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The nonrelativistic limit of nonlocal modifications to the Klein-Gordon operator is studied, and the
experimental possibilities of casting stringent constraints on the nonlocality scale via planned and/or
current optomechanical experiments are discussed. Details of the perturbative analysis and semianalytical
simulations leading to the dynamic evolution of a quantum harmonic oscillator in the presence of
nonlocality reported in [A. Belenchia, D. M. T. Benincasa, S. Liberati, F. Marin, F. Marino, and A. Ortolan,
Phys. Rev. Lett. 116, 161303 (2016)] are given, together with a comprehensive account of the experimental
methodology with particular regard to sensitivity limitations related to thermal decoherence time and active
cooling of the oscillator. Finally, a strategy for detecting nonlocality scales of the order of 10−22 ÷ 10−26 m
by means of the spontaneous time-periodic squeezing of quantum-coherent states is provided.
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I. INTRODUCTION

Quantum gravity phenomenology is the phrase com-
monly used to describe the field of research that attempts to
build a bridge between Planck-scale theories of quantum
gravity (QG) and observation. The real challenge faced by
the community working in this field is to derive phenom-
enology that is relevant at scales much lower than the
Planck scale, Mp ¼ 1.22 × 1028 eV, where QG effects are
expected to dominate, so that existing models can be put to
the test. Over the last two decades there has been a steady
stream of work in this direction. In particular, relevant
studies include tests of quantum decoherence and state-
collapse models [1], QG imprints on initial cosmological
perturbations [2], cosmological variation of coupling con-
stants [3,4], TeV Black Holes within extradimensions [5],
Planck-scale spacetime fuzziness [6], generalized uncer-
tainty principles [7–9], violations of discrete symmetries
[10], and violations of spacetime symmetries [11,12]. In
this paper we add to this list by considering the phenom-
enological effects of a fundamental “spacetime nonlocal-
ity” in nonrelativistic, macroscopic quantum systems.

The underlying idea here is that models of QG with
fundamental Lorentz invariance (LI) lead to low-energy
effective theories with dynamics that are nonlocal in
spacetime once the high-energy degrees of freedom have
been integrated out. Particular examples of this kind exist in
causal set theory, where the interplay between Lorentz
invariance and discreteness leads to nonlocal dynamics for
fields living on the causal set [13]; string theory and string
field theory where the string and its interactions are
inherently nonlocal [14]; and noncommutative geometry
[15].1 It therefore appears that, in general, theories of QG in
which continuum spacetime emerges from more funda-
mental constituents and where LI is preserved can only be
realized at the expense of modifying low-energy effective
dynamics in an essentially nonlocal way.
To be more specific, let us consider a free massive

scalar field, ϕ, on a flat spacetime that has “emerged” from
a LI theory of QG. The most naïve thing that one can
imagine is that the emerging field theory is just a standard
local field theory described by the equations of motion
ð□þm2ÞϕðxÞ ¼ 0. A little more thought, however,
reveals that this is unlikely to be the case. Indeed any
theory of QG gravity must at the very least contain the scale
lp ¼ 1.62 × 10−35 m; therefore, following the usual ideas*abelen@sissa.it
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1It has also been argued that the same form of nonlocality must
also be present in loop quantum gravity if it has any hope of
preserving LI [16].
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of effective field theory (EFT), it is natural to expect this
scale to enter the low-energy physics as a perturbative
parameter in an expansion around the local theories we
know and love. Thus, combining this with the fact that the
theory is fundamentally LI, the most natural dynamics that
one might write down for such a field theory is something
like fð□þm2Þϕ ¼ 0, where f is some nonpolynomial
function of the Klein-Gordon (KG) operator such that
fð□þm2Þ → □þm2 in the limit lp → 0.2 In a sense one
can think of f as providing the UV completion of the EFT.
It should come as no surprise then that this is precisely

what one finds in the models referred to above. For
example, in four dimensions string field theory predicts
a nonlocal KG equation of the form [18]

fð□þm2Þ ¼ ð□þm2Þ exp ½l2pð□þm2Þ�; ð1Þ

while causal set theory gives3

fð□þm2Þ ¼ ð□þm2Þ − 3l2p
2π

ffiffiffi
6

p ð□þm2Þ2

×
�
3γ − 2þ ln

�
3l2pð□þm2Þ2

2π

��
þ…;

ð2Þ

where γ is Euler-Mascheroni’s constant. Note that in the
first instance the function f is an analytic function, while in
the second it is nonanalytic. Further it turns out that the
scale entering the definition of f need not be identified with
the Planck scale itself in general. This happens, for
example, with causal set d’Alembertians, where theoretical
considerations have led Sorkin to postulate that the scale
entering their definition is some lk ≫ lp [13]. This is
crucial for phenomenology since there is little hope in
detecting nonlocal effects if they only become relevant at
the Planck scale. From here on we will therefore take the
nonlocality scale lk to be a free parameter of the theory.
In the rest of this paper we will explore a new

phenomenological approach based on the application of
the nonrelativistic limit of an analytic nonlocal KG equa-
tion [e.g., (1)] to optomechanical quantum oscillators.4 We
will argue that the true evolution of this system is governed
by a nonlocal Schrödinger equation whose specific form
depends on the underlying nonlocal relativistic Quantum
Field Theory (QFT). Finally wewill analyze in perturbation

theory the effects induced by the lowest order corrections to
the standard Schrödinger evolution.
The paper is organized as follows. In Sec. II we discuss

the nonrelativistic limit of nonlocal relativistic QFTs
characterized by analytic form factors f. In particular,
we will discuss the properties that a nonlocal QFT must
possess in order for there to exist a sensible physical
interpretation of its nonrelativistic limit. Section III
describes the perturbative analysis of the nonlocal
Schrödinger equation in the presence of an external
potential. In Sec. IV we apply this analysis to the specific
case of a harmonic oscillator potential, thus reproducing the
results reported in [21] with a greater level of detail. Finally,
in Sec. V we discuss in detail the experimental strategies
that can be used to cast limits on the nonlocality scale with
current, and near future, experiments involving macro-
scopic quantum oscillators. Conclusions and a discussion
of future work are given in Sec. VI.

II. NONRELATIVISTIC LIMIT OF NONLOCAL
RELATIVISTIC QFTS

Consider a free complex, massive, scalar nonlocal QFT
defined by the Lagrangian

L ¼ ϕðxÞ�fð□þ μ2ÞϕðxÞ þ c:c:; ð3Þ

where □ ¼ c−2∂2
t −∇2 and μ ¼ mc=ℏ. In order for the

theory to be physically sensible, we assume that the
following conditions hold:
(1) fðk2Þ ¼ 0 iff k2 ¼ 0: This property ensures that

there exist no classical runaway solutions and, when
f is entire, no ghosts.

(2) The nonlocal QFT must be unitary: conservation of
probability.

(3) The nonlocal QFT must possess a global Uð1Þ
symmetry: this condition ensures that (some form
of) a probabilistic interpretation can be given to the
wave function.

As already mentioned, the function f can be both entire
analytic and nonanalytic. For the remainder of this paper
we will assume that f is entire analytic so that it can be
expanded as

fðzÞ ¼
X∞

n¼1

bnzn: ð4Þ

Implicit in the definition of f is the nonlocality
scale lk which, in the local limit lk → 0, sends
fð□þ μ2Þ → □þ μ2. In particular, we have that bn ∝
l2n−2k and b1 ¼ 1.
Following standard treatments (see, e.g., Sec. 2.8 of [22])

we decompose the field as ϕðxÞ ¼ e−i
mc2
ℏ tψðt; xÞ.

