u3y1y2Gv0…v3Gw0…w3

4

24264
ðγu0u1Þðγu2u3Þðγv0…v5Þðγw0…w5ÞGu0u1v0v1Gu2u3w0w1

Gv2…v5Gw2…w5

4

24364
ðγu0u1Þðγv0…v5Þðγw0…w3y0y1Þðγx0…x3

y0y1ÞGu0u1v0v1Gv2…v5Gw0…w3
Gx0…x3

1

24464
ðγu0…u3y0y1Þðγv0…v3

y0y1Þðγw0…w3z0z1Þðγx0…x3 z0z1
ÞGu0…u3Gv0…v3Gw0…w3

Gx0…x3 ;

while the term trR4 reads

1

64
ðγu0u1Þðγu2u3Þðγu4u5Þðγu6u7ÞGu0u1

y0y1Gu2u3y0z0Gu4u5y1z1Gu6u7
z0z1

4

24 · 64
ðγu0u1Þðγu2u3Þðγu4u5Þðγv0…v5ÞGu0u1

y0y1Gu2u3v0y0Gu4u5v1y1Gv2…v5

2

24264
ðγu0u1Þðγu2u3Þðγv0…v5Þðγw0…w5ÞGu0u1v0w0

Gu2u3v1w1
Gv2…v5Gw2…w5

4

24264
ðγu0u1Þðγu2u3Þðγv0…v4x0Þðγw0…w4

x0ÞGu0u1v0
y0Gu2u3w0y0Gv1…v4Gw1…w4

4

24364
ðγu0u1Þðγv0…v4y0Þðγw0…w4y1Þðγx0…x3

y0y1ÞGu0u1v0w0
Gx0…x3Gv1…v4Gw1…w4

1

24464
ðγu0…u3

y0y1Þðγv0…v3y0
z0Þðγw0…w3y1

z1Þðγx0…x3
z0z1ÞGu0…u3Gv0…v3Gw0…w3

Gx0…x3 :

Suppose now that the purely femionic component of X8 can be cast in the τ-exact form of Eq. (4.18). The right-hand side of
Eq. (C2) would then take the form
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ðγa1a2Þα1α2X
ð8Þ
α3…α10 ¼ ðγa1a2Þα1α2ðγfÞα3α4Gfα5…α10

¼ ðγfÞα1α2ð3ðγ½a1a2jÞα3α4Gjf�α5…α10 − 2ðγfa1Þα3α4Ga2α5…α10Þ
¼ ðγfÞα1α2ð3ðγ½a1a2jÞα3α4Gjf�α5…α10Þ;

which yields

Kfa1a2α3…α10 ¼ 3ðγ½a1a2jÞα3α4Gjf�α5…α10 :

In the following we examine whether X0;8 can be τ exact.
Since (C2) contains many different types of terms, it is
useful to reduce this expression by simplifying every pair of
γ-matrices whose bosonic indices contain contractions,
using the decompositions in Appendix D. When applied
to ðtrR2Þ2, this method gives three terms of the form
γð2Þγð2Þγð2Þγð2Þ, γð2Þγð2Þγð2Þγð6Þ, and γð2Þγð2Þγð6Þγð6Þ, together
with several manifestly τ-exact terms. Applied to trR4, this
method gives several terms of the form previously encoun-
tered, plus some new terms of the form γð2Þγð2Þγð5Þγð5Þ,
which are equivalent to γð2Þγð2Þγð6Þγð6Þ by Hodge duality. In

order to compare ðtrR2Þ2 with trR4, all the γð6Þγð6Þ terms
must be converted into the form γð5Þγð5Þ. This creates new
γ-matrices with contracted bosonic indices, which are
simplified as before using Appendix D. At the end of this
process all the terms have the form γð2Þγð2Þγð2Þγð2Þ,
γð2Þγð2Þγð2Þγð6Þ, or γð2Þγð2Þγð5Þγð5Þ contracted with G4 (with-
out any contractions among γ-matrices),

ðγa1a2Þðγa3a4Þðγa5a6Þðγa7a8ÞG4
a1a2;a3a4;a5a6;a7a8 ; ðC3Þ

ðγa1a2Þðγa3a4Þðγa5a6Þðγa7…a12ÞG4
a1a2;a3a4;a5a6;a7…a12 ; ðC4Þ

ðγa1a2Þðγa3a4Þðγa5…a9Þðγa10…a14ÞG4
a1a2;a3a4;a5…a9;a10…a14 ;

