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Recently Witten introduced a type IIB brane construction with certain boundary conditions to study knot
invariants and Khovanov homology. The essential ingredients used in his work are the topologically twisted
N ¼ 4 Yang-Mills theory, localization equations and surface operators. In this paper we extend his
construction in two possible ways. On one hand we show that a slight modification of Witten’s brane
construction could lead, using certain well-defined duality transformations, to the model used by Ooguri-
Vafa to study knot invariants using gravity duals. On the other hand, we argue that both these constructions,
of Witten and of Ooguri-Vafa, lead to two different seven-dimensional manifolds in M-theory from where
the topological theories may appear from certain twisting of the G-flux action. The non-Abelian nature of
the topological action may also be studied if we take the wrapped M2-brane states in the theory. We discuss
explicit constructions of the seven-dimensional manifolds in M-theory, and show that both the localization
equations and surface operators appear naturally from the Hamiltonian formalism of the theories. Knots
and link invariants are then constructed using M2-brane states in both the models.

DOI: 10.1103/PhysRevD.95.026010

I. INTRODUCTION AND SUMMARY

Knot theory has attracted both mathematicians and
physicists to tackle some of the challenging problems.
There are various approaches of constructing invariants of
knots and links. Mathematicians put forth skein/recursion
relation [1] to evaluate the invariants. The skein method
involves the study of knots projected onto two dimensions.
These invariants can also be obtained from braid group
representations deduced from the two-dimensional statis-
tical mechanical models, rational conformal field theories
and quantum groups. All these approaches show that the
invariants are Laurent polynomials in variable q with
integer coefficients. That is, for any knot K,

JðK; qÞ ¼
X
n

anqn; ð1:1Þ

where an are integers.
On the other hand, Chern-Simons gauge theory based on

any compact group G provides a natural framework to
study knots and their invariants [2]. In particular, this
approach gives a three-dimensional definition for knots and
links. For any knot K carrying representation R of gauge
group G, the expectation value of Wilson loop operator
WðK; RÞ ¼ TrRP exp ðHK AÞ gives the knot invariants:

JðK;R;qÞ¼ hWðK;RÞi

¼
Z

DAexp

�
ik
Z
R3

Tr

�
A∧dAþ2

3
A∧A∧A

��

×TrRPexp

�I
K
A

�
; ð1:2Þ

with the first trace being in the adjoint representation, and
the second trace TrR being in the representation R ofG; and
k, an integer giving the coupling constant that we can use to
write q in the following way:

q ¼ exp

�
2πi
kþ h

�
; ð1:3Þ

where h is the dual Coxeter number for groupG. The Jones
and HOMFLY-PT polynomials correspond to placing
defining representations of SUð2Þ and SUðNÞ respectively.
Additionally, the skein relation obtained from SUðNÞ
Chern-Simons theory resembles the skein relation of the
Alexander polynomial when N ¼ 0. Similarly for the
defining representation of SOðNÞ, we get Kauffman poly-
nomials. Besides the well-known polynomials, we can
obtain many new generalized knot invariants [3]. Within
this theory having manifest three-dimensional symmetry, it
is not obvious as to why these knot invariants have to be
Laurent polynomials with integer coefficients. Giving a
topological interpretation to these integer coefficients is one
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of the challenging problems which has been addressed by
bothmathematicians and physicists during the past 17 years.
An understanding of this issue came from the works on

homological invariants initiated by Khovanov [4]. In this
interesting work, Khovanov argued that the integer coef-
ficients can be accounted as dimensions of vector spaces.
This implies, for any knot K, the Khovanov polynomial
will be

KhðK; q; tÞ ¼
X
i;j

tiqj dimHi;j; ð1:4Þ

where dimHi;j is the dimension of the bigraded homo-
logical chain complex. Taking t ¼ −1, the above invariant
is the q-graded Euler characteristic of the homology which
gives the Jones polynomial [for G ¼ SUð2Þ], namely,

JðK;□; qÞ ¼
X
i;j

ð−1Þiqj dimHi;j: ð1:5Þ

Generalizations of the bigraded homological theory for sl3
[5], slN [6] and arbitrary colors which are referred to as
categorifications of knot polynomials leading to vector
spaces have been extensively studied.
Parallel development from topological string duality

conjecture proposed by Gopakumar-Vafa [7] followed by
Ooguri-Vafa [8] conjecture for knots have shown that these
invariants and their reformulations can be interpreted as
counting of Bogomolnyi-Prasad-Sommerfeld (BPS) states
in string theory. Interestingly, this approach led to various
checks of integrality properties of generalized knot invar-
iants [9]. Further works on categorifications motivated the
study of triply graded polynomials discussed in [10]
succinctly within the string theory context.
More recently, with the aim of interpreting Khovanov

homology within the intersecting brane model, Witten
considered the NS5-D3 brane system to study four-
dimensional gauge theory on W ×Rþ with knots K stuck
on the three-dimensional boundary W [11]. Interestingly,
the number of solutions an to the Hitchin equation in the
four-dimensional gauge theory, for a given instanton
number n, now gives topological meaning to the integer
coefficients in the Laurent polynomials (1.1). The homo-
logical invariants involve one more variable t besides the
already existing variable q, and require study of the surface
operators in a five-dimensional theory.
A relation between Witten’s brane setup [11] and the

Ooguri-Vafa [8] approach with intersecting D4-branes has
been studied in Sec. V of [11]. However, a more generic
construction that relates the four-dimensional N ¼ 4
model of Witten to the N ¼ 1 setup of Ooguri-Vafa has
not been spelled out in full generalities.1 In this detailed

paper, we will study a unified setting in low energy
supergravity description of M-theory where we relate the
brane setup of Witten with the Ooguri-Vafa string theory
background. Specifically we focus on reproducing all the
results of Witten in the supergravity picture. Further, we
also detail the construction of oper equation useful for the
study of knots stuck at the three-dimensional boundary.

A. Organization and summary of the paper

This paper is organized in two broad topics. On one
hand, we analyze in detail the model studied by Witten in
[11]. On the other hand we discuss, albeit briefly, the model
studied by Ooguri-Vafa [8], pointing out some of the key
ingredients that may link various aspects of the two
models [8,11].
We start Sec. II by introducing the twomodels in question.

In Sec. II A we discuss the brane constructions associated
with the two models, and argue how they can stem from
similar brane configurations. This is of course a first hint to
show that the twopictures in [8,11]maynot be so different as
they appear on first sight. However subtlety lies in the
construction of the Ooguri-Vafa [8] model because there are
at least two possible realizations of the model − one in type
IIB and the other in type IIA. Additionally, because of the
large N nature of [8], there are also gravity duals in each
pictures that may be used to study the model. This is
illustrated in Sec. II B, where certain issues related to knot
configurations are being pointed out.
Section III is dedicated completely to analyzing the

physics of Witten’s model [11] using a dual configuration
in M-theory that has only geometry and fluxes and no other
branes except the M2-branes. The technique considered in
our work is very different from what is utilized in [11].
Witten uses mostly brane configurations and tactics of
four-dimensional N ¼ 4 gauge theory, along with its
topological twist, to discuss the physics of knots in the
three-dimensional boundary W. In fact in the notation of
[11], the four-dimensional space will be denoted by V such
that V ¼ W ×Rþ, where Rþ is a half-line. Our approach
will be to use 11-dimensional M-theory to study similar
physics on the boundaryW. Question naturally arises as to
how could two wildly different methods lead to the same
physics onV as well on the boundaryW. Elaborating this is
of course one of the purposes of Sec. III, but before we
summarize the story, let us discuss Witten’s model in some
details below.
The work of Witten [11] utilizes certain crucial ingre-

dients useful in studying knots on the boundary W. The
first is the topological theory onW. In [11] this is achieved
in two steps using an intersecting NS5-D3 brane configu-
ration shown in Table I. The details are discussed in
Sec. III A.
The second is the localization equations that are not only

responsible in simplifying the path integral formalism of
the theory, but also helpful in fixing the boundary terms

1The actual comparison will be between twoN ¼ 1models as
we discuss in Sec. IV D.
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discussed above. We will call these localization equations
as BHN equations, the acronym being related to
Bogomolnyi, Hitchin and Nahm. A derivation of the
BHN equations, using techniques different from what is
being used in [11], is presented in Sec. III B 10. It turns out,
and as explained in [11,12], the number of solutions of the
BHN equations, for a given instanton number, determines
the coefficient of the knot polynomial. In other words, if we
express the Jones’ polynomial as (1.1), then an is the
number of solutions to the BHN equation with instanton
number n. This accounts for the integer coefficients in the
knot polynomials.
The knots appear as Wilson loops in the boundary

theory. In the S-dual picture the knots are given by
’tHooft loops. There are some advantages in discussing
the S-dual story, particularly in connection with solving the
BHN equation, and this forms the third crucial feature of
Witten’s work [11]. In Sec. III B 13 we use our technique to
analyze the S-dual picture, putting special emphasis on the
form of the BHN equations.
There is yet another way to study the knots in the theory

involving codimension two operators, both in the boundary
W as well as in the bulk V. These are called the surface
operators, and is the fourth crucial ingredient in Witten’s
work [11]. We discuss the surface operators in Sec. III C 1,
and as before show that most of the results studied in [11]
do also appear from our analysis.
Finally, Witten discusses a possible realization of the

Ooguri-Vafa model [8] given in terms of intersecting
D4-branes. Similar analysis is also studied by Walcher
[13]. Our study in Sec. IV differs from both the Witten and
the Walcher analysis as we discuss the D6-branes’ reali-
zation of the Ooguri-Vafa model using the brane setup in
Table II. Although this is intimately connected to the
minimally supersymmetric four-dimensional gauge theory,
the specific realization of knots in this picture is more
subtle. This is elaborated in Secs. IVA 1 and IV D.
From the above discussionswe see that the general picture

developed byWitten andOoguri-Vafa in [8,11] respectively,
may be addressed in a different, albeit unified, way by
dualizing the brane configurations of Tables I and II to
M-theory. The duality proceeds via an intermediate con-
figuration in type IIB involvingwrapped five-branes on two-
cycles of certain non-Kähler manifolds. The choice of the
non-Kähler manifolds remains specific to the model that we
want to analyze. For example, Witten’s model dualizes to a
configuration of D5-D5 branes wrapped on a warped
Taub-NUT space as shown in Sec. III B. This Taub-NUT
space, or more appropriately a warped ALE space, is very
different from the ALE space that may appear from
T-dualizing the NS5-brane in Table I. The latter creates a
problem in path integral representation because of the lack of
a global one-cycle rendering it useless to study Khovanov
homology. The Taub-NUT that we study here is different as
discussed in Sec. III B and we do not use it to study

Khovanov homology. Instead our configuration is only used
to study knots in the three-dimensional boundary W.
However, restricting the knots to the three-dimensional

boundary is nontrivial. In Witten [11] this is achieved by
switching on the gauge theory θ angle. In our supergravity
approach in type IIB, as we show in Secs. III B 1 and
III B 2, this may be achieved by switching on a non-
commutative or a Ramond-Ramond (RR) deformation on
the wrapped five-branes. Interestingly, as we argue in
Sec. III B 2, these two deformations have similar four-
dimensional physics when it comes to restricting the knots
to the boundary W.
The M-theory uplift of the type IIB configuration is then

elaborated in Sec. III B 3. This is the dual description of
Witten’s model in the absence of the knots (knots will be
inserted later), and consists of only geometry and fluxes
with no branes other than the M2-branes. In this section we
argue how the precise geometric information is essential to
derive the harmonic two-form which is normalizable and
unique. This two-form is essential to derive the Uð1Þ gauge
theory on V. This is elaborated in Sec. III B 4, first by
ignoring certain backreactions, and then in Sec. III B 5, by
including all possible backreactions.
The Uð1Þ theory is of course only a toy model, and what

we need is the full non-Abelian theory in four-dimensional
space V. This is achieved in Sec. III B 6, where the first
appearance of the M2-branes wrapped on the two-cycles of
certain warped multi–Taub-NUT space occurs. All these
lead to the non-Abelian theory on V, whose details are
analyzed in the subsequent sections. In Sec. III B 7 we
introduce the boundary dynamics.
In Secs. III B 8 and III B 9 we present our first set of

major computations, related to the four-dimensional scalar
fields. The complete interacting Lagrangian is derived from
M-theory dimensionally reduced over a seven-dimensional
manifold of the form (3.152). It turns out that the dynamics
of three scalar fields that are dimensional reduction of the
seven-dimensional gauge fields are somewhat easier to
derive than the other three scalar fields that are fluctuations
of the multi–Taub-NUT space. Sections III B 8 and III B 9
are elaborations on this.
We then combine everything and write the complete

four-dimensional action as (3.153). The action contains two
pieces: a topological piece and a nontopological piece. This
is the start of Sec. III B 10, being one of the important
sections of the paper. The action computed in (3.153) now
leads succinctly to the total Hamiltonian (3.158). This is the
central result of the paper, from where all other results are
derived by minimization and other techniques. For example
the BPS equations from the Hamiltonian (3.158) may be
studied by minimizing. The first set of BPS equations
appears in (3.162) for the gauge choice (3.161). As we
showed in detail, for example in (3.163), the coefficients
computed in Secs. III B 5, III B 8, and III B 9 solve all the
BPS equations (3.162) precisely.
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The second set of BPS equations also follows easily from
the Hamiltonian (3.158). Our analysis proceeds by first
ignoring the topological piece of the action (3.153). The
BPS equations turn out to be the BHN equations studied in
[11]. The BHN equations are given by (3.172) and (3.176),
with (3.176) being further expressed in terms of component
equations as (3.177). Incidentally, if we change our gauge
choice from (3.161) to (3.178), the first and the second set
of BPS equations changes to (3.179) and (3.182) respec-
tively, perfectly consistent to what one would expect
from [11].
Among all the crucial ingredients of Witten’s model [11],

one that we did not emphasize earlier is the appearance of
the parameter t. This parameter has appeared before in
describing the geometric Langland program using super-
symmetric gauge theories in [14]. In the work of [11], t
appears once we try to express the BHN equations in terms
of topologically twisted variables. In Sec. III B 11 we show
how t appears naturally in our setup too, although all
information that may be extracted from [11] using t may
appear from our supergravity analysis without involving t.
This is to be expected as supergravity data contains all
information and there is no need to add new parameters.
Nevertheless, as we elaborate in Sec. III B 11, one may use
supergravity to define t and then use this to extract
information similar to [11]. One immediate advantage of
this procedure is for finding the BHN equations once the
topological piece in the action (3.153) is switched on. For
example, the BHN equation (3.209) appears easily now,
and the full background equations, including the constraint
equations plus the BHN equations, can be presented
succinctly as (3.221). As mentioned above, all these could
be done directly using supergravity without involving t, but
the use of t avoids certain technical challenges.
We have now assimilated all the ingredients, namely the

constraint equations and the BHN equations, to construct
the theory on the boundary W. The crucial ingredients are
the electric and the magnetic charges QE and QM respec-
tively that appear in the Hamiltonian (3.225) which is the
modified version of the Hamiltonian (3.158) once the
topological term in the action (3.153) is switched on. In
Sec. III B 12 we compute the two charges and show that the
electric charge vanishes due to our gauge choice (3.161),
and the magnetic charge is given by (3.227). After twisting,
the magnetic charge combines with the topological piece,
now reduced to the boundary W, to give us the boundary
theory. This is easier said than done, because a naive
computation yields an incorrect boundary action of the
form (3.228). There are numerous subtleties that one needs
to take care of before we get the correct boundary action.
These are all explained carefully in Sec. III B 12, and the
final topological action on W is given by (3.241). This is a
Chern-Simons action but defined with a modified one-form
field Ad, given by (3.240), and not with the original gauge
field A. This is one of our main results, and matches well

with the one derived in [11] using a different technique. The
story can be similarly reproduced in the S-dual picture, and
we elaborate this in Sec. III B 13. Various subtleties in the
S-dual description discussed in [11] also show up in our
description.
So far we have managed to reproduce the complete

boundary topological theory on W. The question is, where
are the knots in this picture? Section III C 1 is dedicated to
answering this question. It turns out, one of the key players
is the surface operator that will be used to explore the knots
and knot invariants in the boundary theory. In this section
we start by discussing how the surface operators modify the
BHN equations that we studied in Sec. III B 10. The surface
operators are M2-branes in the theory, but their orientations
are different from the M2-branes used earlier in Sec. III B 6
to enhance the gauge symmetry from Abelian to non-
Abelian. In fact the M2-brane surface operators are
codimension two singularities both in the bulk V and in
the boundary W, and their configurations are presented in
Tables V and in Table VI for type IIA and M-theory
respectively.
In the language of Table V, the supersymmetry preserved

by the surface operator is (4,4). The (4, 4) supersymmetric
representation contains a vector multiplet, containing
vectors and four scalars all in the adjoint representations
of the gauge group, and a hypermultiplet, containing four
scalars. If we concentrate only on the hypermultiplet sector
then, in the absence of the surface operator, the BHN
equations satisfy (3.287) which are exactly the Hitchin’s
equations that one would expect from [15–17]. In the
presence of the surface operators (3.287) changes to
(3.307), again consistent with [15–17]. Interestingly, com-
paring (3.307) with (3.287) we see that the rhs of the three
equations in (3.287) are now no longer zeros but propor-
tional to certain source terms parametrized by the triplets
ðα; β; γÞ. These triplets can be expressed in terms of
supergravity parameters as given in (3.310), which in
our opinion is a new result.
One might also ask how the full BHN and the constraint

equations appear in the presence of the surface operators
when we consider both the vector and the hypermultiplet of
(4, 4) supersymmetry. The results are presented in (3.316),
and (3.323) for the BHN equations and (3.318) for the
constraint equations.
Having gotten all the background equations and con-

straints, our next question is the form of the boundary
theory. We follow similar steps as before, and express the
Hamiltonian, in the presence of the surface operators, as
(3.330). The Hamiltonian again can be expressed as a sum
of squares plus the magnetic charge QM. However now it
turns out, and as explained in Sec. III C 1, that the non-
Abelian case is in reality much harder to study in the
presence of the surface operators. To simplify, we then go
to the Abelian case and express the BHN and the constraint
equations as (3.331). The magnetic charge is not too hard to
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find now—it is presented in (3.333); and from here the
boundary theory onW is given by (3.336) by taking care of
similar subtleties as encountered in Sec. III B 12.
The construction of knots on the boundary W using

surface operators now easily follows using the configura-
tion depicted in Fig. 2 and as given at the start of
Sec. III C 2. More precisely, the Wilson loop structure that
we will consider is as given in (3.343). i.e. using gauge
fields parallel to the x1 axis. This way we are able to trace
all the computations with the same rigor as of the earlier
sections.
The next set of computations relies on three crucial steps

for the Wilson line configurations. First is the Heegaard
splitting (3.356) as shown in Fig. 4. Second is the
monodromy identifications (3.365), as shown in Fig. 6;
and third is the braid group action, as shown in Fig. 5.
These three steps form the building blocks for all the knot
configurations that we study here. We represent them as
operators Ak, Bk and Cð2;σjÞ respectively acting on the
Wilson line state jnki, where the subscript k denotes the
number of Wilson lines; and σj is the braid group action on
the jth set of two consecutive Wilson lines. Using the three
operators, for example the unknot may be represented as
Fig. 8 and we can use them to compute the knot invariant
for this case. However, the steps leading to the actual
computation of the invariant are riddled with numerous
subtleties—dealing with monodromies and framing
anomalies to name a few—that we discuss in detail in
Sec. III C 2. The final knot invariant, or more appropriately
the linking number for the unknot, is given by (3.367).
Similar analysis is presented for the trefoil knot, torus ð2; nÞ
knots, figure-8 knot and 52 knot in (3.368), (3.369), (3.370)
and (3.371), respectively. These knot configurations easily
follow the three-steps building blocks mentioned above, as
shown in Figs. 9, 10, 11 and 12 respectively, and we discuss
how this generalizes to all knot configurations that may be
built in our model.
In fact other invariants, beyond the linking numbers, may

also be studied for the knot configurations that we discuss
here. These invariants have been addressed in [18] and may
be constructed using the monodromies Mk in (3.358),
implying that our analysis is generic enough not only to
include all the constructions of [18] but also give them
appropriate supergravity interpretations. Despite the suc-
cess, a non-Abelian extension of this picture is harder, and
we do not attempt it here leaving a more detailed elabo-
ration for the sequel. Instead however we dedicate the last
section, i.e. Sec. III C 3, albeit briefly on opers that may
generalize more easily to the non-Abelian case.
Section IV is dedicated completely to exploring the

physics of the Ooguri-Vafa [8] model. From the start, there
are many points of comparison with Sec. III dealing with
the physics of Witten’s model [11]. For example, the
absence of a Coulomb branch, the location of the knots
on the internal S3 and the existence of a gravity dual might

suggest that the Ooguri-Vafa [8] model is very different
from Witten’s model [11]. In Sec. IV we argue that this is
not the case. In spirit, these two models are far closer in
many respects than one would expect from naive
comparison.
The first hint already appears from the discussion in

Sec. V of [11] and in [13], where the intersecting D4-
branes’ construction of the Ooguri-Vafa model is discussed
from the brane setup of Table I. However we want to
emphasize the connection using the brane setup of Table II
that directly relates the four-dimensional N ¼ 4 model of
Witten to the N ¼ 1 setup of Ooguri-Vafa.
Our starting point is then multiple D5-branes wrapped on

a two-cycle of a non-Kähler resolved conifold. We take N
five-branes so that the IR gauge group for the minimally
supersymmetric four-dimensional gauge theory becomes
SUðNÞ. The geometry can be worked out precisely as we
show in Sec. IVA, which in turn is based on the recent
work [19]. However existence of a similar picture as in
Sec. III B 1 without dipole deformation, does not mean that
the physics remains similar now. The absence of the
Coulomb branch changes the story a bit, and this is
discussed in detail in Sec. IVA 1. However the two models,
despite the small difference, are identical in some respect
regarding the four-dimensional picture, even when we go to
the mirror-type IIA side. The Ooguri-Vafa model is then
realized from the mirror picture by first Euclideanizing the
geometry, so that the four-dimensional physics is defined
on S3

ð1Þ ×Rþ, and then performing a flop (4.8) that

exchanges the S3
ð1Þ with S3

ð2Þ, the three-cycle of the mirror

deformed conifold. The flop transfers the physics to the
three-cycle of the deformed conifold, and this way we can
get [8] from [11].
The discussion in Sec. IVA 1 leaves a few questions

unanswered. The first is related to the physics on S3
ð1Þ,

namely, what is the precise topological theory on S3
ð1Þ that

we eventually transfer to S3
ð2Þ? The second is related to the

knots, namely, what about the knot configurations and the
knot invariants? In the remaining part of the paper we
answer these two questions.
To answer the first question we will require the precise

supergravity background in type IIB, before mirror trans-
formation. This is studied in Sec. IV B, where the fluxes are
worked out in Sec. IV B 1 and the warp- factors, in the type
IIB metric, are worked out in Sec. IV B 2. The M-theory lift
of this configuration is studied in Sec. IV C 1, where we
show that the seven-dimensional manifold is again a
warped Taub-NUT fibered over a three-dimensional base.
This time however the warping of the base and fiber in the
seven-dimensional manifold (4.43) is different from what
we had in Sec. III B 3 such that the four-dimensional
supersymmetry can be minimal. Of course the right
comparison with Sec. III B 3 can only be done after we
make a dipole deformation to the type IIB background. It
turns out, and as expected, dipole deformation does not
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break any supersymmetry, but does break the four-
dimensional Lorentz symmetry to three-dimensional
Lorentz symmetry. This is good because we can localize
the knots in the three-dimensional space where there is a
manifest Lorentz invariance. Details on this are presented in
Sec. IV C 2.
Once we have the full geometry and fluxes in M-theory,

with dipole deformation, it is easy to follow a similar
procedure as in Secs. III B 3, III B 4, III B 5 and III B 6 to
work out the normalizable harmonic forms, and non-
Abelian enhancement to study the gauge theory in four-
dimensional space. This is the content of Sec. IV C 3,
where we discuss the vector multiplet structure, leaving the
study of chiral multiplets for the sequel. The vector
multiplet structure leads to a non-Abelian gauge theory
in four dimensions whose coupling constant, much like
(3.76) before, may to traced to the underlying supergravity
variables in M-theory.
The above discussions then bring us to the second

question related to the knot configurations and knot
invariants. In fact the story is already summarized in
Sec. IVA 1, and in Sec. IV D we elaborate on individual
steps. The first step is related to the topologically twisted
theory on the three-dimensional boundary W. This time,
because of the absence of the Coulomb branch, the
boundary theory is simpler than the one in Witten’s model,
namely (3.241). It is now given by (4.60), which is again a
Chern-Simons theory but the coupling constant is not the
one that we naively get from the topological piece (4.59) in
M-theory, rather it is a combination that appears from both
the G-flux kinetic and the topological pieces in M-theory.
This is identical to what we had in Sec. III B 12 related to
Witten’s model. We now see that a similar structure, yet a
bit simpler from [11], is played out for the Ooguri-Vafa
model [8] too.
All these are defined on S3

ð1Þ, and once we take the

mirror, the theory on S3
ð1Þ remains identical. The second

step is to perform a flop operation (4.8), so that we can
transfer the physics to the three-cycle S3

ð2Þ of the non-

Kähler deformed conifold, giving us (4.62). For this case,
the knots may now be introduced by inserting codimension
two singularities as depicted in Fig. 14. Again, the picture
may look similar to what we discussed in Secs. III C 1 and
III C 2, but there are a few key differences. One, we cannot
study the Abelian version now as the model is only defined
for large N. This means all the analysis of the knots using
operatorsAk,Bk andCð2;σjÞ may not be possible now. Two,
similar manipulations to the BHN equations that we did in
Sec. III C 1 now cannot be performed.
What can be defined here? In the remaining part of

Sec. IV D we give a brief discussion of how to study knots
in the Ooguri-Vafa model, leaving a more detailed expo-
sition for the sequel. We summarize our findings and
discuss future directions in Sec. V. In a companion paper

[20], and for the aid of the readers, we provide detailed
proofs and derivations of all the results here including, at
times, alternative derivations of some of the results.

B. What are the new results in this paper?

In this paper we construct two different configurations in
M-theory, which consist of only geometry, fluxes and M2-
branes (the latter provide a non-Abelian enhancement of
the underlying gauge group). We refer to them as model A
and model B. These are dual to the models in [8,11],
respectively. An important new result is that we show the
exact duality transformations that relate models A and B.
Consequently, we make explicit the direct connection
between the seemingly very distinct models in [8,11]. In
other words, we provide a unifying picture of the two
existing physics approaches to compute knot invariants
from the counting of solutions to BPS equations.
The present work focuses on the study of model A, that

dual to the model in [11]. We first obtain the complete
four-dimensional gauge theory Lagrangian (3.153), appro-
priately compactifying model A. Then, we derive its
associated Hamiltonian (3.158). Clearly, the coefficients
appearing in (3.158) are expressed in terms of supergravity
parameters, by construction. All our results for model A
stem from this Hamiltonian and are mapped in exquisite
detail to the results in [11]. We thus conclude that another
major outcome of our analysis is that it allows for a precise
physical interpretation of [11] in the conceptually simple
and long-known classical Hamiltonian formalism. For
example, the BPS equations follow from the minimization
of (3.158) for static configurations of the gauge theory
fields. We refer to them as BHN equations, the acronym
standing for Bogomolnyi-Hitchin-Nahm equations.
The four-dimensional space V where our Hamiltonian is

defined naturally decomposes as V ¼ W ×Rþ. After
minimization of the energy and topologically twisting
our theory, we show that the action on the three-
dimensional boundary W of V is topological. This is a
Chern-Simons action for a modified gauge field, which is a
certain linear combination of the original gauge fields and
some of the scalar fields in our theory. Then, the inclusion
of surface operators in this setup provides an inherent
framework for realizing knot invariants, as argued in [18].
A key result in our work is the realization of surface
operators as M2-branes, different from the ones used for the
non-Abelian enhancement of model A. Upon restricting to
the Abelian case for simplicity, this allows us to work out
the linking numbers for the most well-known knots:
unknot, trefoil, torus ð2; nÞ, figure-8 and 52, given by
(3.367)–(3.371).
Finally, it is interesting to note that we have not yet

exploited most of the immense potential of the constructed
models A and B. To mention a few possibilities, we hope to
learn about the Jones, Alexander and HOMFLY polyno-
mials and Khovanov homology in the sequel.
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II. BRANE CONSTRUCTIONS AND KNOTS

In this section we will study the knots first from a brane
construction proposed by Witten [11,12] and argue how
this could be mapped to the geometric transition picture of
Ooguri-Vafa [8,21]. We will argue that certain fourfolds
along with specific configurations of surface operators are
useful in making the connections between the two
scenarios.

A. Brane constructions for knots

In the original Witten’s construction [11] of knot theory
in type IIB theory, we will call this2 model A, the branes
were arranged as in Table I, with an additional source for
IIB axion, C0, switched on such that the knots are localized
along the 2þ 1 dimensional intersection parametrized
by x0;1;2.
Let us now modify the original setup of Witten by

converting the direction x6 along which the D3-brane is
stretched into a finite interval. This is achieved by intro-
ducing another NS5-brane oriented along x0;1;2;3;4;5. This
crucial step will be useful for us to relate the configuration
of Witten to the configuration of Ooguri-Vafa [8], as we
will soon see. For later convenience we will call this, and
the subsequent modification of this, as model B.
The type IIB configuration can be modified further by

T-dualizing along x3 direction. This T-duality leads us to
the well-known configuration in type IIA theory [22,23] as
depicted in Table II. In addition to the required branes we
will have a background type IIA gauge field A3, that will
have a pull-back on the D4-brane and furthermore intro-
duce a nontrivial complex structure on the ðx3; x6Þ torus.
The latter operation will help distinguish the noncompact
world-volume directions x0;1;2 with the compact toroidal
directions even in the limit of large size of the torus.
However although supersymmetry of the background still
remains valid, the localization of the knots in the x0;1;2
directions is not: we have lost the Coulomb branch, so the
discussion of knots should be taken with care here. We will
study this soon.
Finally let us make yet another modification to the setup

studied above: introduce large N number of D4-branes.
Such a modification will help us to study the gravity dual of
this setup, in other words will connect us directly to the
model studied by Ooguri-Vafa [8] or more recently to
Aganagic-Vafa [21]. This is because an appropriate T-
duality to the above brane configuration will convert the
two NS5-branes to a singular conifold and the N D4-branes
to N wrapped D5-branes on the vanishing two-cycle of the
conifold. We can then blow up the two-cycle to convert the
singular conifold to a resolved conifold.3 The D5-branes

will then wrap the resolution two-cycle. To see how this
works, let us discuss this in some detail.

B. T-duality, resolved cone
and a geometric transition

We begin by introducing a circle action on the conifold
and extend it to the resolved conifold in a compatible
manner. Consider an action Sc on the conifold
xy − uv ¼ 0, where ðx; y; u; vÞ are complex coordinates,
in the following way:

Sc∶ðeiθ; xÞ → x; ðeiθ; yÞ → y;

ðeiθ; uÞ → eiθu; ðeiθ; vÞ → e−iθv: ð2:1Þ

The orbits of the action Sc degenerates along the union
of two intersecting complex lines y ¼ u ¼ v ¼ 0 and
x ¼ u ¼ v ¼ 0 on the conifold. Now, if we take a T-dual
along the direction of the orbits of the action, there will be
Neveu-Schwartz (NS) branes along these degeneracy loci
as argued in [24]. So we have two NS branes which are
spaced along x (i.e. y ¼ u ¼ v ¼ 0) and y directions (i.e.
x ¼ u ¼ v ¼ 0) together with the noncompact direction
along the Minkowski space which will be denoted by NSx
and NSy.
One may lift this action so as to define a resolved cone.

To do that, let us start with two C3 with coordinates
ðZ; X; YÞ and ðZ0; X0; Y 0Þ respectively, where ðZ; Z0Þ are the
coordinates of P1 in the two C3’s respectively, and the rest
form the coordinates of the fiber. Then the manifold
Oð−1Þ ⊕ Oð−1Þ over P1 can be obtained by gluing the
two copies of C3, parametrized above, by the following
identification:

ZZ0 ¼ 1; X−1X0 ¼ Z; Y−1Y 0 ¼ Z: ð2:2Þ

The blown-down map from the resolved conifold to the
conifold C is given by Eq. (7) of [22], from where one may

TABLE I. The orientations of various branes in the intersecting
branes setup. The notation

p
is the direction along which the

branes are oriented.

Directions 0 1 2 3 4 5 6 7 8 9

NS5
p p p p � � � � p p

D3
p p p � � � p � � �

TABLE II. The orientations of various branes in the T-dual of
the modified Witten setup.

Directions 0 1 2 3 4 5 6 7 8 9

NS5
p p p p � � � � p p

NS5
p p p p p p � � � �

D4
p p p p � � p � � �

2Not to be confused with A-model and B-model that appear in
the topologically twisted version of our construction.

3We will see that the metric on this will be a non-Kähler one.
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infer the action Sr on the resolved conifold to be an
extension of the action Sc (2.1) given by Eq. (8) of [22].
The rest of the discussion after Eq. (8) of [22], until the end
of Sec. II in [22], details how the T-dual picture becomes
the following brane configuration: a D4 brane along the
interval with two NS branes in the orthogonal direction at
the ends of the interval exactly as illustrated in Table II.
Here the length of the interval is the same as the size of the
two-cycle of the resolved conifold. As the two-cycle
shrinks to zero, the brane construction of a resolved
conifold approaches the brane construction of a conifold.4

In the language of branes, the two NS5 branes are along
directions x4;5 and x8;9 and fill simultaneously the space-
time directions x0;1;2;3. This means the T-duality was done
along direction x6, or in the language of a conifold, along
ψ . The conifold geometry is parametrized by ðθi;ϕiÞ with
i ¼ 1, 2 with the Uð1Þ direction ψ and the noncompact
radial direction r. In the following let us clarify some
subtleties related to the T-duality. First let us consider the
wrapped D5-brane on a conifold geometry. A standard
T-duality along an orthogonal direction should convert this
to a wrapped D6-brane. The C7 source charge of the
D6-brane decomposes in the following way:

C7ð~x;ψ ; θ1;ϕ1Þ ¼ C5ð~x;ψÞ ∧
�
eθ1 ∧ eϕ1ffiffiffiffiffiffi

V2

p
�
; ð2:3Þ

where V2 is the volume of the two-sphere that is being
wrapped by the D6-brane and whose cohomology is
represented by the term in the bracket.5 In the limit where
the size of the two-sphere is vanishing (i.e. for the T-dual
conifold), the term in the bracket in (2.3) will behave as a
delta function, and consequently C7 will decompose as C5

i.e. as a D4-brane. It will take infinite energy to excite any
mode along the directions of the vanishing two-sphere, and
therefore for all practical purposes a T-dual of the wrapped
D5-brane on a conifold will be a D4-brane stretched along
ψ direction. This is of course the main content of [25–27].
Similarly if the wrapped two-sphere is of finite size, i.e. the
D5-brane wraps the two-cycle of a resolved conifold, then
at energy lower than the inverse size of the two-sphere the
T-dual will effectively behave again as a D4-brane [22,23].
Once the energy is bigger than this bound—the size of the
two-cycle is much bigger than the string scale—then the
intermediate energy physics will probe the full D6-brane.
Our analysis in this paper will be related to this case only,

i.e. we will explore the classical dynamics of a wrapped
D6-brane on a four-cycle parametrized by ðθ1;ϕ1;ψÞ
and x3.
The above discussion tells us that, under appropriate

T-duality, we should get the IR picture of the geometric
transition model studied by Ooguri-Vafa [8]. There are of
course few differences that we need to consider before
making the equivalences. The first is the existence of a BNS
field with one of its components along the D5-branes and
another orthogonal to it.6 This BNS field should give rise to
the dipole deformations of the D5-branes’ gauge theory
[28–30]. This deformation should also be responsible for
preserving supersymmetry in the model. It is however not
clear that the knots in this model should again be restricted
to x0;1;2 directions, although naively one could argue that
the two directions of the D5-branes are wrapped on the P1

of the resolved conifold, and the dipole deformation with a
BNS field B3ψ should restrict the knots further to the x0;1;2
directions. The reason is of course the absence of the
Coulomb branch which is a crucial ingredient in [11,12].
There is another reason why this should not be the case.

We can ask the following question: what will happen if we
make a geometric transition to the two-cycle on which
we have wrapped D5-branes? From standard argument we
know that the D5-branes will disappear and will be
replaced by fluxes. In this flux picture, or more appropri-
ately the gravity dual, it will be highly nontrivial to get the
information about the knots from the fluxes on a deformed
conifold background (as there are no branes on the dual
side). One might think that a T-dual of this gravity dual
could bring us back to branes in type IIA, but this does not
help as the original D4-branes on which we had the knot
configurations do not appear even on the brane side. To see
this, consider the following circle action Sd:

Sd∶ðeiθ; xÞ → x; ðeiθ; yÞ → y;

ðeiθ; uÞ → eiθu; ðeiθ; vÞ → e−iθv; ð2:4Þ

on the deformed conifold xy − uv ¼ μ, where μ is the
deformation parameter. Then Sd is clearly the extension of
Sr discussed in Eq. (8) of [22], and the orbits of the action
degenerate along a complex curve u ¼ v ¼ 0 on the
deformed conifold. If we take a T-dual of the deformed
conifold along the orbits of Sd, we obtain a NS brane along
the curve u ¼ v ¼ 0 with noncompact direction in the
Minkowski space which is given by xy ¼ μ in the x-y
plane. Topologically, the above curve is R1 × S1. Thus in
the T-dual picture, the large N duality implies a transition
from the brane configuration of N coincident D4-branes
between two orthogonal NS5-branes to the brane configu-
ration of a single NS5-brane wrapped on R1 × S1 with

4In the first version of the paper some of the details presented
here overlapped with [22]. Here we remove all the overlap and the
readers are instead referred to Sec. II of [22].

5The representative of second cohomology for a two-cycle of a
conifold is eθ1 ∧ eϕ1

− eθ2 ∧ eϕ2
as both P1 vanish at the origin

[25]. For resolved conifold we will take (2.3), as geometrically
the D5-brane wraps a two-sphere parametrized by ðθ1;ϕ1Þ. This
makes sense as one of the spheres will be of vanishing size at
r ¼ 0.

6In general we expect both BNS and BRR to appear here. The
latter however is more nontrivial to deal with, so we will relegate
the discussion for later.
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appropriate background fluxes. The D4-branes have dis-
appeared in the dual brane configuration too, apparently
along with our knot configuration.
The solution to the above conundrum is nontrivial and

we will discuss this soon. But first let us discuss how to
study model A using the approach of wrapped branes on
certain non-Kähler manifolds. This will lead us to a more
unified approach to discuss both the models.

III. MODEL A: THE TYPE IIB DUAL
DESCRIPTION AND WARPED TAUB-NUT

The situation for model A is slightly different as it is
directly related to [11] and therefore to the Chern-Simons
theory along x0;1;2 directions for the brane configurations
given in Table I. The claim is that the knot polynomial
Jðq;Ki; RiÞ for any knot Ki is given in the Chern-Simons
theory via the following path integral:

Jðq;Ki; RiÞ ¼ hWðKi; RiÞi ¼
�
TrRi

P exp
I
Ki

A

�

¼
R
DA exp ðiScsÞ

Q
iWðKi; RiÞR

DA exp ðiScsÞ
; ð3:1Þ

which is a generalization of (1.2), and where q is the
variable which is used to express the knot polynomial as a
Laurent series, Ri is the compact representation of the
gauge group G appearing in the Chern-Simons action Scs:

Scs ¼
k
4π

Z
W
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð3:2Þ

As discussed in the Introduction, k is an integer used to
express q as in (1.3). The denominator appearing in (3.1) is
in general a nontrivial function of k. For example for the
SUð2Þ group with W ¼ S3, as shown in [2] and [11], the
denominator becomes

Z
DA exp ðiScsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

kþ 2

r
sin

�
π

kþ 2

�
; ð3:3Þ

but if we take W ¼ R3, this can be normalized to 1 and so
(1.2) and (3.1) become identical. This is the case we will
study in this section. The above two expressions (3.1) and
(1.3) serve as a dictionary that maps the knot polynomial J
and the knot parameter q in terms of the variables of Chern-
Simons theory.

A. First look at the gravity and the
topological gauge theory

We will discuss the knots appearing from this construc-
tion soon, but first let us modify Table I slightly by first
restricting the direction x6 to an interval, and second,
T-dualizing along the x3 direction to convert the configu-
ration to D4-branes between two parallel NS5-branes.

T-dualizing further along x6 ≡ ψ direction will convert
the D4-branes to fractional D3-branes at a point on a
warped Taub-NUT space. In particular, we will have a
geometry like

ds2 ¼ e−ϕds20123 þ eϕds26
F 3 ¼ e2ϕ �6 dðe−2ϕJÞ; ð3:4Þ

where ϕ is the dilaton and the Hodge star and the
fundamental form J are with respect to the dilaton
deformed metric e2ϕds26. The metric ds6 will be given by

ds26 ¼ F1dr2 þ F2ðdψ þ cos θ1dϕ1Þ2
þ F3ðdθ21 þ sin2θ1dϕ2

1Þ þ F4ðdx28 þ dx29Þ; ð3:5Þ

with F1 ¼ F1ðrÞ, F2 ¼ F2ðrÞ and F3 ¼ F3ðrÞ as functions
of r only and F4 ¼ F4ðr; x8; x9Þ, as the simplest extension
of the case with only radially dependent warp factors.
Note also that the fractional D3-branes cannot be inter-
preted as wrapped D5-D5 branes along ðθ1;ϕ1Þ directions.
Instead the fractional D3-branes will be interpreted here as
D5-D5 pair wrapping direction ψ and stretched along the
radial r direction.
We can also change the topology along the x8;9 directions

from R2 to T2 or P1 without violating Gauss’ law. Before
elaborating on this story, let us clarify a few issues that may
have appeared due to our duality transformation. First, one
would have to revisit the supersymmetry of the model,
which seems to have changed from N ¼ 4 to N ¼ 2. This
still allows a Coulomb branch, but we need more scalars to
complete the story. One way to regain the lost supersym-
metry is to assume that the x6 circle is large, so that
essentially, for the half space x6 > 0, we have the same
physics explored in [11,14].
Second, Witten discusses the possibility of T-duality

along orthogonal S1 for the D3-NS5 system and argues
that, because of the absence of a topological one-cycle in
the T-dual configuration, the path integral in this framework
cannot be taken as a trace. Our configuration differs from
this conclusion in the following way. The T-dual will lead
us to a non-Kähler metric on the Taub-NUT space (we call
this as a deformed Taub-NUT) and although the Taub-NUT
circle will shrink to zero size, wewill not be using the Taub-
NUT configuration to compute the path integral. Rather a
different Taub-NUT will feature later in our study of the
gauge theory on the wrapped D5-branes.
Third, converting the D3-branes to D4-branes wrapped

along direction x3 would seem to give us only two scalars
ðx8; x9Þ. But this is not quite the case as the fluctuation of
the gauge field along the x3 direction will appear as an extra
scalar field when we look at the three-dimensional gauge
theory along directions ðx0; x1; x2Þ. These are therefore
exactly the scalar ~X in [11]. The other three scalar fields,
namely ðx4; x5; x7Þ, are related to ~Y in [11].
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Below a certain energy scale, related to inverse radius of
the x3 circle, the theory on the D4-branes can be studied at
the intersection space of the NS5-D4 system. The boundary
action is then given, for the Euclidean three-dimensional
space, by [11]

Sð1Þb ¼ 1

g2YM

Z
x6¼0

d3x

�
l1ϵabcTrXa½Xb; Xc�

þ l2ϵμνρTr

�
Aμ∂νAρ þ

2

3
AμAνAρ

��
; ð3:6Þ

where ðl1; l2Þ are constants related to the background gauge
field hA3i (see also [11]) and the superscript is for later
convenience.