Substituting this into our Lagrangian and taking the limit
c → ∞ we find

2The infinite number of derivatives is crucial in order to avoid
Ostrogradski’s theorem [17], which also applies to theories with
higher order, but finite, powers of the d’Alembertian operator □.

3Note that fð□þm2Þ was rigorously derived from causet
theory only in the case m ¼ 0, but see discussion in [19] on ways
of extending this to the massive case.

4We will not discuss the phenomenology of nonanalytic
nonlocal QFTs here, but for recent ideas on this we refer the
reader to [20]
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LNR ¼ ψ�ðt; xÞfðS0Þψðt; xÞ þ c:c:; ð5Þ

where NR stands for nonrelativistic, S0 ¼ − 2m
ℏ2 S, and

S ¼ iℏ
∂
∂tþ

ℏ2

2m
∇2 ð6Þ

is the Schrödinger operator.
To derive the equations of motion, we use a nonlocal

generalization of the Euler-Lagrange equations [23], which
gives

fðSÞψðt;xÞ ¼ 0; ð7Þ

where

fðSÞ≡ −ℏ2

2m
fðS0Þ ¼ S þ

X∞

n¼2

bn

�
−2m
ℏ2

�
n−1

Sn: ð8Þ

One can also include an external potential, VðxÞ, by adding
the term VðxÞψ�ψ to the Lagrangian (5). To simplify
notation we set bn ¼ l2n−2k an so that equation (8) becomes

fðSÞ ¼
X∞

n¼1

ð−2m=ℏ2Þn−1anl2n−2k Sn: ð9Þ

The Lagrangian (5) possesses a global Uð1Þ symmetry
ψ → eiαψ whose conserved current, jμNL, can be shown to
be given by

j0NL ¼ a1ψ�ψ − ia2l2k
2m
ℏ

ψ�∂t

↔
ψ − a2l2kψ

�∇2ψ

− a2l2kψ∇2ψ� þOðl4kÞ ð10Þ

jiNL ¼ −ia1
ℏ
2m

ψ�∇↔ψ þ ia2l2k
ℏ
2m

ψ�∇3
↔

ψ

þ 2a2l2k _ψ�∇↔ ψ þOðl4kÞ; ð11Þ

where f∇n
↔
g ¼ P

n
i¼0ð−Þi∇if∇n−ig. Note that, as required

by consistency with the local theory,

ðj0NL; j
i
NLÞ →

�
ψ�ψ ;−ia1

ℏ
2m

ψ�∇↔ψ
�

ð12Þ

as lk → 0.
What we have so far is a nonrelativistic field ψ satisfying

a nonlocal generalization of the Schrödinger equation.
What we want though is to be able to interpret ψ as the
wave function of a quantum mechanical system. The
canonical way of doing this in the local theory is to define
a one-particle wave function for a generic one-particle state
constructed from the field operator ψ and show that this
wave function satisfies the same Schrödinger equation as

the field. This analysis requires the Hamiltonian, which we
currently lack in our nonlocal theory. Thus, from here on
we will proceed with the caveat that our model is only
phenomenological in the sense that we have yet to
demonstrate that the one-particle wave function of the
nonrelativistic field satisfies the nonlocal Schrödinger
equation. Wewill comment more on this in the conclusions.

III. PERTURBATIVE ANALYSIS

Having laid down the foundations for a nonlocal
Schrödinger evolution of a single-particle quantum system,
we now turn to the problem of solving the nonlocal
differential equation in the presence of a time-independent
potential VðxÞ.
We wish to solve the nonlocal equation

fðSÞψðt; xÞ ¼ VðxÞψðt; xÞ; ð13Þ

where fðSÞ is some analytic function as in (9), and VðxÞ is
some physically reasonable binding potential. Since the
above equation is extremely hard to solve exactly for a
given nontrivial potential V, we will solve it perturbatively.
In order to cast (13) in a form amenable to a perturbative

analysis, we first note that the presence of an external
binding potential VðxÞ introduces an energy scale that can
be parametrized as ℏω, where the “scale” ω has dimensions
of ðtimeÞ−1. We can use this new scale, together with the
other scales in the problem, to construct a dimensionless
parameter ϵ ≔ mωl2k=ℏ. For physically reasonable choices
m, ω, and lk, ϵ is much smaller than unity, so we can use it
as our perturbative parameter in the expansion of fðSÞ

fðSÞ ¼ S −
2a2
ℏω

ϵS2 þ
X∞

n¼3

an

�
−2
ℏω

�
n−1

ϵn−1Sn: ð14Þ

Next, we will assume that (14) admits solutions of the form

ψ ¼
X∞

n¼0

ϵnψn: ð15Þ

Substituting (15) into (14), we find the following set of
differential equations:

Oð1Þ∶ðS − VÞψ0 ¼ 0; ð16Þ

OðϵÞ∶ðS − VÞψ1 ¼ J1; ð17Þ

Oðϵ2Þ∶ðS − VÞψ2 ¼ J2;

etc:; ð18Þ

where the Ji, i ¼ 1; 2;… are source terms. Note that the ith
source term depends on the solution to the (i − 1)th order
problem, for example,
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J1 ¼
2a2
ℏω

S2ψ0; ð19Þ

J2 ¼
−4a3
ℏ2ω2

S3ψ1; etc: ð20Þ

Implicit in the above analysis is the assumption that ψ0, a
solution to the standard Schrödinger equation, is also an
approximate solution to the nonlocal equation, i.e., that

jðfðSÞ − VÞψ0j ¼ OðϵÞ ≪ 1; ∀ t; x: ð21Þ

The idea behind this assumption is that nonlocal exten-
sions, f, of experimentally verified local models must be
such that they admit solutions to the local models as
approximate solutions. Clearly this assumption is difficult
to check explicitly, especially here where we have a
function of the operator S containing both space and time
derivatives.
We can summarize our perturbative approach as follows:
(1) Consider nonlocal Schrödinger equations with entire

analytic fðSÞ s in the presence of an external
potential VðxÞ that satisfy (21).

(2) Using the scale introduced by the potential, con-
struct a (small) dimensionless parameter ϵ.

(3) Expand fðSÞ in ϵ and assume that solutions can be
written as (15).

(4) Solve the problem order by order in ϵ, checking that
the conditions are satisfied at each order.

(5) Finally, one should check for consistency that each
term ϵnψn is indeed smaller than the previous one,
ϵn−1ψn−1, for each n (up to the relevant order of
interest).