ðC5Þ

up to manifestly τ-exact terms that we do not need to write
out explicitly. In the above, G4

a1a2;…;a7a8 , G
4
a1a2;…;a7…a12 ,

G4
a1a2;…;a10…a14 denote certain sums of G4 terms with 8,4,2

indices contracted, respectively. More explicitly,

G4
a1a2;a3a4;a5a6;a7a8 ¼

7

2733
Ga1

efgGa2a7a8eGa3a5a6
hGa4fgh þ…;

G4
a1a2;a3a4;a5a6;a7…a12 ¼

25

2934
Ga1a7

fgGa2a11a12fGa3a4a9a10Ga5a6a8g þ…;

G4
a1a2;a3a4;a5…a9;a10…a14 ¼

1

21136
Ga1a2a10

fGa3a5a11fGa4a12a13a14Ga6a7a8a9 þ…; ðC6Þ

where the ellipses stand for more than a hundred terms of this form. No obvious cancellations appear between these three
types of terms at this point.
Let us further analyze how X0;8 is decomposed into irreducible components. First, the product of four γ-matrices contains

a symmetric product of eight spinor indices that can be decomposed as follows in irreps of B5:

ð00001Þ⊗S8 ¼ 1ð00000Þ ⊕ … ⊕ 1ð40000Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
45 terms with multiplicity 1

⊕ 2ð00004Þ ⊕ 2ð10002Þ ⊕ 2ð01002Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3 terms with multiplicity 2

:

Each irrep on the right-hand side above corresponds to a γ-structure that can be thought of as a Clebsch-Gordan coefficient:
the γ-structure corresponding to (00000) can be thought of as a Clebsch-Gordan coefficient from the scalar to
ð00001Þ⊗S8, etc.
Next, the product of four four forms G can be decomposed as follows in irreps of B5,

ð00010Þ⊗S4 ¼ 4ð00000Þ ⊕ … ⊕ 6ð00004Þ ⊕ … ⊕ 3ð40000Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
95 terms; various multiplicites

;

and all 95 terms except (00006), (00008), (01006), and (10006) can be found in ð00001Þ⊗S8. This analysis implies that the
contraction of four γ-matrices with four four forms G can be decomposed into 51γ-structures, each contracted with
(multiple) G4 terms corresponding to the same irrep of B5.
For example, the term (00000) in the decomposition of ð00001Þ⊗S8 gives rise to a single γ-structure contracted with the

four possible G4 terms giving rise to a scalar. Explicitly we have

ðγe1Þðγe1Þðγe2Þðγe2Þðα1Ga1…a4G
a1…a4Gb1…b4G

b1…b4 þ α2Ga1a2
b1b2Gb1b2c1c2G

c1c2
d1d2G

d1d2a1a2

þ α3Ga1b1
c1c2Gc1c2d1f1G

a1d1
g1g2G

g1g2b1f1 þ α4Ga1
b1…b3Gb1…b3c1G

a1
d1…d3G

c1d1…d3Þ;
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for some constants α1;…; α4. Similarly, the (00004) gives rise to the following term,

ðβ1ðγe1Þðγe1Þðγa1…a6Þðγb1…b6Þ þ β2ðγ½a1Þðγa2…a6�Þðγ½b1Þðγb2…b6�ÞÞ
× ðα1Ga1a2b1

e1Ga3b2b3e1Ga4…a6
e2Gb4…b6e2 þ α2Ga1a2b1

e1Ga3a4b2
e2Ga5b3b4e1Ga6b5b6e2

þ α3Ga1…a4Ga5b3b4
e1Ga6b5b6

e2Gb1b2e1e2 þ α4Ga1b1b2
e1Ga2…a5Ga6b6e1e2Gb3…b5e1

þ α5Ga1…a4Ga5b1
e1e2Ga6b2e1e2Gb3…b6 þ α6Ga1…a3b3Ga4…a6b2Gb1b2

e1e2Gb5b6e1e2Þ;

for some constants β1; β2; α1;…; α6. The 51γ-structures involved in the decomposition of Xð8Þ can all be found explicitly,
and only three of them are not τ exact: (04000), (03002), and (02004). In other words, except for the structures
corresponding to these three irreps all other γ-structures appearing in X0;8 involve at least one contraction with a γð1Þ.
Going back to (C3), the G4

a1a2;…;a7a8 term, by virtue of its contraction with the four γ-matrices, transforms in the
symmetrized product of four Young diagrams , cf., Appendix F. Decomposing in irreducible representations of S8,