1. On the topologically twisted theory

Constructing a topological field theory using R-
symmetry twist to N ¼ 4 theory is well known, and could
be easily applied to our configuration. The wrapped D4-
branes on x3 have a SOð5Þ symmetry broken to
SOð4Þ × Uð1Þ. The one-form associated with the Uð1Þ
symmetry can be combined with the twisted scalar fields,
i.e. scalar fields associated with ðx8; x9Þ converted to one-
forms ϕμdxμ. The fluctuation of the gauge field along the x3
direction7 contributes another one-form. Finally the fourth
one-form may appear from one component of the fluctua-
tions of the D4-branes along the orthogonal direction.
Together these one-forms could be expressed (in Euclidean
space) as

ϕ≡X3
μ¼0

ϕμdxμ; ð3:7Þ

which captures the concept of R-symmetry twist (see
[11,14] for more details). Using these we can rewrite
(3.6) as the following topological theory [11]:

Sð1Þb ¼ 1

g2YM

Z
x6¼0

d3xϵμνρ

×Tr

�
2l1ϕμϕνϕρþ l2

�
Aμ∂νAρþ

2

3
AμAνAρ

��
; ð3:8Þ

where the coefficients l1 and l2 are defined in terms of
t≡� jτj

τ , where τ is the standard definition for four-
dimensional gauge theory, namely τ ¼ θ

2π þ 4πi
g2YM

, as

l1 ≡ −
tþ t−1

6
; l2 ≡ tþ t−1

t − t−1
: ð3:9Þ

The derivation of the above relations are given in [11],
assuming the θ angle in the definition of τ to be related to
the YM coupling g2YM.
The topological theory that we got above in (3.8) is

however not complete. There are other terms that require a
more detailed study to derive. The derivation has been
beautifully presented in [11], so we will just quote the
results. The idea is to take the five-dimensional action on
the D4-branes:

SD4 ¼
1

g25

Z
d5x

ffiffiffiffiffiffiffi
gð5Þ

q
Lð5Þ
kin

þ T4

Z
ϵμνρσαAμTrFνρFσα; ð3:10Þ

where T4 is the tension of the D4-brane, and reduce over
the compact direction x3. The expectation value of Aμ,
along with T4, will give rise to the θ angle in the dimen-
sionally reduced four-dimensional N ¼ 4 Super Yang-
Mills (SYM) theory with the Yang-Mills (YM) coupling
determined by the length R3 of the compact x3 direction
(assuming flat gð5Þ):

1

g2YM
¼ R3

g25
: ð3:11Þ

The kinetic piece of the five-dimensional action of the
D4-branes can now be represented as

1

g25

Z
d5x

ffiffiffi
g

p
Lð5Þ
kin→

1

g2YM

Z
d4x

ffiffiffi
g

p
Lkin

¼fQ;…gþ 1

g2YM

Z
d3x

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw2

p

×

�
−wΩðAÞþ ϵμνσTr

�
ϕμFνσþwϕμDμϕσ −

2

3
ϕμϕνϕσ

��
;

ð3:12Þ

where the boundary integral has to be defined at both ends
of x6, namely x6 ¼ 0 and x6 → ∞, or to the point along x6
where we have moved the other NS5-brane. Of course, as
mentioned earlier, to preserve maximal supersymmetry, the
other NS5-brane has to be kept far away so that near x6 ¼ 0
we restore N ¼ 4 supersymmetry. We have also related t,
appearing in (3.9), and w as

t ¼ w −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
: ð3:13Þ

The other parameters appearing in (3.12) are defined in the
following way: Q is the standard supersymmetric operator
such that in the absence of any boundary, the kinetic piece
would only be given by the first line of (3.12) i.e. as an
anticommutator with Q. The other parameter ΩðAÞ is the
standard Chern-Simons term in three-dimension, such that

7Not to be confused with the type IIA Uð1Þ gauge field with
expectation value hA3i.
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Z
d3xΩðAÞ ¼

Z
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð3:14Þ

It is now easy to see that once we combine the boundary
term of (3.12) with the boundary action (3.8), the final
action takes the following simple form:

S ¼ −
4π

g2YM
·

1

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
Z
x6¼0

d3x

×
Z

Tr

�
Aw ∧ dAw þ 2

3
Aw ∧ Aw ∧ Aw

�
; ð3:15Þ

as one may verify from [11] too. The above action is
essentially ΩðAwÞ, with Aw ≡ Aþ wϕ. This tells us that we
could insert a generalized one-form, given by Aw, into the
Chern-Simons action and get the corresponding topological
field theory. This generalized one-form, as we will argue
soon, should appear from our M-theory analysis. Note also
that the path integral description should remain similar to
(3.1) as

Z
DAw exp

�
4π

g2YM
·

1

w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

p
Z

d3xΩðAwÞ
�

¼
Z

DA exp

�
4π

g2

Z
d3xΩðAÞ

�
; ð3:16Þ

where we assume that the path integral is evaluated at the
usual boundary x6 ¼ 0. Thus the Scs appearing in (3.1)
should then be identified with (3.14) except with a scaled
coupling g2 defined as

g ¼ gYM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w2

pq
: ð3:17Þ

It is important to recall that, for our case, only the low
energy dynamics is given by the Chern-Simons theory at
the boundary. By low energy we mean the energy scale
smaller than the inverse radius of the x3 direction. Using the
language of [11] our five-dimensional Euclidean space is
given by V ≡W × S1 ×Rþ, where S1 is parametrized by
x3 and Rþ is parametrized by x6. This S1 should not be
confused with the S1 of [11] used in studying Khovanov
homology.
There is one subtlety that we always kept under the rug:

the physics at the other boundary associated with the
existence of the second parallel NS5-brane. We had
assumed that the second NS5-brane can be moved far
away so that near x6 ¼ 0 we have the full N ¼ 4
supersymmetry. Although this description is roughly cor-
rect, this is not the full picture as this x6 circle will become
the Taub-NUT circle in the dual type IIB framework.
Therefore it is then necessary to determine the behavior of
the following Chern-Simons form:

ΩðAð1Þ
w Þ −ΩðAð2Þ

w Þ; ð3:18Þ

where Að1Þ
w ¼ Aw is gauge field we studied earlier for the

boundary x6 ¼ 0. As discussed by Witten in [11], if we

view Að2Þ
w to be trivial, then the path integral can be

represented as (3.16). We will elaborate on this later.

B. Non-Abelian extension and Chern-Simons theory

Having developed the basic strategy to study Chern-
Simons theory from our brane construction, let us now
analyze the geometry (3.4). The x6 circle on the brane side
will appear as a S1, parametrized by ψ, fibered over the
radial direction. The topology of this space is a P1 and it
will be assumed that the D5-branes wrap this two-cycle.
The D5-branes are moved away along the Coulomb branch.
The fundamental form J can be computed from (3.5)

using standard procedure, and is given by

J ¼
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
ðdψ þ cosθ1dϕ1Þ ∧ drþF3 sinθ1dθ1 ∧ dϕ1

þF4dx8 ∧ dx9: ð3:19Þ

One can plug J ≡ e2ϕJ in (3.4) to determine the RR three-
form flux using Hodge duality. Assuming nonzero back-
ground dilaton, this is given by the following expression:

F 3 ¼ eψ ∧ ðk1eθ1 ∧ eϕ1
þ k2dx8 ∧ dx9Þ; ð3:20Þ

where due to the wedge structure there would be no F48 ¼∂F4∂x8 or F49 factors. This is reflected in the coefficients
ðk1; k2Þ which are given in terms of the warp factors of
(3.4) as

k1 ¼
e2ϕF4rF3

ffiffiffiffiffiffi
F2

p
F4

ffiffiffiffiffiffi
F1

p ;

k2 ¼
e2ϕð ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F3rÞF4

ffiffiffiffiffiffi
F2

p
F3

ffiffiffiffiffiffi
F1

p ; ð3:21Þ

even if we keep ϕ as an arbitrary, but well-defined, function
of the internal coordinates. Note that if the metric on the
space (3.4) is Kähler, then our formula would have yielded
vanishing RR three-form flux. Thus when the D5-branes
wrap the two-cycle of a blown-up Taub-NUT space, the
metric has to be non-Kähler to preserve supersymmetry.

1. Generalized deformation and type IIB background

It is now time to see what effect would the introduction
of type IIA complex structure on the ðx3;ψÞ torus have on
our type IIB background. This will not be a dipole
deformation, rather it will be a noncommutative (NC)
deformation of the wrapped five-brane theory, the non-
commutativity only being along the ðx3;ψÞ directions.
Essentially the simplest noncommutative deformation
amounts to switching on a NS B-field with both
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components along the brane. The B-field for our case will
have component B3ψ as we mentioned before, which of
course has the required property in the presence of a
D5-brane along ðx0;1;2;3; r;ψÞ. Since the warp factors are r
dependent, this B-field component will be a constant along
the ðx3;ψÞ directions but will depend on the radial
coordinate r. This case is unlike anything that has been
studied so far, although from an effective three-brane point
of view this will be a dipole deformation. Thus this is not
the standard NC deformation but we will continue calling
it one.
We now expect a field strength of the form dB. This field

strength will then backreact on our original type IIB
background (3.4) and change the metric to the following:

ds2 ¼ e−ϕ
�
−dt2 þ dx21 þ dx22 þ

dx23
cos2θ þ F2sin2θ

�

þ eϕ
�
F1dr2 þ

F2ð dψ
cos θ þ cos θ1dϕ1Þ2
1þ F2tan2θ

þ F3ðdθ21 þ sin2θ1dϕ2
1Þ þ F4ðdx28 þ dx29Þ

�
; ð3:22Þ

where θ is related to the NC deformation. It is easy to see
how the Lorentz invariance along the compact x3 direction
is broken by the NC deformation. This is one reason (albeit
not the most important one) for the knots to be restricted
along the Euclidean three directions.
Coming now to the fluxes, it is interesting to note that the

RR three-form flux remain mostly unchanged from the
value quoted earlier in (3.20) with a small change in the dψ
fibration structure:

F 3¼ðk1eθ1 ∧ eϕ1
þk2dx8 ∧ dx9Þ∧ ðdψþ cosθcosθ1dϕ1Þ;

ð3:23Þ

where ðk1; k2Þ are the same as in (3.21). However now
along with the three-form RR flux, we also have a source of
NS three-form flux which is responsible for generating the
NC deformation in our system. This extra source of NS flux
is given by

H3 ¼
F2r sin 2θ

2ðcos2θ þ F2sin2θÞ2
er ∧ êψ ∧ e3

−
F2 sin θ

cos2θ þ F2sin2θ
eθ1 ∧ eϕ1

∧ e3; ð3:24Þ

from where we see how θ creates the necessary NC
deformation and êψ ¼ dψ þ cos θ cos θ1dϕ1 denotes the
new ψ fibration. Finally, the NC deformation also effects
the type IIB dilaton, changing it from e−ϕ to

eϕB ¼ e−ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ F2sin2θ

p : ð3:25Þ

2. Comparison with an alternative deformation

Here we pause a bit to ask the question whether the NC
deformation that we study here is consistent with the
procedure adopted in [11,14] to localize the knots along
the Euclidean x0;1;2 directions. In the original construction
of [11] an axionic background C0 is switched on to provide
a theta angle to the gauge theory on the D3-branes (with the
NS5-brane boundary). In our language this will dualize to a
RR B-field switched on the wrapped D5-branes on the
Taub-NUT two-cycle. Note that this RR B-field is in
addition to the RR B-field generated by the D5-brane
sources. The question now is how will this additional RR
B-field change the background solution. To analyze this let
us assume, for simplicity, that the RR B-field for the
wrapped D5-brane sources is given by

C2 ¼ bθ1ϕ1
dθ1 ∧ dϕ1 þ b89dx8 ∧ dx9; ð3:26Þ

with the metric as in (3.4) and (3.5) and ðbθ1ϕ1
; b89Þ are

functions of all the internal coordinates except ðψ ;ϕ1Þ to
maintain the necessary isometries. Note that if bθ1ϕ1

¼
bθ1ϕ1

ðψÞ and b89 ¼ b89ðψ ;ϕ1Þ, then

dC2¼ðm1eθ1 ∧eϕ1
þm2dx8∧dx9Þ∧ ðdψþm3cosθ1dϕ1Þ;

ð3:27Þ

which resembles (3.20) but is closed and does not have the
required isometries. We have defined the coefficients in the
following way:

m1 ¼ cosecθ1
dbθ1ϕ1

dψ
; m2 ¼

∂b89
∂ψ ;

m3 ¼ sec θ1

�∂b89
∂ψ
�

−1
�∂b89
∂ϕ1

�
: ð3:28Þ

Therefore to be consistent with the RR field strength (3.20),
we can define

F 3 ≡ dC2 þ sources; ð3:29Þ

with dC2 derivable from (3.26) that preserves the ðψ ;ϕ1Þ
isometries. What happens when a component like Cψ3 is
switched on? To be consistent with [11] this component
should be a constant along the fractional D3-branes’
direction but could be a function of the internal coordinates.
The answer can be derived following certain well-

defined, but tedious, steps. The backreacted metric changes
from (3.4) and (3.5) to the following:
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ds2 ¼ eφB

�
−dt2 þ dx21 þ dx22 þ

dx23
cos2θ þ F2e2ϕsin2θ

�

þ e2ϕþφB

�
F1dr2 þ

F2ð dψ
cos θ þ cos θ1dϕ1Þ2
1þ F2e2ϕtan2θ

þ F3ðdθ21 þ sin2θ1dϕ2
1Þ þ F4ðdx28 þ dx29Þ

�
; ð3:30Þ

where θ will be related to the additional RR B-field
component switched on. Comparing (3.22) and (3.30)
we see they are formally equivalent: the Lorentz invariance
along spacetime directions is broken in exactly the same
way for both the cases; and the ψ-fibration structure
matches. The metric differs slightly along the ðψ ; x3Þ
directions, and the warp factors are little different from
(3.22), but the essential features are reproduced in an
identical way. The dilaton eφB is again a slight variant of
(3.25) and takes the form

e−φB ¼ eϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ F2e2ϕsin2θ

p : ð3:31Þ

The RR B-field changes from what we started off in (3.26)
because of the backreactions from the additional RR
B-field piece. The precise functional form can also be
worked out with some efforts, and the result is

C2 ¼
�

F2e2ϕ tan θ
cos2θ þ F2e2ϕsin2θ

�
ðdψ þ cos θ cos θ1dϕ1Þ ∧ dx3

þ bθ1ϕ1
dθ1 ∧ dϕ1 þ b89dx8 ∧ dx9; ð3:32Þ

where we see that the first term is precisely the additional
RR B-field piece that is switched on to restrict the knots
along the Euclidean x0;1;2 directions. In the limit θ → 0 we
get back (3.5) and (3.26).
Thus, comparing (3.22) and (3.30), we see that NC (or

dipole) deformation and the deformation from switching on
RR component of the B-field essentially amount to the
same thing: they both restrict the knots along the x0;1;2
directions, albeit in the Euclidean version, by breaking the
Lorentz invariance along the x0;1;2 and the x3 directions.8

However the RR deformation is sometimes hard to imple-
ment in the supergravity language as it relies on the precise
values of the C2 components in the presence of sources. But
now with our above-mentioned equivalence we can use the
NC deformations to compare the results as the supergravity
analysis that we perform here will only be sensitive to the
metric deformations. Henceforth we will mostly use the
dipole (or NC) deformations to study the knots, unless
mentioned otherwise, and compare with the RR deforma-
tions whenever possible as we go along.

3. M-theory uplift and harmonic forms

It is now instructive to analyze the M-theory uplift of the
deformed background (3.22). Before that however we can
see how the intermediate type IIA background looks by T-
dualizing along a compact orthogonal direction. There is no
global one-cycle, but locally we have polar coordinates
ðθ1;ϕ1Þ. There is no isometry along the θ1 direction, so that
leaves us only with the ϕ1 circle. Local T-duality along ϕ1

will give us D6-branes, originally wrapped along the two-
sphere generated by the collapsing ψ coordinate on the
radial r direction, and the ϕ1 circle. This configuration is
stabilized against collapse by background fluxes, which we
will determine below. The background metric for the
wrapped D6-branes is now given by

ds2 ¼ e−ϕ
�
−dt2 þ dx21 þ dx22 þ

dx23
cos2θ þ F2sin2θ

þ ðdϕ1 þ ~F2 tan θ sec θ cos θ1dx3Þ2
~F2cos2θ1 þ F3sin2θ1

�

þ eϕ
�
F1dr2 þ F3dθ21 þ F4ds289

þ
�

~F2F3sin2θ1sec2θ
~F2cos2θ1 þ F3sin2θ1

�
dψ2

�
; ð3:33Þ

where we note that the Lorentz invariance along ðx3;ϕ1Þ
directions is broken so that the knots are still localized
along the x0;1;2 directions, albeit in the Euclidean version.
Note also the nontrivial fibration of the ϕ1 circle, which in
turn appears in the background NS two-form B2 as

B2 ¼
~F2 cos θ1 sec θ

~F2cos2θ1 þ F3sin2θ1

× ðdϕ1 þ ~F2 tan θ sec θ cos θ1dx3Þ ∧ dψ

þ ~F2 tan θsec2θdψ ∧ dx3; ð3:34Þ

from where the field strengthH3 ¼ dB2 can be determined.
We have also defined ~F2 as

~F2 ¼
F2

1þ F2 tan2 θ
: ð3:35Þ

To complete the story we will need the type IIA dilaton and
the RR fluxes. The dilaton is well defined and takes the
form

eϕA ¼ e−3ϕ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos2θþF2sin2θÞð ~F2cos2θ1þF3sin2θ1Þ

q ; ð3:36Þ

provided the warp factors ðF2; F3Þ are well defined every-
where. Otherwise strong coupling will set in at the
following two isolated points:

8This is a bit sloppy as, we shall see later, restricting the knots
along a particular subspace is more subtle.
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ðθ1¼ 0;F2ðr1Þ¼ 0Þ;
�
θ1¼

π

2
;F3ðr2Þ¼ 0

�
; ð3:37Þ

irrespective of whether there is any NC deformation on the
type IIB side. In general however, for arbitrary choice of the
warp factors, strong coupling will set in when e−ϕ → ∞.
This is the regime where the dynamics will be captured by
M-theory.
To study the RR fluxes we first note that in the type IIB

framework, the RR three-form flux F 3 is not closed and
gives rise to the following source equation:

dF 3 ¼ −k2 cos θeθ1 ∧ eϕ1
∧ dx8 ∧ dx9

þ ðk1aeθ1 ∧ eϕ1
þ k2adx8 ∧ dx9Þ ∧ ea ∧ êψ ;

ð3:38Þ

with a≡ ðθ1; r; 8; 9Þ and ea ≡ ðdθ1; dr; dx8; dx9Þ. The
first term is the expected source term for the D5-branes
located at a point in ðθ1;ϕ1; x8; x9Þ space. The other two
terms signify the fact that we have fractional D5-branes.
This is also reflected on the type IIA two-form F 2 as

dF 2¼−k2cosθsinθ1dθ1∧dx8∧dx9

−ðsinθ1k1adθ1∧dψ −cosθcosθ1k2adx8∧dx9Þ∧ea;

ð3:39Þ

with the first line denoting the expected charge of the
wrapped D6-branes.
At strong type IIA coupling, we can analyze the

dynamics using M-theory. The M-theory metric takes the
following form:

ds2 ¼ H1½−dt2 þ dx21 þ dx22 þH2dx23

þH3ðdϕ1 þ f3dx3Þ2 þ e2ϕðF1dr2 þH4dψ2Þ�
þ e2ϕH1½F3dθ21 þ F4ðdx28 þ dx29Þ�
þ e−2ϕH−2

1 ðdx11 þA1mdxmÞ2; ð3:40Þ

where we see that the second line reflects the warped Taub-
NUT nature of the background using gauge field A1 from
the source (3.39). The warp factors Hi and f3 describing
the background are defined as

H1 ¼ ðcos2θþF2sin2θÞ1=3ð ~F2cos2θ1 þF3sin2θ1Þ1=3

H2 ¼
1

cos2θþF2sin2θ
; H3 ¼

1

~F2cos2θ1 þF3sin2θ1

f3 ¼ ~F2 tanθ sec θ cosθ1; H4 ¼
~F2F3sin2θ1sec2θ

~F2cos2θ1 þF3sin2θ1
:

ð3:41Þ

To proceed further we will have to define the type IIA
gauge field from (3.39) as

F 2 ¼ dA1

≡ α1dx8 ∧ dx9 þ α2dx8 ∧ dθ1 þ α3dx9 ∧ dθ1; ð3:42Þ

where the background one-formA1 appears in the fibration
structure of (3.40) giving the Taub-NUT form and αi ≡
αiðθ1; x8; x9Þ as some generic function of ðθ1; x8; x9Þ at
some fixed value of r satisfying the constraint:

∂α1
∂θ1 þ

∂α3
∂x8 −

∂α2
∂x9 ¼ 0: ð3:43Þ

Since most of the warp factors are functions of r, except F4

and eϕ which are respectively generic functions of ðx8; x9Þ
and ðx8; x9; θ1Þ also, at a given point if r, i.e. at r ¼ r0, we
have a warped Taub-NUT space specified by the following
metric derivable from (3.40):

ds2TN ¼ G1dθ21 þ G2dx28 þ G3dx29

þ G4ðdx11 þA1Þ2; ð3:44Þ

with Gi given by the following expressions in terms of the
warp factors H1 given in (3.41), Fi in (3.5), and the dilaton
e2ϕ:

G1 ¼ e2ϕH1F3; G2 ¼ G3 ¼ e2ϕH1F4;

G4 ¼
1

e2ϕH2
1

: ð3:45Þ

To proceed further we will assume, for simplicity, the
warped Taub-NUT space described above in (3.44) is a
single centered Taub-NUT space. This is clearly not an
accurate description of the system as the warped Taub-NUT
space is derived originally from N wrapped D4-branes in
type IIB theory. We will rectify the situation soon by
resorting back to the original description, but for the time
being a single-centered Taub-NUT space will suffice to
illustrate the picture without going into too many technical-
ities. Having said this, we now use the fact that a single-
centered Taub-NUT space allows a unique normalizable
harmonic form ω≡ dζ which is self-dual or anti-self-dual
i.e. ω ¼ � �4 ω. For our case, this is given by

ζ ¼ gðθ1; x8; x9Þðdx11 þA1Þ; ð3:46Þ

with gðθ1; x8; x9Þ satisfying the following set of differential
equations at r fixed at r ¼ r0:
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1

g
∂g
∂θ1¼�α1

ffiffiffiffiffiffiffiffiffiffiffi
G1G4

G2G3

s

¼� α1
e2ϕF4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3

ðcos2θþF2sin2θÞð ~F2cos2θ1þF3sin2θ1Þ

s

1

g
∂g
∂x8¼�α3

ffiffiffiffiffiffiffiffiffiffiffi
G2G4

G1G3

s

¼� α3e−2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3ðcos2θþF2sin2θÞð ~F2cos2θ1þF3sin2θ1Þ

q
1

g
∂g
∂x9¼∓α2

ffiffiffiffiffiffiffiffiffiffiffi
G3G4

G1G2

s

¼∓ α2e−2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3ðcos2θþF2sin2θÞð ~F2cos2θ1þF3sin2θ1Þ

q :

ð3:47Þ

The above set of partial differential equations are in general
hard to solve if we do not know the precise functional forms
of the warp factors and dilaton involved in the expressions
above. However comparing (3.42) and (3.39) we see that α1
appearing above in (3.47) should at least be proportional to
k2 defined in (3.21). In other words, we can write α1 at
r ¼ r0 as

α1ðr0; x8; x9; θ1Þ ¼ e2ϕF4αaðθ1Þ; ð3:48Þ

where F4 ¼ F4ðr0; x8; x9Þ and ϕ ¼ ϕðr0; x8; x9; θ1Þ. Note
that, with the choice of F 2 in (3.42) and the wedge
structure, we can allow the above functional form for α1
without spoiling the constraint equation (3.43). This way
the first equation in (3.47) is easily satisfied. However for
the other two equations in (3.47), one simple way to solve it
would be to allow the dilaton as well as ðα2; α3Þ to be
functions of ðr; x8; x9; θ1Þ, such that the following con-
ditions are met:

α3e−2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q ≡ β3ðx8Þ;

α2e−2ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q ≡ β2ðx9Þ: ð3:49Þ

Let us also assume that g appearing in (3.46) can be
expressed as

gðθ1; x8; x9Þ≡ g1ðθ1Þg2ðx8Þg3ðx9Þ: ð3:50Þ

Thus plugging in (3.50) into the differential equa-
tions (3.47) and assuming, without loss of generality,

F2ðr0Þ ¼ b−10 , we get the following functional form
for g:

gðx8; x9; θ1Þ ¼ g0 exp

�
�c0

�Z
θ1

0

αaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2θ1 þ cos2θ1

b0þtan θ

q dθ1

þ
Z

x8

0

β3dx8 −
Z

x9

0

β2dx9

��
; ð3:51Þ

where for appropriate sign we should get a normalizable
harmonic form ω and we have defined c0 as
c−10 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F3ðr0Þðcos2 θ þ b−10 sin2 θÞp
. The normalizability

is defined with respect to ðx8; x9Þ directions as θ1 is a
compact angular coordinate. Thus the θ1 dependence of
(3.51) is redundant and we can simplify (3.51) by elimi-
nating the θ1 dependence in the gauge field (3.42), i.e.
eliminating the α1 factor in (3.42). Under this assumption
the integrand in

Z
TN

ω∧ω¼
Z

2g

�
α3

∂g
∂x8−α2

∂g
∂x9
�
dθ1∧dx8∧dx9∧dx11

ð3:52Þ

will be independent of θ1 provided ðα2; α3Þ can be made
independent of θ1 leading to a constant factor for the θ1
integral9 as g in (3.51) will now be a function of ðx8; x9Þ.
The θ1 independency of ðα2; α3Þ is still consistent with
(3.49), but the question is whether this will be true for
(3.42). To see this, recall that F 2 in (3.42) needs to satisfy

F 2 ¼ dA1 þ Δ; dΔ ¼ sources; ð3:53Þ

where A1 would still be written as (3.42), but now with
only ðα2; α3Þ, and appear in the M-theory fibration structure
in the metric (3.40); and the sources correspond to the D6-
brane sources. We can distribute the sources appropriately
such that (3.42) has α2 ¼ α2ðx9Þ and α3 ¼ α3ðx8Þ satisfy-
ing all the background constraints. The dilaton, which is a
function of ðr; x8; x9; θ1Þ, can be chosen from the start in
(3.4) to be of the form

e2ϕ ¼ e2ϕ0Qðr; x8; x9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q ; ð3:54Þ

which can then be used to determine the RR three-form flux
F 3 in (3.20) and (3.21) with the functional form for
Qðr; x8; x9Þ determined using supersymmetry via torsion
classes.10 The θ1 independence of (3.52) will be useful

9In general however one should get an additional piece of the
form 2gα1

∂g
∂θ1 in (3.52).

10An example of supersymmetric compactification will be
described in detail later using torsion classes. For our case using
torsion classes may lead us to consider a more generic case with
F4ðr; x8; x9; θ1Þ instead of our present choice of F4ðr; x8; x9Þ.
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later. Finally, this harmonic form can be used to express the
M-theory G-flux G4 as

G4 ¼ hG4i þ F ∧ ω; ð3:55Þ

where F ¼ dA is the field strength of the Uð1Þ gauge field
A and hG4i is the background G-flux whose explicit form
can be easily determined from the type IIB three-form
fluxes F 3 and H3. This can be worked out by the diligent
reader, therefore wewill not discuss this and instead wewill
concentrate on the M-theory uplift of the RR deformed
background (3.30), (3.32) and (3.31). The M-theory metric
is given as

ds2 ¼ ~H1½−dt2 þ dx21 þ dx22 þ ~H2dx23

þ ~H3ðdϕ1 þ f3dx3Þ2 þ e2ϕðF1dr2 þ ~H4dψ2Þ�
þ e2ϕ ~H1½F3dθ21 þ F4ðdx28 þ dx29Þ�
þ e−2ϕ ~H−2

1
~H−1
2 ðdx11 þA1mdxmÞ2; ð3:56Þ

where we see that the metric is almost similar to the one
presented earlier with NC deformation in (3.40). In fact the
coefficients are also identical to the ones in (3.41), namely,

~H1 ¼ ðcos2θ þ F2e2ϕsin2θÞ1=3ð ~F2cos2θ1 þ F3sin2θ1Þ1=3

~H2 ¼
1

cos2θ þ e2ϕF2sin2θ
; ~F2 ¼

F2

1þ e2ϕF2tan2θ

~H3 ¼ ~H−3
1 ; f3 ¼ 0; ~H4 ¼

~F2F3sin2θ1sec2θ
~F2cos2θ1 þ F3sin2θ1

;

ð3:57Þ

with the differences being the vanishing of f3, and the
existence of certain extra factors of e2ϕ. Finally, the gauge
field appearing in the fibration structure of (3.56) can be
read from the bθ1ϕ1

and b3ϕ1
components of (3.32) as

A1 ¼ bθ1ϕ1
dθ1 þ b3ϕ1

dx3: ð3:58Þ

The next step would be to evaluate the field strength for A1

and bring it in the form (3.42) with the triplet ðα1; α2; α3Þ
such that we can eliminate α1 and make α2 ¼ α2ðx9Þ, α3 ¼
α3ðx8Þ at r ¼ r0 and fixed x3. All these can be accom-
plished by a simple choice of the components in (3.32) and
(3.58):

dbθ1ϕ1
¼ α2ðx8; x9Þdx8 þ α3ðx8; x9Þdx9;

b3ϕ1
¼ α1ðθ1Þ;

∂α2
∂x9 −

∂α3
∂x8 ¼ 0: ð3:59Þ

This way the α1 piece in (3.42) will be absent at fixed x3
and the harmonic function will be independent of θ1 in
exactly the way we wanted. The dilaton can now be chosen
as (3.54) with ~F2 defined as in (3.57) to satisfy the

remaining constraints. Thus with the initial metric choice
(3.4) and (3.5), along with the dilaton (3.54), supersym-
metric configuration can be constructed once the RR
fluxes satisfy the second relation in (3.4). This can be
verified by working out the torsion classes, but we will not
do so here. Instead, in the following section, we will
determine the four-dimensional action that may appear
from the 11-dimensional M-theory supergravity action.

4. First step towards a gauge theory

To derive a four-dimensional gauge theory from
M-theory we will start by assuming Lorentz invariance
along ðx0; x1; x2;ψÞ. Looking at (3.40), we see that this is
possible only if the dilaton and the warp factor H4

combination e2ϕH4 is expressed as

e2ϕH4 ¼ 1þ U4; ð3:60Þ

with small U4 at all points in ðr; x8; x9; θ1Þ. In this limit,
comparing this with (3.49) and (3.41), it means ðα2; α3Þ are
chosen as

α2ðr; x9; θ1Þ ¼
β2ðx9Þð ~F2cos2θ1 þ F3sin2θ1Þ3=2

~F2F3sec2θsin2θ1
þOðU4Þ

α3ðr; x8; θ1Þ ¼
β3ðx8Þð ~F2cos2θ1 þ F3sin2θ1Þ3=2

~F2F3sec2θsin2θ1
þOðU4Þ;

ð3:61Þ

for all points in ðr; x8; x9; θ1Þ space except at θ1 ¼ 0. At
θ1 ¼ 0 one has to resort back to the definition (3.49).
Therefore for small U4, the metric along ðx0; x1; x2;ψÞ is

essentially H1, and consequently the M-theory action with
lp ≡ 1 will have the following four-dimensional reduction:Z

d11xG4 ∧ �11G4 þ
Z

C3 ∧ G4 ∧ G4

¼ c1

Z
d4xF ∧ �4F þ c2

Z
F ∧ F ; ð3:62Þ

where we have ignored for the time being the seven-
dimensional nature of the Uð1Þ theory by compactifying
down to four dimensions over the three-cycle Σ3 para-
metrized by ϕ1 in (3.40) and the two-sphere determined by
the degenerating x3 fibration over the radial coordinate r.
The coefficients ci appearing in (3.62) are given as

c1 ¼
Z
Σ3

d3σ
ffiffiffiffiffi
g3

p Z
TN

ω ∧ �TNω;

c2 ¼
Z
Σ3

hC3i
Z
TN

ω ∧ ω; ð3:63Þ

with c1 giving us the Uð1Þ YM coupling whose value can
be read off from ω, using (3.51), and the internal metric
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along ðϕ1; r;ψÞ, using (3.40); and c2 giving us the Θ angle.
Note also that c1 and c2 are related by

c2 ¼
R
Σ3
hC3iR

Σ3
d3σ

ffiffiffiffiffi
g3

p c1; ð3:64Þ

which should be reminiscent of the relation between Θ and
1

g2YM
discussed in [11]. To see the precise connection, let us

go back to the original orientation of the D3-branes on the
NS5-brane in Table I. The D3-branes are oriented along x0,
x1, x2 and ψ directions, and therefore since the M-theory
Taub-NUT is oriented along ðx8; x9; θ1; x11Þ, we are left
with the three-cycle Σ3 along ðx3; r;ϕ1Þ directions with
metric

g3 ¼

0
B@
H1H2þH1H3f23 H1H3f3 0

H1H3f3 H1H3 0

0 0 H1e2ϕF1

1
CA; ð3:65Þ

which could be read from the metric (3.40), and Hi, f3 are
defined in (3.41) above. The above metric leads to the
following value of the integral:

v3 ≡
Z
Σ3

d3σ
ffiffiffiffiffi
g3

p ¼ 2πR3

Z
∞

0

dreϕ
ffiffiffiffiffiffi
F1

p
; ð3:66Þ

at a fixed value for ðθ1; x8; x9Þ. In deriving (3.66), we have
assumed R3 to be the radius of the x3 circle. The above
integral is a well-defined function because the dilaton is
well defined at the two boundaries of r and F1 vanishes at
the origin and goes to identity at r → ∞. Thus (3.66) will
lead to some constant value at any given point of
ðθ1; x8; x9Þ space.
Coming to the M-theory three-form C3, we now require

the component ðC3Þ3rϕ1
to compute c2 in (3.63). A naive

computation from T-duality will yield zero value for this
component.11 However the scenario is subtle because of the
fractional brane nature of the type IIB three-branes. The
D5-D5 nature of the fractional D3-branes implies that we
need a small value of NS B-field switched on along ðx3; rÞ
directions to take care of the tachyons [25]. Consistency
then requires us to have at least a RR two-form along ðx3; rÞ
directions in the type IIB side. This will dualize to the
required C3 component ðC3Þ3rϕ1

which, without loss of
generalities, will be assumed to take the following form:

C3 ≡ Nr sin 2θ cos θpðθ1; θÞqðθÞ
2ðcos2θ þ Nsin2θÞ2 dr ∧ dx3 ∧ dϕ1; ð3:67Þ

whereN ≡ Nðr; θÞ such thatN remains arbitrarily small for
all r and only at r → ∞, N → 1; and pðθ1; θÞ and qðθÞ are
well-defined periodic functions of θ1 and θ respectively.
This way equations of motion (EOMs) will not be affected
by the introduction of these field components. Using this,
the value of the integral in (3.63) for c2 is given by

Z
Σ3

hC3i ¼
2

π

Z
π=2

0

dθ1pðθ1; θÞ

×
Z
Σ3

dr ∧ dx3 ∧ dϕ1

Nr sin 2θ cos θqðθÞ
ðcos2θ þ Nsin2θÞ2

¼ 2R3qðθÞ sin θ; ð3:68Þ

where we have absorbed the value of the θ1 integral in the
definition of R3 and q. Now combining (3.66) and (3.68),
and making qðθÞ ¼ 1 for simplicity, we find that c1 and c2
are related by

c2 ¼ sinθc1¼
�

2 tanθ
2

1þ tan2 θ
2

�
c1¼

�
2a

1þa2

�
c1; ð3:69Þ

where we have normalized the integral in (3.66) to 2R3 to
avoid some clutter. Furthermore, in (3.69), we have defined
a≡ tan θ

2
. It is interesting that if we identify this a with the

same a used in Eq. (2.7) of [11], we can compare (3.69)
with Eq. (2.14) of [11] provided we define ðc1; c2Þ as12

c1 ≡ 4π

g2YM
; c2 ≡ Θ

2π
: ð3:70Þ

What happens for the M-theory uplift (3.56) for the type
IIB background (3.30), (3.32) and (3.31)? It is easy to see
that the component of the C3 (3.67) remains unchanged, but
v3 defined in (3.66) changes to the following:

v3 ¼ 2πR3 sec θ
Z

∞

0

dreϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

1þ e2ϕF2tan2θ

s

¼ 2πR3 sec θ
Z

∞

0

dreϕ
ffiffiffiffiffiffi
F1

p �
1 −

1

2
e2ϕF2tan2θ þ…

�
;

ð3:71Þ

at a fixed value of ðθ1; x8; x9Þ space. The last equality is
assuming small RR deformation parameter θ, otherwise
one will need the explicit form for the warp factor Fi and
the dilaton eϕ to evaluate the three-volume v3. Now,

11A more accurate statement is the following. Existence of the
RR two-form C2 in (3.32) implies the three-form field strength
components ðF 3Þ3ψr and ðF 3Þ3ϕ1r, both of which under specific
gauge transformations may yield a two-form field ðC2Þ3r. How-
ever consistency would require this to be functions of ðψ ;ϕ1Þ
which, in our T-dual framework, would be impossible as we
require the field components to be independent of the T-dual
coordinates ðψ ; x3;ϕ1Þ.

12The results do not match exactly as the above comparison is
naive. The precise connection between a of [11] and the super-
gravity parameters will be outlined later.
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because of the change in the volume v3, the relation
between c2 and c1 becomes

c2 ¼
1

2
sin 2θc1 ¼

�
tan θ

1þ tan2θ

�

c1 ≡ 2a
1þ a2

�
1 − a2

1þ a2

�
c1; ð3:72Þ

with corrections coming from the Oðθ2Þ terms in (3.71).
This relation can be compared with (3.69) and also with
[11] where a somewhat similar discussion appears from the
gauge theory point of view.

5. Including the effects of U4

The above identification (3.69) or (3.72) is encouraging
and points to the consistency of the picture from the M-
theory point of view. However generically U4 is never small
everywhere, and therefore Lorentz invariance cannot
always be restored along the ψ direction. In such a scenario
we expect the gauge theory to have the following form:

c11:c1
v3

Z
d4x
X
a;b

F abF ab þ c12:c1
v3

Z
d4x
X
a

F aψF aψ ;

ð3:73Þ

where a, b ¼ 0, 1, 2 and ðc11; c12Þ will eventually be
related to the YM coupling (3.70) after proper redefinitions
of the gauge fields. We will do this later. However subtlety
arises when we try to define these coefficients in terms of
the background data because the components of the metric
along directions orthogonal to the Taub-NUT space as well
as the dilaton do depend on the Taub-NUT coordinates
ðθ1; x8; x9Þ. For example the first coefficient in (3.73) can
be expressed as

c11c1
v3

≡ 4R3e2ϕ0 sec θ
Z

d4ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2

~F2 − F3

s
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

F3

s �

× gQ

�
α3

∂g
∂x8 − α2

∂g
∂x9
�
; ð3:74Þ

where g ¼ gðr; x8; x9Þ instead of gðr0; x8; x9; θ1Þ as in
(3.51) and Q ¼ Qðr; x8; x9Þ. We have defined d4ζ as the
integral overZ

d4ζ ≡
Z

∞

0

dr
Z

R8

0

dx8

Z
R9

0

dx9

Z
R11

0

dx11 ð3:75Þ

with Rn being the radius of the nth direction, which could
be compact or noncompact depending on the configuration.
For example we expect R8 or R9 to be noncompact.
Looking at (3.74), we see that there is a mixing between

the Taub-NUT and the non-Taub-NUT coordinates.
However we can simplify the resulting formula by making

two small assumptions: (a) we can take the constant leading
term for the dilaton, namely e2ϕ0, and (b) fix the Taub-NUT
space at r ¼ r0. The latter would mean that the dr integral
could be restricted only to the space orthogonal to our Taub-
NUT configuration, whereas the former would imply that
we do not have to worry about the dx8 and dx9 integrals.

13

Note also that the average over the θ1 coordinate that we
perform here is consistent with (3.52) because one may
assume as though the dθ1 integral is being transferred to
the integrand over the space orthogonal to the Taub-NUT
space. This is where our work on making the integrand in
(3.52) independent of θ1 will pay off. Of course as we saw,
a general analysis is not too hard to perform, but this is not
necessary to elucidate the underlying physics.
Therefore taking the two assumptions into account, the

first coefficient c11 is easy to work out, and is given by the
following integral:

c11ðθÞ ¼ R3 sec θ
Z

∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

~F2 − F3

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						; ð3:76Þ

where we have only taken the constant leading term for the
dilaton. Additionally, the combination ~F2 − F3 should be
viewed as j ~F2 − F3j so that this will always be real. This
means for our purpose we will always be choosing the
metric ansatze (3.5) with ~F2 ≥ F3 at all points in r, the
radial coordinate.14 This choice, although not generic,
should suffice at the level of a concrete example. An
alternative choice with F3 ≥ ~F2, at all r, leads to

c11ðθÞ¼2R3secθ
Z

∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

F3− ~F2

s
tan−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3− ~F2

~F2

s �
;

ð3:77Þ

13If we define Q appearing in (3.54) as Q≡Q1

ffiffiffiffiffiffi
F3

p
, then we

see that the dilaton varies between e2ϕ0Q1 and e2ϕ0Q1

ffiffiffiffiffiffiffiffiffiffiffi
2F3

~F2þF3

q
.

For regimes where ~F2 → F3, the latter is simply e2ϕ0Q1. There-
fore the choice of constant dilaton means that Q1 do not vary
significantly over the ðr; x8; x9Þ space. This way issues related to
strong coupling could be avoided.

14Note that the r behavior of the warp factors Fi typically goes
as Fk ¼

P
nαknðr=roÞn where ro is the scale and the sum over n

can be from all positive and negative numbers depending on the
model. This means, to maintain ~F2 ≥ F3 at all points in r, we will
have to choose the functional behavior differently for r < ro and
for r > ro. Again, this subtlety is only because we restricted
ourselves to a concrete example with ~F2 ≥ F3. We could take
generic ð ~F2; F3Þ for our case, but then the analysis becomes a bit
cumbersome although could nevertheless be performed. However
since in the latter case we do not gain any new physics, we restrict
ourselves with the former choice.
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and could be considered instead of (3.76) but we will only
consider the former case namely ~F2 ≥ F3.
The above integral (3.76) is just a number and is well

defined for all values of the warp factors even in the limits
F3 ¼ 0 ¼ ~F2 and ~F2 ¼ F3. On the other hand c12 is more
nontrivial to represent in integral form because c12 depends
on H−1

4 given in (3.41), which unfortunately is not well
defined at θ1 ¼ 0. To deal with this we will express the
integral form for c12 in the following way:

c12ðθÞ ¼ 2R3 cos θ
Z

∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

~F2F3

s Z
1

−1
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ a2

p

b2 − z2

¼ 2R3 cos θ
Z

∞

0

drb2

×

2
64b3tanh−1

 
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2

s !

þ ln

						
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						
3
75 ð3:78Þ

such that b is the regularization factor introduced to avoid
the z ¼ �1 singularities. We have also defined ða; b2; b3Þ
in the following way:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F3

~F2 − F3

s
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ

4 ~F2F3

s
;

b3 ¼
2

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2 − F3

s
: ð3:79Þ

Let us now study the limiting behavior of the integrand in
(3.78). In the limit F3 vanishes for some point(s) in r, the
integrand generically blows up but we can arrange it such
that this vanishes as

lim
F3→0

1ffiffiffiffiffiffi
F3

p
(
tanh−1

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s #

þ ln

 ffiffiffiffiffiffi

~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q �)
→ 0. ð3:80Þ

On the other hand, when ~F2 → F3 for certain value(s) of r,
the integrand in (3.78) approaches the following limit:

tanh−1
�
1

b

�
; ð3:81Þ

which blows up in the limit b ¼ 1. But since b is never
identity—the original integral (3.78) being not well defined
for b ¼ 1—the value in (3.81) can be large but not infinite.

However subtlety arises when ~F2 → 0, because in this limit
we expect F3 to also vanish otherwise ~F2 ≥ F3 cannot be
maintained. Furthermore, F3 has to go to zero faster than
~F2. This then brings us to the case (3.80) studied above, and
we can impose ~F2 → 0 there. This means the integrand in
(3.78) will be well defined at all points in ðr; x8; x9; θ1Þ
space even where both ð ~F2; F3Þ vanish, and the large value
of (3.81) can be absorbed in the definition of Aψ in (3.73).
Again, we should ask what happens once we consider the

M-theory uplift (3.56). The coefficients in the metric (3.56)
are slightly different from the ones in (3.40) so we expect
ðc11; c12Þ to change a bit. Indeed that is what happens once
we evaluate the precise forms for ðc11; c12Þ. The first
coefficient c11 is now given by

c11ðθÞ ¼ R3 sec θ
Z

∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

b4ð ~F2 − F3Þ

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						; ð3:82Þ

where ~F2 is now defined as in (3.57) with an extra factor of
the dilaton e2ϕ. Unless mentioned otherwise, we will
continue using the same notation for ~F2 as in (3.35) to
avoid clutter. It should be clear from the context which one
is meant. As expected, (3.82) is exactly as in (3.76) except
for the additional factor of b4 defined as

b4 ≡ cos2θ þ e2ϕF2sin2θ ð3:83Þ

in the dr integral. Similarly, the c12 coefficient is given by
an expression of the form (3.78) except b2 in (3.79)
changes to b2ffiffiffiffi

b4
p , i.e,

b2 →
b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2θ þ e2ϕF2sin2θ
p : ð3:84Þ

This concludes our discussion of the gauge theory from M-
theory and we see that the components of the gauge fields,
namely ðA0;A1;A2Þ can formally be distinguished from
Aψ because of their structure of the kinetic terms in (3.73).
However the picture that we developed so far is related to
Uð1Þ theory, so the natural question is to ask whether we
can extend the story to include non-Abelian gauge theories.
This is in general a hard question because the G-flux in the
supergravity limit is always aUð1Þ field. However if we are
able to include M2-brane states then we should be able to
study the non-Abelian version of (3.62). In the following
we will analyze this picture in some detail.