IV. NONLOCAL SCHRÖDINGER EQUATION
IN ð1þ 1ÞD WITH A HARMONIC

OSCILLATOR POTENTIAL

Consider a single particle in a harmonic oscillator
potential in 1þ 1 dimensions satisfying the equation

fðSÞψðt; xÞ ¼ 1

2
mω2x2ψðt; xÞ; ð22Þ

where m is the mass of the system and ω its angular
frequency. Following the steps laid out in the previous
section, we construct the dimensionless parameter ϵ≡
mωl2k=ℏ and write fðSÞ as
�
S −

2a2
ℏω

ϵS2 þ
X∞

n¼3

an

�
−2
ℏω

�
n−1

ϵn−1Sn

�
ψðt; xÞ

¼ 1

2
mωx2ψðt; xÞ: ð23Þ

In order to keep the notation as clear as possible,
we define the following dimensionless variables t̂ ¼ ωt,

x̂ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=ℏ

p
x, and ψ̂ ¼ γψ , where γ has dimensions of

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Length

p
, so that (23) becomes

�
Ŝ − 2a2ϵŜ

2 þ
X∞

n¼3

anϵn−1ð−2Þn−1Ŝn
�
ψ̂ ¼ 1

2
x̂2ψ̂ : ð24Þ

Throughout the rest of this section we will use these
dimensionless variables but will drop the hat symbol for
notational simplicity.
We assume that (23) admits solutions of the form (15). In

particular, we will be interested in solutions that are
perturbations around the coherent state

ψ0 ≔ ψαðt; xÞ

¼ 1

π1=4
exp

� ffiffiffi
2

p
αe−itx −

1

2
α2e−2it −

α2

2
−
it
2
−
x2

2

�
;

ð25Þ

where without loss of generality α can be taken as real and
ðS − x2=2Þψ0 ¼ 0. This choice of ψ0 is motivated by the
fact that coherent states are relatively easy to realize within
the experimental setting we have in mind (see Sec. V) and
furthermore include the harmonic oscillator’s ground state
as a specific case.
Next, we want to solve the differential equation at order

ϵ. To this end we first substitute ψ0 into (19) to find

J1 ¼ a2
1

2π1=4
e−

1
2
e−2itð−2 ffiffi

2
p

eitxαþα2þe2itð3itþx2þα2ÞÞ

× ðeitð2 − 4x2 þ x4Þ þ 4
ffiffiffi
2

p
xαÞ: ð26Þ

Then, to solve ðS − VÞψ1 ¼ J1 we use the ansatz

ψ1ðt; xÞ ¼ ψ0ðt; xÞ½c0ðtÞ þ c1ðtÞxþ c2ðtÞx2
þ c3ðtÞx3 þ c4ðtÞx4�; ð27Þ

which leads to the following system of ordinary differential
equations for the time-dependent coefficients ciðtÞ:

0 ¼ 2i_c4ðtÞ − 8c4ðtÞ − a2;

0 ¼ ieit _c3ðtÞ − 3eitc3ðtÞ þ 4
ffiffiffi
2

p
αc4ðtÞ;

0 ¼ eitði_c2ðtÞ þ 6c4ðtÞ þ 2a2Þ − 2eitc2ðtÞ þ 3
ffiffiffi
2

p
αc3ðtÞ;

0 ¼
ffiffiffi
2

p
αc1ðtÞ þ eitði_c0ðtÞ þ c2ðtÞ − a2Þ;

0 ¼ 4ie7it _c1ðtÞ − 4e7itc1ðtÞ
−

ffiffiffi
2

p
αa2ð−3α2 þ 6ð2α2 þ 1Þe2it

þ e4itð−4þ α2ð−9þ 12itÞÞ þ 6e6itÞ; ð28Þ

which we solve using Mathematica 11 subject to the initial
condition ψ1ð0; xÞ ¼ 0. Solutions to (28) with the given
initial condition contain secular terms which grow linearly
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in time as ϵt. These terms are a well-known artifact due to
the nonuniform convergence of the perturbative expansion.
To avoid the appearance of secular terms, we used the
method of multiple scales and refer the reader to
Appendix A for further details.
Finally, we find

c0ðtÞ ¼
1

32
a2e−8itðα4 − 8α4e2it þ 8α4e6it − α4e8it

− 6α2e2it þ 20α2e4it − 14α2e6it þ 28α2e8it

− 3e4it − 4e6it þ 7e8itÞ; ð29Þ

c1ðtÞ ¼ −
1

4
ffiffiffi
2

p αa2e−7itðα2 − 6α2e2it þ 3α2e4it

þ 2α2e6it − 3e2it þ 4e4it − e6itÞ; ð30Þ

c2ðtÞ ¼
1

8
a2e−6itð3α2 − 12α2e2it þ 9α2e4it

− 3e2it − 2e4it þ 5e6itÞ; ð31Þ

c3ðtÞ ¼ −
1

2
ffiffiffi
2

p αa2e−5itð1 − e2itÞ2; ð32Þ

c4ðtÞ ¼
1

8
a2e−4itð1 − e4itÞ: ð33Þ

Although we do not show it here, the same procedure,
including an ansatz similar to Eq. (27) but with a poly-
nomial of order 8, can be used to solve the nonlocal
Schrödinger equation to second order in ϵ.

A. Wave function normalization

With the first-order perturbative solution to Eq. (23) at
hand, we can now compute expectation values and var-
iances of physical observables in this state. However, for
these to make sense we need to first ensure that a
probabilistic interpretation of the wave function exists.
This requires, at the very least, that the following conditionR∞
−∞ dxjψðxÞj2 ¼ 1 holds. Now, recall that the conserved
charge in Eq. (10) is not simply jψ j2, so expectation values
directly computed using jψ0 þ ϵψ1j2 cannot have a well-
defined probabilistic interpretation at order ϵ. A quick fix to
this problem that leads to a well-defined conserved prob-
ability distribution (at least to this order in ϵ) is to normalize
the wave function ψ0 þ ϵψ1 using its own norm. In
accordance with the Born rule the probability density is
then given by

ρðt; xÞ ¼ ψ�ðt; xÞψðt; xÞR
∞
−∞ jψ j2dx ; ð34Þ

so that
R∞
−∞ dxρðxÞ ¼ 1 by construction and is therefore

conserved. It should be noted that the normalization factor

is 1 at order ϵ when considering perturbations around the
ground state, i.e., hψ0jψ1i ¼ 0, while in the case of a
generic coherent state an order ϵ time-dependent correction
is present. The above normalization factor ensures that even
in this case we a have a meaningful probability distribution.

B. Phenomenology

Given the probability distribution (34), we can compute
the mean and variance of the position and momentum of the
particle. We find

hxi ¼
ffiffiffi
2

p
α cosðtÞ

�
1þ 1

4
ϵα2a2½cosð2tÞ − 1�

�
þOðϵ2Þ;

ð35Þ

hpi ¼
ffiffiffi
2

p
α sinðtÞ

�
1þ 1

4
ϵa2½α2ð7þ 3 cosð2tÞÞ − 2�

�

þOðϵ2Þ; ð36Þ

VarðxÞ ¼ 1

2
ð1 − ϵa2½ð6α2 − 1Þ sin2ðtÞ�Þ þOðϵ2Þ; ð37Þ

VarðpÞ ¼ 1

2
ð1þ ϵa2½ð6α2 − 1Þ sin2ðtÞÞ�Þ þOðϵ2Þ: ð38Þ

Therefore, on the basis of Eqs. (35)–(38), the effects of
nonlocality appear in the form of deviations from the
standard variances and mean values of position and
momentum, as shown in Figs. 1 and 2. In particular, our
model predicts an oscillatory behavior of the variance of x,
together with a time-averaged expectation value that is
larger than the standard x2zpm ¼ ℏ=2mω, and a third-
harmonic distortion in the evolution of coherent states.