ðC7Þ

At the same timeG4
a1a2;…;a7a8 admits a decomposition into modules of B5 × S8,

P
RVR × R, where VR is the plethysm of the

module V ¼ ð10000Þ of B5 with respect to the Young diagram R of S8. Moreover, only the plethysms corresponding to
the right-hand side of (C7) appear in the decomposition of G4

a1a2;…;a7a8 under B5 × S8. On the other hand we can compute
the module VR corresponding to each R on the right-hand side of (C7), using [68], with the result that only the plethysm
corresponding to YT1 contains (04000), while neither (02004) nor (03002) is contained in any of the plethysms
corresponding to the Young diagrams on the right-hand side of (C7).
The G4

a1a2;…;a7…a12 term of (C4) admits the following decomposition in irreps of S12:

ðC8Þ

Only the plethysms corresponding to the Young diagrams on the right-hand side of (C8) appear in the decomposition of
G4

a1a2;…;a7…a12 under B5 × S12. On the other hand it can be shown that only the plethysm corresponding to YT2 contains
(03002), while neither (04000) nor (02004) is contained in any of the plethysms corresponding to the Young diagrams on
the right-hand side of (C8).
Finally, the G4

a1a2;…;a10…a14 term of (C5) admits the following decomposition in irreps of S14:

ðC9Þ

Moreover, only the plethysms corresponding to the Young diagrams on the right-hand side of (C9) appear in the
decomposition ofG4

a1a2;…;a10…a14 under B5 × S14. On the other hand it can be shown that only the plethysm corresponding to
YT3 contains (02004); only the plethysm corresponding to YT4 contains (03002), while (04000) is not contained in any of
the plethysms corresponding to the Young diagrams on the right-hand side of (C9).
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Using the method of Appendix F, the γ-matrices in (C3)
and (C5) can be projected respectively onto YT1 and YT3.
The terms (C3), (C5) can thus be shown to vanish.
Moreover, it can be seen that the cancellations are sensitive
to the relative coefficient between ðtrR2Þ2 and trR4 inside
X8. In other words, it can be shown that ðtrR2Þ2 and trR4 are
not separately τ exact.

APPENDIX D: ELEVEN-DIMENSIONAL
γ-MATRICES

In this section we give our conventions for the eleven-
dimensional γ-matrices, and list a number of Fierz identities
used in the analysis presented in the main text.
Hodge duality for γ-matrices is defined as follows,

⋆γðnÞ ¼ −ð−1Þ12nðn−1Þγð11−nÞ; ðD1Þ

where our definition of the Hodge operator reads

ð⋆SÞa1…ak ¼
1

ð11 − kÞ! ϵa1…ak
b1…b11−kSb1…b11−k :

The symmetry properties of the γ-matrices are given
by

ðγa1…anÞαβ ¼ ð−1Þ12ðn−1Þðn−2Þðγa1…anÞβα;

where γð0Þ is identified with the charge conjugation
matrix.
The following Fierz identities were used in the analysis.

Antisymmetrization over the ai and bj indices is always
understood, as well as symmetrization over all fermionic
indices of the γ-matrices (which are suppressed here to
avoid cluttering the notation),