6. Non-Abelian enhancement and M2-branes

To proceed we will have to first find the two-cycles in the
space given by the metric ansatze (3.44), where we now
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take our background to be a warped multicentered Taub-
NUT space. The idea is to wrap a M2-brane on each of the
two-cycles such that in the limit of vanishing size of the
cycles, the M2-branes become tensionless giving rise to
enhanced gauge symmetry. This idea has been explored
earlier in [31] so we will be brief. Note that for this to
happen, we will start by assuming that the circle para-
metrized by the coordinate x11 shrinks to zero size at
various points on the geodesic line in the ðθ1; x8; x9Þ space.
This way we will have multiple two-cycles, giving rise to a
warped multicentered Taub-NUT space. In other words, we
can rewrite the warped Taub-NUT metric (3.44) in the
following suggestive way:

ds2TN ¼ U−1ðdx11 þA1Þ2 þUd~x2; ð3:85Þ

where we have defined the variables appearing above, using
the definitions in (3.45), in the following way:

d~x2 ¼ 1

H1ðθ1Þ
½F3dθ21 þF4ðx8; x9Þðdx28 þ dx29Þ�

U≡ e2ϕH2
1

¼ e2ϕ
�
cos2θþ sin2θ

b0

�
2=3
�
F3sin2θ1 þ

cos2θ1
b0 þ tanθ

�
2=3

;

ð3:86Þ

with b0 ¼ F−1
2 ðr0Þ as before. Now since both b0 and F3ðr0Þ

are Oð1Þ numbers, and just for analytical simplicity if we
take a small NC deformation θ, then both U and H1 will be
independent of ðθ; θ1Þ and U can be expressed as

Uðx8; x9Þ ¼ 1þ
X∞
m¼1

XN
k¼1

cmk

jl89 − lkjm
; ð3:87Þ

stemming entirely from the dilaton e2ϕ, where cmk are
certain constants associated with the N-centered warped
Taub-NUT space and l89 is the geodesic length in ðx8; x9Þ
space.
We can simplify the subsequent analysis a bit more if we

assume that the warp factor F4 is only a function of x8 at
r ¼ r0 and is independent of x9. Of course the generic case
can also be done, but since this will not change any of the
physics that we want to discuss here, we will resort to the
simplest treatment here. Thus the mass of the wrapped M2-
brane between ðlk; lkþ1Þ two-cycle is then given by

mk;kþ1 ≡ TMSk;kþ1 ¼ βTMR11

Z
lkþ1

lk

dx8
ffiffiffiffiffiffi
F4

p
; ð3:88Þ

where TM is the tension of the membrane, Sk;kþ1 is the area
of the two-cycle between points ðlk; lkþ1Þ and β is a
constant that could be extracted from the coefficients
cmk in (3.87) that is needed to avoid any conical

singularities in the system. The next step is easy and has
been discussed in detail in [31]. The intersection matrices
of the two-cycle satisfy the following algebra:

½Sk;kþ1�o½Sl;lþ1� ¼
�
2δkl

−δl;k−1
ð3:89Þ

which is exactly the Cartan matrix of AN−1 algebra. Thus
the enhanced gauge symmetry of the system leads to an
SUðNÞ group with the Cartan coming from the decom-
position of the localized G-flux as (3.55) but now with

G4 ¼ hG4i þ
XN
i¼1

F i ∧ ωi; ð3:90Þ

with orthonormal harmonic formsωi associated with the ith
two-cycle. All these harmonic forms can be easily derived
from (3.51) by restricting the ðx8; x9Þ integrals over the
two-cycles appropriately. Thus after the dust settles, and
ignoring the seven-dimensional origin of the system for the
time being, we expect the following non-Abelian enhance-
ment of the Uð1Þ theory discussed earlier in (3.62) for the
D3-branes oriented as in Table I:

SYM ¼ c1

Z
d4x

�
γ1
X
a<b

TrF abF ab þ γ2
X
a

TrF aψF aψ

�

þ c2

Z
TrF ∧ F ; ð3:91Þ

with the trace in the adjoint representation of SUðNÞ and
ðc1; c2Þ defined as in (3.70) and related by (3.64) and (3.69)
(the correct relation will be provided later). Note that we
have inserted ðγ1; γ2Þ for the coefficients of the F ab and
F aψ terms respectively. We expect γ1 to be related to (3.76)
and (3.66); and γ2 to be related to (3.78) and (3.66) as in the
Uð1Þ case described in (3.73). A proof of this is hard, and in
the following we will try to give some justification of this.
So far we saw that the localized G-fluxes at the Taub-

NUT singularities provide the Cartan of the gauge group
and the wrapped M2-brane states provide the necessary
charged states to allow for the non-Abelian enhancement.
In fact the M2-brane states provide a two-dimensional
sigma model description at weak string coupling that takes
the following form:

S2 ¼
Z

d2σ
ffiffiffi
h

p
hαβ½f1ðΦ1;Φ2;Φ3Þ∂αλ

⊤
1 ∂βλ1

þ f2ðΦ1;Φ2;Φ3Þ∂αλ2∂βλ2�

þ
Z

d2σ
ffiffiffi
h

p
hαβ
�X5
k¼3

fkðΦ1;Φ2;Φ3Þ∂αΦ⊤
k ∂βΦk

þ f6ðΦ1;Φ2;Φ3Þ∂αλ
⊤
3 ∂βλ3 þ…

�
; ð3:92Þ
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where hαβ is the world-sheet metric, flðΦkÞ are the
couplings, the dotted terms denote couplings to NS and
RR fields including the fermions, and the various sigma
model fields are defined as

λ1 ¼

0
B@

x0
x1
x2

1
CA; λ2 ¼ ψ ; λ3 ¼

�
x3
ϕ1

�
;

Φ1 ¼
�
x8
x9

�
; Φ2 ¼ r; Φ3 ¼ θ1: ð3:93Þ

Due to the nontrivial interaction terms in (3.92), a detailed
study of the spectra is hard. However we make a few
observations. First, the couplings are not arbitrary and can
be worked out from (3.33). We will specifically concentrate
on the first two interactions in (3.92) as their fluctuations
will be related to the four-dimensional gauge interactions.
The ðf1; f2Þ terms are given by

f1ðΦ1;Φ2;Φ3Þ≡ f1ðr; x8; x9; θ1Þ ¼ eϕ;

f2ðΦ1;Φ2;Φ3Þ≡ f2ðr; x8; x9; θ1Þ ¼
eϕ

1 − U4

; ð3:94Þ

where U4 is the same function that appeared in (3.60) and
entered in the derivation of the couplings ðc11; c12Þ in
(3.76) and (3.78) respectively. Thus plugging (3.94) in the
first two terms of (3.92) leads us to the following 2d
interacting Lagrangian for the fields ðλ1; λ2Þ:

L ¼ ∂αλ
⊤
1 ∂αλ1 þ ∂αλ2∂αλ2 þ ϕ∂αλ

⊤
1 ∂αλ1

þ ðϕ − U4 − ϕU4Þ∂αλ2∂αλ2 þ…: ð3:95Þ

Second, the dilaton field ϕ interacts equally with all the
components of the sigma model field λ1, but has a different
interaction with the sigma model field λ2. This at least
suggests that the three gauge fields ðA0;A1;A2Þ appearing
from the corresponding vertex operator with λ1 will have
identical gauge couplings, which would differ from the
gauge coupling of the gauge field Aψ appearing from λ2.
Third, the appearance of U4, or more appropriately e2ϕH4

from (3.41) with the same relative weight as in (3.40) points
to the emergence of the coefficients ðc11; c12Þ describing
the gauge fields in four dimensions. Therefore putting these
together, and including the Chan-Paton factors, we expect
the possibility of the emergent action (3.91), with

γ1 ∝ c11; γ2 ∝ c12: ð3:96Þ

In addition to the emerging gauge theory description (3.91),
the M-theory gravitational coupling also leads to interesting
four-dimensional gravitational coupling. For example we
can have the following correspondence:

Z
C3 ∧ X8 → c3

Z
trR ∧ R; ð3:97Þ

which will become useful in studying gravitational and
framing anomalies associated with the knots in a curved
background as mentioned in [11]. We will discuss this
later. In writing (3.97) we have defined R as the four-
dimensional curvature two-form, the trace over the Lorentz
group, and the coefficient c3 given via

c3 ¼
Z
Σ3

hC3i
Z
TN

p1; ð3:98Þ

with p1 being the first Pontryagin class defined over the
warped Taub-NUT space (and as such should be an
integer).

7. Dynamics on the three-dimensional boundary

In writing (3.91) and (3.97) we have inadvertently
described the theory in four-dimensional spacetime without
resorting to any boundary. The boundary description is
important and as such lies in the heart of the problem. This
description featured prominently in [11] and therefore we
should see if our M-theory picture leads us to the right
boundary description.
To infer about any boundary, we note that we have two

possible four-dimensional descriptions in the dual type IIB
side. In one description, mentioned in the brane construc-
tion Table I, the D3-branes are oriented along ðx0; x1; x2;ψÞ
directions. In the other description, also in type IIB, the
fractional D3-branes are oriented along ðx0; x1; x2; x3Þ.
Thus we should look at the M-theory metric along
ðx0; x1; x2Þ, as well as along ðx3;ψÞ. This can be extracted
from (3.40) and is given by

ds2 ¼ H1ð−dt2 þ dx21 þ dx22Þ þH1H2dx23

þ e2ϕH1H4dψ2; ð3:99Þ

where we note that the Lorentz invariance along x3 is
broken by our choice of H2 that depends on the NC
deformation θ as depicted in (3.41); and the Lorentz
invariance along ψ is broken both by our brane construction
as well as the NC deformation, as depicted also in (3.41).
This is at least one reason for localizing the knots along
ðx0; x1; x2Þ directions albeit in the Euclidean version. The
other reason, which also stems from the Lorentz invariance,
is related to supersymmetry as described in [11]. Therefore
from both viewpoints, namely the brane construction of
Table I and the fractional branes on warped Taub-NUT
space, there is a reason to localize the knots along the
Euclidean three dimensions.
Having gotten the space along which knots could be

described, we should now investigate the topological
theory describing the knots from M-theory. Of course
some parts of the four-dimensional theory is already at
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hand, this is given by (3.91) and (3.97). We will have to
restrict them to the three-dimensional boundary. This is the
same boundary W that featured in [11]:

V ≡W ×Rþ; ð3:100Þ

with Rþ related to ψ described earlier. Note that in the
language of fractional branes wrapped on two-cycle of our
warped Taub-NUT space, W will be the same Euclidean
three-dimensional space, although the four-dimensional
space ðx0; x1; x2; x3Þ does not have a representation like
(3.100).

8. Action for the three scalar fields
in four dimensions

Before moving to the three-dimensional description on
the boundaryW, we should complete our four-dimensional
description. This would require us to go back to the original
seven-dimensional description that appears naturally from
M-theory. The non-Abelian seven-dimensional gauge field
will have an action similar to (3.91), but now the integral
will be restricted to d7x. The number of scalars in this
description appears from various sources. A set of three
non-Abelian scalar fields should appear from the dimen-
sional reduction of our seven-dimensional non-Abelian
gauge fields on Σ3, and as such also appears from the
wrapped M2-branes fluctuating orthogonally to both the
Taub-NUT and the four-dimensional space-time directions.
It is instructive to work this out in some detail as this will

help us to unravel the BPS structure of the system. In this
section we will concentrate on the scalars that come from
the non-Abelian gauge fields on Σ3. To start we will define
our non-Abelian gauge field as

A¼ α1e3þα2erþα3eϕ1
≡A3dx3þArdrþAϕ1

dϕ1

¼ðA3−f3Aϕ1
Þffiffiffiffiffiffiffiffiffiffiffiffi

H1H2

p e3þ
e−ϕArffiffiffiffiffiffiffiffiffiffiffi
F1H1

p erþ
Aϕ1ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p eϕ1
; ð3:101Þ

where these three components of the gauge field
ðA3;Ar;Aϕ1

Þ, that are now functions of ðx0; x1; x2;ψÞ,
would appear as scalar fields in four-dimensional space
[note αi are also functions of ðr; θ1Þ]. These three scalar
fields form a part of the N ¼ 4 vector multiplet, and we
will discuss the remaining three scalar fields in the next
subsection. The functional forms for Hi, F1 and f3 have
been defined in (3.41), and ei are given by

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
H1H2

p
dx3; er ¼ eϕ

ffiffiffiffiffiffiffiffiffiffiffi
H1F1

p
dr;

eϕ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
H1H3

p
ðdϕ1 þ f3dx3Þ: ð3:102Þ

Now using the gauge field A in (3.101), and using the
vielbeins ei in (3.102) we can evaluate the following four-
dimensional piece stemming from the interaction term of
(3.91):

Sint ¼
Z

TrðA ∧ AÞ ∧ �ðA ∧ AÞ

¼ R3

Z
d4xdrdθ1H2

1

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p
e2ϕ

× Trð½α1;α2�2 þ ½α1; α3�2 þ ½α2; α3�2Þ; ð3:103Þ

where d4x≡ dtdx1dx2dψ and the commutator brackets
take the following form in terms of the gauge field
components:

½α1; α3� ¼
½A3;Aϕ1

�
H1

ffiffiffiffiffiffiffiffiffiffiffiffi
H2H3

p ; ½α2; α3� ¼
e−ϕ½Ar;Aϕ1

�
H1

ffiffiffiffiffiffiffiffiffiffiffi
F1H3

p

½α1; α2� ¼
e−ϕ½A3;Ar� þ e−ϕf3½Ar;Aϕ1

�
H1

ffiffiffiffiffiffiffiffiffiffiffi
H2F1

p : ð3:104Þ

To evaluate the functional form of the scalar action
we need to plug in the values of the warp factors from
(3.41) in (3.104) and (3.103). Doing this we get the
following terms for the scalar field action in four-
dimensional space:

Sð1Þint ¼
Z

d4xTr

�
a1

�
Ar;Aϕ1

−
a3A3

2a1

�
2

þ
�
4a1a2 − a23

4a1

�
½A3;Ar�2 þ a4½A3;Aϕ1

�2

;

ð3:105Þ

where ai ≡ aiðθÞ are all functions of the constant NC
parameter θ which are got by integrating out all the internal
coordinates as well as averaging over θ1 coordinate. For
example a1ðθÞ will be defined as15

a1ðθÞ ¼ R3

Z
∞

0

dr
Z

π

0

dθ1

ffiffiffiffiffiffi
H4

F1

s �
1

H3

þ f23
H2

�

¼ R3 sec θ
Z

∞

0

dr ~a1

×

2
64

ffiffiffiffiffiffiffiffiffiffiffi
~F2
2F3

F1

s
þ ~a2F

3=2
3

2~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2

F1ð ~F2 − F3Þ

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						
3
75; ð3:106Þ

where we have assumed that ~F2, defined in (3.35), satisfy
~F2 > F3 at all points in r, otherwise we will need to replace

15All coefficients, including the ones for Aϕ1
, henceforth will

be taken to be positive definite, unless mentioned otherwise. Any
overall negative signs can be absorbed in the definition of the
fields.
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this combination by j ~F2 − F3j to allow for real values of the
above integral. We have also defined ~ai as

~a1 ¼ 1þ tan2θð1þ F2tan2θÞ ~F2
2

~F2 − F3

;

~a2 ¼ 1 −
tan2θð1þ F2tan2θÞ ~F2

2

~F2 − F3

: ð3:107Þ

The above integrand in (3.106) is well defined everywhere
in r and therefore integrates to a constant, i.e. only a
function of the constant NC parameter θ as predicted
earlier. The other constants aiðθÞ are slightly simpler than
(3.106), and we will define them in the following. It is
interesting to note that

a3ðθÞ ¼ 2R3

Z
∞

0

dr
Z

π

0

dθ1
f3
H2

ffiffiffiffiffiffi
H4

F1

s
¼ 0; ð3:108Þ

which mean that there are no unnecessary cross terms in the
scalar-field interactions (3.105), as one might have
expected from supersymmetric considerations. The other
two coefficients are given as follows:

a2ðθÞ ¼ R3

Z
∞

0

dr
Z

π

0

dθ1
1

H2

ffiffiffiffiffiffi
H4

F1

s

¼ R3 sec θ
Z

∞

0

drðcos2θ þ F2sin2θÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1ð ~F2 − F3Þ

s
ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						;
ð3:109Þ

where the integrand is again a well-defined function for all
values of r, and therefore a2 is just a function of the
constant NC parameter θ. On the other hand the coefficient
a4ðθÞ is given by

a4ðθÞ ¼ R3

Z
∞

0

dr
Z

π

0

dθ1
e2ϕ0

ffiffiffiffiffiffiffiffiffiffiffi
H4F1

p
H2H3

¼ R3 sec θ
Z

∞

0

dr ~a4

2
64 ffiffiffiffiffiffi

~F2

q
þ F3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						
3
75; ð3:110Þ

assuming as before the dilaton e2ϕ to be given by the
leading order constant piece e2ϕ0 . In that case ~a4ðr; θÞ is
given by the following expression:

~a4ðr; θÞ ¼ e2ϕ0ðcos2θ þ F2sin2θÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2F3F1

q
: ð3:111Þ

We can similarly work out the coefficients for the M-theory
uplift (3.56). Interestingly, the functional forms for the a1
and the a4 coefficients for the new background are similar
to the a4 functional form (3.110) except with ~a4 in (3.111)
replaced by

~a4 →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4F−1

1
~F2F3

q
; and ~a4 → e2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b34F1

~F2F3

q
;

ð3:112Þ

respectively with b4 as in (3.83). On the other hand, the
functional form for the new a2 is similar to the functional
form for a2 in (3.109). The only difference being the
following replacement in (3.109):

b4ðϕ ¼ 0Þ →
ffiffiffiffiffi
b4

p
: ð3:113Þ

We now have all the functional forms for ai given in terms
of the constant NC parameter θ. All the ai are finite
numbers, and although one might worry about the case
when F3 vanishes for some r in (3.106), (3.109), (3.110)
because the logarithmic functions therein are not well
defined, this is not a problem. The reason is that all the
logarithmic functions in (3.106), (3.109), (3.110) always
come with a factor of F3 attached to them, so when F3

vanishes, the logarithmic functions also vanish. Thus after
the dust settles, the interaction terms for the three scalars in
(3.103) and (3.105) can now be expressed as

Sð1Þint ¼
Z

d4xfa1ðθÞTr½Ar;Aϕ1
�2

þ a2ðθÞTr½A3;Ar�2 þ a4ðθÞTr½A3;Aϕ1
�2g: ð3:114Þ

Having gotten the interaction terms, it is now instructive to
work out the kinetic terms of the three scalars
ðA3;Ar;Aϕ1

Þ. As one might have expected, M-theory
does reproduce the expected form of the kinetic terms,
namely,

Sð1Þkin ¼
Z

d4x

�
cψ3TrðDψA3Þ2 þ cψrTrðDψArÞ2

þ cψϕ1
TrðDψAϕ1

Þ2 þ
X2
a¼0

½ca3TrðDaA3Þ2

þ carTrðDaArÞ2 þ caϕ1
TrðDaAϕ1

Þ2�

; ð3:115Þ

where Da and Dψ are defined using the four-dimensional
gauge fields Aa ≡ ðA0;A1;A2Þ and Aψ in the usual way:
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Daφ≡ ∂aφþ i½Aa;φ�;
Dψφ≡ ∂ψφþ i½Aψ ;φ�: ð3:116Þ

The coefficients ðcam; cψmÞ, where m ¼ ð3; r;ϕ1Þ, are
straightforward (albeit tedious) to work out from the
background data. We will first tackle the easier ones.
The coefficients ca3 for all a’s take the following form:

ca3ðθÞ ¼ R3 sec θ
Z

∞

0

dr
e2ϕ0

H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

~F2 − F3

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						; ð3:117Þ

where H2 is defined in (3.41), and the integrand is well
defined when ð ~F2; F3Þ → 0 as well as when ~F2 → F3. This
means ca3 is just a constant defined in terms of θ, the NC
parameter. Similarly the other three coefficients car are
similar to (3.117) and take the following form:

carðθÞ ¼ R3 sec θ
Z

∞

0

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2F3

F1ð ~F2 − F3Þ

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						; ð3:118Þ

and is well defined at all the limits described above.
The remaining three coefficients caϕ1

are more compli-
cated than (3.117) and (3.118) as they involve certain
manipulations involving ca3 in (3.117). After the dust
settles, the result is

caϕ1
ðθÞ¼R3secθ

Z
∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q

×

�
1þ

~F2
2

H2ð ~F2−F3Þ
tan2θsec2θ

�

⊗

0
B@2

ffiffiffiffiffiffi
~F2

q
þ ~a2F3

~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
						
1
CA:

ð3:119Þ

The integrand is well defined in the limit ~F2 ¼ F3 ¼ 0, but
seems to diverge in the limit ~F2 → F3. However as before,
we should look at the limit more carefully. If we assume
~F2 − F3 ¼ ϵ2, where ϵ → 0, then the relevant part of the
integrand in (3.119) takes the following form:

lim
ϵ→0

1

ϵ

0
B@2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F3

ϵ2

r
−
F3

ϵ2
ln

						
ffiffiffiffiffiffi
~F2

q
þ ϵffiffiffiffiffiffi

~F2

q
− ϵ

						
1
CA →

4

3

ffiffiffiffiffiffi
~F2

q þOðϵÞ;

ð3:120Þ

which implies that the integrand in (3.119) is well defined
everywhere, and thus the corresponding integral leads to a
constant function of the NC parameter θ.
The integral form of the other two coefficients, namely

cψ3 and cψr, have certain resemblance to (3.78) as for all
three cases the integrands are somewhat similar. For
example,

cψ3ðθÞ ¼ 2R3 cos θ
Z

∞

0

dr
b2J3
H2

;

cψrðθÞ ¼ 2R3e−2ϕ0 cos θ
Z

∞

0

dr
b2J3
F1

; ð3:121Þ

where the functional form for J3 can be expressed from
(3.78) as

J3ðrÞ≡ b3tanh−1
 
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3 þ b2ð ~F2 − F3Þ

~F2

s !

þ ln

						
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						; ð3:122Þ

with ðb2; b3Þ as defined earlier in (3.79) andH2 as in (3.41).
Since the integrand in (3.78) is well defined for the limits
~F2 ¼ F3 ¼ 0 and ~F2 → F3, we expect the integrands in
(3.121) to be well defined as well. Note that only in the
limit H2 ¼ F1 ¼ 1 we get

cψ3 ¼ cψr ¼ c12; ð3:123Þ

which is in general not true as H1 is a function of ðr; θ1Þ
whereas F1 is a function of r only. However if ~F2 → F3,
then H1 becomes a function of r only, and we can choose
our starting metric (3.5) with F2 ¼ F3

1 in the absence of NC
deformation. This choice is very special, so in general we
do not expect (3.123) to hold.
The final coefficient cψϕ1

is a little harder to compute as
it involves some mixing with cψ3 in (3.121), similar to
(3.119) derived earlier. The analysis nevertheless is
straightforward, and is given by

cψϕ1
ðθÞ ¼

Z
∞

0

dr½a01tanh−1ða02Þ − b01 ln jb02j − c01�;

ð3:124Þ

where the various coefficients appearing above are defined
in the following way. The first three coefficients
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ða01; b01; c01Þ receive contributions from cψ3 of (3.121).
The other two ða02; b02Þ are more straightforward. We start
with a01:

a01 ¼
2R3 cos θ½ð1 − b2ÞF3 þ b2 ~F2�3=2

ffiffiffiffiffiffi
F1

p

b
ffiffiffiffiffiffiffiffiffiffiffi
~F2F3

q

þ 2bR3tan2θ sec θ ~F
2
2

H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b2ÞF1F3 þ b2F1

~F2

~F2F3

s
;

ð3:125Þ

where the first line is the expected output directly from M-
theory analysis, and the second line involves contribution
from cψ3 in (3.121). The second coefficient b01 also takes a
somewhat similar form:

b01 ¼
1

2
R3 cos θ

�ð3 − 2b2ÞF3 þ 2b2 ~F2

~F2 − F3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1ð ~F2 − F3Þ3

~F2F3

s

þ R3tan2θ sec θ ~F
2
2

2H2

�ð1 − 2b2ÞF3 þ 2b2 ~F2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q � ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

s
;

ð3:126Þ

where again the second line appears from the cψ3 coef-
ficient of (3.121). Finally the coefficient c01 is given by

c01 ¼
R3 cos θð ~F2 − F3Þ

ffiffiffiffiffiffi
F1

pffiffiffiffiffiffi
F3

p þ R3
~F2
2tan2θ sec θ
H2

ffiffiffiffiffiffi
F1

F3

s
;

ð3:127Þ

with the second term now appearing from the cψ3 piece.
The other two factors, namely ða02; b02Þ, are straightfor-
ward to work out and take the familiar forms:

a02 ¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − b2ÞF3 þ b2 ~F2

~F2

s
;

b02 ¼
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q : ð3:128Þ

Once again, it is time to look at the limiting behavior of the
integrand when F3 → 0 and F3 → ~F2. The other limit of
~F2 → 0 is contained in the other two limits if we assume
that F3 goes to zero faster than ~F2. Thus in the limit
F3 → 0, the integrand in (3.124) behaves as

lim
F3→0

1ffiffiffiffiffiffi
F3

p
�
tanh−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
1 − b2

b2

�
F3

~F2

s �

þ ln
			 ffiffiffiffiffiffi

~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q 			 − constant


; ð3:129Þ

which could be arranged to vanish as before. For the other
limit F3 → ~F2, or alternatively as ~F2 − F3 ¼ ϵ2 → 0, the
integrand in (3.124) behaves as

ffiffiffiffiffiffi
F3

p
ð1þF3Þtanh−1

�
1

b

�
−
F2
3

ϵ
ln

				1þ ϵ

1− ϵ

				− ϵ2ffiffiffiffiffiffi
F3

p ; ð3:130Þ

which vanishes in the limit F3 goes to zero slower than ϵ2.
However this limit, although would contradict with
~F2 > F3—where we expect F3 to vanish faster than
~F2—would still be fine if we impose ~F2 ¼ F3 at the
vanishing point.
We are almost done, but before ending this section let us

work out the gauge theory coefficients for the kinetic terms
in (3.115) using the M-theory uplift (3.56) of the RR
deformed background (3.30). The coefficients are again
easy to work out, and it is no surprise that they do not
change appreciably from what we computed above. For
example the expressions for ðcψ3; cψrÞ remain similar to
(3.121) with the same J3 as in (3.141) except for the
following changes:

H2 →
ffiffiffiffiffiffi
~H2

q
; and b2 → b2

ffiffiffiffiffiffi
~H2

q
; ð3:131Þ

respectively, where ~H2 ≡ b−14 is defined earlier in (3.57)
and (3.83). Similarly for the coefficient car the new
expression is exactly as in (3.118) given above, except
with the following replacement in the integrand of (3.118):

ffiffiffiffiffiffi
F1

p
→

ffiffiffiffiffiffi
F1

~H2

s
: ð3:132Þ

For the other two coefficients caϕ1
and cψϕ1

in (3.119) and
(3.124) respectively, the above replacement (3.132) along
with the vanishing of the ~F2

2 terms in (3.119) and (3.125),
(3.126), (3.127) respectively capture the new coefficients
succinctly. Finally for the ca3 coefficient (3.117), all we
need is to replace H2 therein by

ffiffiffiffiffiffi
~H2

p
of (3.57) to get the

correct expression.
Thus, after the dust settles, the three scalars coming from

the seven-dimensional gauge fields, all combine together to
reproduce the action (3.115) with the coefficients cψm and
cam as well-defined functions of the NC parameter θ or the
RR deformed parameter θ. In the following section we will
discuss the remaining three scalars that come from the
explicit form of the warped Taub-NUT geometry.
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9. Action for the remaining three scalar fields

The remaining scalar fields, that fill the rest of theN ¼ 4
vector multiplet in four dimensions, come precisely from
the seven-dimensional vector multiplet. In M-theory they
should appear from our warped Taub-NUT configuration.
The zero-mode fluctuations of the N-centered Taub-NUT
space, namely,

Nð2h11 þ 1Þ ¼ 3N; ð3:133Þ

which would appear in our four-dimensional description on
V, provide the Cartan of the AN−1 algebra for the seven-
dimensional theory. The fluctuations of the wrapped
M2-branes along the Taub-NUT directions provide the
necessary roots and weights of the AN−1 algebra leading to
the non-Abelian enhancement of the three scalars in the
vector multiplet of the seven-dimensional theory.
To analyze these scalars, let us first discuss the Abelian

version of the model that would come from the zero mode
fluctuations of our warped Taub-NUT space. These fluc-
tuations are not hard to work out from the M-theory
Einstein term, and have the following action derivable
from the supergravity Lagrangian:Z

d11xδð ffiffiffiffiffiffi
g11

p
R11Þ

∝
Z

d4x
X3
k¼1

�X2
a¼0

bakð∂aφkÞ2 þ bψkð∂ψφkÞ2
�
; ð3:134Þ

where ðφ1;φ2;φ3Þ are the three Abelian scalars, and δ
denotes the combination of the three fluctuations of the
internal Taub-NUT space. In writing (3.134) we have
assumed that the fluctuations are only functions of the
spacetime coordinates ðx0; x1; x2;ψÞ. The coefficient bak
for a given ða; kÞ is a function of the NC parameter θ and
can be expressed in terms of the warp factors as

bakðθÞ ¼ 2R3 sec θ
Z

∞

0

dre2ϕ0ðcos2θ þ F2sin2θÞ1=3

× F1=3
3

ffiffiffiffiffiffiffiffiffiffiffi
F1

~F2

q
Θ12; ð3:135Þ

where we see that all the nine coefficients have identical
functional form because of the isometry along the
ðx0; x1; x2Þ directions. We have also defined Θ12 using
hypergeometric function in the following way:

Θ12 ¼ 2F1

�
1

6
;
1

2
;
3

2
;
F3 − ~F2

F3

�
: ð3:136Þ

Let us now check the limits. When F3 ¼ 0, the integrand in
(3.135) vanishes, and so it is well defined. On the other
hand, when F3 → ~F2, the hypergeometric function
Θ12 ¼ 1, and the integral is again well defined provided

none of the warp factors blow up at r → ∞. However
subtlety arises once we use the warp factors to define the
other coefficient bψk. The form of bψk for any k is more
nontrivial compared to (3.135), and takes the following
form:

bψkðθÞ ¼
2R3 cos θ

b2

Z
∞

0

drðcos2θ þ F2sin2θÞ1=3

× F1=3
3

ffiffiffiffiffiffi
F1

~F2

s
Θ34; ð3:137Þ

where as before all three coefficients have identical func-
tional forms, and they differ from (3.135) because the
Lorentz invariance along the ψ direction is broken. The
functional form for Θ34 is now defined in terms of a certain
Appell function in the following way:

Θ34 ¼ F1

�
1

2
;−

5

6
; 1;

3

2
;
F3 − ~F2

F3

;
1

b2

�
; ð3:138Þ

where b2 is the same regularization parameter used earlier
in (3.78) to avoid certain singularities. Note that when
F3 → ~F2, the Appell function blows up in the limit b → 1,
but b is not necessarily identity. This way the integrand will
be well defined everywhere. Alternatively, the field φk
could be made independent of ψ altogether. We will discuss
a variant of the latter idea soon when we study the boundary
dynamics in more detail.
Our discussions so far have mostly concentrated on the

Abelian scalar fields. To study the non-Abelian scalars we
will, without loss of generalities, define the scalar fields
again as φk where φk ≡ φa

kT
a with Ta being the generator

of SUðNÞ in the adjoint representation. The extension of
(3.134) to the non-Abelian version is now straightforward:

Sð2Þkin ¼
Z

d4x
X3
k¼1

�X2
a¼0

bakTrðDaφkÞ2 þ bψkTrðDψφkÞ2
�
;

ð3:139Þ

where the trace is in the adjoint representation and Da;ψ are
the covariant derivatives with respect to the four-
dimensional bulk gauge fields ðAa;AψÞ as described
in (3.116).
To proceed further we shall use various arguments to

justify the remaining interaction terms. Maximal super-
symmetry tells us that the remaining scalars should at least
have the following form of the Lagrangian:

Lφ ¼ β1TrðDmφkÞ2 þ β2Tr½φk;φl�2 þ β3Tr½Af3;r;ϕ1g;φk�2;
ð3:140Þ

where we determined the form of β1 in (3.139) above.
Additionally, multiple D6-branes wrapped on a three-cycle
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of a manifold will have the world-volume dynamics given
by a non-Abelian Born-Infeld action in a curved space.
What curvatures are we interested in from the M-theory
point of view? Looking at the analysis done in the earlier
subsections, we see that the emergent dynamics of the
seven-dimensional gauge theory from M-theory is simply
an interacting non-Abelian vector multiplet in a curved
space with a metric given by the first line of (3.40). In fact
this is consistent with the matrix formalism of M-theory
also. Multiple D6-branes in a curved background can be
studied as a M(atrix) theory on warped multicentered Taub-
NUT space [32,33] where the seven-dimensional gauge
theory appears on a curved ambient space orthogonal to the
warped Taub-NUT background.
With this in mind, the rest of the discussions are now

straightforward and will follow the pattern developed in
(3.115). The interaction terms of the three scalars will not
only involve self-interactions, but also interactions with
the other three scalars ðA3;Ar;AψÞ that we studied in the
previous subsection. The interaction terms then take the
following form:

Lð2Þ
int ¼

X
k;l

dklTr½φk;φl�2

þ
X3
k¼1

fcrkTr½Ar;φk�2 þ c3kTr½A3;φk�2

þ cϕ1kTr½Aϕ1
;φk�2g: ð3:141Þ

Let us first study the self-interaction terms. These terms
have coefficients dkl as depicted above, and since all these
scalars appear in a democratic way, we expect the coef-
ficients dkl to be the same for all choices of k and l. This is
indeed what is bourne out from our analysis, and the
coefficient dkl for any ðk; lÞ is given by

dklðθÞ ¼
1

2
R3 sec θ

Z
∞

0

dre2ϕ0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
ðcos2θ þ F2sin2θÞ2=3Θ56; ð3:142Þ

where Θ56 now involves another hypergeometric function
that can be expressed, in combination with other warp
factors, in the following way:

Θ56 ¼ F1=6
3 2F1

�
1

2
;
5

6
;
3

2
;
F3 − ~F2

F3

�
þ 3 ~F1=6

2 ; ð3:143Þ

that approaches 1 in the limit F3 → ~F2. This means the
integrand in (3.142) is well defined when F3 → 0 and
when F3 → ~F2.
The interaction of the scalars φk with the other three

scalars ðA3;Ar;Aϕ1
Þ can now be determined using similar

hypergeometric functions. For example the coefficient crk
can be expressed as

crkðθÞ¼2R3secθ
Z

∞

0

drF1=3
3 ðcos2θþF2sin2θÞ1=3

ffiffiffiffiffiffi
~F2

F1

s
Θ12;

ð3:144Þ

in terms of the hypergeometric function Θ12 given in
(3.136), which implies that the limiting behaviors of the
integrand (3.144) for F3 → 0 and F3 → ~F2 remain well
defined. The other coefficient c3k now has a form given by

c3kðθÞ ¼ 2R3 sec θ
Z

∞

0

dre2ϕ0F1=3
3

×
ffiffiffiffiffiffiffiffiffiffiffi
~F2F1

q
ðcos2θ þ F2sin2θÞ4=3Θ12; ð3:145Þ

using the same hypergeometric function Θ12 as in (3.136).
The above integrand is also well defined in the limits
F3 → 0 and F3 → ~F2 as before because Θ12 is well
behaved in the latter limit.
Finally, the last three coefficients cϕ1k for any k are more

complicated than the other coefficients that we derived
earlier. However as before we do expect all three coef-
ficients to be identical because of the isometry of the three
scalars. Thus for any given k, we get

cϕ1kðθÞ ¼ R3 sec θ
Z

∞

0

dre2ϕ0ðcos2 θ þ F2 sin2 θÞ1=3

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
Π78; ð3:146Þ

which is well defined in the limit F3 → 0. For the other
limit F3 → ~F2 we need to know the behavior of Π78. Our
analysis shows that Π78 can be expressed in the following
way:

Π78 ≡ Π̂78 þ 3tan2θsec2θ ~F2
2ðcos2θ þ F2sin2θÞ ~Π78;

ð3:147Þ

where, compared to our earlier analysis, this is a more
complicated form because of the fibration structure of ϕ1 in
the metric (3.40). The variables Π̂78 and ~Π78 are both
expressed in terms of the hypergeometric function Θ12,
given earlier in (3.136), and the warp factors as

Π̂78 ¼
3

4
~F5=6
2 þ 5

4
F5=6
3 Θ12;

~Π78 ¼
~F5=6
2 − F5=6

3 Θ12

4ð ~F2 − F3Þ
: ð3:148Þ

Now the limiting behavior of F3 → ~F2 is easy to determine.
Since the hypergeometric function Θ12 approaches identity
in this limit, ~Π78 vanishes and Π̂78 → 8 ~F5=6

2 . This way the
integrand in (3.146) is well defined everywhere.
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For the M-theory background (3.56), one may similarly
work out the coefficients as we had done earlier. We expect,
as before, the results to not change significantly and indeed
this is what appears from concrete computations. For
example, for the coefficients ðbak; bψk; crkÞ in (3.135),
(3.137) and (3.144) respectively, the integral expressions
remain unchanged up to the following replacements in each
of the above integrands:

b1=34 ðϕ ¼ 0Þ → 1

b1=64

; ð3:149Þ

where b4 ≡ ~H−1
2 has been defined earlier in (3.57) and

(3.83). In a similar vein, the integral expressions for
dkl in (3.142) and c3k in (3.145) remain unchanged for
the new background (3.56), except, with the following
replacements:

b2=34 ðϕ ¼ 0Þ → b1=64 ; and

b4=34 ðϕ ¼ 0Þ → b5=64 ; ð3:150Þ
respectively. This means all the hypergeometric and
the Appell functions preserve their forms for the RR
deformed background (3.30). Finally, the only expression
that changes significantly is the expression for cϕ1k in
(3.146). The new expression for cϕ1k does not have the

second ~F2
2 term of (3.146). This is of course expected.

However the first term of (3.146) is reproduced in a similar
fashion except with the following replacement:

b1=34 ðϕ ¼ 0Þ → b5=64 : ð3:151Þ
We have now completed the discussions of the full gauge
theory action in four dimensions using a warped multi-
centered Taub-NUT space in M-theory. In the following
subsection we will derive the Bogomolnyi-Hitchin-Nahm
(BHN)-type of equation from our gauge theory data which
will help us to search for, amongother things, theNahmpoles.

10. A derivation of the BHN-type of equation

Before proceeding further, let us summarize our results
so far. The full non-Abelian SUðNÞ gauge theory action
that we get from our M-theory construction, from a warped
seven-dimensional noncompact manifold that is topologi-
cally of the form

TNN × Σ3; ð3:152Þ
with compact Σ3 and aN-centered warped Taub-NUT space
TNN , can now be assimilated together from (3.91), (3.115),
(3.139), (3.114) and (3.141) (or with the corresponding RR
deformed ones), to give us the following total action:

Stotal ¼
c1
v3

Z
d4x

�
c11
X
a<b

TrF abF ab þ c12
X
a

TrF aψF aψ

�
þ c2

Z
TrF ∧ F

þ c1
v3

Z
d4x

�
cψ3TrðDψA3Þ2 þ cψrTrðDψArÞ2 þ cψϕ1

TrðDψAϕ1
Þ2

þ
X2
a¼0

½ca3TrðDaA3Þ2 þ carTrðDaArÞ2 þ caϕ1
TrðDaAϕ1

Þ2�


þ
Z

d4x
X3
k¼1

�X2
a¼0

bakTrðDaφkÞ2 þ bψkTrðDψφkÞ2
�

þ
Z

d4x

�
c1
v3

ða1Tr½Ar;Aϕ1
�2 þ a2Tr½A3;Ar�2 þ a4Tr½A3;Aϕ1

�2Þ

þ
X
k;l

dklTr½φk;φl�2 þ
X3
k¼1

ðcrkTr½Ar;φk�2 þ c3kTr½A3;φk�2 þ cϕ1kTr½Aϕ1
;φk�2Þ


; ð3:153Þ

where the coefficients ðam; cmn; bmn; dmnÞ for all values of
ðm; nÞ specified above are functions of the constant NC or
RR parameter θ. Since we have maintained supersymmetry
in the M-theory construction, we expect the action to have,
at least for certain choices of the warp factors, the maximal
N ¼ 4 supersymmetry. In fact the choice of supersym-
metry depends on the supersymmetry of the original type
IIB background (3.4) and (3.5). For specific choices of Fi
in (3.5), one of the NS5-brane in Table I can be moved
away from the other to allow for the maximal N ¼ 4

supersymmetry. Generically however (3.5) has a N ¼ 2 or
N ¼ 1 supersymmetry, implying at most a G2 structure for
the M-theory seven-manifold (3.152).
Looking at (3.153), one may note that all the NC or RR

deformations appear only as constant coefficients for
various terms in (3.153). The presence or absence of the
NC or RR deformations will not change the form of
the effective action, except alter the coefficients
ðcmn; bmn; dmn; amÞ a bit. An interesting question at this
stage is to see what additional constraints on these
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coefficients appear from minimizing the energy of the
system. These would of course be the BPS conditions, and
once the BPS conditions are satisfied the EOMs will be
automatically satisfied. Our original configuration (3.4)
with the choice of dilaton (3.54) and the internal space (3.5)
satisfy EOMs in the absence of any BPS states on the type
IIB fractional D3-branes. To satisfy the EOMs in the
presence of the BPS states would require us to find static
configurations on the branes that minimize the total energy
of the system. This in turn would require us to compute the
Hamiltonian and search for the static BPS configurations
by minimizing this.
To determine the constraints on the warp factors, i.e. the

constant coefficients ðcmn; bmn; dmn; amÞ appearing in
(3.153), we first proceed to determine the BPS configura-
tions. For consistency, these configurations should satisfy
the Gauss’ constraint. We isolate the scalarA3, and express
the Gauss’ law constraint in the following way:

c11DαF α0 þ c12DψF ψ0

¼ ic03½A3;D0A3� þ ic0r½Ar;D0Ar� þ ic0ϕ1
½Aϕ1

;D0Aϕ1
�

þ
X3
k¼1

iv3b0k
c1

½φk;D0φk�; ð3:154Þ

where ðcmn; bmnÞ are exactly the coefficients that appear in
(3.153). We have also divided a ¼ ð0; 1; 2Þ≡ ð0; αÞ where
α ¼ 1, 2.
Second, looking at Table III we can identify the scalar

fields ~X and ~Y used in [11]. This will be useful when we
want to express the BHN equations in terms of the scalar
field components used here. The scalar fields ~X and ~Y can
be identified as

~X ≡ ðA3;φ1;φ2Þ; ~Y ≡ ðAr;Aϕ1
;φ3Þ; ð3:155Þ

which appears from the fact that a part of the Coulomb
branch for the NS5-D3 system, as shown in Table III, is
along the ðx3; x8; x9Þ directions. This also means, associ-
ated with the components of the gauge fields Aμ ¼
ðA0;A1;A2;Aψ Þ in four dimensions, we can now identify
approximately the four scalars used in [11] as16

ðϕ0;ϕ1;ϕ2;ϕ3Þ ∝ ðφ3;φ1;φ2;A3Þ; ð3:156Þ

which, as described in [11], can be made by picking the
three scalar fields in ~X and one scalar field from ~Y (which
we take here as φ3). This means the complex σ field of [11],
for our case will become

σ ≡Ar þ iAϕ1
: ð3:157Þ

The Gauss law constraint and the identification of the scalar
fields will lead us to compute the Hamiltonian from the
total effective action (3.153). Isolating the same scalar A3,
the expression for the Hamiltonian, for the case when
c2 ¼ 0 in (3.153), can be expressed as a sum of squares of
various terms in the following way:

H¼
Z

d3xTr

�X2
α¼1

c1
v3
ð ffiffiffiffiffiffi

c11
p

F α0−
ffiffiffiffiffiffiffi
cα3

p
DαA3Þ2þ

c1
v3
ð ffiffiffiffiffiffi

c12
p

F ψ0−
ffiffiffiffiffiffiffi
cψ3

p
DψA3Þ2þ

c1
v3
ð ffiffiffiffiffiffi

c0r
p

D0Ar−i
ffiffiffiffiffi
a2

p ½A3;Ar�Þ2

þc1
v3
ð ffiffiffiffiffiffiffiffi

c0ϕ1

p
D0Aϕ1

−i
ffiffiffiffiffi
a4

p ½A3;Aϕ1
�Þ2þc1

v3
ðsð1ÞcψrðDψArÞ2þsð2Þcψϕ1

ðDψAϕ1
Þ2þ tð1ÞcβrðDβArÞ2þ tð2Þcβϕ1

ðDβAϕ1
Þ2Þ

þ
X3
k¼1

ð
ffiffiffiffiffiffiffi
b0k

p
D0φk− i

ffiffiffiffiffiffi
c3k

p ½A3;φk�Þ2þ
c1c03
v3

ðD0A3Þ2þ
X2
α;β¼1

� ffiffiffiffiffiffiffiffiffiffiffi
c1c11
2v3

r
F αβþ

ffiffiffiffiffiffiffiffiffiffiffi
c1cψr
v3

r
sð1Þαβ ϵαβψrDψAr

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1cψϕ1

v3

r
sð2Þαβ ϵαβψϕ1

DψAϕ1
þ
X3
δ¼1

X3
k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβ ·m

ð1Þ
δk Dδφk−

X
k;l

igð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�−

X3
k¼1

iðgð2Þαβk
ffiffiffiffiffiffi
crk

p ½Ar;φk�

TABLE III. The orientations of branes and manifolds at various
stages of dualities in our setup.