FIG. 1. Periodic time dependence of the mean position and
momentum for a coherent state for α ¼ 1, a2 ¼ 1, and we have
set ϵ ¼ 10−1 to amplify the effect of the nonlocality. The
continuous blue and red lines represent the mean position and
momentum in Eqs. (35) and (36), respectively. The black dotted
and black dashed lines represent the mean position and momen-
tum for the standard coherent state, respectively. The insert on the
top right shows the order ϵ corrections to the standard coherent
state for the mean position (blue) and momentum (red).
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The strength of these effects is governed by the perturbation
parameter ϵ.
Let us remark that

ffiffiffi
ϵ

p
is given by the ratio between lk

and the size of the ground-state wave packet xzpm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mω

p
, i.e., the zero-point fluctuations. Such depend-

ence suggests that massive quantum systems or, more
precisely, systems with the smallest zero-point fluctuations,
could be the ideal setting for detecting such nonlocality.
Furthermore, VarðxÞVarðpÞ ¼ 1=4þOðϵ2Þ, so the per-
turbed state is still a state of minimum uncertainty but one
which undergoes a spontaneous, cyclic, time-dependent
“squeezing” in position and momenta (see Fig. 2). The
word squeezing is apt in view of the fact that the state is one
of minimum uncertainty.
Finally, it is worth noting that the expectation values of x

and p in the ground state (α ¼ 0) are identical to the
standard local case to first order in ϵ (and indeed the same
holds true to second order), while the variances are always
modified to order ϵ, except for the peculiar case
α ¼ �1=

ffiffiffi
6

p
. This peculiarity appears to be a numerical

accident—as is confirmed by going to order ϵ2 where the
values α ¼ �1=

ffiffiffi
6

p
play no special role—so we attach no

particular physical meaning to it.

C. Range of validity of the perturbative expansion

Before we proceed, an important point to make is that the
validity of the perturbative expansion depends on the state
that we choose to expand around. In this case, expanding
around the coherent state (25) implies that the validity of
the expansion will also depend on α. To see this, consider
the L2 distance between ψ0 and ψ to first order in ϵ,

∥ψ0 − ðψ0 þ ϵψ1Þ∥ ∝ ϵjαj4:

This tells us that for the perturbative expansion to be valid
one must require that ϵα4 ≪ 1 and not just ϵ ≪ 1.

Finally, we checked for consistency that jϵψ1j=jψ0j ≪ 1
(at least in the spacetime region relevant to the actual
systems under consideration), with results shown in Fig. 3.

V. OPTOMECHANICAL TESTS OF
NONLOCALITY

In this section we provide a detailed discussion of
possible experimental tests of our model using optome-
chanical experiments based on macroscopic quantum
oscillators. For definiteness we will assume that a2 ¼ 1.
Nowadays optomechanical experiments can cool a

macroscopic oscillator down to thermal occupation num-
bers below unity, as well as prepare mechanical squeezed
states. In most cases the mechanical system is coupled to an
electromagnetic field that is either used to prepare the
oscillator in its quantum ground state or to monitor its
motion. In these setups the wave function ψ is associated
with an effective coordinate describing the displacement of
a normal mode, or, to some approximation, to the center-of-
mass motion of the mechanical oscillator.
Let us stress that the modeling of optomechanical

interactions in the presence of nonlocality is not straight-
forward and currently is not included in our prototype
model. Therefore, limits obtainable from current experi-
ments, while providing preliminary hints on the length
scales achievable in optomechanical setups, should not be
used for a quantitative comparison with our model.
Nevertheless, it is still possible to conceive experimental
schemes, based on state-of-the art technologies, that could
potentially improve current limits on the nonlocality scale.
It is also worth mentioning that first bounds have already

been obtained by comparing nonlocal relativistic EFTs to
the 8 TeV LHC data [24], in which the authors find

FIG. 2. Periodic time dependence of the variances of position
and momentum for a coherent state for α ¼ 1, a2 ¼ 1, and
ϵ ¼ 10−1. The continuous blue and red lines represent the
variance of position and momentum in Eqs. (37) and (38),
respectively. The black dotted line represents the variance of
position and momentum for the standard coherent state, which is
equal to 1=2.

FIG. 3. A contour plot of log10ðjϵψ1j=jψ0jÞ for α ¼ 1,
ϵ ¼ 10−3, and a2 ¼ 1. Note that although ψ1 dominates over
ψ0 for large jxj because of the form of our ansatz at spatial
infinity, the total wave function is still suppressed by a Gaussian
factor. Furthermore, due to the presence of a binding potential,
these regions are irrelevant for the experimental system we are
modeling. We have also checked the analogous condition for the
order ϵ2 solution with similar results.
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lk ≤ 10−19 m. So it would be of great interest to realize
independent experiments able to explore new intermediate
regimes between the LHC and the Planck scale. In the
following we provide first estimates of the limits achievable
via optomechanical experiments.

A. Limits from ground-state variance

First constraints on nonlocal effects can be imposed by
comparing the measured variance of x with the correspond-
ing predictions for the ground state. Taking the time
average of Eq. (37) with α ¼ 0 we find that VarðxÞ is
increased with respect to its standard value by ϵ=2. In order
to compare our predictions with experiments we require
both an oscillator energy close enough to its standard
ground value (namely, with an average occupation number
hni ≪ 1), and a sufficient accuracy, Δmeas, in the meas-
urement of the variance. With these conditions we derive
from Eq. (37) an upper limit to ϵ of the form ϵ <
2ðhx2imeas=x

2
zpm − 1Þ ¼ 4Δmeas and thus a bound on the

nonlocality scale, lk < 2xzpm
ffiffiffiffiffiffiffiffiffiffiffi
Δmeas

p
.

The cooling of a mechanical oscillator close to the
quantum ground state can be achieved by means of ultra-
cryogenic techniques, e.g., by dilution refrigerators, or by
active radiation-pressure cooling starting from precooled
oscillators. In the first case, the oscillator is naturally in
thermal equilibrium with the cryogenic environment, with
temperatures typically around a few tens of mK. In these
conditions, an average occupation number hni < 1 can be
obtained for mechanical oscillators with resonant frequen-
cies in the GHz range and thus with very low masses.
Recent experiments have cooled silicon optomechanical

crystals, reaching an average phonon occupancy as low as
hni ≈ 0.02, which has been measured by single-phonon-
counting techniques using weak optical excitation pulses
[25,26]. In these studies a measurement of the variance of x
is not provided, but it could be realized, in principle, by
observing the phase fluctuations of the field reflected by the
cavity in an interferometric setup. The measurement should
be performed in a time shorter than the thermal
decoherence time τ ¼ ðQ=ωÞ=ð1þ hniÞ ≈ ðQ=ωÞ. Here,
a crucial problem is to achieve the required sensitivity
while using a sufficiently weak probe to avoid the quantum
backaction of the measurement field. The latter imposes a
further limitation on the measurement time, which now
should be shorter than τBA ¼ ðQ=ωÞ=ð1þ hnBAiÞ, where
nBA is the number of thermal phonons produced by the
backaction (backaction heating).
In the bad-cavity regime and with a probe power

corresponding to the standard quantum limit, one basically
obtains hnBAi ≈ 1. We thus consider a single measurement
time τmeas ∼ ðQ=ωÞ and an optical power smaller by a
factor of ten (i.e., hnBAi ¼ 0.1). In these conditions, the
signal-to-noise ratio achieved in a single measurement is
just 0.1, but the cycle can be repeated several times in order

to reach an accuracy of the order of 1% that is comparable
to the reasonably predictable systematic errors in the
estimate of the system’s parameters.
The experiments in Refs. [25,26] use similar nano-

mechanical oscillators with resonant frequencies around
5 GHz. A direct measurement of the mass is not provided,
but it can be roughly estimated from the dimensions of the
moving part of the photonic crystal to be of the order
of m ≈ 10−15 kg. The corresponding zero-point fluctua-
tions are xzpm ∼ 3 fm ¼ 10−15 m. Assuming an accuracy
Δmeas ∼ 1%, we obtain lk < 6 × 10−16 m.
We can also consider mechanical oscillators that are