ðγa1…a5e1Þðγb1…b5e1Þ ¼þ120δa1…a5
b1…b5

ðγe1Þðγe1Þþ1ðγa1…a5Þðγb1…b5Þ
−600 δa1…a3

b1…b3
ðγe1Þðγe1a4a5b4b5Þ

þ25 δa1b1ðγe1Þðγe1a1…a4
b1…b4Þ

−150 1
2
ðδa1b1ðγa2a3Þðγa4a5b2…b5Þ þ ða ↔ bÞÞ
þ600 δa1…a3

b1…b3
ðγa4a5Þðγb4b5Þ

ðγa1…a4e1e2Þðγb1…b4e1e2Þ ¼
−12 1

2
ððγa1a2Þðγa3a4b1…b4Þ þ ða ↔ bÞÞ
þ288 δa1a2b1b2

ðγa3a4Þðγb3b4Þ
−96 1

2
ðδa1b1ðγa2Þðγa3a4b2…b4Þ þ ða ↔ bÞÞ

þ192 δa1…a3
b1…b3

ðγa4Þðγb4Þþ2ðγe1Þðγe1a1…a4
b1…b4Þ

−144 δa1a2b1b2
ðγe1Þðγe1a3a4b3b4Þ

þ48 δa1…a4
b1…b4

ðγe1Þðγe1Þ

ðγa1…a3e1…e3Þðγb1…b3e1…e3Þ ¼þ36 δa1…a3
b1…b3

ðγe1Þðγe1Þ
−108 δa1b1ðγe1Þðγe1a2a3b2b3Þ
þ216 δa1b1ðγa2a3Þðγb2b3Þ

−36 1
2
ððγa1Þðγa2a3b1…b3Þ þ ða ↔ bÞÞ
þ324 δa1a2b1b2

ðγa3Þðγb3Þ

ðγa1a2e1…e4Þðγb1b2e1…e4
Þ ¼

þ48 δa1a2b1b2
ðγe1Þðγe1Þ

−96ðγe1Þðγe1a1a2b1b2Þþ168ðγa1a2Þðγb1b2Þþ672 δa1b1ðγa1Þðγb1Þ

ðγa1e1…e5Þðγb1e1…e5Þ ¼þ240 δa1b1ðγe1Þðγe1Þþ1680ðγa1Þðγb1Þ

ðγe1…e6Þðγe1…e6Þ ¼þ4320ðγe1Þðγe1Þ

ðγa1a2e1…e3Þðγb1b2e1…e3Þ ¼
−36 δa1a2b1b2

ðγe1Þðγe1Þþ24ðγe1Þðγe1a1a2b1b2Þ
−42ðγa1a2Þðγb1b2Þþ168 δa1b1ðγa2Þðγb2Þ

ðγa1e1…e4Þðγb1e1…e4
Þ ¼

−96 δa1b1ðγe1Þðγe1Þþ336ðγa1Þðγb1Þ
ðγe1…e5Þðγe1…e5Þ ¼
−720ðγe1Þðγe1Þ

ðγa1…a4e1Þðγb1…b4e1
Þ ¼

þ6 1
2
ððγa1a2Þðγa3a4b1…b4Þ þ ða ↔ bÞÞ
−72 δa1a2b1b2

ðγa3a4Þðγb3b4Þ
−48 1

2
ðδa1b1ðγa2Þðγa3a4b2…b4Þ þ ða ↔ bÞÞ

þ96 δa1…a3
b1…b3

ðγa4Þðγb4Þ
−1ðγe1Þðγe1a1…a4

b1…b4Þþ72 δa1a2b1b2
ðγe1Þðγe1a3a4b3b4Þ

−24 δa1…a4
b1…b4

ðγe1Þðγe1Þ

ðγa1…a3e1e2Þðγb1…b3e1e2Þ ¼
−24 δa1…a3

b1…b3
ðγe1Þðγe1Þ

þ36 δa1b1ðγe1Þðγe1a2a3b2b3Þ
−54 δa1b1ðγa2a3Þðγb2b3Þ

−12 1
2
ððγa1Þðγa2a3b1…b3Þ þ ða ↔ bÞÞ
þ108 δa1a2b1b2

ðγa3Þðγb3Þ
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ðγa1e1Þðγb1…b4 e1
Þ ¼

þ1ðγe1Þðγe1a1b1…b4Þ
þ12 δa1b1ðγb2Þðγb3b4Þ

ðγa1e1Þðγb1e1Þ ¼ þ1ðγa1Þðγb1Þ
−1 δa1b1ðγe1Þðγe1Þ

ðγa1…a4e1Þðγb1…b5
e1Þ ¼

−60 ηa1b1ðγa2a3Þðγa4b2…b5Þ
−60 ηa1b1ðγa2Þðγa3a4b2…b5Þ

−720 δa1…a3
c1…c3 η

c1b1ηc2b2ηc3b3ðγa4Þðγb4b5Þ
þ240 δa1…a3

c1…c3 η
c1b1ηc2b2ηc3b3ðγa4Þðγb4b5Þ

þ140 ηa1b1ðγ½a2Þðγa3a4b2…b5�Þ
−120 δa1a2c1c2

ηc1b1ηc2b2ðγe1Þðγe1a3a4b3…b5Þ:

ðγa1e1Þðγb1…b5
e1Þ ¼

−6ðγ½a1Þðγb1…b5�Þ
−5 ηa1b1ðγe1Þðγe1b2…b5Þ

þ1ðγa1Þðγb1…b5Þ

APPENDIX E: ELEVEN-DIMENSIONAL
SUPERSPACE

In this section we review the properties of on-shell
eleven-dimensional superspace at lowest order in the
Planck length [33]. The theory thus obtained is equivalent
to CJS supergravity [1].
The nonzero superfield components are as follows:

Gabαβ ¼ −iðγabÞαβ;
Tαβ

f ¼ −iðγfÞαβ;

Taα
β ¼ −

1

36

�
ðγbcdÞαβGabcd þ

1

8
ðγabcdeÞαβGbcde

�
;

Rαβab ¼
i
6

�
ðγghÞαβGghab þ

1

24
ðγabghijÞαβGghij

�
;

Rαabc ¼
i
2
ððγaTbcÞα − 2ðγ½bTc�aÞαÞ: ðE1Þ

The action of the spinorial derivative on the superfields
reads

DαGabcd ¼ 6 i ðγ½abjÞαϵT jcd�ϵ;

DαRabcd ¼ d½ajRαjb�cd − Tab
ϵRϵαcd þ 2T ½ajαϵRϵjb�cd;

DαTab
β ¼ 1

4
RabcdðγcdÞαβ − 2D½aTb�αβ − 2T ½ajαϵT ½b�ϵβ:

ðE2Þ

The equations of motion for the field strengths G, R, and T
are given by

DfGfa1a2a3 ¼ −
1

1152
ϵa1a2a3b1…b4c1…c4G

b1…b4Gc1…c4 ;

ðγaÞαϵTab
ϵ ¼ 0;

Rab −
1

2
ηabR ¼ 1

12

�
GafghGb

fgh −
1

8
ηabGfghiGfghi

�
:

ðE3Þ

APPENDIX F: TENSOR REPRESENTATION OF A
YOUNG DIAGRAM

A Young diagram with n boxes, see [69] for a review,
represents an irreducible representation of the symmetric
groupSn. It is possible to give explicit expressions forYoung
diagrams in the form of tensors. The method is more easily
understood using a specific example. Consider a tensor
Ta1a2a3a4 without anyapriori symmetryproperties, and let us

construct its projection onto Several symmetry

operations have to be applied on the tensor, but the Young
diagram does not state which indices correspond to its
different boxes. First one must determine all the standard
tableaux, i.e., all the Young diagrams with numbered boxes,
with increasing numbers in all rows and columns. Different
Young tableaux corresponding to the same Young diagram
give equivalent but distinct representations of the symmetric
group.Thediagram has three standard tableaux,

and to which correspond three tensors, Tð1Þ,

Tð2Þ, and Tð3Þ, respectively.
To obtain the tensor corresponding to a given standard

tableau, one must first symmetrize over the indices indicated
in each row, and then antisymmetrize over the indices
indicated in each column. For example, ðTð1ÞÞa1a2a3a4 is
obtained by first symmetrizing over the indicesa1,a2, anda3,

ðTa1a2a3a4 þ Ta1a3a2a4 þ Ta2a1a3a4 þ Ta2a3a1a4 þ Ta3a1a2a4 þ Ta3a2a1a4Þ;

and then antisymmetrizing over a1 and a4,
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ðΠð1ÞTÞa1a2a3a4 ¼ ðTð1ÞÞa1a2a3a4 ¼
1

8
ðTa1a2a3a4 þ Ta1a3a2a4 þ Ta2a1a3a4 þ Ta2a3a1a4 þ Ta2a3a4a1 þ Ta2a4a3a1

þ Ta3a1a2a4 þ Ta3a2a1a4 þ Ta3a2a4a1 þ Ta3a4a2a1 þ Ta4a2a3a1 þ Ta4a3a2a1Þ:

The overall normalization above can be straightforwardly
determined by imposing Πð1ÞΠð1ÞT ¼ Πð1ÞT, where
Πð1ÞT ¼ Tð1Þ is the projection of the tensor T onto the

Young tableau

For example, the tensors Tð1Þ and Tð2Þ, associated with
and , respectively, obey the following properties:

ðTð1ÞÞ½abjcjd� ¼ 0 ðTð2ÞÞ½abc�d ¼ 0

ðTð1ÞÞ½ajbcjd� ¼ ðTð1ÞÞabcd ðTð2ÞÞ½ab�cd ¼ ðTð2ÞÞabcd
ðTð1ÞÞaðbcÞd ¼ ðTð1ÞÞabcd ðTð2ÞÞabðcdÞ ¼ ðTð2ÞÞabcd:

More generally, each TðiÞ has exactly three independent

orderings of indices, which can be taken to be Tð1Þ
a1a4a3a2 ,

Tð1Þ
a2a1a4a3 , and Tð1Þ

a2a3a1a4 . Any symmetry operation on the
indices of TðiÞ can be expressed as a linear combination of
these three orderings, e.g.,

Tð1Þ
a1ða2a3a4Þ ¼ Tð1Þ

a1a4a3a2 þ
1

3
Tð1Þ
a2a1a4a3 þ

1

3
Tð1Þ
a2a3a1a4

Tð1Þ
½a1a2�a3a4 ¼

1

2
Tð1Þ
a1a4a3a2 þ

1

2
Tð1Þ
a2a1a4a3 þ 0Tð1Þ

a2a3a1a4 :

A tensor T projected onto a nonstandard tableau can be
expressed as a linear combination of the three standard ones.
For example, it is straightforward (but tedious) to check that

the projection onto the nonstandard tableau can be

decomposed as

ðΠð4ÞTÞa1a2a3a4 ¼ Tð1Þ
a1a4a3a2 þ Tð1Þ

a2a1a4a3 þ 0Tð1Þ
a2a3a1a4

þ 0Tð2Þ
a1a4a3a2 − Tð2Þ

a2a1a4a3 þ Tð2Þ
a2a3a1a4

þ Tð3Þ
a2a1a3a4 þ 0Tð3Þ

a2a1a4a3 − Tð3Þ
a2a3a1a4 :

ðF1Þ

Every other tableau (corresponding to the same Young
diagram ) and any symmetry operation on the indices
can be expressed as a linear combination of those nine
elements. The automatization of general decompositions
onto Young tableaux, such as the one above, has been
implemented in the computer program [31].
More generally a tensor Ta1a2a3a4 without any a priori

symmetry properties can be decomposed into ten Young
tableaux,

ðF2Þ

where Tð1Þ, Tð2Þ, and Tð3Þ are the Young tableaux appearing
on the right-hand side of (F1) above, and correspond to the

term 3 The remaining Young tableaux in the

decomposition can be explicitly constructed using the same
method.
Consider now a tensor T with a symmetry structure given

by, e.g., The previous decomposition of

can also be used to decompose T into its irreducible

components. Indeed, a tensor with structure

can be viewed as a particular set of symmetry operations
performed on the indices of a tensor without any symmetry
(i.e., with structure ). Therefore T can be expressed as
a linear combination of the tensors already used in the
decomposition (F2).
The following example shows the decomposition of the

symmetric product of two three forms H,

There are five standard tableaux corresponding to each

of the Young diagrams The tensors corresponding

to these Young tableaux can be denoted by Tð1Þ;…Tð5Þ and
T 0ð1Þ;…T 0ð5Þ, respectively. In the particular example above,
it can be shown that

Ha1a2a3Ha4a5a6 ¼ Tð1Þ
a1a2a3a4a5a6 þ T 0ð1Þ

a1a2a3a4a5a6

þ T 0ð1Þ
a1a2a3a4a6a5 − T 0ð1Þ

a1a2a3a5a6a4 ;

i.e., only the tensors Tð1Þ and T 0ð1Þ, corresponding to

and , respectively, enter the decomposition.
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