Theory Configurations x0 x1 x2 x3 θ1 ϕ1 ψ r x8 x9 x11

IIB NS5
p p p p � � � � p p �

IIB D3
p p p � � � p � � � �

IIA D4
p p p p � � p � � � �

IIB D5=D5
p p p p � � p p � � �

IIA D6
p p p p � p p p � � �

M TNN � � � � p � � � p p p
M Σ3 � � � p � � p p � � �

16Note that the identification (3.156) differs slightly from [11]. For example, using (3.156), ~X would be ðϕ1;ϕ2;ϕ3Þ, whereas in [11]
it is ðϕ0;ϕ1;ϕ2Þ. We will consider a different mapping of the scalars in (3.282) later. Furthermore to avoid cluttering of symbols we will
use the same symbol to denote the twisted and the untwisted scalars of [11], unless mentioned otherwise. It should hopefully be clear
from the context which one is meant.
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þgð3Þαβk
ffiffiffiffiffiffiffiffi
cϕ1k

p ½Aϕ1
;φk�Þ− igð4Þαβ

ffiffiffiffiffiffiffiffiffi
c1a1
v3

r
½Ar;Aϕ1

�
�

2

þðQEþQMÞδ3x
dimG

þ
X2
α¼1

� ffiffiffiffiffiffiffiffiffiffiffi
c1c12
2v3

r
F αψþ

ffiffiffiffiffiffiffiffiffiffiffi
c1cβr
v3

r
tð1Þα ϵαψβrDβAr

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c1cβϕ1

v3

r
tð2Þα ϵαψβϕ1

DβAϕ1
þ
X3
δ¼1

X3
k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαψ ·m

ð2Þ
δk Dδφk−

X
k;l

ihð1Þαψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�−

X3
k¼1

iðhð2Þαψk
ffiffiffiffiffiffi
crk

p ½Ar;φk�

þhð3Þαψk
ffiffiffiffiffiffiffiffi
cϕ1k

p ½Aϕ1
;φk�Þ− ihð4Þαψ

ffiffiffiffiffiffiffiffiffi
c1a1
v3

r
½Ar;Aϕ1

�
�

2

þ
X
k;l

qð1Þkl dkl½φk;φl�2þ
X3
k¼1

X3
γ¼2

qðγÞk cyγk½Ayγ ;φk�2þ
qð4Þc1a1

v3
½Ar;Aϕ1

�2

;

ð3:158Þ

whereQE andQM are the electric and the magnetic charges
respectively, which will be determined later; dim G is the
dimension of the group; and δ≡ ðα;ψÞ, ðy2; y3Þ≡ ðr;ϕ1Þ.
Most of coefficients appearing in (3.158) have been
determined earlier, which the readers may want to look
up. The other coefficients appearing above are defined in
the following way:

gð1Þαβkl≡gð1Þ½αβ�½kl�; gðmÞ
αβk≡gðmÞ

½αβ�k; gðmÞ
αβ ≡gðmÞ

½αβ�; ð3:159Þ

and similarly for ðhðjÞ… ; sðjÞ… ; tðjÞ… Þ. In other words they are all
generically taken to be antisymmetric17 with respect to
ðα; βÞ, ðα;ψÞ, and ðk; lÞ, except for mðjÞ

δk where the
symmetric part will play some role later. Assuming this,
the relation between them is now easy to work out from the
definition of the Hamiltonian in (3.158) as

2jgð4Þ12 j2 þ jhð4Þ1ψ j2 þ jhð4Þ2ψ j2 − qð4Þ ¼ 1

2jgðnÞ12kj2 þ jhðnÞ1ψkj2 þ jhðnÞ2ψkj2 − qðnÞk ¼ 1

2jgð1Þ12klj2 þ jhð1Þ1ψklj2 þ jhð1Þ2ψklj2 − qð1Þkl ¼ 1

2jsðlÞ12 j2 þ sðlÞ ¼ 1;
X2
α¼1

jtðlÞα j2 þ tðlÞ ¼ 1;
X2
j¼1

jmðjÞ
δk j2 ¼

1

2
;

ð3:160Þ

where n ¼ 2, 3 and l ¼ 1, 2. Note that the last relation for
coefficients mðjÞ

δk can have additional pieces depending on
how the kinetic piece ðDδφkÞ2 is defined in the action
(3.153). We will discuss this later. In general however all
the coefficients appearing above are generic [they should of
course satisfy (3.160)] and we will determine them for a
special configuration that resonates with [11]. For the time
being we want to identify generic BPS configurations by
minimizing the energy of the system. We start by taking
static configurations with the following gauge choice:

A0 ¼ A3; ð3:161Þ

which is motivated, in retrospect, from our choice of
isolating the scalar field A3 from the very beginning in
the expression for the Hamiltonian (3.158). The gauge
choice (3.161) implies the following constraints onA3 field
from (3.158):

D0A3 ¼ 0;

ð
ffiffiffiffiffiffiffi
b0k

p
−

ffiffiffiffiffiffi
c3k

p Þ2½A3;φk�2 ¼ 0

ð ffiffiffiffiffiffi
c11

p
−

ffiffiffiffiffiffiffi
cα3

p Þ2ðDαA3Þ2 ¼ 0;

ð ffiffiffiffiffiffi
c12

p
− ffiffiffiffiffiffiffi

cψ3
p Þ2ðDψA3Þ2 ¼ 0

ð ffiffiffiffiffiffi
c0r

p
−

ffiffiffiffiffi
a2

p Þ2½A3;Ar�2 ¼ 0;

ð ffiffiffiffiffiffiffiffi
c0ϕ1

p −
ffiffiffiffiffi
a4

p Þ2½A3;Aϕ1
�2 ¼ 0: ð3:162Þ

The first equation is automatically satisfied once we
demand static configurations. The other covariant deriva-
tives, or the commutator brackets cannot vanish unless we
take trivial solutions. This observation leads to two possible
set of solutions to the system of equations in (3.162). The
first set of solutions is when A3 ¼ 0. The second set of
solutions is for the coefficients, associated to the various
configurations of the A3 fields, to vanish. In the following,
we will first discuss the second set of solutions wherein the
coefficients vanish. To check whether this is possible, let us
study the coefficient associated with DαA3. Comparing
(3.76) and (3.117) and for the benefit of discussion we can
reexpress the two coefficients appearing in (3.162) as

c11ðθÞ ¼ R3 sec θ
Z

∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

~F2 − F3

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						

cα3ðθÞ ¼ R3 sec θ
Z

∞

0

dr
e2ϕ0

H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

~F2 − F3

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						: ð3:163Þ

17For φk it will be instructive to resort to the identification
(3.156) to discuss antisymmetry.
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We see that they are exactly identical except for the
appearance of the H2 term in the second integral. In fact
this observation repeats for all the doublet coefficients
appearing in (3.162), namely, ðc12; cψ3Þ in (3.78) and
(3.121) respectively; ðc0r; a2Þ in (3.118) and (3.109)
respectively; ðc0ϕ1

; a4Þ in (3.119) and (3.110) respectively;
and ðb0k; c3kÞ in (3.135) and (3.145) respectively, in exactly
the same way: they all differ by the presence of theH2 term
in the integral. This conclusion will not change if we take
the RR deformation instead, or if we consider the full
expression for the dilaton (3.54). All the differences of the
coefficients in (3.162) take the following form:

cðaÞ − cðbÞ ≡
Z

∞

0

drGðabÞðrÞð1 − b4Þ; ð3:164Þ

where cðaÞ ≡ ðcmn; bmn; dmn; amÞ, b4 as defined in (3.83),
and the explicit forms of the GðabÞ functions can be read up
from (3.76), (3.117), (3.78), (3.121) etc., as mentioned
above. The result for RR deformation can be expressed as
(3.164) with b4ðϕÞ, whereas with b4ðϕ ¼ 0Þ we get the
results for the NC deformation. Therefore the vanishing of
the integral in (3.164) implies the vanishing of the NC or
the RR deformation parameter θ, or in the language of
(3.70), the vanishing of Θ implying further that in our four-
dimensional gauge theory:

τ≡ 4πi
g2YM

: ð3:165Þ

This is of course consistent with our simplifying choice of
c2 ¼ 0 in (3.153) and (3.158) and also with the observa-
tions of [11,12,14], namely that the four-dimensional
supersymmetry in the presence of BPS configurations18

is only preserved when θ vanishes. However when A3

vanishes, which is our second set of solutions, we are
basically restricted to the three-dimensional boundaryW of
(3.100) where θ in general could be nonzero.19 Therefore to
summarize, we have the following two sets of solutions:

Set ∼ 1∶ ðA3 ≠ 0; θ ¼ 0Þ
Set ∼ 2∶ ðA3 ¼ 0; θ ≠ 0Þ: ð3:166Þ

Our next series of conditions, which in principle should be
valid for either of the above two sets of solutions (3.166)
but will only consider Set 2 henceforth, appear from
looking at the third and the last lines of (3.158). Since
the coefficients ðcψr; cψϕ1

; cβr; cβϕ1
Þ in (3.121), (3.124),

(3.118) and (3.119) respectively are all nonzero, and we
will assume ðsðnÞ; tðnÞ; qð4ÞÞ also to be generically nonzero,
minimization of the Hamiltonian (3.158) implies the
following conditions on the two scalar fields Ar and Aϕ1

:

DηAr ¼ DηAϕ1
¼ ½Ar;Aϕ1

� ¼ 0; ð3:167Þ

with η≡ ðα;ψÞ. Thus these scalar fields, appearing in ~Y in
(3.155), are covariantly constants and have a vanishing
commutator bracket. In the language of the complex field σ
in (3.157), the relations in (3.167) imply the following
conditions on ðσ; σ̄Þ:

Dησ ¼ Dησ̄ ¼ ½σ; σ̄� ¼ 0; ð3:168Þ
which is also the conditions imposed on ðσ; σ̄Þ fields in
[11]. Additionally, it is interesting to note that, since we
took ðsðnÞ; tðnÞ; qð4ÞÞ to be nonzero, the first and the last set
of equations in (3.160) can be easily satisfied. Thus they do
not impose further constraints on the BPS equa-
tions (3.167). Finally, we can completely decouple the
scalars ðAr;Aϕ1

Þ if we demand:

½Ar;φk� ¼ ½Aϕ1
;φk� ¼ 0; ð3:169Þ

for any values of qðγÞk in (3.158). This way the second set of
equations for n ¼ 2, 3 in (3.160) can also be easily satisfied
without introducing any additional constraints.
We are finally left with two sets of equations in (3.160)

that need to be satisfied. These are important equations as
they deal with the commutator brackets ½φk;φl� and
covariant derivatives Dδφk. We first demand that the
commutator brackets do not vanish—at least not all the
brackets—to avoid the system from becoming completely
trivial. This immediately implies qð1Þkl ¼ 0 for some choices
of ðk; lÞ to satisfy the BPS conditions from the Hamiltonian
(3.158) [see the last line of (3.158)]. The equations for the
other coefficients from (3.160) then become

2jgð1Þ12klj2 þ jhð1Þ1ψklj2 þ jhð1Þ2ψklj2 ¼ 1;

jmð1Þ
δk j2 þ jmð2Þ

δk j2 ¼
1

2
; ð3:170Þ

again for the specific choices of ðk; lÞ. To see what values of
the coefficientscouldsolve theaboveset of equations (3.170),
let us write down the corresponding BPS equations that use
these coefficients. The simplest case is when only one

commutator bracket does not vanish, i.e. when qð1Þ12 ¼ 0.
This means the field φ3 will commute with the other two
scalar fields φ1 and φ2. In other words, we take20

18For example like Wilson loops etc., which we will discuss
soon.

19Here c2 may be made to vanish by taking qðθÞ ¼ 0 for
nonzero θ. Thus switching on qðθÞ would imply switching on c2.

20One might worry that (3.171) could be too strong a constraint
that would eventually trivialize some of the boundary terms in
(3.227), (3.232) or in (3.236). This is however not true because
the boundary theory will be developed without resorting to any
constraints so that the boundary degrees of freedom may capture
the fluctuations over any classical configurations. As an aside,
note that we can allow all but one of qð1Þkl to vanish so that we are
not obliged to impose the full set of (3.171). The remaining
decouplings may be achieved by choosing appropriate values for
gð1Þ12kl, h

ð1Þ
aψkl.
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½φ3;φ1� ¼ ½φ3;φ2� ¼ 0: ð3:171Þ

The first equation of (3.170) then connects the gauge field
F 12with the scalar fields in ~X defined earlier as (3.155) in the
following way21:

F 12 þ
ffiffiffiffiffiffiffiffiffiffiffiffi
bψ3v3
c1c11

s
Dψφ3 þ

ffiffiffiffiffiffiffiffiffiffiffi
b12v3
c1c11

s
ðD1φ2 −D2φ1Þ

− 2i

ffiffiffiffiffiffiffiffiffiffiffi
v3d12
c1c11

s
½φ1;φ2� ¼ 0; ð3:172Þ

where ðbψ3; b12; c1; c11; v3; d12Þ are given in (3.137),
(3.135), (3.63), (3.76), (3.66) and (3.142) respectively.
The above equation is one of the Bogomolnyi-Hitchin-
Nahm (BHN) equations that appears from our analysis. In
fact the generic equation that we get from (3.158) is more
complicated than (3.172), but we have simplified the system
by assuming the following values of the coefficients:

gð1Þ1212 ¼ mð1Þ
ψ3 ¼ mð1Þ

12 ¼ 1ffiffiffi
2

p ; ð3:173Þ

with other coefficients, exceptmðjÞ
11 andmðjÞ

22 , vanishing. This
in turn is motivated in part to bring the BHN equation in a
more standard form like (3.172) with

mðjÞ
11

ffiffiffiffiffiffiffi
b11

p
D1φ1 þmðjÞ

22

ffiffiffiffiffiffiffi
b22

p
D2φ2 ¼ 0

≡D1φ1 þD2φ2; ð3:174Þ

which involves the symmetric coefficientsmðjÞ
11 andm

ðjÞ
22 with,

aswewill see below, j ¼ 2 to avoid contradictions.22Without
loss of generalities, they are taken to be equal; and b11 ¼ b22
as can be inferred from (3.135).
The choice (3.173), when plugged in (3.170), would

imply that both hð1Þ1ψ12 as well as hð2Þ2ψ12 vanish. However
other coefficients can be nonzero, and as before we will
make the following choice of the coefficients:

−hð1Þ1ψ1ψ ¼ −hð2Þ2ψ2ψ ¼ mð2Þ
β3 ¼ mð2Þ

ψβ ¼ 1ffiffiffi
2

p ; ð3:175Þ

with the rest taken to be zero. For the time, the above choice
should be viewed as being motivated by consistency, and

we will go beyond these special choices of coefficients
(3.173) and (3.175) later on. With this in mind, the BPS
conditions lead to the following additional equation:

F αψ − 6
X
δ;k

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2bδkv3
c1c12

s
ϵ½αψm

ð2Þ
δk�Dδφk

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bψαv3
c1c12

s
ϵαψm

ð2Þ
ψαDψφα ¼ 0; ð3:176Þ

where α ¼ 1, 2; bψα and bα3 as given in (3.137) and (3.135)
respectively, and ðv3; c1; c11; c12Þ are given in (3.66),
(3.63), (3.76) and (3.78) respectively. Note the way we
arranged the antisymmetric pieces together. This could be

taken as the definition of the term ϵab ·m
ðkÞ
cd in (3.158). We

could do the same for (3.172), but that is not necessary
because of our choice of coefficients (3.173). The above
equation is valid for Set 1 in (3.166), but we can always use
Set 2 by switching on the NC or the RR parameter θ and
interpret the coefficients appearing in (3.172) accordingly.
For this case, (3.176) will give rise to the following two
equations:

F 1ψ þ
ffiffiffiffiffiffiffiffiffiffiffi
b23v3
c1c12

s
D2φ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
bψ1v3
c1c12

s
Dψφ1 ¼ 0

F 2ψ þ
ffiffiffiffiffiffiffiffiffiffiffi
b13v3
c1c12

s
D1φ3 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
bψ2v3
c1c12

s
Dψφ2 ¼ 0; ð3:177Þ

without involving any commutator brackets. Thus combin-
ing (3.172) with the two equations in (3.177), for Set 2 in
(3.166), we have our three BHN equations for the system.
Before ending this section, let us notewhat would happen

if our gauge choice were different from (3.161). One
example would be to choose the following gauge where

A0 ¼ Ar: ð3:178Þ

Looking at the action (3.153)we see that there is a symmetry
between x3 and r, implying that we can rewrite the
Hamiltonian (3.158) in the gauge (3.178) simply by
exchanging the two coordinates. The BPS condition then
changes from (3.162) to the following new conditions that
are easy to derive:

D0Ar ¼ 0;

ð
ffiffiffiffiffiffiffi
b0k

p
−

ffiffiffiffiffiffi
crk

p Þ2½Ar;φk�2 ¼ 0

ð ffiffiffiffiffiffi
c11

p
−

ffiffiffiffiffiffi
cαr

p Þ2ðDαArÞ2 ¼ 0;

ð ffiffiffiffiffiffi
c12

p
− ffiffiffiffiffiffiffi

cψr
p Þ2ðDψArÞ2 ¼ 0

ð ffiffiffiffiffiffi
c03

p
−

ffiffiffiffiffi
a2

p Þ2½A3;Ar�2 ¼ 0;

ð ffiffiffiffiffiffiffiffi
c0ϕ1

p −
ffiffiffiffiffi
a1

p Þ2½Ar;Aϕ1
�2 ¼ 0: ð3:179Þ

21Expectedly, because of our gauge choice (3.161), the Nahm
equation will have Dψφ3 and ½φ1;φ2� which is slightly different
from what one would have expected from the orientations of the
branes in Table III. This generic formalism is more useful for later
development so we will mostly concentrate on this. Again, a more
standard formalism is also possible and we will discuss it briefly
for the gauge choice (3.178) later in this section.

22We could also get (3.174) by adding a term ðPa maaDaφaÞ2
to the Hamiltonian (3.158). This will only change the last
equation in (3.160).
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The nontrivial issue is to verify that the coefficients do
vanish in the limit Ar ≠ 0, just as it were for the case when
A3 ≠ 0 in (3.162). To see whether this is still the case, let us
consider two coefficients c0ϕ1

in (3.119) and a1 in (3.106).
For the benefit of the discussion, we reproduce them once
again as

a1ðθÞ¼R3 secθ
Z

∞

0

dr
~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
F1

×

0
B@2

ffiffiffiffiffiffi
~F2

q
þ ~a2F3

~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
						
1
CA

c0ϕ1
ðθÞ¼R3 secθ

Z
∞

0

dr
~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

q
e−2ϕ0

×

0
B@2

ffiffiffiffiffiffi
~F2

q
þ ~a2F3

~a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2−F3

q
						
1
CA;

ð3:180Þ
where ~a1 and ~a2 are defined in (3.107). The above two
expressions for the coefficients are well defined for any
choices of the warp factors F1 as we discussed earlier. We
now see that the two coefficients in (3.180) would be the
same when

e2ϕ0F1 ¼ 1: ð3:181Þ
This condition onF1 remains the same ifwe compare the other
coefficients appearing in (3.179) namely ðb0k; crkÞ from
(3.135) and (3.144); ðc11; cαrÞ from (3.76) and (3.118);
ðc12; cψrÞ from (3.78) and (3.122); and ðc03; a2Þ from
(3.117) and (3.109) respectively. This is illustrated in
Table IV. However sinceF1 is taken to be a nontrivial function
in general, it may not always be possible to impose (3.181).
Thus in this gaugewecan takeAr ¼ 0 andθ ≠ 0. Interestingly
however demandingAr ≠ 0 does not imply vanishing θ. This
is therefore different from (3.166) thatwehad for theA3 gauge.
Most of the other details, regarding the Hamiltonian,

Hitchin equations etc. should be similar towhatwe discussed
earlier once we replace x3 with r. This also means that the
complex σ field (3.157) will now be σ ¼ A3 þ iAϕ1

satisfy-
ing relations similar to (3.168). The decoupling of theA3 and
Aϕ1

scalars would follow relations similar to (3.169).
We could also discuss a slightly different formalism with

the gauge choice (3.178) where the Nahm equation from
the corresponding BHN equation may take a more standard
form.23 For example with a different choice of the

Hamiltonian we may get our BHN equation to take the
following form that is a slight variant of (3.172):

F 12 þ
ffiffiffiffiffiffiffi
cψ3
c11

r
DψA3 − 2i

ffiffiffiffiffiffiffiffiffiffiffi
v3d12
c1c11

s
½φ1;φ2� ¼ 0; ð3:182Þ

and similarly for the equations for F αψ. We can see that the
Nahm reduction of the above equation implies that
the scalar fluctuations ðA3;φ1;φ2Þ are all restricted to
the Coulomb branch of the original D3-brane picture as
depicted in Table I. This also means that the decoupled
complex scalar σ is now completely the Higgs branch scalar
field combination σ ¼ φ3 þ iAϕ1

. The story could be
developed further, more or less along the line of our earlier
discussions, but we will not do it here and instead leave it as
an exercise for our diligent reader.

11. First look at the t parameter and the
BHN equations

The analysis that we performed in the above section
assumed c2 ¼ 0 for simplicity. It is now time to switch on
the c2 parameter and see how the results change. In the
process we can analyze the three BHN equations (3.172)
and (3.177). Our procedure would be to compare our results
with the ones given in [11,12] and express them in a
language suitable for later developments. First, we will
write our complexified gauge coupling τ using supergravity
variables. Switching on c2 in (3.153) and (3.158), this is
expressed as

τ≡ c1

�
q sin θ þ ic11

v3

�
; ð3:183Þ

where the expression for ðc1; c11; v3; qÞ is given earlier as
(3.63), (3.76), (3.66) and (3.67) respectively. The above
expression (3.183) is for NC deformation, and if we replace
sin θ with 1

2
sin 2θ and assume that ðc11; v3Þ are now given

by (3.82) and (3.71) respectively, we will get the functional
form for τ with RR deformation θ. In the following
however we will continue using the NC deformation θ,

TABLE IV. Comparing various pairs of coefficients in the
action for two different gauge choices A0 ¼ A3 and A0 ¼ Ar.
The last entries give us the BPS conditions which can be gotten
by demanding equality between the individual pair of coefficients
for the two gauge choices.

A0 ¼ A3 A0 ¼ Ar Relevant equations

c11, cα3 c11, cαr (3.76), (3.117), (3.118)
b0k, c3k b0k, crk (3.135), (3.145), (3.144)
c12, cψ3 c12, cψr (3.78), (3.121), (3.122)
c0r, a2 c03, a2 (3.118), (3.117), (3.109)
c0ϕ1

, a4 c0ϕ1
, a1 (3.119), (3.110), (3.106)

H2 ¼ 1 e2ϕ0F1 ¼ 1 (3.41), (3.5)

23Alternatively we could take the same gauge choice (3.161)
but use a different mapping (3.282) of the scalars instead of the
original mapping (3.156). In fact the mapping (3.282) will be
useful later to elucidate the physics in the presence of a surface
operator.
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although the RR deformation is equally easy to implement.
To proceed, let us define another quantity called t, in the
following way:

t≡� jτj
τ
¼ �

�
v3q sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c211 þ v23q
2sin2θ

p −
ic11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c211 þ v23q
2sin2θ

p �
;

ð3:184Þ

which is in general a complex number, and becomes a
purely imaginary number t ¼ �i when the θ parameter
vanishes or when c11 becomes very large compared to other
parameters appearing in (3.184). On the other hand when
v3q sin θ ≫ c11, t approaches t ¼ �1. Once we replace
sin θ by 1

2
sin 2θ, along with certain appropriate changes

mentioned above, we will get the expression for the RR
deformation. Note that similar arguments can be made for
the limit t ¼ �i, whereas for the other limit t ¼ �1, the
condition becomes v3q sin 2θ ≫ 2c11.
What is the usefulness of the parameter t? As discussed

in [11] and in [12] t is useful in expressing the BHN
equation in terms of topologically twisted variables.24 In
general however we do not have to incorporate topological
twist to express the BHN equation in terms of t. For
example the BHN equations, as they appear in [11] with
topological twist, can be expressed as

ðF − ϕ ∧ ϕþ tdAϕÞþ ¼ ðF − ϕ ∧ ϕ − t−1dAϕÞ−
¼ Dμϕ

μ ¼ 0; ð3:185Þ

where ϕμ are twisted scalar fields (see details in [11]), the�
appearing above denote self-dual and anti-self-dual expres-
sions respectively. Without the topological twist, the last
equation in (3.185) is clearly our equation (3.174).
Adding the self-dual and the anti-self-dual parts of

(3.185), and removing the topological twist so as to express
everything in the language of standard gauge theory,25 the
equation that we get for the F12 component the gauge fields
can be expressed as

F12 þ
�
tþ t−1

2

�
Dψϕ0 þ

�
t− t−1

2

�
D½1ϕ2� þ 2½ϕ1;ϕ2� ¼ 0;

ð3:186Þ

where we have assumed the four-dimensional coordinates
to be ðx0; x1; x2;ψÞ. Before comparing this equation with
(3.172), we should ask whether incorporating c2 back in
(3.158) changes the form of (3.172). The gauge theory part

of the action (3.153) now reproduces the following
Hamiltonian26:

H2 ¼
2i

τ − τ̄
Tr

�
c1c11F 0i

v3
þ τϵijkF jk

�

×

�
c1c11F 0i

v3
þ τ̄ϵilmF lm

�
; ð3:187Þ

where τ is given earlier in (3.183). In the presence of the
scalar fields of (3.153), the above Hamiltonian will
reproduce the Hamiltonian (3.158) apart from the addi-
tional pieces:

c1q sin θ
Z

TrF ∧ F

þ v3c1q2

c11
sin2θ

Z
TrF ∧ �F ; ð3:188Þ

depending on how all the terms are arranged as a sum of
squares. An alternative way of putting F and �F inside the
sum of squares could also be performed, but in the end the
final results should not differ. The former way of separating
the topological piece from the nontopological pieces has
one advantage: the BHN equations (3.172) etc., remain
mostly unaltered.
The definition of t in (3.184) is motivated from [11], and

one may see that when θ ¼ 0, t takes the value of �i.
However what definition of t we use is up to us: for every
choice of t there is a topological field theory although
choosing a t that may be an arbitrary complex number
would break supersymmetry. Furthermore the appearance
of qðθÞ in (3.184) will complicate the subsequent analysis
as knowing the precise value of qðθÞ from (3.67) requires
knowing the background fluxes in M-theory in full details.
We can then use our freedom to choose θ, using Set 2 in
(3.166), to make qðθÞ ¼ 1 for θ ¼ β. Therefore let us
define t, when θ ¼ β, using the functional form similar to
(3.184) but without any adjoining qðβÞ, namely,27

t≡�
�

v3 sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211 þ v23sin

2β
p −

ic11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211 þ v23sin

2β
p �

; ð3:189Þ

but now with β, a specific angle, instead of the generic NC
parameter θ, that can be used to parametrize the warp
factors Fi in the following way:

Fk ≡ Fkðr; βÞ; F4 ≡ F4ðr; x8; x9; βÞ; ð3:190Þ
24There are other and more deeper reasons for introducing t in

gauge theory, especially topological field theory, which will be
elaborated later.

25We are a bit hand-wavy in describing the details here, but
before the readers despair we want to assure that our sloppiness
will be rectified in the following sections.

26Needless to say, this is the special case with c11 ∝ c12, where
c11 and c12 are defined in (3.76) and (3.78) respectively. The
picture is not hard to generalize, but we will not do so here.

27We could also define ~v3ðθÞ≡ v3ðθÞqðθÞ and replace all v3
appearing below by ~v3. This will lead to an identical conclusion.
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in (3.5), where k ¼ 1, 2, 3. The question that wewant to ask
is whether this could lead to a consistent description.
Before answering this, we should also note that the scalar

fields used here are ðϕ0;ϕ1;ϕ2Þ, which should be com-
pared to (3.156), and also note the apparent absence of i in
the equation compared to our setup.28 However, with
jtj2 ¼ 1 and t given as (3.189), tþ t−1 is real but t − t−1

cannot be real.29 This means, and according to (3.156), we
can now identify our relevant scalars and gauge-field
components with the ones in [11] in the following way:

Aμ ¼−iAμ; φ3 ¼−iϕ0;

φ1 ¼
�
c1C11
v3d12

�
1=4

ϕ1; φ2 ¼
�
c1C11
v3d12

�
1=4

ϕ2

F μν ¼−iFμν; Dαφ1 ¼
�
c1C11
v3d12

�
1=4

Dαϕ1;

Dαφ2 ¼
�
c1C11
v3d12

�
1=4

Dαϕ2; Dβφ3 ¼−iDβϕ0; ð3:191Þ

where Dαϕk ¼ ∂αϕk þ ½Aα;ϕk�; ðc1; v3; d12Þ are defined
earlier in (3.63), (3.66) and (3.142) respectively; and the
new parameter C11 can be expressed as

C11 ≡ c11

�
1þ v23sin

2β

c211

�
; ð3:192Þ

where c11 is given in (3.76). For vanishing qðβÞ, C11 and c11
coincide. Therefore using the identifications (3.191), we
can reexpress (3.172) in the following suggestive way:

F12 þ
�
bψ3v3
c1C11

�
1=2

Dψϕ0 þ i

�
b212v3

c1C11d12

�
1=4

D½1ϕ2�

þ 2½ϕ1;ϕ2� ¼ 0; ð3:193Þ

where ðbψ3; b12Þ are defined in (3.137) and (3.135)
respectively. Comparing (3.193) with (3.186), we can
easily identify

tþ t−1 ¼ 2

�
bψ3v3
c1C11

�
1=2 ≡ 2ξ1;

t − t−1 ¼ 2i

�
b212v3

c1C11d12

�
1=4

≡ 2iξ2; ð3:194Þ

where ξi are defined accordingly. Note that there are two
equations for t and therefore we should expect some
relation between ξ1 and ξ2. Solving the first equation in
(3.194) gives us the following expression for t:

t ¼ ξ1 � i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ21

q
; ð3:195Þ

which should now be compared to (3.184) that we found
earlier. Equation (3.195) implies two possible values for t
[which are the two solutions of the quadratic equa-
tion (3.194)], consistent with (3.184). Therefore using
(3.195), (3.194) in (3.184), we get

sin2β ¼ c11ðβÞbψ3ðβÞ
c1ðβÞv3ðβÞ

; ð3:196Þ

where the β dependence of c11ðβÞ and bψ3ðβÞ can be read
from (3.76) and (3.137) respectively in the limit θ ¼ β
when we assume that the warp factors are parametrized
by β.
Observe that the above equation (3.196) has two free

variables: the parameter β, and the asymptotic value of the
gauge field e2ϕ0 . Thus the above relation connects β with
e2ϕ0 . To determine them individually we will require
another relation between them. In fact this appears from
the second equation for t in (3.194) in the following way.
Solving it, we get

t ¼ iξ2 �
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ22

q
: ð3:197Þ

This should be related to (3.195), otherwise it will lead to
certain inevitable contradictions. Equating (3.197) to
(3.195) leads to

ξ21 þ ξ22 ¼ 1; ð3:198Þ

which when expressed in terms of supergravity variables
described above in (3.194) leads to the following relation
between the coefficients:

bψ3

ffiffiffiffiffiffiffiffiffiffiffi
v3

c1C11

r
þ b12ffiffiffiffiffiffiffi

d12
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
c1C11
v3

s
; ð3:199Þ

which as expected should provide another relation between
β and e2ϕ0 . To see this let us go back to the definitions of the
parameters appearing in (3.199) and (3.196) all in the limit
θ ¼ β: b12ðβÞ in (3.135), d12ðβÞ in (3.142), v3ðβÞ in (3.66),
c11ðβÞ in (3.76), bψ3ðβÞ in (3.137) and c1ðβÞ in (3.63), and
isolate their e2ϕ0 dependences in the following way:

c1ðβÞ≡ eϕ0hc1ðβÞi; v3ðβÞ≡ eϕ0hv3ðβÞi;
bψ3ðβÞ≡ hbψ3ðβÞi
b12ðβÞ≡ e2ϕ0hb12ðβÞi; d12ðβÞ≡ e2ϕ0hd12ðβÞi;
c11ðβÞ≡ e2ϕ0hc11ðβÞi; ð3:200Þ

here hamni is simply used to denote the form for amn sans
the dilaton dependence eϕ0 . Plugging (3.200) in (3.196) and

28We define Daϕc ¼ ∂aϕc þ ½Aa;ϕc� compared to Daϕc that
has an i in the definition [see (3.116)].

29However subtlety arises when t ¼ �1, where we expect
t − t−1 ¼ 0. We will discuss this case later.
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(3.199), we get the following relations between the two free
parameters β and eϕ0 :

e2ϕ0 ¼ b̂1ðβÞ
b̂3ðβÞ − b̂2ðβÞ

;

e2ϕ0 ¼ â1ðβÞ
â3ðβÞ − â2ðβÞ

; ð3:201Þ

which when solved simultaneously should provide the
values for β, the parameter used for defining t at θ ¼ β,
and eϕ0 , the asymptotic value of the dilaton. The coef-
ficients appearing in (3.201) are defined, using (3.200), in
the following way:

â1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hbψ3i2hv3i
hc1ihC11i

s
; â2 ¼

hb12iffiffiffiffiffiffiffiffiffiffihd12i
p ; â3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hc1ihC11i

hv3i

s

b̂2 ¼ hC11i2hbψ3i; b̂1 ¼ hv3i2hbψ3isin2β;
b̂3 ¼ hv3ihc1ihC11isin2β; ð3:202Þ

where we have defined hC11i using the relation
C11 ¼ e2ϕ0hC11i, which is similar to c11 defined in
(3.200) above. However the definition of C11 in (3.192)
will yield

C11 ¼ e2ϕ0hC11i þOðϕ0Þ; ð3:203Þ
and therefore in the limit ϕ0 ≪ 1, the above analysis can be
trusted. Additionally, since eϕ0 is a positive definite
quantity, the two equations in (3.201) only make sense
if b̂3 ≥ b̂2 and â3 ≥ â2. In the language of the gauge theory
coefficients, this would imply

hv3ihc1i
hC11ihbψ3i

≥ cosec2β;
hC11ihc1i

hv3i
≥
hb12i2
hd12i

; ð3:204Þ

where ðc1; c11; v3; bψ3; b12; d12Þ are defined in (3.63),
(3.76), (3.66), (3.137), (3.135) and (3.142) respectively.
We expect the condition (3.204) to be compatible with the
following equation, used to determine the parameter β:

b̂1ðβÞ
b̂3ðβÞ − b̂2ðβÞ

¼ â1ðβÞ
â3ðβÞ − â2ðβÞ

; ð3:205Þ

which indeed is the case as (3.205) leads to the following
relation between the gauge theory coefficients formed as a
juxtaposition of the two inequalities, discussed above in
(3.204), in the following way:

hv3ihc1isin2β
hC11ihbψ3i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hC11ihc1ihd12i
hv3ihb12i2

s
: ð3:206Þ

So far the analysis has moved smoothly and we have results
that are apparently self-consistent. There is however one

issue that is not completely satisfactory, and it appears at
the point where we identified the scalars, namely
ðφ1;φ2;φ3Þ with the ones of [11], namely ðϕ0;ϕ1;ϕ2Þ,
in (3.191). Using the identification (3.191), the resulting
action does not have the full canonical form. A way out of
this would be to insert

ffiffiffiffiffiffi
−1

p
in the definition of ðφ1;φ2Þ in

(3.191). However this will imply t − t−1 to be real once we
identify (3.172) with (3.186), leading to a contradiction,
unless we impose the following condition:

D½1ϕ2� ≡D1ϕ2 −D2ϕ1 ¼ 0: ð3:207Þ

Now with appropriate identification of the scalars ðφ1;φ2Þ
with ðϕ1;ϕ2Þ, the BHN equation for our case takes the
following form:

F12 þ
�
bψ3v3
c1C11

�
1=2

Dψϕ0 þ 2½ϕ1;ϕ2� ¼ 0; ð3:208Þ

which one may now compare with the BHN equation
discussed in [11,12] for t ≠ �1. The way we have defined
things here, the BHN equation comes with relative plus
signs, but we can always redefine the variables so as to
allow for the antisymmetric condition (3.207).
The discussion in the last couple of pages was intended

to convince the reader that we have ample independence in
defining the parameter t. Once the parameter t is chosen, we
can define the other variables in the problem appropriately
to give us consistent results as we saw above. For θ ≠ 0, t is
in general a complex number different from �i, and
therefore a definition like (3.184), used in [11], could as
well suffice without resorting to the fixed parameter β to
make qðβÞ ¼ 1. However, now due to (3.187), the BHN
equation will change a little from (3.193) to the following
more generic form:

F12 þ
�
bψ3ðτ − τ̄Þ
2ijτj2

�
1=2

Dψϕ0

þ i
�
b212ðτ − τ̄Þ
8ijτj2d12

�
1=4

D½1ϕ2� þ 2½ϕ1;ϕ2� ¼ 0; ð3:209Þ

by appropriately defining mð1Þ
δk and gð1Þαβkl in (3.158) and

using the scaling relations similar to (3.191). Note that the
form of (3.209) may not be unique if we allow for other
components of the scalar fields. However once we choose
the appropriate number of scalar fields, we may use the
components mð1Þ

δk and gð1Þαβkl to always bring the BHN
equation into the form (3.209).
Comparing (3.209) with (3.186), and using the definition

of t as in (3.184), it is easy to see that the NC parameter θ
now satisfies a relation similar to (3.196):

sin2θ ¼ bψ3ðθÞc11ðθÞ
q2ðθÞc1ðθÞv3ðθÞ

: ð3:210Þ
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We should note a few details regarding the above relation.
One, for the RR deformation, the lhs of the above relation
(3.210) will be replaced by 1

2
sin 2θ along with appropriate

changes to v3 as in (3.71), c11 as in (3.82) and bψ3 as in
(3.149) with the functional form for c1 remaining similar to
(3.63) as before.30 Two, when θ vanishes, we expect the rhs
of (3.210) to vanish. This may not be too obvious from the
form of bψ3 in (3.149), so we may use an alternative way to
express this by redefining bψ3 as

bψ3 ¼
σ0c1c11

v3
; ð3:211Þ

where σ0ðθÞ is a positive definite θ-dependent constant. We
can now use (3.211) to rewrite (3.210) in the following
suggestive way:

c1q sin θ
ðc1c11v3

Þ ≡ Θ=2π
4π=g2YM

¼ ffiffiffiffiffi
σ0

p
; ð3:212Þ

from where the vanishing of bψ3 when θ vanishes amounts
to the vanishing of σ0. While the above step may not shed
much transparency to the vanishing issue, our rewrite of
(3.210) in terms of (3.212) will be useful later on.
On the other hand, we can use (3.197) to express the

second term in the BHN equation (3.209) in terms of the
known variables. This will give us

b212
d12ð1þ σ0Þ

¼ c1c11
v3

: ð3:213Þ

The above relation should be compatible with (3.198) and
(3.199) even if we switch off θ in our equations. In general,
an equation like (3.199) follows provided c11 is replaced by
its θ-dependent cousin:

c11ð0Þ → sec θc11ð0Þ − 2R3sin2θsec3θ

×
Z

∞

0

dre2ϕF2

∂G0

∂F2

∂F2

∂r ; ð3:214Þ

in (3.199) for small θ, where G0ðF1; F2; F3Þ is the
integrand in (3.76). Other relations like the ones discussed
above should follow, and one may easily check that the
overall picture is still expectedly consistent. We will not
elaborate further on this, instead however we will try to
express (3.213) in a way that may be a bit more transparent
with the analysis of [11] by redefining b12 and d12 as

b12 ¼
γ0c1c11

v3
; d12 ¼

κ0c1c11
v3

; ð3:215Þ

which is similar to the definition (3.211) studied above. The
coefficients ðγ0; κ0Þ are constants, just like σ0 in (3.211)
above. They can be related to each other via

γ20 ¼ κ0ð1þ σ0Þ; ð3:216Þ

which is easily gotten by plugging (3.215) in (3.213). We
could also rewrite all the other coefficients appearing in our
original Lagrangian (3.153) as (3.215) so that they are all
proportional to c1c11

v3
≡ 4π

g2YM
. This way the overall four-

dimensional Lagrangian will take the familiar form given
in [11] and a direct comparison to the results of [11] can
then be performed succinctly. We will however leave this as
an exercise for our attentive readers.
Let us now come to the other two BHN equations for our

case, namely the two equations in (3.177). We can rewrite
them using t and the definitions (3.191) in the following
way:

Faψ þ
�
tþ t−1

2

�
Dbϕ0 þ

�
t − t−1

2

�
Dψϕa ¼ 0; ð3:217Þ

where a ¼ 1, 2 and we can allow a relative sign difference
by allowing the sign choice for ðφ1;φ2Þ identifications in
(3.191). As before, noticing that t − t−1 cannot be real, and
preserving the canonical form of the action, we conclude31

Dψϕa ¼ 0 ⇒ Dψϕ1 ¼ Dψϕ2 ¼ 0: ð3:218Þ

At this stage there seems to be two possibilities: we can
either identify tþ t−1 with the coefficients of the Dbϕ0

terms, or we can assume that Dbϕ0 terms themselves
vanish. The former leads to two relations, but since
b23 ¼ b13 we will only have one quadratic equation in t.
However we will have to identify this to the one that we got
earlier in (3.194) otherwise there will be contradictions.
This means

c11
c12

¼ bψ3
b23

: ð3:219Þ

Looking at (3.76) for c11, (3.78) for c12, (3.137) for bψ3 and
(3.135) for b23 ¼ b13, we can see that (3.219) is definitely
not generic. Under special choices of the warp factors one

30As discussed earlier, this change is valid only for small
RR deformation parameter θ. For finite θ the relation (3.72)
gets corrected, and therefore the lhs of (3.196) will change
accordingly.

31There is an alternate way of expressing (3.218), after twist-
ing, that is sometimes useful although the resulting constraint
may be a bit weaker than (3.218). To see this combine the two
relations in (3.218) as

Dψϕ1 − iDψϕ2 ¼ ∂ψφ12 þ ½Aψ − iϕ0;φ12� ¼ 0;

where φ12 ≡ ϕ1 − iϕ2 with ϕi being the twisted scalar (see
footnote 16) and we have used a shifted gauge field using the
twisted scalar ϕ0. Since ϕ0 decouples via (3.171) [using the
identification (3.156)] both unshifted and the shifted fields will
have the same effect here.
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might be able to recover (3.219) but generically (3.219) will
be hard to satisfy. Thus the second option seems more
viable. Interestingly, imposing the second condition,

D1ϕ0 ¼ D2ϕ0 ¼ 0 ⇒ F1ψ ¼ F2ψ ¼ 0; ð3:220Þ
which is equivalent to putting a flat connection along the ψ
direction. This further means, from (3.218), the scalar fields
ðϕ1;ϕ2Þ are covariantly constant along the ψ direction,
with ϕ0 being covariantly constant along ðx1; x2Þ direc-
tions. Thus the nontrivial scalar fields ϕ1 ≡ ϕ1ðx1; x2;ψÞ
and ϕ2 ≡ ϕ2ðx1; x2;ψÞ satisfy

D1ϕ1 ¼ −D2ϕ2; D1ϕ2 ¼ D2ϕ1

F12 þ
�
bψ3ðτ − τ̄Þ
2ijτj2

�
1=2

Dψϕ0 þ 2½ϕ1;ϕ2� ¼ 0; ð3:221Þ

assuming ϕ0 to not be covariantly constant along the ψ
direction. The system is therefore tightly constrained, but
note that for t ¼ �1, the second constraint in (3.221) is
relaxed.32 The first and the third equation in (3.221) are thus
related to the equations (3.185) (see also [11,12]). The
Gauss law equation (3.154) puts no additional constraints
on ðϕ1;ϕ2Þ in this gauge.
We will soon solve these sets of equations, but for the

time being we will postpone this to concentrate on
identifying the supergravity variables used here to the
gauge-theory variables described in [11,12].

12. Identifying supergravity and gauge
theory parameters

In the previous section we have developed the full gauge
theory data from our M-theory analysis. It is encouraging to
see how the Bogomolnyi-Hitchin-Nahm (BHN) equation
appears naturally from our setup. However we have been a
bit sloppy in describing two things: the appearance of t given
in (3.184) and the appearance of a to describe the boundary
gauge theory as in [11,12,14]. Our initial identification of a
with the NC parameter θ in (3.70), although matched with
[11], was actually accidental. Once the effect of U4 in (3.60)
is added, we no longer expect a ¼ tan θ

2
for both NC and RR

deformations. The identification of a with the sugra vari-
ables will have to be more nontrivial, and finding this will
allow us to describe the other parameter, called t here (3.184)
and in [11,12] respectively, more succinctly.
With all the development that we carried out in the

previous section, it is not too hard to make an ansätze for a
using the background data. In the beginning we used (3.69)
to define a for the Yang-Mills data ðc1; c2Þ. However now
the Yang-Mills data have changed by the inclusion of U4. Let
us then define a using the new data in the following way:

Θ=2π
4π=g2YM

¼ v3q sin θ
c11

≡ 2a
1 − a2

; ð3:222Þ

where c11 is given in (3.76) and v3 is given in (3.66). This
would be the natural extension of (3.69) and is motivated by
the connection between the gauge theory Θ

2π parameter and
the Yang-Mills coupling 4π

g2YM
described in [11,14]; and also in

(3.212) earlier. The above relation to a will continue to hold
once we replace the sin θ appearing in (3.222) by 1

2
sin 2θ,

where θ will now be the RR deformation. For our case and
assuming θ, for simplicity, is providing the NC deformation,
the definition of a in terms of the sugra variables can then be
expressed as33

a≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c211

v23q
2 sin2 θ

s
−

c11
v3q sin θ

; ð3:223Þ

which follow naturally from (3.222). Additionally it is easy
to verify, for NC deformation, the definition of t in (3.184)
can be reexpressed in terms of a as

t ¼ 2a
1þ a2

− i

�
1 − a2

1þ a2

�
≡ −i

�
1þ ia
1 − ia

�
; ð3:224Þ

precisely as in [11,14]. Once again, with appropriate
modification, one may describe an exactly similar relation
with the RR deformation parameter θ.
So far our discussions have been self-consistent, and the

results could be compared to [11]. However note that the
introduction of the t parameter in our model is not unique.
There are other ways to introduce this parameter which
may also lead to consistent results. In the following we will
elaborate this and in turn determine the electric and the
magnetic charges QE and QM respectively in (3.158). To
start, we will first rewrite the relevant parts of the
Hamiltonian H using (3.187) once we switch on c2
parameter, in the following way:

H¼
X2
α;β¼1

Z
d3xTr

� ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ− τ̄

r
F αβþ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαβm

ð1Þ
δk Dδφk

−
X
k;l

igð1Þαβkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

þ
X2
α¼1

Z
d3xTr

� ffiffiffiffiffiffiffiffiffiffiffi
4ijτj2
τ− τ̄

r
F αψ þ

X3
δ;k¼1

ffiffiffiffiffiffiffi
bδk

p
ϵαψm

ð2Þ
δk Dδφk

−
X
k;l

ihð1Þαψkl

ffiffiffiffiffiffi
dkl

p
½φk;φl�

�
2

þ1

2

Z
d3xϵ0αβγðτþ τ̄ÞTrF 0αF βγþQEþQM; ð3:225Þ

32The first constraint can be expressed as D0ϕ0 þD1ϕ1þ
D2ϕ2 þDψϕ3 ¼ D1ϕ1 þD2ϕ2 ¼ 0, where we have defined
A3 ¼ −iϕ3. This is exactly Dμϕμ ¼ 0 in (3.185).