actively cooled by radiation pressure starting from cryo-
genic or ultracryogenic conditions. By means of this
technique it is possible to achieve ground-state cooling
of oscillators with largermω and then with a lower xzpm. On
the other hand, the oscillator is now kept in a dynamic
thermal equilibrium with a hot background (corresponding
to thermal occupancies hni ≫ 1) and a cooling bath
provided by the optomechanical interaction. As mentioned
before, the effects of the radiation-pressure coupling
between optical and mechanical degrees of freedom are
neglected in our model. Therefore, we cannot provide any
prediction on how nonlocal effects will be modified by such
interaction. For a meaningful comparison with our model,
the measurement of the variance should be realized within a
time τ after turning off the cooling laser.
In order to assess the feasibility of such measurements,

we consider two recent experiments with actively
cooled oscillators: an aluminum membrane coupled to
microwave radiation that is used to cool and monitor its
motion [27] and a SiN membrane in a high-finesse optical
cavity [28]. In the first case the system’s parameters are
m ¼ 5 × 10−14 kg, ω=2π ¼ 15 MHz, corresponding to
xzpm ≃ 5 fm, and a quality factor Q ¼ 1.6 × 106. The
background temperature is T ¼ 30 mK, corresponding to
an occupation number hni ¼ 42, which is then reduced to
hneffi ∼ 0.2 by active cooling. In the second case,
m ¼ 9 × 10−12 kg, ω=2π ¼ 1.5 MHz (xzpm ≃ 1.2 fm),
Q ¼ 8 × 106, T ¼ 0.36 K (hni ¼ 4800), and hneffi ∼ 0.2.
Using the above values of hni, we obtain respectively τ≃
0.4 ms (6000 oscillation periods) and τ≃ 0.18 ms (270
oscillation periods). Since the measurement time is much
shorter than in the previous case, backaction can be
neglected here.
If we perform a single measurement with sensitivity

corresponding to the standard quantum limit for continuous
detection, the signal-to-noise ratio achieved is 1=hni (the
detection spectral bandwidth is hni times the natural
linewidth of the mechanical resonance). In order to achieve
an accuracy of around 10%, the measurement should thus
be repeated 100hni2 times, which can be reasonably done
for the oscillator with hni ¼ 42. In this case we obtain
lk < 2 × 10−15 m. The assumption of a sensitivity kept at
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the standard quantum limit can be relaxed due to the short
interaction time that limits the effect of the backaction. In
principle, the sensitivity could even be increased by a factor
close to hni, thus also making experiments with a larger hni
feasible. This can be accomplished, e.g., by increasing the
measurement laser power. However, a major improvement
is technically challenging, so we keep our previous
conservative assumption.
So far we have considered the limits achievable by

existing optomechanical experiments, but it is interesting to
explore potential further advances. As we have shown, a
small width of the ground-state position wave packet, and
thus a large productmω, is a favorable characteristic for the
purpose of reaching lower limits on lk. In general, the larger
the frequency is, the lower the mass is, although a larger
mω is more easily achieved in massive oscillators, where
the relatively low frequency is more than offset by the large
modal mass. However, experiments with low-frequency
oscillators require lower temperatures to reach the quantum
ground state, as well as higher sensitivities in position
measurements due to the reduced xzpm. In this context,
resonant gravitational bar detectors represent the state-of-
the-art, since they are designed to detect extremely small
displacements and therefore exhibit very low background
length fluctuations.
For instance, the first longitudinal mode of the

AURIGA detector (a 2.3 ton aluminium bar with the first
longitudinal mode oscillating at 1 kHz) has been cooled
down to the milliKelvin regime using a cold damping
technique [29]. Due to its large mass and relatively low
temperature, it displays rms position fluctuations as low as
∼6 × 10−19 m. The oscillator is in a thermal state, and it
should be further cooled to an effective temperature five
orders of magnitude smaller in order to approach the
quantum ground state. Moreover, the detection system
should be sensitive enough to measure the corresponding
zero-point fluctuations at the level of xzpm ∼ 10−21 m,
which is very far from being trivial to do. We thus turn
our attention back to micro-oscillators that may enter the
quantum regime in the near future.
For the purpose of this discussion we assume as

reasonable experimental parameters a mechanical fre-
quency ω=2π ¼ 300 kHz (at frequencies below 100 kHz
acoustic and/or technical noise is usually too strong), a
mechanical quality factor Q ¼ 107, and a background
displacement noise (i.e., the sensitivity) of 10−38 m2=Hz.
Starting from a base temperature of 0.1 K, the mechanical
mode should be actively cooled to an effective quality
factor Qeff ¼ 1500 in order to reach a thermal occupancy
hneffi ¼ 1. In these conditions, setting the sensitivity as a
lower limit to the final peak spectral density, we derive
m ¼ 10−5 kg and thus xzpm ≃ 2 × 10−18 m. On the basis of
these considerations, masses of around 10−5 kg represent a
reasonable limit for the achievement and measurement of
the quantum regime in mechanical resonators.

Optomechanical devices with similar characteristics
have already been realized, though not yet cooled
down to their quantum ground state. For instance, the
literature reports silicon micromirrors with flexural-
torsional modes oscillating at ω=2π ¼ 100–200 kHz,
masses of m ¼ 2–3 × 10−7 kg, and mechanical quality
factors, measured at cryogenic temperatures, ofQ ¼ 1–3 ×
106 [30,31] as well as quartz micropillars with a
compression-dilatation mode at ω=2π ¼ 3–4 MHz,
m ¼ 2–4 × 10−8 kg, and Q ¼ 2.5 × 107 [32,33]. For all
these devices, the zero-point fluctuations are of the order of
xzpm ≃ 10−2 fm. Operating at a background temperature of
100 mK, we have hni ∼ 600 for the quartz oscillator and a
reasonable upper limit for lk of a few 10−18 m.
In summary, the bounds on the nonlocal scale obtainable

with measurements on the ground state range from lk ≤
10−15 m to lk ≤ 10−18 m. The latter is reasonably close to
the constraint obtained at the LHC.

B. Evolution of coherent states

A further comparison between our theory and experi-
ments can be based on the evolution of coherent states. As
shown in Eq. (35), our model predicts a third-harmonic
component in hxi, with a ratio between third- and first-
harmonic amplitudes (third-harmonic distortion, H3) equal
to H3 ¼ ϵα2=8. Using the definition of ϵ ¼ l2k=ð2x2zpmÞ, an
upper limit to the nonlocal length can be set in the form
lk < 4

ffiffiffiffiffiffi
H3

p
xzpm=α. The bound on lk now also depends on

1=α and can therefore be substantially lowered for high
values of the coherent amplitude.
In order to prepare a quantum-coherent state, the system

is first cooled down to its quantum ground state. As
before, the measurement is then limited by the thermal
decoherence time τ. We remark that, with an intracavity
power Pcav, the oscillator is typically displaced from its
equilibrium position, due to the radiation pressure, by
x0 ¼ ðPcav=2cÞ=ðmω2Þ. Once the cooling laser is turned
off, this initial position determines a coherent state with
amplitude α ¼ x0=

ffiffiffi
2

p
xzpm. The upper limit on the non-

locality scale can thus be written as lk < 4
ffiffiffiffiffiffiffiffiffi
2H3

p
x2zpm=x0,

where x0 is typically of the order of the cavity linewidth,
i.e., ∼10 pm. As a consequence, it is not obvious to further
excite the oscillator while cooling. On the other hand, one
can conceive a coherent excitation with optical power Pexc
just after the cooling stage, during a time interval Texc ≪ τ,
and reach a displacement x0 ¼ Texc × ðPexc=2cÞ=2mω.
Using a low-finesse optical cavity for this strong

excitation pulse (this can be accomplished, e.g., by using
the same cavity exploited for the optical cooling at a
different wavelength), it is reasonable to achieve a x0 of
∼1–10 nm. The parameter H3 could then be evaluated
from the power spectral density of the signal monitoring
the oscillator’s position during a measurement period
∼τ following the excitation. We notice that a weak
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measurement (maybe with an optical signal seeing the
cavity at low finesse) is sufficient to detect a possible third-
harmonic signal that must be compared with the main
coherent component; i.e., a sensitivity close to the quantum
limit is not necessary here.
For the SiN or aluminum membranes mentioned before

(xzpf ≃ 1 fm), one can aim to explore nonlocal scales down
to ∼10−22 m. It is worth mentioning that an excitation
yielding a coherent amplitude of several nanometers has
already be applied to SiN membranes, and the experimental
constraints on the third-harmonic distortion were similar to
those that we are now considering [34]. The oscillator was
in a thermal coherent state, but the results demonstrate that
structural nonlinear effects are not a limit at this level. The
use of the heavier oscillators discussed above could yield a
further improvement of four orders of magnitude,
to ∼10−26 m.
Besides the third-harmonic distortion, even the time-

averaged variance is a useful indicator of possible nonlocal
effects. To experimentally evaluate it one should first
subtract, during the measurement period τ, the coherent
component (whose two parameters, amplitude and phase,
can be extracted either from the complete decay or from the
average over consecutive realizations) from the signal
measuring x. The signal must then be time averaged along
the interval τ, and the mean square calculated over the
result of repeated cycles.
Our model predicts that the effects of nonlocality on

VarðxÞ are enhanced with respect to the ground state by
the coherent amplitude α. Taking the time average of
Eq. (37) with α ≫ 1, we derive an upper limit to ϵ of
the form ϵ < Δmeas=3α2, and then lk <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Δmeas=3

p
xzpm=α

or lk <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δmeas=3

p
x2zpm=x0. The expected achievable limits

on lk are roughly the same as those discussed for the
harmonic distortion, so the evaluation of both indicators
would provide a useful cross-check. However, we remark
that in this case the dynamic range and the accuracy in the
subtraction of the coherent component is a critical issue and
could reduce the potential measurement sensitivity.

VI. CONCLUSIONS AND DISCUSSION

We have shown that the nonrelativistic limit of an
analytic nonlocal Klein-Gordon equation leads to a non-
local generalization of the Schrödinger equation (7). We
then constructed a phenomenological model in which the
evolution of a single-particle wave function in a harmonic-
oscillator potential is governed by such a nonlocal
Schrödinger equation. This system is of particular interest
to us because it is used to model the evolution of quantum
optomechanical oscillators that are experimentally acces-
sible. The introduction of the scale ω in the harmonic
potential allowed us to construct a small dimensionless
parameter ϵ ¼ mωl2k=ℏ, with which we defined a pertur-
bative expansion of the nonlocal differential operator fðSÞ.

We showed that a perturbative analysis of the nonlocal
system (24) leads to a sequence of ordinary Schrödinger
equations, order by order in ϵ, with harmonic-oscillator
potential and in the presence of a source term. At every
order ϵn the source term was shown to depend on the
solution to the problem at order ϵn−1 for n ≥ 1. We then
solved the system of equations to first order in ϵ for
perturbations around a coherent state by using the method
of multiple scales. Having found that the resulting first-
order wave function failed to immediately lead to a well-
defined probability measure, we normalized it such that a
consistent probability measure could be defined.
With this measure at hand we computed the expectation

values and variances of observables x and p. We found that
the expectation values are unaltered for perturbations
around the ground state (α ¼ 0) but acquire a third
harmonic for all α > 0 (except for the peculiar case
α ¼ 1=

ffiffiffi
6

p
). Remarkably though, the state remains one

of minimum uncertainty, i.e., VarðxÞVarðpÞ ¼1=4þOðϵ2Þ,
for all α, while undergoing a spontaneous periodic time-
dependent squeezing in phase space.
Finally, in Sec. V we discussed how the prediction of

both of these effects can be used to test the model
experimentally. In particular, we argued that, for the ground
state, a comparison between the measured variance of x and
existing optomechanical macroscopic oscillator experi-
ments leads to bounds on lk of the order of 10−15 m. By
imagining reasonable near-future advances in these experi-
ments, we further argued that bounds on lk of the order of
10−18 m could be achieved. This last number would
provide an independent bound on nonlocality of the order
of the bound found using LHC data, with relatively
inexpensive table-top experiments.
Extending the analysis to comparisons between these

experiments and the predicted third harmonic component in
hxi, in Sec. V B we argued that bounds of the order of
lk ∼ 10−22 m can be achieved by looking at the evolution of
coherent states. Improvements of four orders of magnitude
are experimentally possible by using heavier oscillators,
making constraints of order lk ∼ 10−26 m possible in the
near future. Similar bounds were then envisaged by making
use of the oscillator’s time-averaged variance, thus provid-
ing a potential cross-check of the previous analysis.
Note that the effects related to a third harmonic in the

evolution of hxi can only be used to cast constraints on lk
since one can imagine similar effects being induced by the
environment, and therefore only a lack of signal would be
truly meaningful within this context. However, our model
does provide a “smoking gun” of the nonlocal evolution,
namely the time-dependent, periodic squeezing of the state
in position and momenta, whose magnitude grows with the
coherent amplitude α. Indeed, there exist no other effects
that we are aware of that could lead to such a spontaneous
squeezing. In order to detect this effect though, one should
adopt a different operative scheme with respect to the one
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discussed in Sec. V B. In particular, after the subtraction of
the coherent component of the signal, one should not
average over the whole measurement interval τ but over
time bins much shorter (say, 1=10) than the oscillation
period. The mean square would then be calculated over
results belonging to several consecutive cycles for the same
time bins. The time-dependent variance would thus be
reconstructed. The sensitivity to nonlocal effects is
expected to be similar to the one analyzed for the time-
averaged variance.
Finally, let us now elaborate on the theoretical improve-

ments that could (and should) be made to further strengthen
our analysis. The model we constructed is phenomeno-
logical in the sense that, although we were able to find a
nonlocal Schrödinger equation for the nonrelativistic field
ψ , we did not show that this field could be consistently
taken to represent a one-particle quantum-mechanical wave
function satisfying the nonlocal Schrödinger equation (7).
To fill this gap, one would need the Hamiltonian HNL of

the nonlocal system and use it to show that the one-particle
wave function indeed satisfies the equation

iℏ
∂ψ
∂t ¼ HNLψ ; ð40Þ

where HNL would also contain higher-order time deriv-
atives. As well as providing a more direct link between the
underlying nonlocal QFT and the nonrelativistic quantum
system, a Hamiltonian formulation would also enable one
to explicitly treat the oscillator as an open quantum system
via a generalized kind of master equation. This description
would allow for effects like decoherence and environ-
mental noise to be taken into account, and it would be
better apt for investigating the effects of nonlocality on the
evolution of thermal coherent states, which are much
easier to construct experimentally than pure coherent
states and are therefore better suited to experimental
comparison. It should also be noted that despite the fact
that a preliminary analysis for thermal coherent states
could be performed in the formalism laid out in this
paper,5 the Hamiltonian formalism would still be better
suited for this given that thermal coherent states
are mixed.
The Hamiltonian analysis aside, recall that our compu-