33There is a relative sign ambiguity, but that can be absorbed
by redefining θ.
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where τ is given by (3.183), and the other parameters have
been defined earlier.34 We expect QE ¼ 0 if the warp
factors satisfy (3.162). To determine QM, we can take the
following simplifying condition that we discussed earlier:

ffiffiffiffiffiffiffi
bδk

p
mð1Þ

δk ¼
ffiffiffiffiffiffiffi
bδk

p
mð2Þ

δk ¼ −ϵδk

ffiffiffiffiffiffiffiffiffiffiffi
2ijτj2
τ − τ̄

r

gð1Þαβkl ¼ −ηkαηlβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ijτj2

dαβðτ − τ̄Þ

s
;

hð1Þαψkl ¼ −ηkαηlψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ijτj2

dαψðτ − τ̄Þ

s
; ð3:226Þ

which would still satisfy the consistency relations (3.160)
because the other coefficient, namely qð1Þkl , that does not
appear in (3.226), is undetermined and can be used to our
advantage to solve (3.160). Note that (3.226) is more
generic than our earlier choices (3.173) and (3.175), and
thus the BHN equations for F αψ will differ from (3.176)
and (3.177).35 This is good because it simplifies the form
for QM, which in our case will be given by (see also [34])

QM ¼ 2ijτj2
τ − τ̄

Z
d3x

× ∂ψ

�
ϵαβkTr

�
φkF αβ þ

i
3
φk½φα;φβ� þ φαDβφk

�
;

ð3:227Þ
where the subscript on the scalar fields φm are to be
interpreted in the way described earlier. In the absence of
any boundary,QM ¼ 0, as should be obvious from (3.227).
In the presence of the boundary W along ðx0; x1; x2Þ, as
described in Sec. (III B 7), one might combine the QM
piece (3.227) with the topological term in (3.225), to write
the following boundary action36:

Sbnd ¼
Z
V
dx0QM þ τ þ τ̄

2

Z
V
TrF ∧ F

¼ τ þ τ̄

2

Z
W
Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�

þ 2ijτj2
τ − τ̄

Z
W
dx0dx1dx2ϵαβk

× Tr

�
F αβφk þ

i
3
φk½φα;φβ� þ φαDβφk

�
; ð3:228Þ

where V ¼ W ×Rþ as described in Sec. (III B 7). Under
twisting, the three scalars ðφ1;φ2;φ3Þ become one-forms37

ϕ ¼P2
μ¼0 ϕμdxμ, and therefore one might be tempted to

declare (3.228) as the required boundary topological action
for the three-dimensional theory once we convert to
Euclidean signature. In fact under twisting and
Euclideanization, (3.228) almost resembles Eqs. (2.54)
and (2.55) of [11] provided

ϕμ →

�
t2 − 1

2t

�
ϕμ; ð3:229Þ

with t as in (3.184). Unfortunately however the coefficients
appearing in the two terms of (3.228) do not match with the
ones in Eqs. (2.54) and (2.55) of [11]. One might think that
a different scaling of all the fields could bring (3.228) in the
required form where one could compare with [11]. While
this might be possible, the physics leading to the correct
boundary topological action is more subtle, and the action
that we got in (3.228), despite its encouraging similarity, is
not the complete story.
What have we missed? First note that in the absence of

any boundary our analysis from (3.227) and (3.228) would
have implied zero boundary action. However once we twist
our scalar fields ðφ1;φ2;φ3Þ to ðϕ0;ϕ1;ϕ2Þ we expect,
again in the absence of any boundary, the action Stotal
(3.153) to be expressible as

Stotal → ~Stotal

¼ fQ;…g þ ðb2 þ c2Þ
Z
V
TrF ∧ F ; ð3:230Þ

where Q is the topological charge, c2 is given earlier as in
(3.63) and b2 is a new coefficient that is not visible in the
untwisted theory (see also [11,14]). When the theory has a
boundary, we expect the second term in (3.230) to give us

Sð1Þbnd ¼ ðb2 þ c2Þ
Z
W
Tr
�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�
;

ð3:231Þ

which differs from the coefficient τ þ τ̄ of the Chern-
Simons term that we got earlier in (3.228). This difference
is crucial and will help us to get the correct boundary
theory.
However (3.231) is not the only boundary term that we

get from our analysis. We expect some variants of the
second term in (3.228) to also show up, albeit with twisted

34The electric and magnetic charges QE and QM respectively
are c-numbers as should be evident from (3.158) and the dim G
piece is removed by taking the adjoint trace.

35The decoupling of the two scalars σ and σ̄ as given in (3.167),
(3.168) and (3.169) still holds and therefore they do not appear in
(3.225). This situation will change in the presence of surface
operators and other defects, which will be discussed in Sec. III C.

36The existence of dx0 implies that the action (3.228) is still in
the Lorenzian frame, although an extension to the Euclidean
frame is straightforward and will be discussed below.

37Note that previously (3.191) was used to relate scalar fields
φk with scalar fields ϕm. Here we relate scalar fields φk with one-
forms ϕμ. Since we are using the same notations for scalar fields
and one-forms, we hope the readers will not be confused as which
one is meant should be clear from the context.
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scalar fields. In fact this turns out to be the case, and once
we ignore the scalings (3.229) and (3.226), the boundary
terms that we get are now

Sð2Þbnd ¼
Z
W
Tr

�
2d1F ∧ ϕþ id2

3
ϕ ∧ ϕ ∧ ϕþ d3ϕ ∧ dAϕ

�
;

ð3:232Þ

where dk coefficients depend onm
ð1Þ
kl and gð1Þabkl appearing in

(3.158) and (3.187), dA ¼ dþ 2iA is the covariant deriva-
tive expressed in differential geometry language and ϕ is
the one-form constructed from the twisted scalars ϕμ as
depicted above. The extra factors of 2 in (3.232) as well as
in the definition of dA are meant to relate the wedge
products with the commutator brackets.
At this stage one might conclude that we have all

the necessary couplings for our topologically twisted
theory. However this is not the case. We have ignored
a few other possible ingredients in our construction
associated with couplings of the scalar fields. The first
one being related to Myers effect [35], namely the fact that
the fractional D3-branes could also be thought of as
the puffed up version of a single spherical fractional
D5-brane.38

It is crucial to get the orientations of various branes
right. The wrapped D5-D5 pairs are oriented along
ðx0; x1; x2; x3; r;ψÞ such that the D3-branes that we are
concerned with can be viewed as along ðx0; x1; x2;ψÞ. The
effective theory on the D3-branes has been worked out in
detail in earlier sections using M-theory multi-Taub-NUT
configuration oriented along ðθ1; x8; x9; x11Þ. The spherical
D5-brane (which has no net D5-brane charge) is along
the space-time directions ðx0; x1; x2;ψÞ with a two-
dimensional projection along ðθ1; x8; x9Þ directions for
both the gauge choicesA0 ¼ A3 andA0 ¼ Ar respectively.
The second type of couplings could be associated with

the interactions of the NS three-form field strengths with
the non-Abelian brane configuration. These couplings are
different from the usual couplings of the NS three-form
field strengths with the brane in the sense that the couplings
originate from the orthogonal components of the three-
form field strengths with the non-Abelian scalars of the
brane (thus they are absent in the Abelian case).
The final set of couplings appears when one goes from

the non-Abelian nature of the scalars to their twisted
version. To see this consider the boundary coupling

(3.232). If we do not resort to the simplifying conditions
(3.226), we see that the dk coefficients satisfy

d1 ∝mð1Þ
δk

ffiffiffiffiffiffiffi
bδk

p
; d3 ∝ gð1Þαβkl

ffiffiffiffiffiffi
dkl

p
; d2 ∝ d1d3; ð3:233Þ

which is a direct descendent of the properties of dk before
twisting. The constraint (3.233) may not hold once we twist
the scalars. However if we want to keep the constraint
(3.233), we can insert an additional cubic coupling of the
twisted scalars. All these can be achieved by allowing the
following couplings:

Sadd ¼
i
3

Z
dx0dx1dx2dψTrðΦiΦjΦkÞ

× ½e1ðF 7Þ012ψijk þ e2ðH3Þijk�; ð3:234Þ

where we expect e1 to be proportional to �e2 with the sign
determining whether it is a brane or an antibrane, andΦi are
the scalar fields φk that we discussed above. The seven-
form field strength accommodates both the Myers effect as
well as the changes in the coupling when ones goes from
one description to another.39 This can be seen by twisting
the non-Abelian scalar in (3.234) to reproduce the follow-
ing boundary action:

Sð3Þbnd ¼
i
3
ðe1n1 þ e2n2Þ

Z
W
Trðϕ ∧ ϕ ∧ ϕÞ; ð3:235Þ

where n1 and n2 are related to the expectation values of F 7

and H3 respectively. In deriving (3.235) we have assumed
the integrand in (3.234) to be independent of ψ .
We now have all the necessary boundary bosonic

couplings. Combining (3.231), (3.232) and (3.235), we
can get the full action on the boundary W, parametrized by
coordinates ðx0; x1; x2Þ, as

Sbnd ¼ ðb2 þ c2Þ
Z
W
Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�

þ
Z
W
Tr
�
2d1F ∧ ϕþ i

3
ðd2 þ n1e1 þ n2e2Þ

× ϕ ∧ ϕ ∧ ϕþ d3ϕ ∧ dAϕ

�
: ð3:236Þ

Comparing the boundary action with (3.225), we can make
a few observations on the dk coefficients without actually

38Recall the fractional brane origin of the D3-brane, namely it
being a D5-D5 pair. In the presence of multiple fractional D3-
branes, there will be multiple pairs of D5-D5 branes wrapped on
the Taub-NUT two-cycles. Once we move the D5 branes along
the Coulomb branch in the IIB picture, we can describe the
physics using a multicentered Taub-NUT configuration in the M-
theory lift. Thus in the spherical D5-brane picture, the bound
fractional D3-branes are secretly D5-D5 pairs much like bound
D0-branes on a spherical D2-brane.

39The seven-form field strength originates from dimensional
reduction of a nine-form field strength of the form F 9 ¼�dC0 þ F9, where C0 is the axion and F9 is a nine-form
d5ϵ0123ψrθ189 with constant coefficient d5. For the specific case
that we study we have no axion switched on, and no three-form
with components ðH3Þθ189. However this is not generic, as we can
easily change the identification of the scalars (3.156) to allow for
the required components of the three and the effective seven forms.
To take care of this we express the couplings generically as (3.234).

DASGUPTA, ERRASTI DÍEZ, RAMADEVI, and TATAR PHYSICAL REVIEW D 95, 026010 (2017)

026010-40



computing them. First, and as we discussed above, we can
continue using (3.233) even when we have twisted scalars.
Thus the second coefficient d2 gets fixed once ðd1; d3Þ are
determined. Second, we can use the ambiguity of

ðmð1Þ
δk ; g

ð1Þ
αβklÞ to fix the form of d3 in terms of d1. As we

discussed, from (3.233), this way d2 also gets fixed in the
process once d3 is fixed. Thus we can have

d3 ¼
d21

b2 þ c2
; d2 ¼

d31
ðb2 þ c2Þ2

; ð3:237Þ

where ðb2; c2Þ are the coefficients that appear in (3.236).
The (b2 þ c2) factors in the dk coefficients guarantee that
the Chern-Simons coupling remains (b2 þ c2) instead of
shifting to another value. The choice (3.237) is motivated

from the scaling argument that we performed earlier
in (3.229).
The last bit of information that we need to complete the

story is the value for the interaction term (3.234). As we see
in (3.234), the values for ðn1; n2Þ depend on the back-
ground fluxes F 7 and H3. We can fix the background data
from the start in (3.4) in such a way that

n1e1 þ n2e2 ≡ d2 ¼
d31

ðb2 þ c2Þ2
; ð3:238Þ

which in fact governs the way the warp factors Fi in (3.5)
are chosen. This is good because so far we have left the
warp factors Fi in (3.5) undetermined. Thus after the dust
settles, our boundary action takes the following form:

Sbnd ¼ ðb2 þ c2Þ
Z
W
Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�

þ
Z
W
Tr

�
2d1F ∧ ϕþ 2i

3

�
d31

ðb2 þ c2Þ2
�
ϕ ∧ ϕ ∧ ϕþ

�
d21

b2 þ c2

�
ϕ ∧ dAϕ



¼ ðb2 þ c2Þ
Z
W
Tr

��
Aþ

�
d1

b2 þ c2

�
ϕ

�
∧ d

�
Aþ

�
d1

b2 þ c2

�
ϕ

�

þ 2i
3

�
Aþ

�
d1

b2 þ c2

�
ϕ

�
∧
�
Aþ

�
d1

b2 þ c2

�
ϕ

�
∧
�
Aþ

�
d1

b2 þ c2

�
ϕ

�
; ð3:239Þ

where the coefficients b2 and d1 are yet to be determined
from the background data. Interestingly however, even
though we do not have the precise functional form for the
two coefficients b2 and d1, the second equality combines
the original gauge field A with the twisted scalar field ϕ to
give us a new gauge field:

Ad ≡Aþ
�

d1
b2 þ c2

�
ϕ; ð3:240Þ

using which we have defined another Chern-Simons theory
with a coupling constant (b2 þ c2) in the following way:

Sbnd ¼ ðb2 þ c2Þ
Z
W
Tr

�
Ad ∧ dAd þ

2i
3
Ad ∧ Ad ∧ Ad

�
;

ð3:241Þ

which is the topological field theory that we have for our
boundary manifold W. One may check that our consid-
erations have led to the same topological theory envisioned
byWitten in [11] but using completely different techniques.

13. More on the Chern-Simons theory and S-duality

There are a few details regarding the Chern-Simons
theory written above in (3.241) that need clarifications.

First, the Chern-Simons theory is expressed in terms of the
modified gauge field Ad which in turn can be expressed in
terms of the original gauge field A and the twisted scalar ϕ
via (3.240). The factor d1 appearing above is not arbitrary
and can be determined using a supersymmetry condition:

δAμ þ
d1

b2 þ c2
δϕμ ¼ −iλ̄

�
Γμ þ

d1
b2 þ c2

Γ4þμ

�
ϵ ¼ 0;

ð3:242Þ

where λ is the fermion of the supersymmetrc multiplet and ϵ
is the supersymmetric transformation parameter. We have
used the similar notations to express the Γ-matrices as in
[11] and therefore the rhs of (3.242) follows the same
algebra as in [11].
The Γ-matrices chosen here are the flat space Γ-matrices

as they are related to the effective theory (3.153) defined on
four-dimensional spacetime parametrized by ðx0; x1; x2;ψÞ.
Although our model is inherently supersymmetric from the
start, it may be interesting to revisit the issue of super-
symmetry so we could directly compare our analysis with
that of [11]. The original orientations of the branes are
given in Table III and therefore it is easy to see that we have
the required Lorentz symmetry of
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SOð1; 2Þ × SOð3Þ × SOð3Þ; ð3:243Þ

where SOð1; 2Þ corresponds to the Lorentz rotation along
ðx0; x1; x2Þ directions; the first SOð3Þ corresponds to
rotation along ðx3; x8; x9Þ directions associated with the
Coulomb branch of the theory on the D3-branes; and the
second SOð3Þ corresponds to rotation along ðr; θ1;ϕ1Þ
directions. In the dual type IIB theory where we have
wrapped D5=D5 branes on two-cycle of a Taub-NUT space
we can easily allow the symmetry (3.243) to persist by
putting some mild constraints on the warp factors Fi. Note
that this is not a necessary constraint, so at this stage we can
see that for certain choices of the warp factors we can
reproduce precisely the results of [11]. Similar arguments
can be given for our M-theory construction where we only
have a Taub-NUT space with background fluxes.
Finding a symmetry like (3.243) in our construction

means that we can channel the results of [11] more directly.
For example one persistent question has been the identity of
the parameter t in our setup. In the last couple of sections
we have mentioned how t could appear in our setup, and in
fact this parameter played important roles in [11,12,14], so
the natural question is to ask where a parameter like t could
fit in our analysis.
To answer this question, it may be instructive to search

for the source of t in, for example, [11]. The 16 dimensional
fermionic component in our model decomposes as two
copies of ð2; 2; 2Þ of the symmetry group (3.243) which,
following [11], we write as a vector space V8 ⊗ V2. Thus a
supersymmetry parameter ϵ appearing in (3.242) above can
be expressed as ϵ ¼ η ⊗ ϵ0, where η is an element of V8
and ϵ0 is an element of V2. Supersymmetry therefore
requires us to find two functions ðQ2; Q3Þ that may be used
to express the SUSY relation:�

1þ 1

2
ðQ2 −Q3ÞB0 þ

1

2
ðQ2 þQ3ÞB1

�
ϵ0

¼
�

1 Q2

Q3 1

�
ϵ0 ¼ 0; ð3:244Þ

where B0 and B1 are two two-dimensional matrices given
in Eq. (2.4) of [11]; and ϵ0 is normalized as ϵ0 ¼ ð−a1Þ
similar to [11]. This is the same a that appears in (3.222)
above and is related to the θ-angle via (3.223). The two
functions ðQ2; Q3Þ are then functions of the parameter a
and it is easy to see that to solve (3.244) we need

Q2 ≡ a; Q3 ≡ 1

a
: ð3:245Þ

The picture developed above is before twisting, and so the
natural question is to ask about the SUSY condition after
twisting. Again following the notation of [11], we can
define the SUSY parameter ϵ to be ϵ ¼ ϵL þ tϵR. This is
where the parameter t appears in our picture, and one can

easily see that t has to be a function of a so that a relation
like (3.244) may be constructed for ϵ after twisting. What
value of tðaÞ is allowed so that supersymmetry is preserved
both before and after twisting? The answer, as worked out
in [11], is

t ¼ −i
�
1þ ia
1 − ia

�
; ð3:246Þ

which matches precisely with (3.224). This is not surpris-
ing because we have tailored our definition of t in (3.184)
so as to reproduce the correct answer (3.246), although we
should note that the definition of t as � jτj

τ is not with an
arbritrary τ (3.183), but with a τ constrained via (3.222).
The parameter t as mentioned above is expressed in

terms of a which, in the original construction of Witten
[11], is related to the axionic background. For us, looking at
the RR deformation (3.32), the axion in our original NS5-
D3 brane construction Table I will be given by the
following expression:

C0 ¼
F2e2ϕ tan θ

cos2θ þ F2e2ϕsin2θ

				
r¼r0

; ð3:247Þ

where the parameters have been described earlier. Note that
the D3-branes in Table I are located at some fixed value of
r ¼ r0 as they are oriented along ðx0; x1; x2;ψÞ. This
should be contrasted with the dual D5-D5 picture where
the branes wrap the two-sphere along the ðψ ; rÞ directions.
This is of course the reason for the r integrals in all the
coefficients appearing in (3.153).
Dualizing C0 gives us RR two-form ðC2Þ3ψ as we would

have expected from (3.32), and from the background
(3.30). This is not quite the two-form we require from
the M-theory point of view to reproduce the topological
coupling in (3.153), but as discussed earlier, the existence
of a small amount of NS B-field on the two-sphere oriented
along ðψ ; rÞ directions tells us that we can also allow a RR
two-form ðC2Þ3r. Lifting this to M-theory yields a three-
form ðC3Þ3rϕ1

as given in (3.67) which we can reexpress in
the following form:

C3 ¼ pðθ1; θÞqðθÞ sin θdζθ ∧ dx3 ∧ dϕ1; ð3:248Þ

where pðθ1; θÞ and qðθÞ are arbitrary periodic functions of
ðθ1; θÞ respectively as described in (3.67), and ζθ is given in
terms of a slowly varying function Nðr; θÞ as

ζθ ¼
Nðr; θÞ

cos2θ þ Nðr; θÞsin2θ : ð3:249Þ

The smallness of Nðr; θÞ in fact tells us that switching on
(3.248) will change the background very slightly in
M-theory. The function ζθ is of the form (3.247), so that
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the three-form does give us the required topological term
or, in other words, the coefficient c2 of the topological term.
On the other hand if we normalize our warp factor and

the dilaton to satisfy F2e2ϕ ¼ 1 at r ¼ r0, then from
(3.247) we see that C0 ¼ tan θ. We can go back to our
definition of a in (3.223) and ask for what values of qðθÞ, a
becomes tan θ

2
. The answer is the following θ-dependence

for qðθÞ:

qðθÞ ¼ c11 sec θ
v3

; ð3:250Þ

which may be easily derived from (3.67) and (3.222). It is
interesting that if we plug in (3.250) in (3.69), the
coefficient c2 becomes

c2 ¼
c1c11
v3

tan θ ¼ 4π

g2YM

�
2a

1 − a2

�
; ð3:251Þ

where we have normalized v3 as v3 ¼ 2R3. The above
relation is precisely the coefficient of the Θ-parameter
in [11].
All the above discussions point to the consistency of our

model, both in terms of reproducing the correct boundary
theory as well as comparing our results to that of [11]. One
issue that we have not discussed so far is the issue of
S-duality that forms an integral part of the discussion in
[11]. Can we analyze the S-dual picture completely in terms
of a supergravity background with fluxes and without
branes, as we did for the case before S-duality?
The answer turns out to be in the affirmative although the

computations are a bit more subtle now. Our aim is to
address the analysis completely in terms of supergravity
fields with no branes, so the first choice of S-dualizing the
brane constructions in Table I does not seem to give us the
required answer as an S-duality leads to D3-branes
perpendicular to the D5-brane. A further T-duality may
lead to a D4-D6 system which when lifted to M-theory
will have M5-branes in a Taub-NUT geometry. This is not
what we are aiming for, so we have to look for an
alternative scenario to study the S-dual background.
Interestingly the D4-D6 system has been used in [11] to
study the S-dual model.
The alternative scenario appears from the wrapped D5-

brane construction that we developed earlier. The D5-D5
branes wrap the two-cycle of a Taub-NUT geometry and
we move the D5-branes along the Coulomb branch to study
the wrapped D5-branes on the Taub-NUT two-cycle. This
picture, as we discussed earlier is not only equivalent to the
brane construction but has a distinct advantage over the
brane model when expressing the explicit supergravity
solution.
S-dualizing the wrapped D5-branes gives us wrapped

NS5-branes on the Taub-NUT two-cycle. The directions
are important: the NS5-branes are oriented along

ðx0; x1; x2; x3Þ and wrap the two-cycle of the Taub-NUT
oriented along ðψ ; rÞ directions. The remaining two direc-
tions of the Taub-NUT are along ðθ1;ϕ1Þ directions.
A T-duality orthogonal to the wrapped NS5-branes, i.e.
along the ϕ1 direction, converts it to a multicentered
Taub-NUT space in type IIA theory warping the original
Taub-NUT geometry suitably. Thus we have the following
scenario.

(i) A multicentered deformed Taub-NUT geometry in
type IIA theory where the four-dimensional gauge
theory can be studied from dimensional reduction of
type IIA fields over the multi-Taub-NUT space in
the way we described earlier.

(ii) A M-theory uplift of the type IIA geometry where
the multi-Taub-NUT space develops further warping
yet retains the essential topological properties of the
underlying space. The four-dimensional gauge
theory can now be recovered from the dimensional
reduction over the Taub-NUT space and over the
M-theory circle.

Both of the above techniques will give us the required
four-dimensional gauge theory, but the latter method might
be suitable to compare with the results that we had earlier
from M-theory. To start therefore let us write the metric in
type IIA theory:

ds2 ¼−dt2þdx21þdx22þ e2ϕF1dr2

þ dx23
cos2θþF2e2ϕsin2θ

þ
�
e2ϕ ~F2F3sec2θsin2θ1
~F2cos2θ1þF3sin2θ1

�
dψ2

þ e2ϕ½F3dθ21þF4ðdx28þdx29Þ�

þ ðdϕ1þbϕ13
dx3þbϕ1θ1dθ1Þ2

e2ϕð ~F2cos2θ1þF3sin2θ1Þ
; ð3:252Þ

where the second line is the warped Taub-NUT space that
appears from the wrapped NS5-branes, bθ1ϕ1

is the com-
ponent of the RR B-field appearing in (3.32) and b3ϕ1

is the
RR deformation in (3.32) and is given by the following
expression:

bϕ13
¼ ~F2e2ϕ tan θ sec θ cos θ1: ð3:253Þ

It is interesting that the Taub-NUT fibration structure
depends on the x3 direction, and the F1 warp factors are
at least functions of the radial coordinate r. Thus the Taub-
NUT space is nontrivially fibered over the six-dimensional
base and at a given point ðr; x3Þ we can have a well-defined
warped Taub-NUT manifold.
The fluxes on the other hand are mostly NS fluxes as the

only nontrivial RR flux component is the three-form
ðC3Þψrϕ1

appearing from the NS B-field switched on the
two-cycle in the type IIB side to cancel the D5-D5
tachyons. This is a small amount of flux, which in turn
allows us to have the NS B-field component b3r appearing

KNOT INVARIANTS AND M-THEORY: HITCHIN … PHYSICAL REVIEW D 95, 026010 (2017)

026010-43



from the RR two-form potential ðC2Þ3r responsible for
(3.67). The NS B-field in type IIA is then the following:

B2 ¼
~F2 cos θ1 sec θ

~F2cos2θ1 þ F3sin2θ1
× ðdϕ1 þ bϕ13

dx3 þ bϕ1θ1dθ1Þ ∧ dψ

þ ~F2e2ϕ tan θsec2θdx3 ∧ dψ þ b89dx8 ∧ dx9

þ b3rdx3 ∧ dr; ð3:254Þ

with b89 as it appears in (3.32), and the functional form of
the b3r component will be similar to (3.67), i.e. we expect
b3r to take the following form:

b3r ¼
Nr sin 2θ cos θpðθ1; θÞqðθÞ

2ðcos2 θ þ N sin2 θÞ2 : ð3:255Þ

On the other hand the behavior of the type IIA dilaton is
interesting. Unlike its type IIB counterpart (3.31), the
parameter eϕ only appears in the subleading term, and
the functional form is given by

eφA ¼ sec θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2cos2θ1 þ F3ð1þ F2e2ϕtan2θÞsin2θ1

p ; ð3:256Þ

which means that the type IIA background is in general
not weakly coupled. One may compare this to the type
IIA dilaton that we get from the background (3.31) by
T-dualizing along direction ϕ1 as

eφA ¼ e−3ϕ=2
ffiffiffiffiffiffiffiffiffiffi
cos θ

p ð1þ F2e2ϕ tan2 θÞ3=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 cos2 θ1 þ F3ð1þ F2e2ϕ tan2 θÞ sin2 θ1

p :

ð3:257Þ

We see that there exists a tunable parameter e−3ϕ=2 that
helps us to realize the M-theory uplift. Such a tunable
parameter is absent in (3.256). In fact in the limit ϕ → �∞,
(3.256) yields

eφA ¼ sec θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2cos2θ1 þ F3sin2θ1

p 				
ϕ→−∞

;

eφA ¼
�
cosecθcosecθ1ffiffiffiffiffiffiffiffiffiffiffi

F2F3

p
�
e−ϕ
				
ϕ→þ∞

: ð3:258Þ

The former is an Oð1Þ number, whereas the latter vanishes
implying that strong type IIA coupling may be reached
although infinite coupling will not be. Thus studying the
background using M-theory might be more appropriate
which, as we had anticipated earlier, puts an emphasis on
the 11-dimensional uplift. The story herein should then
be somewhat similar to the one that we developed earlier,
and therefore the first step would be the derivation of
the harmonic forms. As before, we will first attempt the

single-centered case and then extend this to the multi-Taub-
NUT picture.
At a given point in ðr; x3Þ, the taub-NUT space takes a

simple form if we, without loss of generalities, put
F2ðr0Þ ¼ F3ðr0Þ≡ a. The other warp factor F4 remains
a function of ðx8; x9Þ as before. Thus the warped Taub-NUT
space at a given point on ðr; x3Þ takes the following
form:

ds2¼ e2ϕðadθ21þF4ds289Þ

þ e−2ϕþatan2θ
aþa2e2ϕtan2θsin2θ1

ðdϕ1þbϕ1θ1dθ1Þ2: ð3:259Þ

The harmonic form will again be written as ~ω ¼ d~ζ with
the property that ~ω ¼ � �4 ~ω, where the Hodge star is
over the Taub-NUT space (3.259). The one-form ~ζ is
expressed as

~ζ ≡ gðθ1; x8; x9Þðdϕ1 þ bϕ1θ1dθ1Þ; ð3:260Þ

where we have used the same notation g that we had used
earlier in (3.46). The functional form of g remains
unchanged if we go to M-theory [despite the fact that in
M-theory the warping of our Taub-NUT (3.259) is differ-
ent]. Again, as before we expect g in (3.260) to satisfy the
following set of equations:

1

g
∂g
∂θ1 ¼ � α1

e2ϕF4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ae2ϕtan2θ

1þ ae2ϕtan2θsin2θ1

s

1

g
∂g
∂x8 ¼ � α3

ae2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ae2ϕtan2θ

1þ ae2ϕtan2θsin2θ1

s

1

g
∂g
∂x9 ¼ � α2

ae2ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ae2ϕtan2θ

1þ ae2ϕtan2θsin2θ1

s
; ð3:261Þ

where α2 and α3 are used to express the type IIB B-field
component bθ1ϕ1

as (3.59); and the vanishing of α1 would
imply the θ1 independence of the g function in (3.260). If
we now assume that the dilaton satisfies

e2ϕ ¼ e2ϕ0ffiffiffiffiffiffi
F3

p
�

~Qðr; x8; x9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2cos2θ1 þ F3sin2θ1

q �
; ð3:262Þ

which when compared to (3.54) would imply

Qðr; x8; x9Þ ¼ ~Qffiffiffiffi
F3

p , we maintain the expected consistency

in every duality frame. On the other hand the type IIA
dilaton eφA at the given point r ¼ r0, in the limit with small
θ, is given by

eφA ¼ sec θffiffiffi
a

p þOðθ2Þ: ð3:263Þ
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Since a is a finite nonzero number, the type IIA coupling is
finite and an Oð1Þ number at least for small θ. Thus 11-
dimensional supergravity analysis may not be able to
capture the full details of the theory. This is clear when
we try to compute the four-dimensional axionic coupling
from dimensional reduction over the Taub-NUT space
using an analysis similar to (3.62). The functional form
of the three-form entering the topological coupling of M-
theory (3.62) is similar to (3.67) although the components
are ðC3Þ3r;11 appearing in turn from the uplift of (3.255).
The precise form is given via

~c2 ¼
Z
~Σ3

C3

Z
TN

~ω ∧ ~ω

¼ −
Z

2hC3ig2ðα23 − α22Þdr ∧ dx3 ∧ dϕ1

∧ dθ1 ∧ dx8 ∧ dx9 ∧ dx11; ð3:264Þ

where hC3i is the value of the three-form that we got in
(3.67) and ~Σ3 is the three-cycle along ðr; x3; x11Þ.
Expectedly the orientation of ~Σ3 differs from the three-
cycle Σ3 used earlier in (3.63). This is consistent with the
fact that the Taub-NUT spaces in both cases are oriented
slightly differently as we saw above. Thus once we
rearrange the integral properly, we see that ~c2 differs from
c2 in (3.63) by at least an overall minus sign, although the
full behavior of ~c2 would require us to get higher order
terms in M-theory. The sign difference indicates S-duality
at play, so this is consistent with expectation.
The question however is why we should expect higher

order corrections here. The answer lies in (3.258). The type
IIA couplings are ofOð1Þ, and so the 11-dimensional circle
has a finite radius. Thus there is an infinite tower of Kaluza-
Klein (KK) states that would contribute to the M-theory
spectra which in turn would enter the supergravity loops to
change the background solution. Of course very massive
KK states can be integrated out in the Wilsonian action, but
light states would affect the background. When the radius
of the 11-dimensional circle is infinite, the type IIA
coupling is infinite and the theory is governed by 11-
dimensional supergravity only.
The above discussion implies that the values of ðα2; α3Þ

from (3.59) that appear in the S-dual picture should receive
correction so that

R
~ω ∧ ~ω computed above in (3.264) from

(3.261) will differ from the one given earlier in (3.52). Thus
we expect

~c2 ¼ −c2
�
R11

2π

�R
TN2R
TN1

~ω ∧ ~ω

ω ∧ ω

�
þOðδFiÞ

�
; ð3:265Þ

where we should remember that the two Taub-NUT spaces
discussed above [respectively as TN1 in (3.56) and TN2 as
(3.259)]not only have different orientations but also slightly
different warp factors; R11 is the 11-dimensional radius;

and the corrections δFi to the warp factors Fi are the
corrections to hC3i.
The Yang-Mills coupling should also change accord-

ingly. To see this we should compute ~c11, the equivalence
of c11 given earlier. We proceed by first defining F̂i ¼
Fi þ δFi for i ¼ 1, 3, 4 and F̂2 ¼ ~F2 þ δ ~F2, where the
variations represent possible quantum corrections to the
warp factors. To the first approximation wewill assume that
there are no extra cross terms in the type IIA metric (3.252)
coming from the quantum corrections. A full generalization
is technically challenging because eliminating the cross
terms by redefining the coordinates can make the resultant
warp factors to be functions of all the internal coordinates.
However since ~c11 involves finding the determinant of the
metric along the directions orthogonal to the Taub-NUT
space, the cross terms (which are of the same order as δFi)
would mostly contribute to O½ðδFkÞ2�. Thus the OðδFiÞ
contributions to the determinant can be viewed coming
entirely from the warp-factor fluctuations of the metric
(3.252).
This then gives us the explicit form for ~c11 in terms of the

warp factors F̂i, which have been defined above. The form
is similar to what we had earlier because, as one may verify,
the deformations to the type IIA metric (3.252) coming
from M-theory uplift simply get canceled in the final
expression:

~c11 ¼
R3R11

2π
sec θ

Z
∞

0

dre2ϕ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

~F2F3

b4ð ~F2 − F3Þ

s

× ln

						
ffiffiffiffiffiffi
~F2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
ffiffiffiffiffiffi
~F2

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~F2 − F3

q
						

þ
Z

∞

0

dr

�
B1δF1

F1

þ B2δ ~F2

~F2

þ B3δF3

F3

þ B4δϕ

ϕ

�
;

ð3:266Þ

where b4 is given in (3.83), and the first term above is
similar to (3.82) except for the additional factor of R11, the
11-dimensional radius. The correction terms given in terms
of Bi are all functions of the warp factors Fi, as one may
easily derive. This means that the four-dimensional Yang-
Mills coupling can now be expressed as

~c1 ~c11
~v3

¼ c1c11
v3

�
R11

2π

�R
TN2

~ω ∧ ~ωR
TN1

ω ∧ ω

�
þOðδFiÞ

�
; ð3:267Þ

where it should be clear from the context that the volumes
of the three-cycles ~v3 and v3 have different orientations, the
former being along ðx3; r; x11Þ and the latter being along
ðx3; r;ϕ1Þ. However since ~c1 and c1 are also oriented
differently, the ratios ~c1

~v3
and c1

v3
match precisely with the
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orientations of the Taub-NUT spaces TN2 and TN1

respectively.
TheOðδFiÞ corrections appearing in (3.267) and (3.265)

are, at this stage, arbitrary but we expect them to be
proportional to each other.40 In general they are not equal,
so it will be instructive to see how they are related to each
other. To analyze this let us express the OðδFiÞ corrections
to (3.267) and (3.265) to be OðδFðaÞ

i Þ and OðδFðbÞ
i Þ

respectively. This means we can rewrite (3.265) with the
same coefficient of c1c11

v3
as in (3.267) but with an extra

factor of

qðθÞ
~qðθÞ≡ 1þ OðδFðbÞ

i Þ −OðδFðaÞ
i Þ

R11

2π

�R
TN2

~ω∧ ~ωR
TN1

ω∧ω

�
þOðδFðaÞ

i Þ
; ð3:268Þ

where ~qðθÞ is similar to the arbitrary small parameter qðθÞ
that appeared in (3.67) in the definition of hC3i. The above
manipulation is useful because we can now express the
complex coupling ~τ for the S-dual theory to be

~τ ¼ ~c2 þ
i ~c1 ~c11

~v3

¼
ð−c2 þ ic1c11

v3
Þh

R11

2π

�R
TN2

~ω∧ ~ωR
TN1

ω∧ω

�
þOðδFðaÞ

i Þ
i
−1

; ð3:269Þ

where all the parameters appearing above are functions of
the RR (or NC) parameter θ as we discussed earlier.
Furthermore, the form of the denominator in (3.269) is
written in a suggestive way so that one may connect this to
the expected S-dual result:

~τ ¼ −
1

τ
¼ −

τ̄

jτj2 ¼
−c2 þ ic1c11

v3

c22 þ c2
1
c2
11

v2
3

¼ v3
c1c11

�
i − 2a

1−a2

ð1þa2

1−a2Þ2
�
; ð3:270Þ

provided of course that the denominator in (3.269) is equal
to jτj2. In the last equality above, we have invoked (3.251)
which relates c2 and c1c11

v3
so that the ratio is completely

expressed in terms of the parameter a. In this form, it may
be easier to relate the denominator of (3.269) to the
denominator in (3.270).
Having described the S-duality in some details from

supergravity, the next question is how we should go about
defining a parameter like t, now to be renamed ~t, in the
S-dual theory. A naive description, following (3.184),

~t≡ ~̄τ

j~τj ; ð3:271Þ

cannot quite be the right description for ~t simply because
the definition of t as in (3.184) only works when the four-
dimensional Yang-Mills coupling and the Θ-parameter are
related via (3.222). Since the relation between Yang-Mills
coupling and the Θ-parameter changes under S-duality,
(3.271) cannot be the right definition. We need to look for
an alternative definition for ~t that may capture the right
behavior in the S-dual theory.
The clue comes from the connection between ϵ0, the

SUSY transformation parameter before twisting, and ϵ,
the SUSY transformation parameter after twisting via the
relation ϵ ¼ η ⊗ ϵ0 where η ∈ V8. There exists an operator,
defined in terms of Q2 and Q3 in (3.244), that may act on
both ϵ and ϵ0 to annihilate them. The value of t for which
this could happen is of course (3.224) or (3.246). Under a
S-duality we should now ask how ϵ and ϵ0 transform. We
expect

ϵ → ~ϵ≡ ~ϵL þ ~t~ϵR ¼ expðQaÞϵ; ð3:272Þ

whereQa is an element of the S-duality group. On the other
hand, a transformation like (3.272) allows us to construct
the following transformation laws for the individual com-
ponents of ϵ, namely ϵL and ϵR, as

ϵL → ~ϵL ≡ expðQaÞϵL;
ϵR → ~ϵR ≡ expðQbÞϵR; ð3:273Þ

where Qa and Qb are in general not equal to each other,
although could be commuting. However a transformation
like (3.273) with unequal Qa and Qb will not be consistent
with (3.272), unless we demand t to also transform in the
following way:

t → ~t≡ expðQa −QbÞt; ð3:274Þ

under S-duality. Note that, with (3.274), the transforma-
tions of ϵ as well as ϵ0 under S-duality are consistent to
each other. This means while we needed to use a relation
like (3.244) to express t in terms of the parameter of ϵ0 in
(3.246), the form for ~t can be inferred from (3.274) directly
provided we know the forms of ðQa;QbÞ.
Our simple consideration has yielded the transformation

rule for t, but not the forms for ðQa;QbÞ. At this stage, and
as we mentioned above, we can say that they are commut-
ing but unequal. The functional forms for ðQa;QbÞ require
a more detailed analysis along the lines of [14], wherein it is
shown that Qb ¼ Q̄a, and the following transformation
rule:

40Both the OðδFiÞ corrections are integrated over all the
coordinates, and especially r and θ1, so they are only functions
of the NC (or RR parameter) θ.
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~t ¼ exp ð2iImQaÞt ¼
cτ þ d
jcτ þ dj t; ð3:275Þ

where the last equality uses elements of the SLð2;ZÞ
group.41 As expected the definition of ~t is different from
(3.271). A little work, following (3.275) and [11], will give
us ~t ¼ 1.
The choice of ~t ¼ 1 in the S-dual side may be a bit

puzzling from the corresponding supergravity point of
view. Before S-duality, the parameter t can be related to
the supergravity variables via the two relations in (3.194) or
via (3.195) and (3.197). If we assume similar relations now
between ~t and the sugra variables for the S-dual metric, we
face a contradiction because the vanishing of ~t − ~t−1 would
imply the vanishing of the corresponding b12 coefficient,
but this coefficient in the S-dual metric clearly does not
vanish. The reason why we see an apparent contradiction is
because we have assumed that the S-dual constraint
equations would follow a similar pattern of derivation as
elaborated for the pre S-dual scenario. That this may not
happen has already been anticipated in footnote 22: we may
get the same set of constraints via adding two additional
terms to the Hamiltonian, instead of mapping the picture to
the one involving t. From this point of view, there is no
need to make any extra connection to the t variable because
supergravity by itself knows all about the fermionic
structure from the start. As such, the S-dual picture is also
self-contained.
However the mapping to t in (3.194) is not without its

own merit. It showed us how to connect our set of solutions
to the localization equations of [11,14]. Interestingly,
adding the aforementioned two set of terms to the
Hamiltonian would not have changed our conclusions,
or the path of derivations, regarding the background
constraints. The mapping to t in the pre-S-dual picture
showed us another layer of hidden structures in our
construction. In the S-dual picture no contradictions will
now arise even if we do not make any mention of the ~t
parameter from the supergravity point of view. The BHN
equations would continue to resemble the ones in (3.221),
but now expressed in terms of the S-dual fields.

C. Types of solutions: Surface operators and opers

In the above sections we have managed to discuss the
appearance of the BHN equations, including the boundary

Chern-Simons theory (3.241) using the twisted gauge field
(3.240), from M-theory. The key question to ask now is the
locations of the knots. In other words, what additional
ingredients do we need to construct knots in this theory? In
the following we will discuss this and other related issues.
Our aim would also be to build a bridge between model A
and model B using our setup that we developed above. As
we shall see, the key player for both the models would be
the surface operators.

1. M2-brane states, surface operators and the
BHN equations

Lets us start with M2-brane wrapping the two-cycle of
our Taub-NUT space. The Taub-NUT space is oriented
along directions ðθ1; x8; x9; x11Þ with x11 being the Taub-
NUT circle. This means the M2-brane will be a source of a
point charge in the remaining 6þ 1 dimensional orthogo-
nal space in the following way:Z

C ¼
Z

A ∧ ω

¼
Z

A0dx0

Z
TN

ω≡ q
Z

A0dx0; ð3:276Þ

where the value of the charge q appears from the integral of
the harmonic two-form ω over the Taub-NUT space.
Reducing down to the 3þ 1 dimensional space, this would
lead to the non-Abelian enhancement in the presence of
multiple wrappedM2-branes on the two-cycle, as discussed
in Sec. III B 6 and in (3.91).
For our case this is not what we need to study the knots:

The wrapped M2-branes on Taub-NUT two-cycles could
only enhance the gauge symmetry but will not give us the
required Wilson loops necessary to study knots. What other
M2-brane states can we study here? This then brings us to
few other possible configurations of M2-branes that can be
realized in the Taub-NUT background. As we shall see, the
most relevant ones will be related to the surface operators
in our 3þ 1 dimensional gauge theory.
Our first configuration that we want to entertain can be

realized directly in the original brane construction in
Table I, or more appropriately the T-dual one given in
Table II with the second NS5-brane removed. This way we
can simply keep two parallel NS5-branes oriented along
ðx0; x1; x2; x3; x8; x9Þ with D4-branes and a D2-brane
oriented as in Table V. The D2-brane state, which is a
codimension two defect, acts as a surface operator in 3þ 1
dimensional gauge theory. This has been described in many
recent works (see [15–17] for discussions on the subject
and for references) which the readers may refer to for
details. For us, we want to lift this configuration to M-
theory by first dualizing this to type IIB theory (see details
in earlier sections), followed by shrinking the ϕ1 circle to
zero size and then opening up the eleventh direction. The
M2-brane state in M-theory is now depicted in Table VI. In

41Note that when τ¼ 4πi
g2YM

or τ¼ i
gs
, then ~t ¼ t in the limit d ¼ 0.

This makes sense because the ten-dimensional fermionic action
in type IIB supergravity in the string frame has the formR
d10xe−2φB

ffiffiffiffiffiffi
g10

p
Ψ̄ΓNDNΨ (plus interactions) which does not

require any additional scaling of the fermions when φB → −φB.
However when the axion C0 is present, the story is more
involved. This is similar to what we see from the four-
dimensional point of view too as depicted in (3.275).
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type IIA theory this will simply be a D2-brane embedded
inside D6-branes. It is also easy to make the system non-
Abelian by taking multiple M2-branes, or in type IIA
theory, multiple embedded D2-branes inside D6-branes.
Our goal now is to find how the M2-branes modify the

BHN equations that we discussed earlier. In particular we
would like to see how, for example, the background
constraint equations (3.221) [or (3.182)] change in the
presence of the M2-brane states. A direct study of multiple
M2-brane states in M-theory following [36] would make
our analysis harder. However the fact that, in the dual type
IIA side, the D2-brane states are bound states with the D6-
branes makes this analysis a bit easier because the bound
D2-brane states could be considered as instantons on the
D6-branes. In M-theory therefore the M2-brane states
would simply be provided by localized G-fluxes, and the
M2-branes’ charge Q2 would appear from

Q2 ¼
Z
Σ8

G4 ∧ G4 ¼
Z
Σ4

hF i ∧ hF i
Z
TN

ω ∧ ω; ð3:277Þ

where Σ8 ¼ Σ4 × TN, with Σ4 being a four-dimensional
surface oriented along ðx2; x3; r;ϕ1Þ and the orientation
of the Taub-NUT space as before. This means, on one
hand, switching on the above-mentioned instanton
implies switching on the following components of the
seven-dimensional gauge fields: A2, A3, Ar, Aϕ1

. On the
other hand, from our four-dimensional point of view with
the action (3.153), having an instanton (3.277) implies
switching on the four-dimensional gauge field component
A2 and the three scalar fields ðA3; σ; σ̄Þ where σ is defined
in (3.157).
The above discussion implies that, in the presence of

M2-branes, we can entertain a more elaborate decompo-
sition than envisioned in (3.55) by taking into account
localized G-fluxes of (3.277) along with the usual G-fluxes
in the following way:

G4 ¼ hG4i þ hF i ∧ ωþ ðF þ B2Þ ∧ ωþ Gφo þH3 ∧ ζ;

ð3:278Þ

where ω ¼ dζ has been defined earlier, H3 ¼ dB2 is the
three-form, φo is the harmonic zero-form defined on
the warped Taub-NUT space, and G is the fluctuation of
the four-form in the seven-dimensional spacetime orthogo-
nal to the warped Taub-NUT space. The four-form piece
H3 ∧ ζ only contributes to the ten-dimensional type IIA
action, and so we can ignore this for our case. This means
we can also absorb B2 in the definition of F without any
loss of generalities.
Plugging (3.278) in the M-theory action along the lines

of (3.62) will not only reproduce back the total four-
dimensional action (3.153) from the zero mode fluctuations
of the fluxes and fields over the warped Taub-NUT space,
but will also give us the additional M2-brane piece
Q2

R
C01ψdx0 ∧ dx1 ∧ dψ . This means the BHN equa-

tion (3.172) will remain unchanged if the internal instanton
contributions to the charge piece (3.277) come only from
the background scalar fields ðA3; σ; σ̄Þ. The precise con-
ditions, to first approximations, are modifications of
(3.167) and (3.168) in the following way:

Dηδσ ¼ Dηδσ̄ ¼ 0

½δσ; σ̄� þ ½σ; δσ̄� ¼ ½δσ;φk� ¼ ½δσ̄;φk� ¼ 0; ð3:279Þ

where δσ and δσ̄ are the fluctuations of the scalar fields
ðσ; σ̄Þ in the presence of the instanton (3.278). The other
two fluctuations of the components of the gauge fields δA2

and δA3 would in principle only redefine the BHN
equation (3.221) and the gauge condition (3.161) respec-
tively without changing the content of the equations. We
will however retain the gauge condition (3.161) by resort-
ing to the A3 ¼ 0 case.42

However subtlety comes when we look at the other
set of the BHN equations, namely (3.176) or (3.177).
Considering the c2 ¼ 0 case for simplicity, the BHN
equation for the F αψ components of the gauge fields
can be rewritten in a more complete form, in the absence
of M2-branes, as

F αψ þ
X3
β;k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bβkv3
c1c12

s
ϵαψm

ð2Þ
βk Dβφk

− i
X3
k;l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2dklv3
c1c12

s
hð1Þαψkl½φk;φl� ¼ 0; ð3:280Þ

TABLE V. The orientation of a D2-brane as a surface operator
in 3þ 1 dimensional noncompact directions.