tation of expectation values of observables forced us to
normalize the wave function with its own norm in order to
define a sensible probability density. At the perturbative
level one can check that the conserved charge (34) is not
positive definite, but contains strongly suppressed negative
regions. Thus, rigorously speaking, it cannot be interpreted
as a probability density, something which points towards
the fact that a positive definite charge can only be obtained

nonperturbatively. It is, however, possible to ignore these
difficulties by using the charge, which is conserved to first
order ϵ, in the computation of expectation values. When
doing so, the results for the expectation values and
variances are qualitatively similar to the ones shown in
this work, and the phenomenologically relevant effect of
spontaneous squeezing of coherent states persists.
To conclude, this analysis shows that optomechanical

experiments have the potential to become a fundamental
tool for high precision tests of quantum gravity-induced
nonlocality. Although achieving Planck-scale sensitivities
may not be strictly necessary in order to severely constrain
certain quantum gravity scenarios, we believe that the
rapid improvements of experimental techniques and
instruments over recent years bode well for the possibility
that this scale may be closely approached in the next
decade or so. It appears, therefore, that a new branch of
quantum gravity phenomenology is about to begin, and
we hope that the present work will further stimulate such a
turn of events.
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APPENDIX: MULTIPLE SCALES METHOD

The method of multiple scales is needed for problems in
which the solutions depend simultaneously on widely
different scales. The method introduces one or more new
slow-time variables for each time scale of interest in the
problem and subsequently treats these variables as if they
are independent. To ensure a valid approximation to the
solutions of our perturbation problem, we can use a simple
two-scale expansion as the nonlocal Schrödinger equation
in dimensionless variables is characterized by the time
evolution scale ω ¼ 1 and the nonlocality scale ε ≪ 1.
Here, the straightforward perturbative expansion in powers
of ϵ leads to a nonuniform expansion where the perturbative
ordering of the terms breaks down due to the presence of
secular terms proportional to ϵt. The trick is to introduce a
new variable τ̂ ¼ ϵt̂, called the slow time because is not
significant until t̂ ∼ 1=ϵ. Then, the solution of the nonlocal
Schrödinger equation can be written as

ψðt̂; x̂Þ ¼ ψ0ðt̂; τ̂; x̂Þ þ ϵψ1ðt̂; τ̂; x̂Þ þ…: ðA1Þ

Using the chain rule, we have

d
dt̂

ψ ¼ ∂
∂ t̂ψ0 þ ϵ

� ∂
∂τ̂ ψ0 þ

∂
∂ t̂ψ1

�
þ…: ðA2Þ

5Recall that in the Glauber-Sudarshan P-representation the
density matrix of a thermal coherent state is expressed in terms of
pure coherent state projectors.
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Substituting (A1) into equation (13), using (A2) and
equating terms of order ϵ0 and ϵ1, gives

�
Ŝ −

1

2
x̂2
�
ψ0 ¼ 0; ðA3Þ

�
Ŝ −

1

2
x̂2
�
ψ1 ¼ 2a2Ŝ

2ψ0 þ
∂
∂ τ̂ ψ0: ðA4Þ

To ensure that there are no secular terms in our ansatz
solution (27) for coherent states, the terms proportional to t̂
in ψ1ðt̂; x̂Þ are forced to be 0 by assuming

ψ0ðt̂; τ̂; x̂Þ ¼ ψ0ðt̂; x̂Þ exp½τ̂fðt̂; x̂Þt̂�; ðA5Þ

where fðt̂; x̂Þ is a suitable polynomial in x̂ with time-
dependent coefficients. To confirm the reliability of our
solution method in Sec. IV, we have checked that there are
no solutions growing in time as fast as ϵt̂ by numerically
solving the nonlocal Schrödinger equation. To this end, we
solved the equation

ðŜ − 2a2ϵŜ
2 − x̂2=2Þψðt̂; x̂Þ ¼ 0

in the rectangular domain ½−6 ≤ x ≤ 6� × ½0 ≤ t ≤ 25� of
the spacetime plane, with 2a2ϵ ¼ 10−3 and periodic boun-
dary conditions in space. In addition, we set the initial
conditions

ψð0; x̂Þ ¼ 1

π1=4
exp

� ffiffiffi
2

p
x̂ −

x̂2

2
− 1

�

d
dt̂

ψðt̂; x̂Þj
t̂¼0

¼ −
ie−

x̂2
2
þ ffiffi

2
p

x̂−1ð2 ffiffiffi
2

p
x̂ − 1Þ

2π1=4
;

representing the α ¼ 1 coherent state. The numerical
solution was calculated using the implicit Euler method
of the partial differential equation solver provided by
Mathematica. To quantify numerical errors in the discrete
space and time domains, we introduce the Chebyshev
distance between solutions ψ1 and ψ2 as

Dðt̂kÞ≡max
j
fjψ1ðt̂k; x̂jÞ − ψ2ðt̂k; x̂jÞjg: ðA6Þ

To calculate Dðt̂kÞ, we set the space mesh size to 10−2 and
the time mesh size to 10−1.
Figure 4 shows the plots of the relative maximum

distances between the numerical and analytical solutions
either removing or keeping terms ϵt̂. These plots clearly
show that secular terms in the polynomial coefficients
c0ðt̂Þ, c1ðt̂Þ, c2ðt̂Þ, c3ðt̂Þ, and c4ðt̂Þ of ψ1 have been properly
discarded. We stress that the small mismatch in Fig. 4
between numerical and analytical solutions is due to the
accumulation of numerical errors at large time, as it does
not grow as fast as ϵt̂. As a final remark, we also point out
that there is good agreement between mean and variance of
position and momentum in Eqs. (35)–(38) evaluated with
α ¼ 1, 2a2ϵ ¼ 10−3, and the same quantities estimated by
means of the numerical solution.

[1] N. Mavromatos, in Planck Scale Effects in Astrophysics and
Cosmology, edited by G. Amelino-Camelia and J. Kowalski-
Glikman (Springer-Verlag, Berlin, 2005), p. 245.

[2] S. Weinberg, Phys. Rev. D 72, 043514 (2005).
[3] T. Damour and A. M. Polyakov, Nucl. Phys. B423, 532

(1994).
[4] J. D. Barrow, in International School of Astrophysics,

D. Chalonge: 6th Course: Current Topics in Astrofunda-
mental Physics: Primordial Cosmology Erice, Italy,

September 4-15, 1997 (1997), https://arxiv.org/pdf/gr‑qc/
9711084.pdf.

[5] M. Bleicher, S. Hofmann, S. Hossenfelder, and H. Stöcker,
Phys. Lett. B 548, 73 (2002).

[6] G. Amelino-Camelia, Nature (London) 398, 216 (1999).
[7] L. J. Garay, Int. J. Mod. Phys. A 10, 145 (1995).
[8] S. Hossenfelder, Living Rev. Relativ. 16, 2 (2013).
[9] F. Marin, F. Marino, M. Bonaldi, M. Cerdonio, L. Conti, P.

Falferi, R. Mezzena, A. Ortolan, G. A. Prodi, L. Taffarello,

FIG. 4. Time dependence of the relative distance Drðt̂kÞ≡
Dðt̂kÞ=maxjfjψðt̂k; x̂jÞjg among perturbed solutions of the non-
local Schrödinger equation. For the numerical solution, we fix
α ¼ 1 and a2ϵ ¼ 2 × 10−3. The horizontal purple line is the
relative distance threshold 2 × 10−3. Blue dots represent the
relative distance between numerical and analytical solutions. Red
dots represent the relative distance between numerical and
analytical solutions without dropping secular terms.

TESTS OF QUANTUM-GRAVITY-INDUCED NONLOCALITY … PHYSICAL REVIEW D 95, 026012 (2017)

026012-11

http://dx.doi.org/10.1103/PhysRevD.72.043514
http://dx.doi.org/10.1016/0550-3213(94)90143-0
http://dx.doi.org/10.1016/0550-3213(94)90143-0
https://arxiv.org/pdf/gr-qc/9711084.pdf
https://arxiv.org/pdf/gr-qc/9711084.pdf
https://arxiv.org/pdf/gr-qc/9711084.pdf
https://arxiv.org/pdf/gr-qc/9711084.pdf
http://dx.doi.org/10.1016/S0370-2693(02)02732-6
http://dx.doi.org/10.1038/18377
http://dx.doi.org/10.1142/S0217751X95000085
http://dx.doi.org/10.12942/lrr-2013-2


G. Vedovato, A. Vinante, and J.-P. Zendri, Nat. Phys. 9, 71
(2013).

[10] V. A. Kostelecky, Phys. Rev. D 69, 105009 (2004).
[11] D. Mattingly, Living Rev. Relativ. 8, 5 (2005).
[12] S. Liberati, Classical Quantum Gravity 30, 133001 (2013).
[13] R. D. Sorkin, in Approaches to Quantum Gravity: Towards

a New Understanding of Space and Time, edited by D. Oriti
(Cambridge University Press, Cambridge, England, 2006).

[14] D. A. Eliezer and R. P. Woodard, Nucl. Phys. B325, 389
(1989).

[15] R. J. Szabo, Phys. Rep. 378, 207 (2003).
[16] R. Gambini and J. Pullin, Int. J. Mod. Phys. D 23, 1442023

(2014).
[17] M. Ostrogradski, Petersbourg 1, 18502 (1850).
[18] A. S. Koshelev, Rom. J. Phys. 57, 894 (2012); see also G.

Calcagni and L. Modesto Phys. Rev. D 91, 124059 (2015)
and references therein.

[19] A. Belenchia, D. M. T. Benincasa, and S. Liberati, J. High
Energy Phys. 03 (2015) 036.

[20] A. Belenchia, D. M. T. Benincasa, E. Martin-Martinez, and
M. Saravani, Phys. Rev. D 94, 061902 (2016).

[21] A. Belenchia, D. M. T. Benincasa, S. Liberati, F. Marin, F.
Marino, and A. Ortolan, Phys. Rev. Lett. 116, 161303
(2016).

[22] D. Tong, Part III Cambridge University Mathematics Tripos,
Michaelmas (2006), http://www.damtp.cam.ac.uk/user/
tong/qft.html.

[23] C. Bollini and J. Giambiagi, Rev. Bras. Fis. 17, 14 (1987).

[24] T. Biswas and N. Okada, Nucl. Phys. B898, 113 (2015).
[25] S. M. Meenehan, J. D. Cohen, G. S. MacCabe, F. Marsili,

M. D. Shaw, and O. Painter, Phys. Rev. X 5, 041002
(2015).

[26] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang,
A. G. Krause, V. Anant, M. Aspelmeyer, and S. Gröblacher,
Nature (London) 530, 313 (2016).

[27] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and
J. D. Teufel, Phys. Rev. X 5, 041037 (2015).

[28] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews,
P.-L. Yu, K.W. Lehnert, and C. A. Regal, Phys. Rev. Lett.
116, 063601 (2016).

[29] A. Vinante, M. Bignotto, M. Bonaldi, M. Cerdonio, L.
Conti, P. Falferi, N. Liguori, S. Longo, R. Mezzena, A.
Ortolan et al., Phys. Rev. Lett. 101, 033601 (2008).

[30] E. Serra, A. Borrielli, F. S. Cataliotti, F. Marin, F. Marino, A.
Pontin, G. A. Prodi, and M. Bonaldi, Phys. Rev. A 86,
051801 (2012).

[31] A. Borrielli, A. Pontin, F. S. Cataliotti, L. Marconi, F. Marin,
F. Marino, G. Pandraud, G. A. Prodi, E. Serra, and M.
Bonaldi, Phys. Rev. Applied 3, 054009 (2015).

[32] A. G. Kuhn, M. Bahriz, O. Ducloux, C. Chartier, O. Le
Traon, T. Briant, P.-F. Cohadon, A. Heidmann, C. Michel, L.
Pinard, and R. Flaminio, Appl. Phys. Lett. 99, 121103
(2011).

[33] L. Neuhaus et al., in Proceedings of JMC15, Bordeaux,
France, 2016, https://jmc15.sciencesconf.org/106353.

[34] M. Bawaj et al., Nat. Commun. 6, 7503 (2015).

ALESSIO BELENCHIA et al. PHYSICAL REVIEW D 95, 026012 (2017)

026012-12

http://dx.doi.org/10.1038/nphys2503
http://dx.doi.org/10.1038/nphys2503
http://dx.doi.org/10.1103/PhysRevD.69.105009
http://dx.doi.org/10.12942/lrr-2005-5
http://dx.doi.org/10.1088/0264-9381/30/13/133001
http://dx.doi.org/10.1016/0550-3213(89)90461-6
http://dx.doi.org/10.1016/0550-3213(89)90461-6
http://dx.doi.org/10.1016/S0370-1573(03)00059-0
http://dx.doi.org/10.1142/S0218271814420231
http://dx.doi.org/10.1142/S0218271814420231
http://dx.doi.org/10.1103/PhysRevD.91.124059
http://dx.doi.org/10.1007/JHEP03(2015)036
http://dx.doi.org/10.1007/JHEP03(2015)036
http://dx.doi.org/10.1103/PhysRevD.94.061902
http://dx.doi.org/10.1103/PhysRevLett.116.161303
http://dx.doi.org/10.1103/PhysRevLett.116.161303
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://www.damtp.cam.ac.uk/user/tong/qft.html
http://dx.doi.org/10.1016/j.nuclphysb.2015.06.023
http://dx.doi.org/10.1103/PhysRevX.5.041002
http://dx.doi.org/10.1103/PhysRevX.5.041002
http://dx.doi.org/10.1038/nature16536
http://dx.doi.org/10.1103/PhysRevX.5.041037
http://dx.doi.org/10.1103/PhysRevLett.116.063601
http://dx.doi.org/10.1103/PhysRevLett.116.063601
http://dx.doi.org/10.1103/PhysRevLett.101.033601
http://dx.doi.org/10.1103/PhysRevA.86.051801
http://dx.doi.org/10.1103/PhysRevA.86.051801
http://dx.doi.org/10.1103/PhysRevApplied.3.054009
http://dx.doi.org/10.1063/1.3641871
http://dx.doi.org/10.1063/1.3641871
https://jmc15.sciencesconf.org/106353
https://jmc15.sciencesconf.org/106353
https://jmc15.sciencesconf.org/106353
http://dx.doi.org/10.1038/ncomms8503