Directions x0 x1 x2 x3 θ1 ϕ1 ψ r x8 x9

NS5
p p p p � � � � p p

D4
p p p p � � p � � �

D2
p p � � � p � � � �

TABLE VI. M2-brane state in the warped Taub-NUT back-
ground. The warping appears from nontrivial geometry, shown
above, and G-fluxes, discussed earlier.

Directions x0 x1 x2 x3 θ1 ϕ1 ψ r x8 x9 x11

Geometry � � � � p p p p � � �
Taub-NUT � � � � p � � � p p p
M2

p p � � � � p � � � �

42This way F α3 ≡ −∂3Aα for both Abelian and non-Abelian
cases.
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where the coefficients appearing above have been defined
earlier. In (3.176) and (3.177) we had taken the simplifying

assumption where only qð1Þ12 vanishes. Generically however

qð1Þkl ¼ 0 for all choices of ðk; lÞ. Additionally we can

demand nonzero values for the coefficients hð1Þαψkl. This way
we no longer have to decouple φ3 as in (3.171). On the
other hand, if we do not want to change (3.221), we can

easily take appropriate values for the coefficients gð1Þαβkl

satisfying the third constraint in (3.160).
The discussion in the above paragraph was intended to

establish a link between the BHN equation (3.280) and the
surface operators that we discussed at the beginning of this
section. In the type IIA side, as depicted in Table V, the D2-
branes intersect the D4-branes along ðx0; x1Þ directions and
therefore the support D of the surface operator should be
along x2 ¼ ψ ¼ 0 (recall that x3 direction is a compact
circle for us). When one of the parallel NS5 is sufficiently
far away the supersymmetry on the D4-branes is N ¼ 4
and therefore, as discussed in [16], the supersymmetry
preserved by the surface operator is (4,4) supersymmetry
from the two-dimensional point of view. Using the lan-
guage of M-theory construction discussed in Table VI, the
(4,4) vector multiplet contains vector fields with compo-
nents ðA0;A1Þ and four scalars ðA3; σ; σ̄;φ1Þ all in the
adjoint representations of the gauge group. The (4,4)
hypermultiplet is constructed from the remaining two
gauge field components ðA2; AψÞ and the two scalars
ðφ2;φ3Þ.43
Looking at the components of the hypermultiplets,

we see that the BHN equation (3.280) can be used to
capture the behavior of the hypermultiplets of the
two-dimensional theory. In fact we are interested in α ¼
2 BHN equation in (3.280). In other words, we have the
following BHN equation, again in the absence of any
M2-branes, associated to the F 2ψ component of the gauge
field:

F 2ψ þ
ffiffiffiffiffiffiffiffiffiffiffi
2v3
c1c12

s
ðmð2Þ

23

ffiffiffiffiffiffiffi
b23

p
D2φ3 þmð2Þ

ψ2

ffiffiffiffiffiffiffi
bψ2

p
Dψφ2Þ

− 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2d23v3
c1c12

s
hð1Þ2ψ23½φ2;φ3� ¼ 0; ð3:281Þ

where the coefficients b23, bψ2 and d23 are given in (3.135),

(3.137) and (3.142) respectively; with mð2Þ
αβ satisfying the

constraint given by the last equation in (3.160). Note that

keeping (3.221) unchanged means that mð2Þ
ψ2 ¼ �mð2Þ

23 ,
where the sign ambiguity will be fixed soon. In addition,
we will make a small change in the identification of the
scalars given earlier in (3.156) to the following:

ðϕ0;ϕ1;ϕ2;ϕ3Þ ∝ ðA3;φ1;φ2;φ3Þ; ð3:282Þ

which will be more useful for us than the earlier identi-
fication. Interestingly (3.282) implies that the Coulomb

branch scalar ~X will be ðϕ0;ϕ1;ϕ2Þ exactly as in [11] (see
also footnote 16 and Table VII). Now defining

Φ2 ≡ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3bψ2
c1c12

s
mð2Þ

23 φ2;

Φ3 ≡ −i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3b23
c1c12

s
mð2Þ

23 φ3; ð3:283Þ

where c1, c12 and v3 have been defined earlier in (3.63),
(3.78) and (3.66) respectively, we can plug this in (3.281) to
rewrite it as

F 2ψ − iðD2Φ3 �DψΦ2Þ

þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d23c1c12
v3b23bψ2

s �
hð1Þ2ψ23

jmð2Þ
ψ2m

ð2Þ
23 j

�
½Φ2;Φ3� ¼ 0: ð3:284Þ

The sign ambiguity appearing above can be fixed by
looking at the constraints on the scalar fields in (3.221).
If we want similar conditions for our present case too, then
we expect the full set of BHN equations to be an
appropriate modification of (3.284) in the following way:

TABLE VII. Various terms in the BHN equations coming from
the two scalar fields mapping choices 1 and 2 respectively. The
first column is the epsilon tensor decomposition along the lines of
our earlier discussion, where only the relevant pieces are shown.
The second column corresponds to the parts of the BHN
equations associated to the epsilon decomposition. Finally
columns 3 and 4 are related to the pieces of the BHN equations
once we use the mappings 1 and 2 respectively.

Epsilon factor
BHN

decomposition
Map 1:
(3.156)

Map 2:
(3.282)

12 ⊗ ð0ψ ⊕ ψ0Þ D0ϕ3 −Dψϕ0 D0A3 −Dψφ3 D0φ3 −DψA3

12 ⊗ ð12 ⊕ 21Þ D1ϕ2 −D2ϕ1 D1φ2 −D2φ1 D1φ2 −D2φ1

1ψ ⊗ ð02 ⊕ 20Þ D0ϕ2 −D2ϕ0 D0φ2 −D2φ3 D0φ2 −D2A3

1ψ ⊗ ð1ψ ⊕ ψ1Þ D1ϕ3 −Dψϕ1 D1A3 −Dψφ1 D1φ3 −Dψφ1

2ψ ⊗ ð01 ⊕ 10Þ D0ϕ1 −D1ϕ0 D0φ1 −D1φ3 D0φ1 −D1A3

2ψ ⊗ ð2ψ ⊕ ψ2Þ D2ϕ3 −Dψϕ2 D2A3 −Dψφ2 D2φ3 −Dψφ2

43Following (3.156) one might have expected the two scalars
to be ðφ2;A3Þ. This unfortunately will not work with the gauge
choice (3.161). However since hð1Þαψkl ¼ hð1Þ½αψ �½kl� this is not an issue
for us, and we can as well choose the two scalars to be ðφ2;φ3Þ.
Additionally note that while the components of the gauge fields
that enter the vector multiplet and the hypermultiplet are fixed, we
have some independence in distributing the scalars in the two
multiplets. This independence stems from two sources, one, our
choice of the gauge (3.161) or (3.178) and, two, the definition of
the decoupled scalars ðσ; σ̄Þ.
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F2ψ þ c0D1Φ0 − ½Φ2;Φ3� ¼ 0

D2Φ2 þDψΦ3 ¼ 0; DψΦ2 −D2Φ3 ¼ 0; ð3:285Þ

where c0 is a constant that we will derive below. Note that
there is no relative constant in the second equation in
(3.285). This is only in the simplifying case where
bψ3 ¼ b23, with bψk as given in (3.137) and bak as given

in (3.135), otherwise we expect a relative ratio of bψ3
b23
. The

two scalar fields ðΦ2;Φ3Þ have already been identified in
(3.283), so Φ0 appearing in (3.285) can only be propor-
tional to φ1 or A3. However it cannot be proportional to φ1

because of the derivative structure in the first equation of
(3.285). Thus Φ0 should be proportional to A3, but since
the value ofA3 is fixed via the gauge choice (3.161) at least
to the first approximation,44 we conclude that Φ0 ¼ 0 here.
This not only fixes the sign ambiguity in (3.284), but also
gives rise to the Hitchin’s equation which are precisely the
conditions for supersymmetry with the hypermultiplets.
The coefficient c0 is not zero, and fixing this will also tell

us how F2ψ appearing in (3.285) is related to F 2ψ

appearing in (3.284). To see how the latter transformation
occurs, we define

A2 ¼ −
iA2ffiffiffiffiffi
c0

p ; Aψ ¼ −
iAψffiffiffiffiffi
c0

p ;

x2 ¼ x̄2
ffiffiffiffiffi
c0

p
; ψ ¼ ψ̄2

ffiffiffiffiffi
c0

p

A ¼ A2dx̄2 þ Aψdψ̄ ; Φ ¼ Φ2dx̄2 þ Φ3dψ̄ ;

dA ¼ dþ ½A; �: ð3:286Þ

The first line of the above set of equations when plugged in
(3.284) gives us (3.285) with vanishing Φ0. Once we plug
in the second line of (3.286) in (3.285), we can rewrite
(3.285) as

F − Φ ∧ Φ ¼ 0; dAΦ ¼ 0 ¼ dA � Φ; ð3:287Þ

which, as discussed above, is precisely the set of Hitchin’s
equations that appeared in [15–17] describing the scenario
when we do not consider the singularity associated with
the surface operators. The hodge star45 is defined in the
two-dimensional space parametrized by ðx̄2; ψ̄Þ, and c0
appearing in (3.285) as well as (3.286) is at least propor-
tional to inverse of the coefficient of the commutator piece
in (3.281), i.e,

c0 ∝
ðmð2Þ

23 Þ2

hð1Þ2ψ23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3b23bψ2
c1d23c12

s
: ð3:288Þ

The above derivations are encouraging and allow us to
make the first step in deriving the behavior of the surface
operator from M2-branes embedded in nontrivial geometry
and fluxes in M-theory. The question now is: how is the
singularity of the support D of the surface operator
manifested in the Hitchin’s equations (3.287)?
To analyze this we will have to go beyond (3.279) and

look at (3.158) more carefully. There is no reason for the
two scalars ðσ; σ̄Þ to completely decouple—like (3.167)
and (3.168)—now. The original constraints that governed
the decoupling conditions appeared in (3.160), which we
can rewrite in the following way:

2jsðlÞ12 j2 þ sðlÞ ¼ 1;
X2
α¼1

jtðlÞα j2 þ tðlÞ ¼ 1; ð3:289Þ

where all the parameters appearing above are described in
(3.158), and we can choose l¼1, 2 for our case.
Additionally, we have assumed sðlÞ and tðlÞ to be positive
definite integers, and therefore the decoupling conditions in
(3.167) and (3.168) were simply the nonvanishing of them,
i.e,

sðlÞ > 0; tðlÞ > 0: ð3:290Þ

The constraint (3.167) and (3.168) imposed via (3.290) in
(3.158) now would be harder to implement completely in
the presence of the localized G-fluxes along ðx2; x3; r;ϕ1Þ.
However, we might still be able to argue for ψ independ-
ence of the scalar fields σ and σ̄, but β independence cannot
hold now. Thus the first constraint in (3.290) above may
still hold, but tðlÞ has to vanish in the Hamiltonian (3.158).

Similarly qð4Þ appearing in the first equation, as well as qð1Þkl
in the third equation, of (3.160) will also have to vanish.
This way we will only have

Dψσ ¼ Dψ σ̄ ¼ 0; ð3:291Þ

and not the full constraints (3.167) and (3.168). What about

(3.169)? Recall that this was imposed via switching on qðγÞk
in (3.158) and appears in the second constraint relation
(3.160). There is no reason why this could be nonzero now
so, as a most generic condition, we will assume that this
coefficient also vanishes. This way (3.169) may not hold in
the presence of the localized G-fluxes.
There are two ways to proceed now. One, we can assume

that all the BHN equations, namely (3.221) and (3.280), get
contributions from the scalar fields ðσ; σ̄Þ; and two, only
(3.280) gets contributions from the ðσ; σ̄Þ scalar fields with
(3.221) remaining unchanged. The latter would imply that
we impose

44Looking at the Hamiltonian (3.158), which is written as sum
of squares, we can easily infer that A3 do not appear in the
squared piece with F αψ . This of course is because of our gauge
choice (3.161) hence it is no surprise that Φ0 vanishes in (3.285).

45Our choice of hodge star is slightly different from the ones
taken in [15–17] and in [11], but the essential content is captured
in (3.287).
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gð2Þαβk ¼ gð3Þαβk ¼ gð4Þαβ ¼ 0; ð3:292Þ

in (3.160) along with (3.291). Additionally the instantonic
configuration, that results in the M2-brane states via
(3.277) and in the G-flux decomposition (3.278), can be
generated for our case from the following gauge field
configurations46:

hAriðr; x2Þ ¼
σ þ σ̄

2
;

hAϕ1
iðϕ1; x2; x3Þ ¼

σ − σ̄

2i
; ð3:293Þ

from where we can have hF 2ri and hF 3ϕ1
i as the source for

the M2-brane charges (3.277). This choice of components
is fairly generic and helps us avoid switching on compo-
nents like hF 2ϕ1

i, hF 23i, hF 3ri and hF rϕ1
i at least in the

Abelian case (which we will finally resort to). Again, we
can always go to a more elaborate scenario but since many
of the extra components can be eliminated by gauge
transformations, with no additional physics insights, we
can narrow our choice to the simple case of (3.293). Of
course the above discussion does not in any way imply that
fluctuations A1 and A2 are defined as (3.293). The
fluctuations remain functions of the space coordinates
ðx1; x2;ψÞ so that the components F αβ and F αψ defined
appropriately are related by the BHN equations.
This then brings us to the BHN equation, in the presence

of the instanton source (3.293), for the component F αψ . As
mentioned earlier, we are interested in the component F 2ψ .
The BHN equation for this is given by47

F 2ψ − iγ4½φ2;φ3� þ 2ϵ2ψReðγ5D2σÞ
¼ 2iReðγ1½σ̄;φ2� þ γ2½σ̄;φ3�Þ þ γ3½σ̄; σ�; ð3:294Þ

along with the two additional conditions on φ2 and φ3 as
given in (3.285) with suitable modifications. The other
coefficients appearing in (3.294) are defined in the follow-
ing way:

γ1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2v3
c1c12

s
½hð2Þ2ψ2

ffiffiffiffiffiffi
cr2

p þ ihð3Þ2ψ2
ffiffiffiffiffiffiffiffi
cϕ12

p �;

γ2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2v3
c1c12

s
½hð2Þ2ψ3

ffiffiffiffiffiffi
cr3

p þ ihð3Þ2ψ3
ffiffiffiffiffiffiffiffi
cϕ13

p �

γ3 ¼
hð4Þ2ψ

ffiffiffiffiffiffiffi
2a1

p

2
ffiffiffiffiffiffi
c12

p ; γ4 ¼
hð1Þ2ψ23

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8d23v3

p
ffiffiffiffiffiffiffiffiffiffiffi
c1c12

p ;

γ5 ¼
1ffiffiffiffiffiffiffiffiffi
2c12

p ½tð1Þ2r
ffiffiffiffiffiffi
cr2

p
− itð2Þ2ϕ1

ffiffiffiffiffiffiffiffi
cϕ12

p �; ð3:295Þ

where we have defined the coefficients car in (3.118), caϕ1

in (3.119), d23 in (3.142), c12 in (3.78), c1 in (3.63) and v3
in (3.66). The other coefficients appearing in (3.295) are

defined in (3.160) except the two new coefficients tð1Þ2r and

tð2Þ2ϕ1
. These two coefficients replace the previous two

coefficients tð1Þ2 and tð2Þ2 respectively, appearing in the
Hamiltonian (3.158) and the constraint equations (3.160),
via

tðkÞ2 ϵ2ψask → ϵ2ψ t
ðkÞ
ask ; ð3:296Þ

where k ¼ ð1; 2Þ and sk are coordinates defined as s1 ¼ r,
s2 ¼ ϕ1. One immediate advantage of this replacement in
(3.158) is that a in (3.296) can take values a ¼ 1 or a ¼ 2
and is thus not restricted by the total antisymmetry

constraint. The constraint relation for tðkÞar is similar to

what we had for tðkÞα in (3.160), namely,

X2
a¼1

jtðkÞask j2 þ tðkÞ ¼ 1: ð3:297Þ

Clearly for tðkÞ ¼ 0, this change does not alter any of our
earlier results because of the decoupling of the ðσ; σ̄Þ fields.
However now that ðσ; σ̄Þ are relevant, introducing tðkÞask can
make our analysis more generic. Note that we are not

required to make similar changes to sðkÞαβ in (3.158) and
(3.160) because of (3.291).
The F 2ψ BHN equation (3.294) seems more involved

and therefore it will be instructive to rewrite it in a slightly
different way so as to simplify the appearance of the
equation. To proceed, let us define two new fields φ̂2 and φ̂3

using our old fields φ2 and φ3 in the following way:

φ̂2 ¼ φ2 þ 2Re

�
γ̄2σ

γ4

�
;

φ̂3 ¼ φ3 − 2Re

�
γ̄1σ

γ4

�
; ð3:298Þ

where γ1, γ2 and γ4 are defined in (3.295). The fields are
defined in such a way so that the commutator between them
takes the following form:

46Note that we have not made a distinction between ðσ; σ̄Þ and
ðhσi; hσ̄iÞ to avoid clutter. Since ðσ; σ̄Þ only appear for our
instanton configuration, switching on them means we have
switched on their expectation values. This should be clear from
the context.

47Note that D2σ is defined with respect to the gauge field Ā2.
However if we use D2σ instead of D2σ, these two definitions of
covariant derivative being connected viaA2 ¼ −iA2 as in (3.286)
assuming c0 ¼ 1, thenD2σ ¼ D2σ̄ assuming A2 to be purely real.
Thus, unless mentioned otherwise, we will continue using the
field strength F αβ defined with respect to the gauge fieldsAα and
Aβ instead of the field strength Fαβ. Note that they are related via
F αβ ¼ −iFαβ.
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½φ̂2; φ̂3� ¼ ½φ2;φ3� þ 2Re

�
γ1
γ4

½σ̄;φ2� þ
γ2
γ4

½σ̄;φ3�
�

þ 2iIm

�
γ1γ̄2
γ24

�
½σ̄; σ�; ð3:299Þ

where γ4 is real but γ1 and γ2 are complex numbers.
Interestingly, when we compare (3.299) to the terms
involving commutator brackets in the BHN equa-
tion (3.294), we see that they are identical provided we
identify γ3 to γ1, γ2 and γ4 in the following way:

γ3 ≡ −2Im
�
γ1γ̄2
γ4

�
: ð3:300Þ

Looking at the γi defined in (3.295) and comparing the
terms appearing in the definition of γi with the ones in
(3.160), we see that the above identification (3.300) implies
the following relations between the coefficients:

2hð4Þ2ψ h
ð1Þ
2ψ23

hð3Þ2ψ3h
ð2Þ
2ψ2 − hð2Þ2ψ3h

ð3Þ
2ψ2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3c3rc2ϕ1

a1c1d23

r
: ð3:301Þ

The rhs of the above relation is defined with respect to the
background warp factors and θ-parameter, whereas the lhs
is only defined via (3.160). Thus satisfying (3.301) does not

seem hard. In fact we can make arbitrary choices for hð2Þ2ψk

and hð3Þ2ψk satisfying (3.160), and then arrange hð4Þ2ψ to satisfy
(3.301). This immediately implies that we can rewrite the
BHN equation (3.294) in the following way:

F 2ψ − iγ4½φ̂2; φ̂3� ¼ −2ϵ2ψReðγ5D2σÞ: ð3:302Þ

To bring the above equation in a more suggestive format,
we can start by defining the fields Φ̂k for k ¼ ð2; 3Þ as in
(3.283) and then construct one-forms out of them in a way
similar to the definition we gave earlier in (3.286). More
precisely,

Φ̂k ≡ −i
ffiffiffiffiffi
γ4

p
φ̂k; Φ≡ Φ̂2dx2 þ Φ̂3dψ ; ð3:303Þ

along with the gauge field components combined together
to construct another one-form A exactly as in (3.286), but
now without any c0 factor. To avoid clutter we removed the
hat on Φ. These redefinitions now convert the BHN
equation (3.302) to the following form:

F − Φ ∧ Φ ¼ −2Reðγ5dAσÞ; ð3:304Þ

which is surprisingly similar to the first equation in (3.287),
except that the rhs is no longer zero but is proportional to
dAσ. Note however the absence of the i factor in the rhs of
(3.304). This is because we have absorbed the i in the
definition of σ (this makes sense because σ, as constructed

from Ar and Aϕ1
, go to −iσ when we define Aα ¼ −iAα).

On the other hand, if we also redefine Aψ in the following
way,

Aψ → Âψ ≡Aψ þ 2Reðγ5σÞ; ð3:305Þ

keeping the other gauge field components, i.e.
ðA0;A1;A2Þ same as before, then the BHN equation does
not change and takes the form as the first equation in
(3.287). Thus there seems to be two ways of expressing the
BHN equation for this case: one, if we assume that the
gauge field components remain as before,48 then the rhs of
the BHN equation receives correction from the ðσ; σ̄Þ fields
as (3.304); and two, if we assume that Aψ is defined using
the ðσ; σ̄Þ fields then the rhs of the BHN equation vanishes.
For the time being we will continue with first case, and
consider the second case later.
Let us now turn our attention to the other parts of the

BHN equations, namely the ones constraining φ2 and φ3 as
in (3.285). To analyze them now, and as before, we will
consider the simplifying assumption of bψk ¼ bak where
the functional forms of bψk and bak appear in (3.137) and
(3.135) respectively.49 The constraining equations now take
the following form:

D2φ̂2 þDψ φ̂3 ¼
2

γ4
Reðγ̄2D2σÞ;

Dψ φ̂2 −D2φ̂3 ¼
2

γ4
Reðγ̄1D2σÞ; ð3:306Þ

where the hatted fields are defined as in (3.298).
Alternatively we could also use the one-form Φ, defined
in (3.303), to rewrite the full set of BHN equations for our
case. Combining (3.304) with (3.306), we collect all the
BHN equations together as

F − Φ ∧ Φ ¼ −2Reðγ5dAσÞ

dAΦ ¼ 2ffiffiffiffiffi
γ4

p Reðγ̄1dAσÞ;

dA � Φ ¼ −
2ffiffiffiffiffi
γ4

p Reðγ̄2dAσÞ; ð3:307Þ

where the hodge star is in two dimensions, the gauge field
components are ðA2; Aψ Þ and γi are defined in (3.295). One
may now compare our set of equations (3.307) for the
surface operator to the ones appearing in [11,15–17]:

48We have assumed that, due to the instantonic background,
A2 will be defined as hA2i plus fluctuation.49As mentioned earlier, there is no need for making this
assumption other than for the sole reason of simplifying the form
of the equations. Thus if we do away with this assumption, the
equations in (3.306) will have relative coefficients but no new
physics.
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F−ϕ∧ ϕ¼ 2παδK; dAϕ¼ 2πγδK; dA �ϕ¼ 2πβδK;

ð3:308Þ

where δK is a delta function that is Poincare dual to the knot
K. We have modified the hodge star so that now it is in two
dimensions (see footnote 45). Comparing (3.308) with
(3.307) it is clear that ϕ in (3.308) can be identified with Φ
in (3.307): they represent similar fields. On the other hand,
the rhs of the equations have three different constants
ðγ5; γ2ffiffiffi

γ4
p ; γ1ffiffiffi

γ4
p Þ and two functions dAσ and dAσ̄. These

two functions are clearly composed of hA2i, hAri and
hAϕ1

iwhich form our instanton configuration giving rise to
localized G-fluxes and M2-brane charges in (3.277) and
(3.278) respectively. In the small instanton limit [37],
where they indeed become M2-brane states, the two
functions become highly localized so that they are like
delta functions in the ðx2;ψÞ plane, i.e. the plane orthogo-
nal to our M2-brane states along ðx0; x1Þ directions.50 This
is where we can make the following identifications between
ðα; β; γÞ appearing in (3.308) and ðγi; σ; σ̄Þ appearing in
(3.307) and (3.295):

αδK ≡ 1

π
½Imðγ5ÞImðdAσÞ −Reðγ5ÞReðdAσÞ�

βδK ≡ 1

π
ffiffiffiffiffi
γ4

p ½Imðγ̄2ÞImðdAσÞ −Reðγ̄2ÞReðdAσÞ�

γδK ≡ 1

π
ffiffiffiffiffi
γ4

p ½Reðγ1ÞReðdAσÞ þ Imðγ1ÞImðdAσÞ�:

ð3:309Þ

The overall sign is irrelevant for us, as this can be absorbed
by simultaneously shifting Φ → −Φ and σ → −σ. Thus in
the limit when dAσ approaches ð1þ iÞδK, at least when K
is a straight line along x1 direction, the ðα; β; γÞ coefficients
in (3.308) and (3.309) can be mapped to the parameters in
the Hamiltonian (3.158) in the following way:

α ¼ −
1

π
ffiffiffiffiffiffiffiffiffi
2c12

p ½tð1Þ2r
ffiffiffiffiffiffi
c2r

p þ tð2Þ2ϕ1

ffiffiffiffiffiffiffiffi
c2ϕ1

p �

β ¼ 1

2π

�
hð2Þ2ψ3

ffiffiffiffiffiffi
c3r

p þ hð3Þ2ψ3
ffiffiffiffiffiffiffiffic3ϕ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1Þ2ψ23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1c12d23v−13

pq �
;

γ ¼ 1

2π

�
hð2Þ2ψ2

ffiffiffiffiffiffi
c2r

p þ hð3Þ2ψ2
ffiffiffiffiffiffiffiffic2ϕ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1Þ2ψ23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1c12d23v−13

pq �
; ð3:310Þ

where all the parameters appearing above have been
defined earlier, for example car in (3.118), caϕ1

in

(3.119), d23 in (3.142), c12 in (3.78) and the other
parameters in (3.160) and in (3.297).
The above identification (3.310) is highly suggestive of

type IIA small instantons on D6-branes modeling as surface
operators in the boundary three-dimensional theory.
However to complete the picture we will not only have
to derive the BHN equations for the other components of
the gauge fields but also find the boundary theory along
similar lines to the technique developed in Sec. III B 12. To
proceed, let us first derive the BHN equations for the field
strength F 1ψ , which means we are looking at the gauge
fields A1 and Aψ and scalar fields φ1 and φ3 [see (3.282)].
The σ and σ̄ fields will appear again, but since they are
independent of x1 direction, we are not compelled to make
a redefinition like (3.296), or even go to (3.297). In fact the

same parameters tð1Þ2r and tð2Þ2ϕ1
that appeared earlier in

defining the BHN equations for F 2ψ will show up again

here because the coefficients of tð1Þ1r and tð2Þ1ϕ1
vanish in the

Hamiltonian (3.158). Combining everything together, the
F 1ψ BHN equation takes the following form:

F 1ψ − i~γ4½φ1;φ3� þ 2ϵ1ψReð~γ5D2σÞ
¼ 2iReð~γ1½σ̄;φ1� þ ~γ2½σ̄;φ3�Þ þ ~γ3½σ̄; σ�; ð3:311Þ

which is in fact a variant of the BHN equation (3.294) for
F 2ψ . As expected (3.311) relates the scalar fields φ1 and
φ3, however the third term appears as D2σ instead of D1σ.
This is because of the comments that we made above. The
other coefficients i.e. ~γk are defined, also as a variation of
(3.295), in the following way:

~γ1 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2v3
c1c12

s
½hð2Þ1ψ1

ffiffiffiffiffiffi
cr1

p þ ihð3Þ1ψ1
ffiffiffiffiffiffiffiffi
cϕ11

p �;

~γ2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffi
2v3
c1c12

s
½hð2Þ1ψ3

ffiffiffiffiffiffi
cr3

p þ ihð3Þ1ψ3
ffiffiffiffiffiffiffiffi
cϕ13

p �

~γ3 ¼
hð4Þ1ψ

ffiffiffiffiffiffiffi
2a1

p

2
ffiffiffiffiffiffi
c12

p ; ~γ4 ¼
hð1Þ1ψ13

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8d13v3

p
ffiffiffiffiffiffiffiffiffiffiffi
c1c12

p ;

~γ5 ¼
1

2
ffiffiffiffiffiffi
c12

p ½tð1Þ2r
ffiffiffiffiffiffi
cr2

p
− itð2Þ2ϕ1

ffiffiffiffiffiffiffiffi
cϕ12

p �: ð3:312Þ

The above set of coefficients can be related to the
coefficients (3.295) in the following way. It is easy to
see that γ5 ¼ ~γ5. Furthermore, looking at the coefficients
car, caϕ1

and dkl in (3.118), (3.119) and (3.142) we can
easily infer

c1r ¼ c2r; c1ϕ1
¼ c2ϕ1

; d13 ¼ d23; ð3:313Þ

so that the only distinguishing factors between γk and ~γk are

the coefficients hðαÞaψa, h
ðαÞ
aψ3, h

ð1Þ
aψa3 and h

ð4Þ
aψ where a ¼ ð1; 2Þ

50It is not essential to go to the small instanton limit. All we
need is finite localizations of the two functions.
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and α ¼ ð2; 3Þ. Other than these factors, the BHN equa-
tions for F 1ψ and F 2ψ given in (3.311) and (3.294)
respectively are perfectly symmetrical. These factors, on
the other hand, are controlled by (3.160) which are in fact
the only defining equations for them. Thus one assumption
would be to take the individual pieces to be equal to each
other. In other words, we can demand

hðαÞ1ψ1 ¼ hðαÞ2ψ2; hðαÞ1ψ3 ¼ hðαÞ2ψ3;

hð1Þ1ψ13 ¼ hð1Þ2ψ23; hð4Þ1ψ ¼ hð4Þ2ψ ; ð3:314Þ

so that γk ¼ ~γk in the BHN equation (3.311). Note that with
the identification (3.314) it almost implies that the BHN
equations, given in (3.294) and (3.311), are identical via the
exchange of 1 and 2 in the subscripts of the gauge and the
scalar fields. The only difference is that the “symmetry”
between the two equations is broken by the existence of
D2σ and D2σ̄.
Unfortunately the above assumption is too restrictive and

could potentially lead to additional constraints when all the
background equations are laid out. Therefore we will start
by defining a field φ̂1 exactly as φ̂2 in (3.298) using ~γ2 and
~γ4. This way of defining φ̂1 has an immediate advantage:
the commutator bracket of φ̂1 and φ̂3 will take similar form
as (3.299), i.e.

½φ̂1; φ̂3� ¼ ½φ1;φ3� þ 2Re

�
γ1
γ4

½σ̄;φ1� þ
~γ2
~γ4
½σ̄;φ3�

�

þ 2iIm

�
γ1 ~̄γ2
γ4 ~γ4

�
½σ̄; σ�; ð3:315Þ

with ~γ3 identified as (3.300) except the γ̄2 therein is
replaced by ~̄γ2; and ~γ1 is proportional to γ1 with the
proportionality constant being the ratio ~γ4

γ4
. The next set

of manipulations is important. We can use (3.315) to
express the BHN equation (3.311) as (3.302). However
since the scalar fields σ and σ̄ are independent of x1
coordinate, and using the gauge field definition Âψ as given
in (3.305), we see that the F 1ψ and the F 2ψ BHN equations
take the following form:

F̂ 2ψ − iγ4½φ̂2; φ̂3� ¼ 0

F̂ 1ψ − i~γ4½φ̂1; φ̂3� ¼ −2ϵ1ψRe½γ5Dð2;1Þσ�; ð3:316Þ

where F̂ aψ is the field strength for the gauge fields Aa and
Âψ with a ¼ ð1; 2Þ in the standard way; and the covariant
derivative Dða;bÞ is defined in the following way:

Dða;bÞσ ≡ ∂aσ þ i½Aa −Ab; σ�; ð3:317Þ

using the difference of two gauge fieldsAa andAb, instead
of just Aa as we had before. The other equations, for
example the constraining equations for the scalar fields

ðφ̂2; φ̂3Þ given earlier in (3.306), and the equations for the
other pair of scalar fields ðφ̂1; φ̂3Þ now take the following
form:

D2φ̂2 þ D̂ψ φ̂3 ¼ 2i½Reðγ5σÞ; φ̂3� þ 2Re

�
γ̄2D2σ

γ4

�

D̂ψ φ̂2 −D2φ̂3 ¼ 2i½Reðγ5σÞ; φ̂2� þ 2Re

�
γ̄1D2σ

γ4

�

D1φ̂1 þ D̂ψ φ̂3 ¼ 2i½Reðγ5σÞ; φ̂3� þ
2i
~γ4
½A1;Reð ~̄γ2σÞ�

D̂ψ φ̂1 −D1φ̂3 ¼ 2i½Reðγ5σÞ; φ̂1� þ
2i
γ4

½A1;Reðγ̄1σÞ�;

ð3:318Þ

where D̂ψσ is the covariant derivative defined with respect
to the gauge field Âψ (3.305). In terms of the unshifted field
Aψ , the rhs of the above set of equations (3.318) will not
have the commutator brackets. It is also instructive to work
out the commutator bracket for φ̂1 and φ̂2:

½φ̂1; φ̂2� ¼ ½φ1;φ2� þ
2

γ4
½φ1;Reðγ̄2σÞ� −

2

~γ4
½φ2;Reð ~̄γ2σÞ�

þ ~̄γ2γ2 − γ̄2 ~γ2
γ4 ~γ4

½σ; σ̄�; ð3:319Þ

where γk and ~γk have been defined earlier in (3.295) and
(3.312) respectively. Note that if we had applied the
identifications (3.314), the commutator piece ½σ; σ̄� in
(3.319) would be absent. However as mentioned earlier,
the identifications (3.314) are not only overconstraining but
also inconsistent. We will therefore refrain from using them
and stick with the commutator brackets in (3.319).
Additionally now,

~γ3 ¼ −2Im
�
γ1 ~̄γ2
γ4

�
: ð3:320Þ

We will use the above information, including (3.292), to
determine the BHN equation corresponding to the gauge
field strength F 12 in the presence of the instanton back-
ground. To start, let us define a few things that will help us
express the background more succinctly:

j1 ≡mð1Þ
11

ffiffiffiffiffiffiffi
b11

p
; j2 ≡mð1Þ

12

ffiffiffiffiffiffiffi
b12

p
Γ1 ≡ −2gð1Þ1212

ffiffiffiffiffiffiffi
d12

p
Re
�
γ̄2σ

γ4

�
;

Γ2 ≡ 2gð1Þ1212

ffiffiffiffiffiffiffi
d12

p
Re

�
~̄γ2σ

~γ4

�
; ð3:321Þ

where b11 and b12 coefficients are defined in (3.135), the

d12 coefficient is defined in (3.142), and ðmð1Þ
11 ; m

ð1Þ
12 ; g

ð1Þ
1212Þ
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coefficients are defined in (3.160) where we have assumed

mð1Þ
11 ¼ mð1Þ

22 for simplicity. Note that ðj1; j2Þ are numbers
whereas ðΓ1;Γ2Þ are scalar fields expressed using σ and σ̄.
Using these we define three fields:

Ax ≡ −
�
j1Γ1 þ j2Γ2

j21 þ j22

�
; Ay ≡ j2Γ1 − j1Γ2

j21 þ j22
;

Az ≡ −
σ̄

4

�
γ̄2 ~γ2 − γ2 ~̄γ2

j2 ~̄γ2γ4 − j1γ̄2 ~γ4

�
: ð3:322Þ

These fields are written in a suggestive way so that they
could be used as components of a vector field although
ðx; y; zÞ are not related to spacetime coordinates (they are
simply parameters here). We can now use (3.321) and
(3.322) to express the BHN equation for the gauge field
strength F 12 in the following way (see also Table VII):

F 12− i

�
mð1Þ

ψ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3bψ3

p
ffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
Dψϕ0

þmð1Þ
11

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3b11

pffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
Dð1;xÞφ̂1þDð2;yÞφ̂2− 2Re

�
γ̄2Dð2;zÞσ

γ4

��

þmð1Þ
12

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3b12

pffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
Dð1;xÞφ̂2−Dð2;yÞφ̂1þ 2Re

�
~̄γ2Dð2;zÞσ

~γ4

��

− i

�
2gð1Þ1212

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3d12

pffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
½φ̂1; φ̂2� ¼ 0; ð3:323Þ

where the new covariant derivative Dða;bÞ is defined as in
(3.317) now using the fields (3.322); the hatted scalar fields
φ̂k appear in (3.298); γk and ~γk are parameters given in
(3.295) and (3.312) respectively; and v3 is defined in
(3.66). All other parameters have been defined earlier
which the readers may refer to for details.
We now make a few observations. It is easy to see that

when σ ¼ 0, the above BHN equation (3.323) goes back to
the BHN equation derived earlier in (3.172) when we use
the map (3.156) along with the values of the parameters
given in (3.173). The ϕ0 field appearing in (3.323) is the
same field that appeared in (3.285) before. Using the scalar
field map (3.282), ϕ0 ∝ A3, whereas using the map
(3.156), ϕ0 ∝ φ3 as can also be inferred from column 4
in Table VII. The additional constraint (3.174) that we
impose on the scalar fields φ1 and φ2 should continue to
hold even for the case where we have nonzero σ. This
immediately gives us our first constraint equation, in the
same vein as (3.174), to be

Dð1;xÞφ̂1 þDð2;yÞφ̂2 ¼ 2Re

�
γ̄2Dð2;zÞσ

γ4

�
: ð3:324Þ

In some sense this could be taken as the defining equation
for hatted scalar fields φ̂1 and φ̂2. Comparing (3.324) with

the first and the third equations in (3.318), we see that the
constraints appear differently because of the structure of the
covariant derivative (3.317). In fact if we did not impose
the constraint (3.292), we could have easily absorbed this in
the definition of the fields (3.322). Thus the form of (3.323)
is generic enough even in the absence of (3.292).
Once (3.324) is applied on (3.323), the form of the F 12

BHN equation is now almost identical to (3.172) except
with extra ðσ; σ̄Þ dependences as we discussed above. Thus
we could express it as (3.186) using the t parameter given in
(3.189). Following similar criteria as developed in Sec. III
B 11, and without going into details, we can again demand
the coefficient of t − t−1 piece to vanish. For the present
case, this takes the following form:

Dð1;xÞφ̂2 −Dð2;yÞφ̂1 ¼ −2Re

�
~̄γ2Dð2;zÞσ

~γ4

�
; ð3:325Þ

which becomes (3.207) when σ ¼ σ̄ ¼ 0 once we appro-
priately redefine the scalar fields. Now putting everything
together, the F 12 BHN equation is identical (at least in
form) to the one that we had earlier for c2 ¼ 0 in (3.208),
namely,

F 12 − i

�
mð1Þ

ψ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3bψ3

p
ffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
Dψϕ0

− i

�
2gð1Þ1212

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3d12

pffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
½φ̂1; φ̂2� ¼ 0: ð3:326Þ

Comparing the set of equations, (3.326), (3.324) and
(3.325) to (3.316) and (3.318), we observe that (3.326)
is expressed in terms of Aψ instead of Âψ as (3.305). The
difference between the covariant derivatives may be
expressed in terms of commutator brackets in the following
way:

ðDψ − D̂ψ Þϕ0 ≡ 2i½ϕ0;Reðγ5σÞ�: ð3:327Þ

This would change the form of our BHN equation (3.326)
by putting extra commutator brackets. This is not what we
want so alternatively we could retain the form of the BHN
equation as in (3.326) with D̂ψϕ0 instead of Dψϕ0 and no
extra commutator terms, but change the rhs of the two
constraint equations for the scalar fields φ̂1 and φ̂2 by
replacing the covariant derivative Dð2.zÞσ by

Dð2;z;wÞσ ≡ ∂2σ þ i½A2 −Az −Aw; σ�; ð3:328Þ

in both (3.325) and (3.324). The above definition of the
covariant derivative, in the similar vein as (3.317), is
arranged in such a way as to absorb the commutator
brackets appearing in (3.327) by defining a field Aw as
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Aw ≡
�

mð1Þ
ψ3γ5γ4 ~γ4

j1 ~γ4γ̄2 − j2 ~̄γ2γ4

�
ϕ0; ð3:329Þ

where ji are defined in (3.321), γk in (3.295) and ~γk in
(3.312). The other coefficient mð1Þ

ψ3 appears in (3.160). The
above definition of Aw differs crucially from the three
fieldsAx,Ay andAz appearing in (3.322) in the sense that
it is not given in terms of the instanton fields ðσ; σ̄Þ.
Instead it is expressed in terms of the scalar field ϕ0 whose
value in general is only known by solving the BHN
equation (3.326), although for the present case this
vanishes.
The above observation of cyclicity is not new, and in fact

did show up already in (3.316) when we had usedDð2;1Þσ to
express the BHN equation for F̂ 1ψ. The fieldA1 appears on
both sides of the equation (3.316). Thus it can only be
solved order by order in terms of any small parameter used
to express the field A1. A similar issue also showed up for
the constraint equations (3.318): the fields φ̂k appear on
both sides of the equations rendering exact solutions harder
to determine. The Hamiltonian, on the other hand, retains
its form (3.158) as

H ¼ c1c11
v3

Z
d3xTr

�
c12
c11

ðF̂ 1ψ − i~γ4½φ̂1; φ̂3�

þ 2ϵ1ψRe½γ5Dð2;1Þσ�Þ2 þ
c12
c11

ðF̂ 2ψ − iγ4½φ̂2; φ̂3�Þ2

þ
�
F 12 − i

�
mð1Þ

ψ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3bψ3

p
ffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
D̂ψϕ0

− i

�
2gð1Þ1212

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2v3d12

pffiffiffiffiffiffiffiffiffiffiffi
c1c11

p
�
½φ̂1; φ̂2�

�
2

þQM; ð3:330Þ

except with hatted scalar fields that originate from the
extra ðσ; σ̄Þ fields. Due to the σ and σ̄ dependences, the
magnetic charge QM will now be different from what
we had before in (3.227),51 although the electric charge
would still vanish with a suitable gauge choice as
before.
Before determining the magnetic charge QM, let us try

to simplify the first set of BHN equations (3.316) and
(3.318). One simple way to keep the right-hand sides of
the equations simple is to go to the Abelian case. In the
Abelian case, all commutator terms vanish and the
rest of the BHN equations (3.324), (3.325) and (3.326)
along with (3.316) and (3.318) take the following simple
form:

F̂ 2ψ ¼ F̂ 1ψ þ 2ϵ1ψReðγ5∂2σÞ ¼ F 12 þ γ6∂ψϕ0 ¼ 0

∂ψ φ̂2 − ∂2φ̂3 ¼ 2Re

�
γ̄1∂2σ

γ4

�
;

∂1φ̂2 − ∂2φ̂1 ¼ −2Re

�
~̄γ2∂2σ

~γ4

�
∂1φ̂1 þ ∂ψ φ̂3 ¼ ∂ψ φ̂1 − ∂1φ̂3 ¼ 0;

∂2φ̂2 þ ∂ψ φ̂3 ¼ ∂1φ̂1 þ ∂2φ̂2 ¼ 2Re

�
γ̄2∂2σ

γ4

�
; ð3:331Þ

where γ6 is the coefficient of Dψϕ0 term in (3.326). The
above set of equations immediately implies that the
unhatted scalar fields φ1, φ2 and φ3 are independent of
x1, x2 and ψ directions respectively.52 In addition, they are
related to each other via

∂ψφ1 ¼ ∂1φ3; ∂2φ1 ¼ ∂1φ2;

∂ψφ2 ¼ ∂2φ3: ð3:332Þ

With all these we are almost ready to derive the boundary
theory. Our starting point would be to switch on the c2
parameter. The changes in the Hamiltonian (3.330) would
be similar to what we had earlier in (3.225), and therefore
choosing the coefficients in the Hamiltonian (3.330) as in
(3.226), the magnetic charge will take the following
form:

QM ¼ 4ijτj2
τ− τ̄

Z
d3x∂ψ

�X2
α;β¼1

X3
k¼1

ϵαβkF αβφ̂kþ
X3

k;l;m¼1

φ̂k∂lφ̂m

þ iðτ− τ̄Þ
2jτj A1Reðγ5∂2σÞ

�
; ð3:333Þ

which differs from (3.227) in two ways: first, due to the
Abelian nature we no longer have the commutator
brackets, therefore no cubic terms in fields; and second,
we have an extra term proportional to A1. The propor-
tionality factor is some combination of ∂2σ and ∂2σ̄ that
would vanish in the absence of the surface operators.
The physics that we developed here is all in the absence

of any twisting, and therefore the picture will change once
we introduce twisting exactly as we had in Sec. III B 12.
Following a similar procedure as before, we twist the scalar
fields ðφ̂1; φ̂2; φ̂3Þ to one-forms ðϕ̂1; ϕ̂2; ϕ̂3Þ, along the
lines of (3.282), but now for the hatted fields.53 In the

51To compare the magnetic charge to (3.227), we need to put
c2 ¼ 0 in (3.227).

52In other words, φ1 ≡ φ1ðx2;ψÞ, φ2 ≡ φ2ðx1;ψÞ and φ3≡
φ3ðx1; x2Þ. Being static solutions they are of course independent
of x0 direction. A very simple solution, and definitely not the
most generic one, of the set of equations in (3.332) is to take
φ1 ≡ Aψ þ Bx2, φ2 ≡ Bx1 þ Cψ and φ3 ≡ Ax1 þ Cx2 where
ðA; B; CÞ are constants.

53The procedure is similar to what we had in (3.191), but now
appropriately modified by the mapping (3.282).
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absence of the linear term inA1 the procedure of getting the
boundary theory is similar to (3.239), namely,

Sð1Þbnd ¼ ðb2 þ c2Þ
Z
W
A ∧ dA

þ
Z
W

�
2d1F ∧ ϕ̂þ

�
d21

b2 þ c2

�
ϕ̂ ∧ dϕ̂



¼ ðb2 þ c2Þ
Z
W

�
Aþ

�
d1

b2 þ c2

�
ϕ̂

�

∧ d

�
Aþ

�
d1

b2 þ c2

�
ϕ̂

�

≡ k
4π

Z
W
Ad ∧ dAd; ð3:334Þ

where b2 appears in exactly the same way as in (3.230)
before, albeit now in the Abelian case, along with a similar
definition for Ad as in (3.240) but now with ϕ̂μ instead of
ϕμ. The parameters c2 and d1 are determined from (3.64)
and the supersymmetry condition (3.242) respectively, as
before. The linear term in A1 then adds a new term to the
boundary action (3.334):

Sð2Þbnd ¼ d4

Z
W
dx0dx1dx2A1Reðγ5∂2σÞ

≡Q2

Z
dx1A1; ð3:335Þ

where d4 is a constant that may be read off from (3.333)
after twisting and Q2 appears in the same limit that
converted (3.309) to (3.310) namely when ∂2σ ¼ ð1þi

2γ5
ÞδK

where K is a straight line along x1 direction (in a more
generic situation, K will be a closed loop in the x1-x2
plane). Note that the integrand in (3.335) is independent of
x0, so the dx0 integral can be localized by our choice of δK .
Combining (3.334) and (3.335), we now get our complete
boundary theory to be

Sbnd ¼ ðb2 þ c2Þ
Z
W
Ad ∧ dAd þQ2

I
K
A; ð3:336Þ

where the second integral is now over a closed loop K, in
the ðx1; x2Þ plane, instead of a straight line along x1 in
(3.335) above. At this stage one might compare (3.336)
with the boundary theory that appears in [11,15–17]. Note
the appearance of Ad instead of A for the Abelian Chern-
Simons term. Interestingly the equation of motion from
(3.336) becomes

F d ¼ −
Q2

2ðb2 þ c2Þ
δK; ð3:337Þ

where δK , the Poincare dual of K, is the same singularity
that appeared earlier. In this form (3.337) resembles closer
to the analysis presented in Sec. VI of [11] in the sense that

we can assume Ad to have a singularity along K with the
monodromy around K to be

M≡ exp

�
−

iQ2

2ðb2 þ c2Þ
�
: ð3:338Þ

Note that the denominator in the monodromy for-
mula (3.338) has the factor b2 þ c2, which is Ψ in the
notation of [11]. This of course appears because of twisting
in the supergravity formalism, as we saw above. What is
interesting however is that the denominator will not change
if we go from the Abelian to the non-Abelian case as can be
inferred from our earlier derivations although the boundary
theory will change from its simple form (3.336) to its, more
nontrivial, non-Abelian generalization.

2. Surface operators and knot configurations

All our above discussions are consistent with the series
of papers [15–17] modulo couple of subtleties that we have
kept under the rug so far, and they have to do with the
precise structures of our D2-brane surface operator. The
first subtlety arises when we look carefully at the orienta-
tions of the D2-brane in our problem. The orientation of the
D2-brane is given in Table V, and we discussed how this
appears in the BHN equations using the M-theory uplift
given in Table VI. The analysis that we presented above
works when the D2-brane circles the ϕ1 direction com-
pletely. In type IIB dual, this is a D3-brane stretched
between the D5-D5 pairs wrapped on the Taub-NUT two-
cycles oriented along ðr;ψÞ directions as depicted in
Table VIII. From here the result of Table VI can be easily
inferred by T-dualizing along the compact ϕ1 direction and
lifting the resulting configuration to M-theory.
The story however gets more complicated if the D3-brane

is stretched, not completely along the ϕ1 circle, but only
between the five-branes. AT-duality along the ϕ1 direction
now will only lead to a fractional D2-brane, which is a
D4-D4 pair wrapped on certain two-cycle in the internal
space. The internal space, before T-duality, was a Taub-NUT
manifold. However after T-duality, we expect the internal
geometry to take the form as given in (3.33), namely,

ds26 ¼ eϕðF1dr2 þ F3dθ21 þ F4ds289Þ
þ C1ðdϕ1 þ χ cos θ1dx3Þ2 þ C2dψ2; ð3:339Þ

where we see that the ϕ1 circle is nontrivially fibered
over the x3 circle. The reason for this is because of certain

TABLE VIII. The orientation of a D3-brane between the
wrapped five-branes.

Directions x0 x1 x2 x3 θ1 ϕ1 ψ r x8 x9

Taub-NUT � � � � p p p p � �
D5-D5

p p p p � � p p � �
D3

p p � � � p p � � �
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B-field components in the type IIB side aswe saw inSecs. III
B 1 and III B 2. The ψ direction now no longer has the Taub-
NUT fibration structure but still allows the six-branes to
wrap around ðψ ; r;ϕ1Þ directions in the way described in
Sec. III B 3. The other coefficients appearing in (3.339) are
defined using the θ parameter and thewarp factorsFi as [see
also (3.33)]

C1 ≡ e−ϕ

~F2cos2θ1 þF3sin2θ1
; C2 ≡ eϕ ~F2F3sin2θ1sec2θ

~F2cos2θ1 þF3sin2θ1
;

χ≡ ~F2 tanθ secθ: ð3:340Þ

The type IIA metric (3.339) is in general a non-Kähler
manifold and therefore the fractional two-brane may be
thought of as D4-D4 wrapped on a two-cycle Σ2 in
the non-Kähler space (3.339). The M-theory uplift
will then be a G2 structure manifold oriented54 along
ðθ1;ϕ1; r;ψ ; x8; x9; x11Þ and a fractional M2-brane state
oriented along ðx0; x1;ψÞ that could be viewed as wrapped
M5-brane on Σ2 × S1

11 where S1
11 is the 11-dimensional

circle. At energies smaller than the size of the internal cycle,
the analysis that we performed above will suffice.
The second subtlety also has to do with the precise

orientation of our D2-brane surface operator. The surface
operator that we discussed here is a codimension two
singularity in four dimensions, and is a codimension one
singularity in the boundary three dimensions. However
what we need is a codimension two singularity in both three
and four dimensions [11,18]. Oneway out will be to change
the orientations of our D2-brane in Table V so that the D2-
brane is now oriented along the ðx0;ψ ;ϕ1Þ directions. This
way, not only in our four-dimensional space ðx0; x1; x2;ψÞ
it is a codimension two singularity but is also a codimen-
sion two singularity in the three-dimensional boundary
oriented along ðx0; x1; x2Þ directions. However, since the
D2-brane has only temporal direction along the boundary,
the line integral would vanish because of our gauge choice
(3.161) or (3.178). Thus what we need here instead is a one-
dimensional curve in the ðx0; x1; x2Þ plane. Lifting this
configuration to M-theory will now have a D0-brane whose
precise contributions to our BHN equations should mimic
what we had earlier. Note that changing the orientation of
the D2-brane from ϕ1 to any other orthogonal compact
direction will uplift to a M2-brane but the orientation of the
resulting brane is such that it cannot always be perceived as
an instanton contributing to the BHN equations.55 As such
the analysis will be harder to perform.
Alternatively we can go to Euclidean space where the

codimension two singularity is a curve in a three-manifold

with nontrivial topology. This will be our knot configura-
tion. This means a codimension two singularity in four-
dimensional space V as in (3.100) will now be of the form

C≡K ×Rþ; ð3:341Þ

where K is a knot in three-dimensional Euclidean space
[not to be confused with the loop K discussed earlier in
(3.336)] and Rþ is our ψ direction. In the equivalent
Minkowski space, K would be a one-dimensional curve in
the ðx0; x1; x2Þ plane. In the above discussion of putting a
codimension two singularity along ðx0;ψ ;ϕ1Þ directions
the charge of the dual D0-brane bound state (with
D6-branes) appears from

Z
Σ11

C3 ∧ G4 ∧ G4 ¼
Z

A0dx0

Z
Σ6

hF i ∧ hF i ∧ hF i

×
Z
TN

ω ∧ ω; ð3:342Þ

as such this amounts to switching on two extra components
of gauge fields hA1i and hAψ i in addition to what we had
earlier. The caveat however is that, as discussed above, the
temporal loop would vanish if we want to maintain our
gauge choice (3.161) or (3.178). On the other hand, once
we take a curve in the ðx0; x1; x2Þ space, this issue does not
arise and knots can arise naturally (see also Fig. 1).
In the same vein if we allow the codimension two

singularity to be along ðx0;ψ ; rÞ directions, then the dual
M2-brane state will be along ðx0;ϕ1; rÞ directions. Going to
the Euclidean space we can allow the codimension two
singularity to be along C ×R, where C is the surface given
in (3.341) and R is the radial direction r. The dual M2-
brane state then would be along K ×R × ϕ1, where K is
the knot. In the IIA framework this is again an instanton in a
four-dimensional space, whose two coordinates are ðx3;ψÞ
and the other two coordinates are orthogonal to the knotK.
Thus for either of the cases discussed above, the

codimensional two singularity in the Euclidean space is
identical and is given in Fig. 2, although the M-theory
uplifts differ. Previously when the codimension two sin-
gularity was along ðx0; x1Þ the equations governed by the
hypermultiplet scalars ðA2;Aψ ;φ2;φ3Þ were the Hitchin’s
equations (3.287) from the BHN equation (3.284) in the
absence of the surface operator; and (3.307) from the BHN
equation (3.294) when the surface operator is present. Now
our hypermultiplet scalars would appear from directions
orthogonal to the knot K therefore the analysis will be
different. However if we consider a knot configuration
given in Fig. 3, away from the neighborhood points Qi, we
have

I
K
A →

Z
x1

A1dx1; ð3:343Þ

54TheG2 structure manifold is defined at a given point in the x3
circle.

55We are assuming that none of the directions is along r. We
will discuss the case, when the orientation is along r, later in the
text.
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then again we expect the local picture to be similar, namely,
the Hitchin’s equations (3.287) get suitably modified like
(3.294) [although σ and σ̄ in (3.294) need to be interpreted
carefully now].
We are now getting closer to the approach initiated in the

series of papers [15–18] and also in [11]. The codimension
two singularity in Euclidean space that we discuss here is
clearly related to the monodromy defect studied in [11,18].
Moreover, since we study static configurations [using the
Hamiltonian (3.158)], the temporal direction x0 remains
suppressed and the codimension one singularity in the
three-dimensional boundary of our earlier discussions

continues to provide an accurate description of the singu-
larity structure of the (4, 4) hypermultiplets locally,
although the global picture may be different. This shift
of our viewpoint from global to local is not just a mere
rephrasing of (3.343) but more of a helpful calculational
tool where analysis pertaining to specific knots could at
least be addressed. In particular, for the present context, this
helps us to channel our earlier computations to analyze
nontrivial knot configurations instead of just closed loops
discussed in (3.336).
We can make our analysis a bit more precise. In the

presence of the knot K, the part of the boundary three-
dimensional action (3.334) for the Abelian case remains
unchanged in form with Ad defined appropriately with ϕ̂.
The additional piece of the action will be more nontrivial
than (3.335) as now we expect the integral to be over a knot
K. The total action will then take the form similar to
(3.336) with the loop K replaced by the knot K and A by
Ad. For completeness we reproduce this again as

Sbnd ¼ ðb2 þ c2Þ
Z
W
Ad ∧ dAd þQ2

I
K
Ad; ð3:344Þ

where Q2 can be calculated from M-theory using either the
dual D0-brane charge (3.342), or the dual M2-brane charge
depending on our choice of orientation. For the latter case ϕ̂
in the definition ofAd will take a different form (that can be
determined with some effort, but we will not do so here).
Various other details like the field strengthF d as well as the
monodromy around K remain similar to (3.337) and
(3.338) respectively. Furthermore, the presence of Ad in
the integral over the knot K can now be directly hinted
from (3.294) and (3.311) by the following replacement:

F αψ → F αψ þ hF αψi≡ F αψ þ gαDψ φ̂α; ð3:345Þ

where gα is an appropriate constant and there is no sum over
alpha. Indeed the above defines the gauge field Ad;α ≡
Aα þ gαφ̂α that eventually appears through the boundary
magnetic charge QM into the boundary coupling (3.344).
One may easily see that in our earlier derivation this
replacement forA2 was not necessary despite the existence
of hA2i because the instanton configuration therein was

FIG. 1. A loop K, denoted by p2, in the ðx1; x2Þ plane can be
lifted up to form a knot K, denoted by p1, once we go to the
Euclidean space. A nontrivial Wilson loop can now be con-
structed by integrating the twisted gauge field Ad along the
knot p1.

FIG. 2. A surface operator constructed out of a M2-brane
intersects the three-dimensional Euclidean boundaryW (orW3 in
the language of [11]) along a knot K and is stretched along the
remaining ψ direction, which we denote here asRþ. As such it is
a codimension two singularity both on the three-dimensional
boundary W3 as well as the four-dimensional space
V ≡W3 ×Rþ.

FIG. 3. An unknot configuration drawn almost parallel to the x1
axis to simplify the computation of the Wilson loop. Thus away
from the regions denoted by Qi, we can restrict the Wilson line
integral to be only along x1.
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defined in the space parametrized by ðx2; x3; r;ϕ1Þ and thus
independent of the ψ coordinate.56 However now the dual
D0-brane charge (3.342) does depend on all coordinates
orthogonal to the Taub-NUT space and as such (3.345)
becomes necessary.
Our short discussion above shows that, at least for the

Abelian case, the boundary theory appearing from the
magnetic charge QM in the presence of a surface operator
does have all the essential properties to study knot
configurations. The brief mismatch that we had earlier in
the boundary theory (3.336) goes away once the back-
ground is correctly defined as we see in (3.344). All this is
satisfactory and one might, at this stage, even speculate
how the non-Abelian extension may look. The non-Abelian
boundary Chern-Simons theory will have the form (3.241),
but nowAd;α will have to be defined with respect to ϕ̂α. The
knot will then be added as a linear term in Ad, just as in
(3.344), but now to (3.241). The above statements are easy
to state but a direct derivation of the boundary action along
the lines of our earlier discussion is unfortunately harder
because of the issues pointed out above. We will therefore
relegate a detailed discussion to the sequel of this paper and
instead make some generic statements here.
There is one puzzle however that we need to clarify.

The non-Abelian Chern-Simons theory (3.241) with the
coupling k

4π ≡ b2 þ c2, appearing in (3.230) and (3.63), is
well defined in a path integral only when k is an integer.
With a gauge group G, the path integral representation is
given by

ZðK; k; GÞ ¼
Z

DAd exp½iSbndðk;AdÞ�

× TrRP exp
�
Q2

I
K
Ad

�
; ð3:346Þ

where the integral is over all gauge connectionsAd modulo
gauge transformations. What happens when k is not an
integer? This could in general be the case because both b2
and c2, given in (3.230) and (3.63) respectively, appear
from supergravity analysis and are as such not restricted to
be integers. It turns out, when k is not an integer, we can
still perform the path integral by complexifying the gauge
field Ad. The story becomes more interesting now, and has
been discussed in much detail in [38]. This analytical
continuation of Chern-Simons theory at the boundary
proceeds in few steps: one, to change the measure of the
path integral; two, to incorporate the complex conjugate
piece in the path integral, and then three, to assume the
complex conjugate piece, constructed from Ād, to be
independent of the one constructed from Ad [38]. In other
words, we change (3.346) to

ZðK; k; ~k;GÞ ¼
Z
C
DAdD ~Ad exp½iSbndðk;AdÞ

þ iSbndð~k; ~AdÞ�TrRP exp

�
Q2

I
K
Ad

�
;

ð3:347Þ

where both ~Ad and ~k are in general different from Ād and k
respectively. The choice of the integration cycle C is subtle
and is captured by finding critical points of the modified
Chern-Simons action appearing in (3.347) and then
expressing C in terms of the so-called Lefshetz thimbles
[38]. The integrals over these Lefshetz thimbles should
always converge, and this way finite values could be
determined for the path integral (3.347).57

The above discussion raises an interesting question,
namely, what is the interpretation of the above story from
our M-theory uplift? To answer this, recall how we arrived
at the Chern-Simons theory (3.241). Our starting point was
the four-dimensional action (3.153), from where we derived
the Hamiltonian (3.158). The electric and the magnetic
charges QE and QM respectively, when arranged properly
by taking care of the subtleties mentioned in Sec. III B 12,
gave rise to the boundary action (3.241). There were two
crucial ingredients in the discussion: one, the expression
(3.230), which was important in deriving the coupling
constant k and two, the twisted gauge field Ad which in
turn was composed of the original gauge field Aμ and the
twisted scalar field ϕμ. Looking even further back, both the
ingredients appeared from M-theory: the twisted gauge
field from the G-flux G4 via (3.55); and the coupling k (i.e.
b2 and c2) essentially from the M-theory action via (3.62).58

This means the complexification of the fields that is
necessary to analyze (3.347) should somehow also appear
directly from our M-theory analysis.
The analysis gets harder because in M-theory, or in the

11-dimensional supergravity, the ingredients enhancing
the four-dimensional gauge theory from Abelian to non-
Abelian and creating the knots may be the sameM2-branes.
The distinguishing feature is of course their orientations:
the non-Abelian enhancements appear from M2-branes
wrapped on the Taub-NUT two-cycles, whereas the knots
appear from M2-branes having at most one leg along the
Euclideanized boundary W (or being a one-dimensional
curve in the three-dimensional Minkowskian boundary).
On the other hand when the knot configurations are dual to
the D0-branes, with the worldline of the D0-branes forming
a knot configuration in the three-dimensional boundaryW,
the analysis is equally challenging from M-theory. Even at

56We define hF 2ψ i¼ ∂2hAψ i−∂ψ hA2iþ i½hA2i;hAψ i� which
is proportional to ∂ψ hA2i for the case studied earlier because
hAψ i vanishes, but now, for the present case, has all the terms.

57Clearly this is a playground for using Morse theory and the
theory of steepest descent as have been exemplified by [38].

58For the full non-Abelian enhancement the readers may refer
to Sec. III B 6.
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the Abelian level, the essential path integral that we can lay
out is the following:

Zða; bÞ ¼
Z

DG4 exp

�
ia
Z
Σ11

G4 ∧ �G4 þ ib
Z
Σ8

G4 ∧ G4

�

× exp

�
i
I

C3

�
: ð3:348Þ

This is good enough to capture certain aspects of four-
dimensional Abelian gauge theory as well as the boundary
three-dimensional Chern-Simons theory, but definitely not
the full story, at least not yet in the present incarnation with
a providing the gauge coupling and

b≡ c2R
TN ω ∧ ω

; Σ8 ¼ W ×Rþ × TN; ð3:349Þ

on the 11-dimensional manifold Σ11 ¼ Σ8 × S3, where S3

is a three-cycle and ω is the normalizable harmonic form
defined on the warped Taub-NUT space. To complete the
story, we will need a few crucial intermediate steps: one,
that converts b in (3.348) to k as in (3.346) via a step similar
to (3.230); two, that converts G-flux G4 to three-dimen-
sional twisted gauge field Ad; and three, that finally
converts (3.348) to (3.347). The search then is a formalism
for a topological M-theory where calculations of the kind
mentioned above may be performed (somewhat along the
lines of [39]).
In the absence of such a formalism, simplification occurs

when k becomes an integer, so that we can ignore
complexification, and when we go to the Abelian case,
where we can resort to our earlier calculations. This then
brings us to the following path-integral representation:

ZðK; kÞ ¼
Z

DAd exp

�
ik
4π

Z
W
Ad ∧ dAd

�

× exp

�
iQ2

I
K
Ad

�
; ð3:350Þ

which is simpler than both (3.346) as well as (3.347)
and where k

4π ¼ b2 þ c2 is now an integer. Additionally,
the quadratic form of the Chern-Simons action implies
that (3.350) can be simplified further. Defining Ad ¼
hAdi þ ad, where ad is the fluctuation over the background
field hAdi, and using (3.337) now for the background field
strength hF di, we can express (3.350) equivalently as

ZðK; kÞ ¼ Z0

Z
Dad exp

�
ik
4π

Z
W
ad ∧ dad

�
; ð3:351Þ

where Z0 is a number and is given by Z0 ¼
exp ð ik

4π

R
WhAdi ∧ dhAdiÞ exp ð

H
KhAdiÞ, implying that

the quantum computations in the presence of a knot may
be performed by studying the fluctuations over a classical

background as if the knot was absent. This simplification is
of course only for the Abelian case, as the non-Abelian case
would require more elaborate computational machinery.
There is something puzzling about (3.351) that we would

like to clarify. Rephrasing (3.350) to (3.351) one might
worry that all information about the knot K is now lost. In
fact what we have in (3.351) is the following additional
integral:

exp

�
−iQ2

Z
W
ad ∧ δK

�
exp

�
iQ2

I
K
ad

�
; ð3:352Þ

which vanishes classically and so the computations proceed
as though no knot is present in (3.351). However (3.352)
implies that the actual quantum mechanical computation
should have another knot linked to the previous one. In
other words there should be a framing anomaly [2]. Taking
this into account, the information about the knot can thus be
recovered in the quantum computations.
Let us elaborate this a bit more. For Abelian, Chern-

Simons, the cubic interaction term is absent. The expect-
ation value of Wilson loop operator for knot K in (3.350)
can be expressed as

ZðK; kÞ ¼ exp

�
−Q2

2

�I
K
dxμA

μ
dðxÞ

I
K
dyνAν

dðyÞ
�

;

ð3:353Þ

where Q2, as mentioned earlier, may be computed in M-
theory from the dual D0-brane charge (3.342) or from dual
M2-brane charge depending on our choice of orientation.
Using the gauge field two point function,

hAμ
dðxÞAν

dðyÞi ¼ ϵμνλ
ðx − yÞλ
jx − yj ; ð3:354Þ

we see that the above invariant (3.353) will blow up at
coincident points xμ → yμ. So wewill have to regularize the
integral. This is achieved by choosing a suitable frame with
aKf knot slightly displaced from the original knot. In other
words, we take the coincident points as yμ ¼ xμ þ ϵμ, with
ϵμ approaching zero. Depending on the choice of frame, we
will get the Uð1Þ knot invariant (3.353) to be in terms of a
framing number p, defined as the linking number of knotK
with its frame knot Kf, in the following way:

−
1

Q2
2

logZðK; kÞ ¼ lim
ϵμ→0

�I
K
dxμA

μ
dðxÞ

I
Kf

dyνAν
dðyÞ

�

¼ −
iπp
k

; ð3:355Þ

implying that for any knot the result is proportional to p.
However, we can always choose a canonical frame in S3

where p ¼ 0. In other words, this canonical frame does not
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give any information about knots within Abelian Chern-
Simons theory. This is exactly reflected by perturbing the
classical background solution as detailed in (3.351) and
(3.352). Thus nontrivial information is achieved when we
go from one frame to another. For more details see [40].
We are now ready to discuss the construction of knots

using our surface operators. One of the crucial ingredients is
the Heegaard splitting, which states that a three manifoldW
can be obtained as a connected sum of three manifolds W1

andW2 joined along their commonboundaryΣ≡∂W. Thus,

W ¼ W1 ∪Σ W2: ð3:356Þ

In the presence of a surface operator, a three manifold can
also be split in a similar way as depicted in Figs. 4(a) and
4(b). Once we extend the Wilson lines along the Rþ
direction (or alternatively the ψ direction) in Fig. 4(b), we
can see how the surface operators split. The way we have
expressed the surface operators, they are parallel to x1 axis
as can be seen from the Wilson line representation (3.343).
This means on the boundary Σ of our three manifoldW the
Wilson lines will end on points, and the splitting of the
surface operators would imply how the points are distrib-
uted on different boundaries. In a standard quantization of
the Chern-Simons theory on W, where W is locally a
product of Σ ×R1 with R1 representing the direction x1,
the Hilbert spaceHΣ associated to the boundary Σ changes,
in the presence of the surface operator, to

HΣ → HΣ;pi;Ri
; ð3:357Þ

where pi are the points on Σwhere theWilson lines end and
Ri are the representations of each points. In the present case
the Hilbert space is precisely the gauge theory described on
the D2-brane surface operator that we use here.
The next ingredient is the monodromy around the

surface operator. We already described the case when we
have a loop K in the ðx1; x2Þ plane for the surface operator
given in Table V. The monodromy therein was given by
(3.338), which can be reexpressed in the language of
ðα; β; γÞ using the BHN equations (3.308), where
ðα; β; γÞ have in-turn been expressed using supergravity
variables in (3.309) and (3.310). In Eq. (6.4) of [11], and
also in Eq. (2.2) and Eq. (2.3) of [16] with more details, the
gauge field A and the scalar field ϕ̂ have been described
using ðα; β; γÞ. Using (3.309) and (3.310), we now express
ðA; ϕ̂Þ using supergravity variables. This is no surprise, of
course, as in our earlier sections we used supergravity to
write the BHN equations for F αβ and F αψ . Thus the
monodromy around the kth surface operator (3.338) can be
now written as

Mk ≡ exp ½−2πðαk − iγkÞ�: ð3:358Þ
Since a given surface operator is a solution of the set of
equations (3.316), (3.326), (3.318), (3.324) and (3.325),

monodromies around different surface operators depend on
their respective choices of the triplets ðαk; βk; γkÞ.
The gauge field set ðA; ϕ̂Þ that we take appears in the

boundary Chern-Simons theory as a combined gauge field
Ad as defined in (3.240) and in (3.334). There are three
parameters that appear in the definition of Ad: b2 and c2
from gauge theory coupling constant (3.230) after twisting,
and d1 from (3.232). It is easy to see that, although b2 and
c2 both have to be real, d1 can in principle be complex.59

Nothing that we discussed earlier will modify if d1
becomes a complex function. In fact there are two ways
to go about this, with definite advantages in either formal-
ism. Using Aμ ¼ −iAμ as in (3.286), we can express Ad as

Ad ¼ −i
�
A −

id1
b2 þ c2

ϕ̂

�
; ð3:359Þ

which keeps d1 real, but inserts an i in the definition of the
gauge field. In this formalism, a boundary flat connection
implies a Hitchin equation of the following form:

dAd − iAd ∧Ad ¼ 0¼Fþ
�

d1
b2þ c2

�
2

ϕ̂∧ ϕ̂; ð3:360Þ

where note the relative plus sign.60 Comparing this with say
(3.326), which is expressed in variables before twisting, we

(a)

(b)

(c)

FIG. 4. Two Wilson lines in the three-dimensional boundary
denoted by (a) is arranged so that they are parallel to the x1 axis.
In (b) we split them via Heegaard splitting and they are rejoined
in (c) via a braid group action. This procedure allows us to
introduce nontrivial structures to the Wilson lines.

59When b2 and c2 are also complex, we are in the regimewhere
we have to analytically continue the Chern-Simons theory. We
discussed this briefly earlier and more details are in [38].

60If we now define ϕ̂ ¼ −iΦ, we will get back (3.287) as
expected. However for the computations at hand, we keep the
twisted one-form scalar fields unchanged, and only redefine the
gauge fields. As noted above, this line of thought has some
distinct advantages.
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see that they are similar provided we useF 12 ¼ −iF12 as in
(3.286). After twisting the coefficients of (3.360) may be
identified with the ones in (3.326) and this way the value of
d1 may be determined.
In the second formalism, we keep the gauge field as Aμ,

but make d1 itself complex. If we now map all the variables
in the action (3.153) to the ones appearing in say [11] using
ðσ0; γ0; κ0Þ etc. in (3.211) and (3.215) respectively, then one
can show that

d1 ≡� ic11ðb2 þ c2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c211 þ v23q

2sin2θ
p ; ð3:361Þ

where c11 is given in (3.76), v3 in (3.66) and qðθÞ in (3.67)
with a NC deformation θ. This definition of d1 does not
change if we change ϕ, in the absence of a surface operator,
to ϕ̂, in the presence of one. Additionally it is interesting to
note that there are certain values of the NC parameter θ for
which the definition of the boundary gauge field Ad
simplifies to:

Ad ¼ A� iϕ̂: ð3:362Þ

The simplest case is of course when θ vanishes. The other
case may arise when qðθÞ, as defined in (3.250), vanishes
for nonzero θ. Clearly for all these cases c2 also vanishes,
and t becomes t ¼ �i. However the boundary gauge theory
coupling continues to remain nonzero and now takes the
value b2 as can be seen from (3.230).
Unfortunately, as it turns out, by doing similar mapping

of our variables to the ones in [11] as discussed above, b2
becomes infinite when t approaches�i. In this limit, and as
elaborated in [14], τ defined in (3.183) becomes irrelevant
and therefore is not a useful arena to study the boundary
theory. Thus it seems we should only allow t ≠ �i cases,
which then brings us to the question whether the simpli-
fication (3.362) is any way useful for us.
A path integral representation sheds some light here. Let

us first discuss the non-Abelian case in the absence of any
knots. The path integral can be written asZ

C
DAd exp

�
iðb2þc2Þ

×
Z
W
Tr

�
Ad ∧dAdþ

2i
3
Ad ∧Ad ∧Ad

��
; ð3:363Þ

where C is the same integration cycle that we discussed
earlier; and we see that (3.363) only depends on the
combination b2 þ c2 but does not depend on the ratio
d1

b2þc2
, which is another way of saying that Ad is a dummy

variable in the integral (3.363). We can therefore replaceAd
by any complex function and the definition (3.362) would
equally suffice if we viewA and ϕ̂ to be arbitrary functions
appearing in the path integral. All in all, it boils down to the
fact that the gauge field appearing in the path integral may

be an arbitrary complex one-form, although the boundary
action is defined with a specific functional form for Ad.
Even in the presence of a knot, for both Abelian and non-
Abelian cases, the arguments presented above go through
because the Wilson loop is defined with Ad, and as such
could again be replaced by an arbitrary complex one-form
in the path integral. All these observations resonate well
with the ones presented in Sec. 2.4 of [11].
Further simplification occurs when we look at the BHN

equations (3.316) and (3.326) on a plane orthogonal to the
surface operator. Since σ, as well as its covariant derivatives
(3.317) and (3.328), are localized functions we expect the
behavior in a plane away from the center of the surface
operator to be

F 1ψ − iγ4½φ1;φ3� ¼ F 2ψ − iγ4½φ2;φ3�
¼ F 12 − iγ7½φ1;φ2� ¼ 0; ð3:364Þ

where γ7 is the coefficient of the commutator piece in
(3.326). Note that we have expressed the BHN equations
without the hats, as the σ dependences die off in the
orthogonal plane. Converting the gauge fields from Aμ to
−iAμ using (3.286), the Hitchin equation for F 12 in (3.364)
matches with (3.360) as noted earlier. Of course the above
discussion is good only for the configuration that we study
in Table V which is a codimension one singularity in the
three-dimensional boundary. For a codimension two sin-
gularity in the boundary, we will have to study the Hitchin’s
equations in a plane orthogonal to the surface operator. The
analysis would be similar to what we did above, although
certain specific details might be different now.
The picture that we developed above leads to the concept

of holonomy of the complex gauge field around a given
surface operator. This can typically be represented by Vk ≡
HolðAdðkÞÞwith k representing the kth surface operator. For
flat connections holonomy and monodromy are related so
Vk will be conjugate to the monodromyMk in (3.358). An
interesting consequence of having holonomy around a
surface operator is the following. Consider four Wilson
lines parallel to each other and intersecting at four points on
Σ in a Heegaard split three-manifold. This is depicted to the

σ σ

FIG. 5. The action of the braid group on the Wilson lines. They
are distinguished by their overcrossing and undercrossing pattern.
The first one has a braid group action σ−11 , whereas the second
one has a braid group action σ1.
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left of Fig. 6, where the Wilson lines are parallel to the x1
direction. If we name them as 1, 2, 3 and 4, then by
identifying the monodromies,

M1 ¼ M−1
4 ; M2 ¼ M−1

3 ; ð3:365Þ

or equivalently the holonomies, we can go to the configu-
ration depicted to the right of Fig. 6. This operation is
useful because it tells us that we can join two Wilson lines
by identifying monodromies. In terms of surface operators,
this procedure will lead to the configuration depicted
in Fig. 7.
In fact we now have two distinct configurations of

Wilson lines, or equivalently, surface operators. The first
one, we will call it box A and is depicted in Fig. 4(a), is a
configuration of parallel surface operators. The second one,
and we will call it box B, is depicted to the right of Fig. 6: a
configuration of curved surface operators. Associated to
these boxes will be the operators Ak and Bk where k
denotes the number of surface operators (or equivalently,
Wilson lines).
There is a third possibility that we can entertain and is

depicted in Fig. 4(c). We will call it box C, where the
Wilson lines are swapped by a braid group action σα. We
will concentrate on a braid group with two strands, with
generators σα where the subscript α denotes which set of
two strands, out of a given set of Wilson lines, we choose
here. The operators associated with the braid group action
will be Cð2;σ1Þ and Cð2;σ−1

1
Þ where we take α ¼ 1 for

illustrative purposes and the two operations are depicted
in Fig. 5. We therefore expect

Cð2;σ1ÞCð2;σ−1
1
Þ ¼ Cð2;1Þ; ð3:366Þ

where σ1 ¼ 1 implies no braid group action. This is
therefore topologically equivalent to A⊺

2, with transpose
put in to account for the orientations of the Wilson lines.
We now have more or less all the necessary ingredients

to analyze the invariants for various knots. Let us start with

the simplest case of an unknot as depicted in Fig. 8.
Combining the boxes A, B and C we can express the
invariant (or the linking number) in the following way:

Zðq;K0Þ ¼
�
exp

I
K0

Ad

�

¼
X
n2

hn2jB⊺
2Cð2;σ1ÞB2A2jn2i; ð3:367Þ

where Ad, as described above, could be any complex one-
form; andK0 is the unknot configuration. The action of the
operators in the rhs of (3.367) can be elaborated in the
following way. Consider box A in Fig. 8 where the Wilson
lines intersect the top right two-dimensional surface Σ at
two points. These two points may be considered as a given
state jn2i in the boundary Uð1Þ Chern-Simons theory. The
operatorA2 evolves the state from right to left (here we take
the direction to be parallel to x1, but this is not necessary).
The subscript 2 denotes two strands (or the two particle
state jn2i) in the field theory. The operator B2 then curves
the Wilson-line states by monodromy identification, much
like (3.365) discussed above. This evolution continues until
the braid group operationCð2;σ1Þ acts in the way depicted in
Fig. 8. The braided state is then evolved by B⊺

2 where the
transpose operation just reverses the orientations of B2.
Finally we sum over all possible two Wilson-line states in
the Chern-Simons theory.
The above, slightly unconventional way, reproduces the

invariant (3.353) for the unknot case using the operators
A2, B2 and Cð2;σ1Þ combined as (3.367). All three operators
can be thought of as a 2 × 2 matrices whose components
are evolution operators. As such they are expressible in
terms of exponentials of generators integrated over the knot
configuration, exactly as in (3.353). This can be normalized
to 1, so one might wonder why we went about expressing
the unknot in a rather complicated way. The answer is that
the above way of expressing the unknot using the operators

FIG. 6. Four Wilson lines are joined pairwise by identifying the
respective monodromies around them.

FIG. 7. Once we identify monodromies of a pair of Wilson
lines, the structure of the codimension two surface operator in
four-dimensional space can be formed out of two-branes. Here
two such configurations are shown on a Heegaard-split three-
manifold base.
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helps us to generalize the picture to any complicated torus
knots. For example, let us consider the trefoil depicted in
Fig. 9, which again uses the three set of operators A2, B2

and Cð2;σ1Þ. The knot invariant associated with the trefoil
then is

Zðq;KtÞ ¼
�
exp

I
Kt

Ad

�

¼
X
n2

hn2jB⊺
2Cð2;σ1ÞCð2;σ1ÞCð2;σ1ÞB2A2jn2i;

ð3:368Þ

where Kt denotes the trefoil knot. The operators act in the
same way as in (3.367), except now we have 3 times the
braid group action by the operator Cð2;σ1Þ. This of course
distinguishes it from (3.367), and thus the above analysis
generalizes easily to the torus knots ð2; nÞ as

Zðq;K⊺Þ ¼
�
exp

I
K⊺

Ad

�

¼
X
n2

hn2jB⊺
2C

n
ð2;σ1ÞB2A2jn2i; ð3:369Þ

with K⊺ representing the torus ð2; nÞ knots. Clearly when
n ¼ 3 we get our trefoil invariant.
So far we have been using the operator Cð2;σ1Þ to

represent the braid group action for two Wilson lines.
The question is what happens when we have more than two
Wilson lines. It turns out we can still use Cð2;σ1Þ but

represent the braid group action is a slightly different way.
An example of this can be presented for the figure-8 knot,
which is the simplest nontorus knot, given in Fig. 11. The
knot invariant for this is now

Zðq;K8Þ¼
�
exp
I
K8

Ad

�

¼
X
n3

hn3jB⊺
3C

m1

ð2;σ2ÞC
m2

ð2;σ−1
1
ÞC

m3

ð2;σ2ÞC
m4

ð2;σ−1
1
ÞB3A3jn3i;

ð3:370Þ

whereK8 is the figure-8 knot with m1¼m2¼m3¼m4¼1;
and Cð2;σ2Þ and Cð2;σ−1

1
Þ are the braid group actions ðσ1; σ2Þ

on two different strands. The inverse to be understood as
the operations is depicted in Fig. 5. The rest of the operators
act in the way we described earlier. We can generalize
(3.370) by considering arbitrary values for ni in (3.370).
One such generalization leads to the 52 knot given in
Fig. 12, whose knot invariant may be written as

Zðq;K52
Þ¼
�
exp
I
K52

Ad

�

¼
X
n3

hn3jB⊺
3Cð2;σ2ÞCð2;σ−1

1
ÞCð2;σ2ÞC

3
ð2;σ1ÞB3A3jn3i;

ð3:371Þ

whereK52
is the 52 knot, and we have taken C3

ð2;σ1Þ instead
of C3

ð2;σ−1
1
Þ action. We thus see that the three ingredients,

FIG. 8. Construction of an unknot using all the ingredients that we developed earlier. BoxesA represent the Wilson lines parallel to x1
axis, boxes B denote the curving of the Wilson lines by identifying pairwise monodromies, and finally box C denotes the braid group
action. Together they form an unknot configuration. The points ai and bi are the points where the Wilson lines end on the Heegaard-split
three manifolds.
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namely (a) the Heegaard splittings, that typically lead to a
class of operators Ak; (b) monodromy identifications,
that lead to a class of operators Bk; and (c) braid group
actions that lead to a class of operators Cð2;σαÞ and Cð2;σ−1α Þ,
are sufficient to give us both the surface operator repre-
sentations as well as the invariants for any given knots.
All these are expressible in the language of a Uð1Þ
Chern-Simons theory with a complex gauge group Ad

and the invariants that we computed above are propor-
tional to

exp

�
iπpQ2

2

k

�
; ð3:372Þ

which are consistent with the generic argument that we
presented for (3.353). This is not a big surprise, and one

FIG. 9. Construction of a trefoil knot by joining boxes A, B and C appropriately. The braid group action now acts twice. The points
ðai; biÞ still remain the points where the Wilson lines end on the Heegaard-split manifolds.

FIG. 10. A specific construction of a ð2; nÞ torus knot by joining boxes A, B and C appropriately. The braid group action now acts n
times. The points ðai; biÞ still remain the points where the Wilson lines end on the Heegaard-split manifolds. Once we extend the figure
along the Rþ (or ψ) direction, we will get the configuration of the surface operator.
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might wonder if we can get anything more out of our
elaborate constructions beyond the expected result
(3.372). The answer turns out to be affirmative and in
fact accommodates the polynomial constructions outlined
in [18] where the monodromies Mk in (3.358) are used to
construct the variables ðθi; xiÞ and the affine cubic

fðxi; θmÞ ¼ 0 [see for example Eqs. (4.6), (4.7) and
(4.9) of [18]). This means the surface operator represen-
tations presented for various knot configurations above
not only give us the knot invariants, but also reproduce all
the constructions of [18]. Additionally, our analysis shows
that all the constructions of [18] may be given a

FIG. 11. The construction of a figure-8 knot usingA,B and C boxes in a slightly different way than discussed earlier. The braid group
action is now σ−11 · σ2 · σ−11 · σ2 acting on the Wilson lines as shown.

FIG. 12. The construction of 52 knot using theA,B and C boxes. The braid group action is now σ31 · σ2 · σ
−1
1 · σ2 acting on the Wilson

lines as shown.
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supergravity interpretation. However once we go to the
non-Abelian extension, we face many issues, and the
simple minded analysis that we presented here will have to
be modified. This means, for example, a surface operator
representations of Jones polynomials using the three kinds
of operators we used here are not sufficient. A more
detailed framework is then called for, which is unfortu-
nately beyond the scope of the present work. We will
therefore not discuss this further, instead we will elaborate
on another set of constructions that generalize easily to the
non-Abelian case.

3. ’t Hooft operator, opers and
supergravity parameters

In the previous section we have considered the codi-
mension two defect operators in the field theory. The
monodromy defect supported on a knot K inside the
Chern-Simons boundary was extended in four dimensions
to a singularity that the fields had along a two-dimensional
surface K ×Rþ inside the four-dimensional space.
In [11,12], other defect operators were considered in a

four-dimensional theory, the codimension one Wilson line
operators and the codimension three ’t Hooft operators.
Especially important are the codimension three ’t Hooft
operators which can be related to the Nahm pole solution
where the dependence of the codimension three object is
only on ψ , the four-dimensional coordinate transversal to
the three-dimensional boundary. The relevant equations
have already appeared in (3.185), which are of course the
ones of [11]. Note that, compared to our earlier sections,
nothing we say in this subsection will be new. However an
attempt will be made to pave a way for possible con-
nections between the results of [12] and our supergravity
analysis.
Let us first consider the t ¼ 1 case, where t is given, in

our language of supergravity, by (3.184). In this case, a
stationary solution (invariant under translations along time
direction) with zero Aμ and ϕ3 reduce to Nahm’s equations
for the components of the field ϕ tangent to the boundary61:

d~ϕ
dy

þ ~ϕ × ~ϕ ¼ 0; ð3:373Þ

where we have identified y as our ψ coordinate. The above
equation follows easily from our BHN equation (3.221),
and also from (3.326) which is in the presence of a surface
operator provided we change ϕ to ϕ̂. In the language of
commutator brackets of (3.221) or (3.326), it is not too hard
to guess the solution of the above equation to be

~ϕ ¼ ~τ
y
; ð3:374Þ

where τa are the three Pauli matrices. The advantage of
expressing the equations in terms of three-dimensional
vectors, before twisting, allows us to compare with the
equations after twisting when they all become one-forms.
Once Aμ’s are nonvanishing, the scenario is not so simple

as the Nahm equation (3.373). From our earlier analysis,
we know that we need the full BHN equations. Of course,
as expected, the solutions to the BHN equation again
cannot be as simple as (3.374). It turns out there are two
types of solutions to the BHN equations which may be
succinctly presented in terms of a complex coordinate z
defined as z ¼ x1 þ ix2 [recall that our four-dimensional
space is parametrized by ðx0; x1; x2;ψÞ where we already
identified y with ψ]. The first type of solutions are
independent of z coordinate. Defining

D1 ≡ ∂
∂x1 þ i

∂
∂x2 þ ½A1 þ iA2; :�

D2 ≡ ∂
∂yþ ½Ay − iϕ0; :�; D3 ≡ ½ϕ1 − iϕ2; :�; ð3:375Þ

where Ay ≡ Aψ ; and as mentioned earlier, depending on the
mapping (3.156) or (3.282), we can identify ϕ0 to eitherA3

or φ3 respectively. This means, for a certain choice of the
gauge [(3.161) or (3.178)], ϕ0 may vanish and thereforeD2

described above may be simplified. However for the
present discussion, we will keep things generic. The first
order differential operators Di therefore satisfy

½Di;Dj� ¼ 0; i; j ¼ 1; 2; 3;

X3
i¼1

½Di;D
†
i � ¼ 0; ð3:376Þ

which are alternative ways to express the BHN equa-
tion (3.208) or (3.221) once we absorb some factors and
signs appropriately. To verify that this is indeed, for
example, (3.208) we note that the second equation in
(3.376) is the moment map equation which can be
written as

F12 − ½ϕ1;ϕ2� −Dyϕ0 ¼ 0: ð3:377Þ

In the gauge A1 þ iA2 ¼ 0, the operator D1 becomes
derivative with respect to z̄ and with the gauge choice
Ay ¼ iϕ0, the operator D2 becomes derivative with respect
to y. D3 is proportional to ϕ≡ ϕ1 − iϕ2 as should be clear
from (3.375). The commutation relation ½D1; D3� ¼ 0
implies that ϕ is holomorphic in z and the relation
½D2; D3� ¼ 0 means that ϕ is independent of y. Near
y ¼ 0, ϕ is a constant and a complex valued gauge

61Our analysis here is generic and therefore ϕi and φk can be
related via any of the two mappings (3.156) or (3.282). In fact our
gauge choice could also be generic i.e. (3.161) or (3.178).
Additionally we will be using the gauge fields Aμ instead of
Aμ so that we can easily compare our results to [12].
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transformation maps it into the Nahm pole solution with 1
y

dependence.
What about outside the region y ¼ 0? The vanishing of

the commutator brackets ½D1; D3� and ½D2; D3� define a
Higgs bundle ðE;ϕÞ where ϕ is independent of y and
holomorphic. The Nahm pole solution (also called the
model solution) is trusted around the y ¼ 0 boundary but
we can extend the model solution as a Higgs bundle ðE;ϕÞ
away from y ¼ 0. In fact, as described in [12], such an
extension gives a Higgs bundle ðE;ϕÞ endowed with a
holomorphic line sub-bundle Lwhich is not stabilized by ϕ.
In other words, for any section s of L we expect
s ∧ ϕs ≠ 0, as described in [12].
Let us now consider the second type of solutions that

depend on z. The dependence on z is determined by the
presence of extra monopoles with extra charges ka at points
z ¼ za. Next to y ¼ 0, the solution is a simple modification
of the Nahm pole solution as the field ϕ has a holomorphic
entry with a power of z. Away from y ¼ 0 the solution is
given again by a triplet ðE;ϕ; LÞ of a Higgs bundle with a
holomorphic sub-bundle L.
How do we now extend this result to the case t ≠ 1? A

key observation of [12] is that the Higgs bundle (with the
key ingredient of a holomorphic scalar field ϕ) can be
obtained by starting from a set of Hitchin equations:

F − ϕ ∧ ϕ ¼ 0; d � ϕ ¼ dϕ ¼ 0; ð3:378Þ

and combining the last two equations to get the holomor-
phicity condition on ϕ, namely ∂̄ϕ ¼ 0. This is true for
t ¼ 1. When t ≠ 1, it is useful to modify the definition of
the derivatives with respect to z, z̄ by introducing a complex
parameter ζ in the following way:

Dζ
z ¼ D

Dz
− ζ−1½ϕ; :�; Dζ

z̄ ¼
D
Dz̄

þ ζ½ϕ̄; :�: ð3:379Þ

We have ½Dζ
z; D

ζ
z̄� ¼ 0 which is taken as an equation

governing holomorphic data. In fact using vector field
components Aζ

z ¼ Az − ζ−1ϕ and Aζ
z̄ ¼ Az̄ þ ζϕ̄ makes

(3.379) holomorphic in these variables. Additionally, the
holomorphicity condition on ϕ is mapped into a holomor-
phicity condition on Aζ

z and the Higgs bundle condition is
now replaced by a complex flat connection. The Nahm pole
solution around y ¼ 0 now describes a singularity in Aζ

z and
Ay. Away from the y → 0 region, the solution is a complex
flat bundle E with a holomorphic bundle L defined such
that its holomorphic sections are not annihilated by Dz.
Such a pair ðE;LÞ is called an oper [12].
In Appendix A of [12], the reduction of a four-dimen-

sional stationary solution to a topological theory in three
dimensions was a function of a rotational angle θ where the
parameter t was set to tan ð3θ

2
þ π

4
Þ and ζ to tan θ. This

relation between t and ζ should also appear from our
M-theory reduction. As t is related to the supergravity

parameters via (3.184), we expect ζ to also be represented
by our supergravity parameter. From here we conclude that
the oper solution is automatically fixed once we have
determined the supergravity parameters. This is somewhat
along the lines of the discussion in the previous subsections
where we saw that many of the results discussed in [11]
automatically appear from our supergravity analysis. More
details on this will be presented in the sequel to this paper.

IV. MODEL B: THE TYPE IIB DUAL
DESCRIPTION AND NON-KÄHLER

RESOLVED CONE

In Sec. III most of our analysis revolved around the uplift
of the brane configuration given in Table I to M-theory, and
the subsequent physics associated to the presence of a knot
in 2þ 1 dimensional boundary W. The existence of a
Coulomb branch, as well as dipole (or RR) deformation,
helped us to study the knots and their localization to the
boundary W. Many of the details, which were studied
exclusively from the boundary point of view in [11],
appeared very naturally in our setup from the bulk
dynamics in M-theory. The starting point of all our
discussion was the Hamiltonian (3.158) from where, and
in the presence of surface operators, we were led to the
detailed study of knots and knot invariants.
At this stage it is interesting to ask if we can repeat the

success using the second brane configuration given in
Table II. One immediate difference from the earlier brane
configuration in Table I (or its T-dual type IIA version) is
the absence of the Coulomb branch. Recall that the
existence of the Coulomb branch earlier was responsible
in constructing the twisted gauge field Ad in (3.240) which
eventually led us to the boundary Chern-Simons theory
(3.241). Once we lose the Coulomb branch, restricting the
knot to the three-dimensional boundary W is more subtle.
In fact the whole boundary picture developed from four-
dimensional space V ¼ W ×Rþ a la [11] will need to be
reinterpreted differently now. Problems lie in restricting the
knots to three dimensions, constructing the twisted gauge
field and resolving the conundrum addressed earlier in
Sec. II B.
We will start by discussing, in series of steps, a way out

of the conundrum for model B by analyzing the picture
from M-theory in a slightly different way from what is
discussed in Sec. Vof [11]. In the process we will get some
understanding how to address the other two issues, namely,
restricting knots to 3D and topological twisting of the scalar
fields. But we make only the barest beginnings in this
direction, and leave most of the details for the sequel.

A. Second look at the gravity and the
topological gauge theory

We saw, from our earlier discussion in Sec. II B, that an
appropriate duality to the brane configuration of model B
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leads to a type IIB picture with wrapped D5-branes on the
two-cycle of a resolved conifold. According to [19] the
metric on the resolved conifold should be non-Kähler.
Ignoring the dipole deformation for the time being (we will
insert this soon), the supergravity background for the
configuration is given by (3.4) as before with ϕ being
the dilaton and the Hodge star and the fundamental form J
are with respect to the dilaton deformed metric e2ϕds62. The
metric ds26 is now different from (3.5) as its a non-Kähler
resolved conifold metric written as

ds26 ¼ F1dr2 þ F2ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2

þ
X2
i¼1

F2þiðdθ2i þ sin2θidϕ2
i Þ; ð4:1Þ

where FiðrÞ are warp factors that are functions of the radial
coordinate r only.62 The above background (4.1) can be
easily converted to a background with both H3 and F 3

fluxes by a series of duality specified in [19,41]. The
duality converts (4.1) to

ds2 ¼ 1

e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3 þ Δ

p ds20123 þ e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3 þ Δ

p
ds26

F 3 ¼ −e2ϕ cosh β

ffiffiffiffiffiffi
F2

F1

s

× ðg1eψ ∧ eθ1 ∧ eϕ1
þ g2eψ ∧ eθ2 ∧ eϕ2

Þ
~F 5 ¼ − sinh β cosh βð1þ �10ÞC5ðrÞdψ

∧Y2
i¼1

sin θidθi ∧ dϕi

H3 ¼ sinh β½ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞer ∧ eθ1 ∧ eϕ1

þ ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F4rÞer ∧ eθ2 ∧ eϕ2

� ð4:2Þ

with a dilaton eϕB ¼ e−ϕ and a Δ defined as

Δ ¼ sinh2βðe2ϕ=3 − e−4ϕ=3Þ ð4:3Þ

and β is a parameter related to certain boost that is
explained in [19] while the others, namely ðg1; g2; C5Þ
are given by

g1ðrÞ¼F3

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
−F4r

F4

�
; g2ðrÞ¼F4

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
−F3r

F3

�

C5ðrÞ¼
Z

r e2ϕF3F4

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
F1

×
�� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
−F3r

F3

�
2

þ
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
−F4r

F4

�
2
�
dr:

ð4:4Þ

1. Revisiting the topologically twisted theory

Before moving further, let us ask how does finding the
type IIB background (4.1) and (4.2) helps us in under-
standing the topologically twisted theory. Recall what we
did in Sec. III. We mapped the type IIB brane configuration
of Table I to a configuration of wrapped D5-D5 branes on
two-cycle of a warped Taub-NUT space. An M-theory
uplift then gave us the required action (3.153) and the
Hamiltonian (3.158) from where we extracted our boun-
dary three-dimensional Chern-Simons action (3.241).
The situation now is a bit different as has been hinted

above. The Ooguri-Vafa model [8] has two different
realizations that are connected via large N dualities. On
one hand the SUðNÞ Chern-Simons theory is defined on
S3
ð2Þ, the subscript 2 is for later convenience, with the dual

closed topological string theory of A-type defined on the S2

blowup of a conifold geometry (i.e. on a resolved conifold).
On the other hand, we have N D6-branes wrapped on the
S3
ð2Þ of a deformed conifold giving us N ¼ 1 SYM theory

in four spacetime dimensions that is dual to closed type IIA
string theory on a resolved conifold with fluxes and no
branes.
There appears to be some mismatch between the

locations of four-dimensional gauge theory and the
three-dimensional Chern-Simons theory. The four-
dimensional N ¼ 1 gauge theory is defined along the
space-time directions ðx0; x1; x2; x3Þ. Although this is
slightly different from our earlier case, where the four-
dimensional gauge theory was located along ðx0; x1; x2;ψÞ
directions, it is nevertheless consistent with both the brane
configurations in Table II as well as the configuration after
a duality to a non-Kähler resolved conifold with wrapped
D5-branes. However what is different now is the location of
the Chern-Simons theory. Previously the Chern-Simons
theory was localized to the boundary W of the four-
dimensional space. For the present case the Chern-
Simons theory is most succinctly described on the
three-cycle S3

ð2Þ of a deformed conifold gotten by taking
the mirror of the resolved conifold picture with wrapped
D5-branes.
This apparent mismatch of the location of the Chern-

Simons theory is not just a relocalization of the topological
theory, but lies at the heart of the problem. To see this, first
note that the partition function of the Chern-Simons theory
on S3

ð2Þ in the large N limit, takes the following form [7]:
62One may generalize this to make the warp factors Fi

functions of ðr; θ1; θ2Þ but we will not do so here.
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Z½S3
ð2Þ� ¼ exp

�
−
X∞
g¼0

λ2g−2FgðtÞ
�
; ð4:5Þ

where λ is the string coupling and t ¼ iλN is the Kähler
modulus of the blown-up S2 of a resolved conifold. This
resolved conifold is not the same one studied in (4.1) above.
Rather it is the one that appears to the top right of Fig. 13. The
factor g in (4.5) is the genus g of Riemann surfaces that
parametrize the moduli spaceMg with Euler characteristics
χg. Together they can be used to define FgðtÞ, for g ≥ 2,
appearing in (4.5) as (see [42], and [8] for details)

FgðtÞ≡
Z
Mg

c3g−1 −
χg

ð2g − 3Þ!
X∞
n¼1

n2g−3e−nt; ð4:6Þ

where the first term denotes the Chern class of the Hodge
bundle over the moduli spaceMg, derived in [42]. As noted
in [7], (4.6) is very suggestive of a g-loop topological string
amplitude.
Second, there are two different ways we can study knots

here as mentioned above. The first is with intersecting
D4-branes where a set of N D4-branes wrap S3

ð2Þ ×R2 and

another set ofM D4-branes intersect the first set on the knot
K and are stretched along the remaining directions
R2 ×D2, where D2 is a two-dimensional subspace in
T�S3

ð2Þ. The second is with N D6-branes wrapping

R4 × S3
ð2Þ. Once we go to Euclidean space, the knots

appearing on S3
ð2Þ may be constructed using D2- or

D4-branes intersecting the D6-branes on K. Clearly it is
the second case that is more relevant to us because the brane
configuration given in Table II takes us directly to this setup
via a series of T and Strominger-Yau-Zaslow (SYZ) [43,44]
dualities as shown in Fig. 13, at least in the absence of
knots. Knots can then be inserted in the type IIA picture by
surface operators.63

It turns out, for the case that we are most interested in, the
topological string amplitude Fg;h with g ¼ 0 and h ¼ 1
computes the superpotential terms for the N ¼ 1 theories
in four dimensions. The superpotential terms are in general
harder to compute in type IIA language, but become easier
in the mirror-type IIB language. The mirror is of course our
configuration of D5-branes wrapped on the two-cycle of a
non-Kähler resolved conifold, bringing us back to the
analysis performed in Sec. IVA.
The above discussion should hopefully suggest the

usefulness of the type IIB analysis. However we have
not yet reconciled with all the steps of our earlier analysis
performed in Sec. III. For example, if we want to localize

the knots to the three-cycle S3
ð2Þ of the deformed conifold,

what is the usefulness of the boundary W used earlier?
The answer can be given in a few steps. First, let us go

back to the type IIB D5-D5 branes wrapped on the two-
cycle of our Taub-NUT space discussed in Sec. III A. We
can move the D5-branes away on the Coulomb branch so
that we are left with only D5-branes wrapped on the two-
cycle of the Taub-NUT space. The geometry is discussed in
(3.5) before. To go from this geometry to the one studied
above in (4.1), we will assume that our Taub-NUT space is
fibered over a P1, in other words, a resolved conifold
geometry may be viewed as a Taub-NUT space fibered over
a P1. The precise relationship between the two geometries
is studied in Sec. III.1 of [45] [see Eqs. (3.10) to (3.13) in
[45]]. The only difference64 here is now that the two-cycle,
on which we have our wrapped D5-branes, should be along
ðθ1;ϕ1Þ. This is of course just a renaming of coordinates
from Sec. III. The fibration breaks the four-dimensional
supersymmetry down to N ¼ 1, but for the time being we
will not be too concerned with the supersymmetry. The
above manipulation tells us how we can channel our earlier
calculations for the new setup. Locally, at every point on
the base P1, parametrized by ðθ2;ϕ2Þ, we have D-branes
wrapped on the two-cycle of a Taub-NUT space.
Second, we go to Euclidean space and assume that the

spacetime directions with Minkowskian coordinates
ðx0; x1; x2Þ are now on a Euclidean S3

ð1Þ. Thus the four-

dimensional space V ¼ W ×Rþ previously, now becomes
S3
ð1Þ that represents W and the half coordinate x3 that

FIG. 13. The web of dualities that connect various configura-
tions in type IIB and type IIA theories. Here we will concentrate
mostly on the lower left-hand box that captures the physics of D5-
branes wrapped on the two-cycle of a non-Kähler resolved
conifold.

63In Sec. Vof [11] the Ooguri-Vafa [8] model with intersecting
D4-branes is derived using a different route. The D4-branes are
oriented in a way that the four-dimensional gauge theory and the
three-dimensional Chern-Simons theory have similar representa-
tions as before.

64The discussion in [45] is for a resolved conifold with a
Calabi-Yau metric on it. It can be easily generalized for a resolved
conifold with a non-Kähler metric on it.
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parametrizes Rþ. Further, the four-dimensional theory that
we have on S3

ð1Þ ×Rþ can also be gotten from the mirror

construction of D6-branes wrapped on a three-cycle of a
non-Kähler deformed conifold. Since they are connected by
SYZ transformations [43,44], the theories on V, and
therefore also on W, are identical.
The above discussions suggest that we can perform

similar computations in type IIB theory as in Sec. III, but
now appropriately modified to incorporate D5-branes
wrapped on a two-cycle of a non-Kähler resolved conifold.
This is easier than the mirror computations with D6-branes,
and one may now insert the knots using surface operators
on S3. Since the mirror picture is identical, we can view the
theory on S3

ð1Þ, gotten from our IIB computations, to be
exactly the same in the type IIA side.
In the type IIA side, as shown on Fig. 13, the D6-branes

are wrapped on the three-cycle S3
ð2Þ of a non-Kähler

deformed conifold. In fact the world volume of the D6-
branes is oriented along M7 where

M7 ≡ S3
ð1Þ × S3

ð2Þ ×Rþ; ð4:7Þ

and the physics on the first three-cycle S3
ð1Þ is directly

imported from our type IIB analysis. Since the deformed
conifold is noncompact, Gauss’ law is not violated and the
wrapped D6-branes continue to be a valid supergravity
solution there. We can now perform the following flop
operation:

S3
ð1Þ ↔ S3

ð2Þ; ð4:8Þ

transferring all the physics on S3
ð1Þ to the three-cycle of the

non-Kähler deformed conifold.65 This is exactly the D6-
brane realization of the Ooguri-Vafa [8] model. Our
construction differs from the intersecting D4-branes’ reali-
zation of the Ooguri-Vafa model in [11,13].
The above discussions suggest the power of the IIB

analysis: we can continue working on the type IIB side,
albeit with a different background, and perform similar
manipulations as in Sec. III. Of course subtleties appear
because of the underlying supersymmetry, twisting etc., but
presumably none too unsurmountable. Remarkably, once
we have the full IIB analysis at hand, we can transfer the
physics to the type IIA side by a mirror transformation
followed by a flop operation (4.8) giving us the full
realization of the Ooguri-Vafa [8] model. Therefore in
the following we will elaborate on the type IIB side, by
analyzing the background with and without dipole

deformation and then discuss how to extract the four-
dimensional physics similar to what we did in Sec. III. Most
of the other details regarding the subtleties coming from
reduced supersymmetry, twisting and the exact boundary
theory on S3

ð1Þ, including the type IIA mirror and the flop

operation (4.8), will only be briefly touched upon here, and
detailed elaborations will be relegated to the sequel.

B. Five branes on a resolved conifold: Exact results

Let us now consider specific choices of the warp factors
FiðrÞ that would not only solve the EOMs but also preserve
supersymmetry. One solution that was briefly mentioned in
[19] and studied in some details in [45] is

F1 ¼
e−ϕ

2F
; F2 ¼

r2e−ϕF
2

;

F3 ¼
r2e−ϕ

4
þ a2ðrÞ; F4 ¼

r2e−ϕ

4
; ð4:9Þ

where a2 ≡ a20 þ a1ðrÞ and a20 is the resolution parameter,
FðrÞ is some function of r whose value will be determined
soon and ϕ, as usual, is related to the type IIB dilaton. The
function FðrÞ has to be related to the dilaton ϕðrÞ because
any arbitrary choice of F and ϕ will break supersymmetry.
We will determine the equation relating F and ϕ using
torsion classes [46–49]. In the process we will also argue
for supersymmetry.

1. Analysis of the background fluxes

Before we go about determining the functional form for
r, let us work out the three-form fluxes from (4.2). Plugging
(4.9) into (4.2), they are given by

H3 ¼
1

4
sinh βe−ϕr2

��
ϕr −

8a
r2

eϕar

�
er ∧ eθ1 ∧ eϕ1

þ ϕrer ∧ eθ2 ∧ eϕ2

�

F 3 ¼ −
1

4
cosh βeϕr3FðrÞ

��
1þ 4a2

r2
eϕ
�
ϕreψ ∧ eθ1 ∧ eϕ1

þ
�
r2ϕr − 8aareϕ

r2 þ 4a2eϕ

�
eψ ∧ eθ2 ∧ eϕ2

�
: ð4:10Þ

Looking carefully at the three-forms we see that H3 is
closed butF 3 is not. This is good because nonclosure ofF 3

is related to the wrapped five-brane sources. Recall that the
five-branes are wrapped on the two-cycle ðθ1;ϕ1Þ and
stretched along the space-time directions x0;1;2;3, which will
be later converted to Euclidean S3

ð1Þ ×Rþ. This means the
source equation should have delta function like singularity
along the orthogonal directions of the brane, namely the
ðθ2;ϕ2;ψÞ and the radial direction r. In the limit when both

65One may also look up Sec. 5.5 of [45] where a somewhat
similar kind of flop operation is discussed. Note that D6-branes
continue to remain D6-branes under the flop operation (4.8)
because the flop is performed inside the manifold M7 given in
(4.7).

DASGUPTA, ERRASTI DÍEZ, RAMADEVI, and TATAR PHYSICAL REVIEW D 95, 026010 (2017)

026010-72



a2 as well as ar are smaller than some chosen scale in the
theory, F 3 can be expressed in the following suggestive
way:

F 3 ¼ −
1

4
cosh βeϕr3Fϕreψ ∧ ðeθ1 ∧ eϕ1

− eθ2 ∧ eϕ2
Þ

− cosh βe2ϕrFeψ ∧
�
â2eθ1 ∧ eϕ1

− â2eθ2 ∧ eϕ2

−
�
2aar −

1

2
e−ϕr2ϕr

�
eθ2 ∧ eϕ2

�
; ð4:11Þ

where the implications of the relative sign between the
vielbein products will become clear soon. We have also
defined

â2 ¼ a2ϕr: ð4:12Þ

As mentioned earlier, F 3 is not closed, and therefore dF 3

should be related to localized or delocalized sources along
the ðθ2;ϕ2Þ and ðr; ψÞ directions. Using the fact that the
three-form,

η3 ≡ eψ ∧ ðeθ1 ∧ eϕ1
− eθ2 ∧ eϕ2

Þ; ð4:13Þ

is closed we can find some relations between the three
unknown functions FðrÞ, ϕðrÞ and aðrÞ that appear in
(4.11). All we need is to express the dilaton ϕðrÞ and the
resolution parameter aðrÞ in terms of the function FðrÞ that
appears in our ansatze (4.9). One simple relation between
the three variables is given by

deϕ

dr

�
1

4
þ eϕa2

r2

�
¼ c0

r3F
; ð4:14Þ

where c0 is a constant whose value could be determined
from the boundary condition. Note that this is an additional
constraint compared to [45]. Plugging in (4.14) in (4.11),
we get

F 3

coshβ
¼−c0η3þ

�
2aar−

1

2
e−ϕr2ϕr

�
e2ϕrFeψ ∧ eθ2 ∧ eϕ2

:

ð4:15Þ

The source equation is now easy to determine from (4.15).
It is clear that the first term does not contribute, and the
contribution therefore solely comes from the second term
of (4.15):

dF 3 ¼ GrðrÞer ∧ eψ ∧ eθ2 ∧ eϕ2

−GðrÞeθ1 ∧ eϕ1
∧ eθ2 ∧ eϕ2

ð4:16Þ

with GðrÞ defined as

GðrÞ ¼
�
2aar −

1

2
e−ϕr2ϕr

�
e2ϕrF cosh β: ð4:17Þ

Looking at (4.16) we see that we have two terms. The first
term of (4.16) captures the Gauss’ charge along the
orthogonal directions of the wrapped D5-branes i.e the
ðr;ψ ; θ2;ϕ2Þ directions. The second term, which is propor-
tional to the volume of the four-cycle, captures the Gauss’
charge along the ðθ2;ϕ2Þ directions. In fact this term tells us
that even ifGðrÞ is a constant, the D5-branes’ charge would
be calculable.
We see that there are two constraint equations, (4.14) and

(4.16), for three functions FðrÞ, eϕ and aðrÞ. The third
equation will be determined soon when we will demand
supersymmetry in the system. We could also go for more
generic solution to the system. Constraint on D5-brane
charges imposes the following relation between the four
warp factors FiðrÞ and the dilaton eϕ:

dF4

dr
¼

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p �
1 −

e−2ϕF4

F2F3

�
: ð4:18Þ

One may compare this with the recently found constraint
relations in [19]. Since we are not imposing integrable
complex structures, we do not have additional constraint
equations as in [19]. Note also that an equation like (4.18) is
not required in the heterotic theory as the anomalous
Bianchi identity is enough [45]. Thus plugging in (4.18)
in (4.2) we get

F 3

cosh β
¼ −η3 −

�
1þ e2ϕ

F4

F3

ffiffiffiffiffiffi
F2

F1

s
ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞ

�
eψ

∧ eθ2 ∧ eϕ2
: ð4:19Þ

The second constraint would come from (4.19) if we
demand charge quantization. Of course if the D5-brane
charges are delocalized there is no strong constraint being
imposed by (4.19). However demanding supersymmetry
does introduce a new constraint on the warp factors. In the
following section we will use the powerful machinery of
the torsion classes Wi [46] to analyze this.

2. Finding the warp factors using torsion classes

To study the constraint on the warp factors one may use
the technique of the torsion classes [46]. For us the relevant
torsion classes are the W4 and W5 classes, defined as

W4 ¼
F3r −

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
4F3

þ F4r −
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
4F4

þ ϕr;

ReW5 ¼
F3r

12F3

þ F4r

12F4

þ F2r − 2
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
12F2

þ ϕr

2
; ð4:20Þ
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where one may look at the detailed derivations from [19,45]
or some of the earlier papers in the series namely [50,51]
etc. Plugging in the warp factor choice (4.9), it is easy to see
that

W4 ¼
ϕr

2
þOða2Þ

W5 ≡ ReW5 ¼
1

12

�
6

r
þ 3ϕr þ

Fr

F
−

2

rF

�
: ð4:21Þ

Depending on how to define our dilaton,

ReW5 ¼ �ϕr þOða2Þ; ð4:22Þ

such that the supersymmetry condition will take the
following well-known form in terms of the torsion classes
[47–49]:

2W4 � ReW5 ¼ 0: ð4:23Þ

For us we will choose the minus sign in (4.22) such that
(4.23) will appear with a relative plus sign.66 This gives the
following equation for the variables FðrÞ and eϕ up to
Oða2Þ:

r
dϕ
dr

þ r
15F

dF
dr

−
2

15F
þ 2

5
þOða2Þ ¼ 0: ð4:24Þ

The above is the simplified version where the dependence
of the resolution parameter is not shown. If we insert a2, the
EOM becomes more involved and takes the following
form:

�
15þ 88a2eϕ

r2

�
dϕ
dr

þ 56eϕa
r2

da
dr

þ
�
4

r
þ 1

F
dF
dr

−
2

rF

��
1þ 4a2eϕ

r2

�
þ 2

r
¼ 0; ð4:25Þ

and reduces to (4.24) in the limit where a2 as well as da=dr
are small. In this limit we can combine (4.14) and (4.24) to
eliminate FðrÞ and express everything in terms of the
following dilaton equation:

r
d2Z
dr2

− 3
dZ
dr

þ r

�
r2

2c0
−
15

Z

��
dZ
dr

�
2

¼ 0; ð4:26Þ

where Z ¼ eϕ and c0 is a constant appearing in (4.14). To
solve the above equation let us take the following ansatze
for Z:

ZðrÞ ¼ αðrÞ
r2

; ð4:27Þ

with αðrÞ a positive definite function for all r. Plugging
(4.27) in (4.26), we see that αðrÞ satisfies the following
second-order differential equation:

c0
d2α
dr2

þ
�
53c0 − 2α

r

�
dα
dr

þ
�
1

2
−
15c0
α

��
dα
dr

�
2

þ 2αðα − 24c0Þ
r2

¼ 0: ð4:28Þ

One simple solution for the system is given by a constant α,
i.e.,

α ¼ 24c0: ð4:29Þ

Other solutions to (4.28) could be entertained but we will
not do so here. Plugging (4.29) in (4.27) and (4.14), and
using the definition of Z, we find that

eϕ ¼ 24c0
r2

; F ¼ −
1

12
: ð4:30Þ

The careful reader will be alarmed by seeing the negative
value for F because F goes into the definition for the warp
factors in (4.9). However if we look at (4.9) carefully, we
see that F appears in the definitions of F1 and F2 but not in
the definitions of F3 and F4. This is good because ðF1; F2Þ
appear in the three-form fluxes H3 and F 3 only in the
combinations F1F2 and F2=F1. Thus we can change
the sign of ðF1; F2Þ simultaneously without changing
the fluxes or the constraint equation (4.14). The conse-
quence of this invariance is simply the following changes to
the definition of the warp factors:

F1 → jF1j; F2 → jF2j; ð4:31Þ

without changing F3 and F4. This means, after the dust
settles, the internal six-dimensional manifold in type IIB
theory will be given by the following metric:

ds26 ¼
r2

4c0

�
dr2 þ r2

144
ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2

þ
�
r2

24
þOða2Þ

�
ðdθ21 þ sin2θ1dϕ2

1Þ

þ r2

24
ðdθ22 þ sin2θ2dϕ2

2Þ
�
: ð4:32Þ

The above metric is a non-Kähler metric on the resolved
conifold, and can be compared to the recently studied
examples in [19]. If we change our initial ansatze (4.9), we
can allow for a different non-Kähler metric on the resolved
conifold. There is of course an infinite class of possible

66The overall behavior of fluxes etc. do not change if we go
from one convention to another as shown in [45].
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non-Kähler metric that we can allow for a given complex
structure and satisfying the constraint equation (4.18) and
the supersymmetry condition (4.23) with a relative plus
sign between the W4 and W5 torsion classes. The generic
solution for the metric and the three-form fluxes with these
constraints will then be (4.2). For the specific choice (4.32)
of the internal metric, the three-form fluxes are given by

F 3 ¼ þc0 cosh βeψ ∧ ðeθ1 ∧ eϕ1
þ eθ2 ∧ eϕ2

Þ

H3 ¼ −
r3

48c0
sinh βer ∧ ðeθ1 ∧ eϕ1

þ eθ2 ∧ eϕ2
Þ; ð4:33Þ

with the five-form flux derivable from (4.33) and (4.2). The
IIB dilaton, on the other hand, is eϕB ¼ e−ϕ and so for

r ≥
ffiffiffiffiffiffiffiffiffiffi
24c0

p
; ð4:34Þ

classical supergravity solution will not capture the full
dynamics and one has to go to it S-dual, or weakly coupled
version of the theory. Combining the two patches, one
should be able to study the sugra limit of the theory.
On the other hand if dilaton is slowly varying from its

weak coupling value then one may express (4.25) as

da2

dr
þ 1

28

�
4rþ r2

F
dF
dr

−
2r
F

��
e−ϕ þ 4a2

r2

�
þ re−ϕ

14
¼ 0:

ð4:35Þ

To solve (4.35), let us assume that the dilaton is given by
the following expression in terms of a slowly varying
function fðrÞ:

eϕ ¼ eϕ0 þ fðrÞ; ð4:36Þ

where the constant factor is the weak coupling limit. To
proceed, let us define two functions HðxÞ and GðxÞ using
the function FðxÞ appearing in (4.35), in the following way:

GðxÞ ¼ 1

7

�
4

x
−

2

xFðxÞ þ
F0ðxÞ
FðxÞ

�
;

HðxÞ ¼ xe−ϕ0

�
xGðxÞ
4

þ 1

14

�
; ð4:37Þ

where the prime is defined as the derivative of x. Using
(4.36) and (4.37), we can solve for the resolution parameter
a2 in terms of the functions GðxÞ and HðxÞ as

a2ðrÞ¼−
Z

r

0

dyHðyÞexp
�Z

y

r
dxGðxÞ

�
þOðfÞ; ð4:38Þ

where the overall negative sign should not be a concern
because the functional form for FðxÞ will be chosen so that
a2 remains positive definite.

C. A fourfold from the G2 structure manifold
in M-theory

In the previous section we discussed possible ways to
construct the metric of D5-branes wrapped on two-cycle of
a non-Kähler resolved conifold. We discussed a class of
these solutions satisfying the charge constraint (4.18) and
the supersymmetry constraint (4.23). The M-theory uplift
of these solutions can be done by first T-dualizing along the
ψ direction to allow for D6-branes in type IIA theory
oriented along ðθ1;ϕ1;ψÞ and spanning the space-time
directions x0;1;2;3. We can then lift this configuration to
M-theory on a G2 structure manifold. The way we con-
structed our scenario, T-duality of the IIB configuration
will lead to D6-branes and not D4-branes as in [25,27]. At
low energies, and as discussed around (2.3), we do get the
D4-branes configuration (see also [19]). Furthermore, we
will start by studying a single D6-brane and insert the
dipole deformation of the T-dual wrapped D5-brane. Later
on we will generalize this to multiple D6-branes.

1. First look at the G2 structure manifold

The D6-brane configuration, without dipole deformation
of the T-dual wrapped D5-brane on non-Kähler resolved
conifold, is given by the following metric structure on an
internal six-dimensional space:

ds2 ¼ 1ffiffiffi
h

p ds2012 þ
1ffiffiffi
h

p
�
dx23 þ

1

F2

dψ2

�

þ
ffiffiffi
h

p
½F1dr2 þ F3ðdθ21 þ sin2θ1dϕ2

1Þ
þ F4ðdθ22 þ sin2θ1dϕ2

2Þ�; ð4:39Þ

where we have separated the compact directions ðx3;ψÞ in
anticipation of the dipole deformations along those direc-
tions in the type IIB side. The type IIA dilaton eϕA and the
warp factor h are defined in the following way:

eϕA ≡ e−ϕF−1=2
2 h−1=4;

h≡ e2ϕcosh2β − sinh2β; ð4:40Þ

such that when β ¼ 0 we get back the standard picture.
Combining the IIA metric (4.39) with the dilaton (4.40) we
can easily get the M-theory manifold as

ds211 ¼
e2ϕ=3F1=3

2

h1=3
ds2012 þ ds28; ð4:41Þ

where ds28 is an eight-dimensional manifold that, in the
absence of the dipole deformation in the type IIB side, is
simply a S1 fibration over a G2 structure seven-manifold
expressed as
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ds28 ¼
e2ϕ=3F1=3

2

h1=3

�
dx23 þ

1

F2

dψ2

�

þ 1

e4ϕ=3F2=3
2 h1=3

ðdx11 þA1μdxμÞ2

þ e2ϕ=3F1=3
2 h2=3½F1dr2 þ F3ðdθ21 þ sin2θ1dϕ2

1Þ
þ F4ðdθ22 þ sin2θ2dϕ2

2Þ�: ð4:42Þ

The A1 appearing above is the type IIA gauge field whose
value will be determined soon. As discussed in detail in
[19], the G2 structure seven-manifold in turn is a four-
dimensional warped Taub-NUTmanifold ds2TN fibered over
a three-dimensional base ds23 parametrized by ðθ1;ϕ1;ψÞ:

ds27 ¼ ds23 þ ds2TN

¼ G2

�
dθ21 þ sin2 θ1dϕ2

1 þ
G1

G2F2

dψ2

�

þG3dr2 þ G4

�
dθ22 þ

G5

G4

dϕ2
2

�
þG6ðdx11 þA1μdxμÞ2; ð4:43Þ

where Gi are the warp factors that can be read up from
(4.42) or from [19] and the third line of (4.43) is the metric
of the warped Taub-NUT space.

2. Dipole deformation and the M-theory uplift

It is now time to see what effect the type IIB dipole
deformation would have on our M-theory manifold. Dipole
deformation of four-dimensional Yang-Mills theory was
first introduced from the gauge theory side in [28] and from
type IIB gravity dual in [29,30]. Elaborate study was
performed in [52,53]. Essentially the simplest dipole
deformation amounts to switching on a NS B-field with
one component along the brane and the other component
orthogonal to the brane. Generalization of this picture
exists, but we will not discuss this here. The B-field for our
case will have component B3ψ as we mentioned before,
which of course has the required property in the presence of
a D5-brane along ðx0;1;2;3; θ1;ϕ1Þ. However as before this
B-field cannot be a constant otherwise it will be gauged
away. Thus again we expect a field strength of the form dB,
which in turn will then backreact on our original type IIB
background (4.2) and change the metric to the following:

ds2 ¼ 1ffiffiffi
h

p
�
−dt2 þ dx21 þ dx22 þ

dx23
cos2θ þ F2sin2θ

�

þ
ffiffiffi
h

p �
F1dr2 þ

F2ð dψ
cos θ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2

1þ F2tan2θ

þ
X2
i¼1

F2þiðdθ2i þ sin2θidϕ2
i Þ
�
; ð4:44Þ

where θ is the dipole deformation parameter. The three-
form fluxes also change from their values in (4.2) to the
following:

F 3 ¼ −e2ϕ cosh β

ffiffiffiffiffiffi
F2

F1

s

× ðg1 ~eψ ∧ eθ1 ∧ eϕ1
þ g2 ~eψ ∧ eθ2 ∧ eϕ2

Þ
H3 ¼ sinh β½ð

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞer ∧ eθ1 ∧ eϕ1

þ ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F4rÞer ∧ eθ2 ∧ eϕ2

�

þ F2r sin 2θ
2ðcos2θ þ F2sin2θÞ2

er ∧ ~eψ ∧ e3

þ F2 sin θ
cos2θ þ F2sin2θ

X2
i¼1

eϕi
∧ eθi ∧ e3; ð4:45Þ

where as before we note that the dipole deformation has
appeared as an additional term in the definition of the three-
form flux H3, and helped to break the Lorentz invariance
between x0;1;2 and x3 directions. The type IIB dilatons eϕB

and ~eψ are defined in the following way:

eϕB ¼ e−ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θ þ F2sin2θ

p ;

~eψ ¼ dψ þ cos θ1 cos θdϕ1 þ cos θ2 cos θdϕ2: ð4:46Þ

The M-theory uplift of the dipole-deformed type IIB setup
is now easy to perform once we get the type IIA
configuration. The type IIA dilaton does not change from
its value (4.40), and the only change in the metric (4.39) is

1ffiffiffi
h

p
�
dx23 þ

1

F2

dψ2

�

→
1ffiffiffi
h

p
�
dx23
cos2θ

þ 2 tan θdx3dψ þ
�
sin2θþ cos2θ

F2

�
dψ2

�
;

ð4:47Þ

which means the M-theory metric retain its form (4.41)
except the metric of the eight manifold changes slightly
from (4.42) to the following metric:

ds28 ¼
e2ϕ=3F1=3

2

h1=3cos2θ
jdx3 þ τ1dψ j2

þ 1

e4ϕ=3F2=3
2 h1=3

ðdx11 þA1μdxμÞ2

þ e2ϕ=3F1=3
2 h2=3½F1dr2 þ F3ðdθ21 þ sin2θ1dϕ2

1Þ
þ F4ðdθ22 þ sin2θ2dϕ2

2Þ�; ð4:48Þ

where the complex structure τ1 of the ðx3;ψÞ torus is given
by
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τ1 ¼ sin θ cos θ þ i cos2 θffiffiffiffiffiffi
F2

p : ð4:49Þ

Note that the warped Taub-NUT space does not change
from what we had earlier in (4.42) without dipole defor-
mation. The gauge field A1 in the Taub-NUT fibration
structure also does not change, and is given by the
following field strength:

F 2

cosh β
¼ −eθ1 ∧ eϕ1

− e2ϕ

ffiffiffiffiffiffi
F2

F1

s
·
F4

F3

ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞeθ2 ∧ eϕ2

¼ dA1

cosh β

þ
�
1 − e2ϕ

ffiffiffiffiffiffi
F2

F1

s
·
F4

F3

ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞ

�
eθ2 ∧ eϕ2

;

ð4:50Þ
using the constraint (4.18) and defining the gauge field A1

in the following way:

A1 ¼ cosh βðcos θ1dϕ1 þ cos θ2dϕ2Þ; ð4:51Þ

which would appear in the fibration (4.48). However
expressing the gauge field as (4.51) does not introduce
any additional constraint on the warp factors in the metric
(see discussion in [19]). The G4 flux in M-theory can now
be expressed as

G4

sinh β
¼ ð

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞer ∧ eθ1 ∧ eϕ1

∧ e11

þ cosechβdψ ∧ eθ1 ∧ eϕ1
∧ ~e11

þ ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F4rÞer ∧ eθ2 ∧ eϕ2

∧ e11

þ cosechβdψ ∧ eθ2 ∧ eϕ2
∧ ~e11; ð4:52Þ

where we see that the dipole deformation appears in an
appropriate way in the G4 flux. In the absence of the type
IIB dipole deformation the form of (4.52) is almost similar
to what we had in [19] except the vielbeins e11 and ~e11 are
defined in a slightly different way as

e11 ¼ dx11 þ cos θ cosh βðcos θ1dϕ1 þ go cos θ2dϕ2Þ
~e11 ¼ dx11 þ cos θ cosh βðgo cos θ1dϕ1 þ cos θ2dϕ2Þ;

ð4:53Þ
using the following functional form for goðrÞ:

goðrÞ ¼ e2ϕ

ffiffiffiffiffiffi
F2

F1

s
·
F4

F3

ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3rÞ: ð4:54Þ

3. Revisiting gauge theory from M-theory

We have by now developed all the machinery needed for
determining the gauge field on the wrapped D5-branes
from M-theory. If we take a single wrapped D5-brane on
the non-Kähler resolved conifold, the M-theory manifold
(4.48) will be a warped single-centered Taub-NUT space
fibered over a four-dimensional base parametrized by
ðx3;ψ ; θ1;ϕ1Þ coordinates. The gauge field in the type
IIB side will appear as localized G-flux in M-theory, similar
to what we had earlier in Sec. III B 3 (see also the
discussion in [19]). For the single centered Taub-NUT
case in (4.48), at any given point on four-dimensional base,
the localized G-flux can be expressed as

Gloc
4 ¼ F ∧ ω; ð4:55Þ

where F is the world-volume gauge field that, in the
language of the wrapped D6-brane, will be along four-
dimensional spacetime parametrized by x0;1;2;3 coordinates.
This of course parallels the story we discussed in great
detail in Sec. III B 4. There is also an option to define the
gauge theory along the compact ðψ ; θ1;ϕ1Þ directions, or
even along all compact and noncompact directions. Each of
these possibilities will lead to interesting interpretations for
the knot invariants once we extend this to the non-Abelian
case. Wewill however only concentrate on the gauge theory
along the spacetime directions so that comparison with
earlier sections like III B 4, III B 5 and III B 6 as well as
with [11] may be made easily. In fact we will follow similar
logic as in Secs. III B 4 and III B 5, namely, study the
Abelian theory and then proceed to discuss the non-Abelian
case (which is the large N limit here).
The Abelian case is succinctly represented by ω in

(4.55), which is a normalizable harmonic two-form,
expressed as ω ¼ dζ. The procedure is similar to what
we had in (3.46), (3.47) and (3.51), so we will avoid the
details. Once the dust settles, ζ is given by the following
expression67:

ζðr; θ2Þ ¼ g0 exp

�
−
Z

r
dr

e−ϕ

F4

ffiffiffiffiffiffiffiffi
F1

hF2

s �
ðdΨþ cos θ2dϕ2Þ

¼ g0 exp

�
−
Z

r

0

48dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576c20cosh

2β − x4sinh2β
p �

× ðdΨþ cos θ2dϕ2Þ; ð4:56Þ

where dΨ ¼ dx11=cosh β and the second line is from using
the background (4.30) and (4.32). Note that the harmonic
form tells us that for

67Note that at any given point on the four-dimensional base, ϕ1

is a constant and therefore the 11-dimensional fibration structure
is the correct form for a warped Taub-NUT space.
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r >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24c0 coth β

p
; ð4:57Þ

a new description has to be devised as the harmonic form
will become oscillatory. This bound should be compared to
(4.34) where strong coupling sets in for the radius
equals

ffiffiffiffiffiffiffiffiffiffi
24c0

p
.

The non-Abelian enhancement now follows a similar
procedure as outlined in Sec. III B 6. The M2-brane states
wrap around the Taub-NUT singularities to enhance the
gauge symmetry to SUðNÞ. This way we will have N ¼ 1
supersymmetric SUðNÞ Yang-Mills theory in four space-
time dimensions appearing from N D5-branes wrapped on
the two-cycle of a non-Kähler resolved conifold.

D. Comparing knots from branes
and from gravity duals

In the previous sections we have developed most of the
machinery needed to study the Abelian and the non-
Abelian theories on the wrapped D5-branes on a resolved
conifold from the M-theory point of view. Our aim is to
concentrate on the non-Abelian case with two goals in
mind: the first is to study the connection between the model
of Witten [11] using five-branes and the model of Ooguri-
Vafa [8] using geometric transition picture to study knots
invariants and Khovanov homology. The second goal is to
use our M-theory picture to actually compute some of these
invariants and develop the picture in more generic direc-
tion. A discussion of the first goal, namely connecting the
two models, [8,11], is presented in Sec. IVA 1 and in the
following we will elaborate the story a bit more.
Our starting point, which is the configuration of N D5-

branes wrapped on a two-cycle of a non-Kähler resolved
conifold, may look a bit different from the configuration
that we used before in Sec. III, namely, a finite number of
D5-branes wrapped on the two-cycles of a warped Taub-
NUT space. Additionally, the supersymmetry is now no
longerN ¼ 4, but is the minimalN ¼ 1. The latter tells us
that we have no Coulomb branch, implying that the vector
multiplet is devoid of any scalar fields. Thus the twisting
that we performed in Sec. III B 12 to determine the
boundary theory cannot be done in a similar way now.
Additionally, we see that there are apparently two realiza-
tions of the Ooguri-Vafa model in M-theory from the type
IIB configuration.
Using one T-duality.—This will lead to the D6-branes

that we studied above. Subsequent lift to M-theory results
in the localized G-flux that has two legs along the
spacetime x0;1;2;3 directions and two legs along the Taub-
NUT directions leading to gauge fields in the spacetime
directions. The other components of the gauge fields in the
internal directions will appear as non-Abelian scalars in the
noncompact three dimensions. Together they will generate
the N ¼ 1 non-Abelian vector multiplet with scalar fields
forming the chiral multiplets.

Using three T-dualities.—Instead of making one T-
duality to go to the D6-brane picture, we can make three
T-dualities to go to the mirror picture68 [43,44]. Here we
will again get D6-branes but wrapped on the three-cycle of
a non-Kähler deformed conifold. Lifting this to M-theory
this will lead to another G2 structure manifold which is yet
again a warped Taub-NUT space fibered over a three-
dimensional base [45]. The localized G-flux can now be
used to compute the four-dimensional theory as before.
As explained in Sec. IVA 1, despite appearance, the

physics in four spacetime dimensions for both cases are
identical. This is not a surprise because T-dualities gen-
erally do not change the four-dimensional physics. Thus
either of the two configurations—D5-branes wrapped on
two-cycle of a resolved conifold or D6-branes wrapped on
three-cycle of a deformed conifold—may be used to study
the Ooguri-Vafa [8] model. However since the latter is
technically harder, we have used the type IIB model to
study the four-dimensional physics above. Additionally
since a non-Kähler resolved cone may be expressed as a
warped Taub-NUT fibered over a P1 base [45], locally at a
given point on P1, the D5-branes can be thought of as
wrapping the two-cycle of the Taub-NUT space. We now
see some resemblance with [11] locally, although the global
picture is different. Unfortunately we cannot extend the
similarity too far because, in the Ooguri-Vafa case, the
absence of the Coulomb branch will not allow us to make
similar manipulations as we did in Sec. III B 12.
Despite this, the gauge theory derivation from M-theory

in the previous section helps us to at least get the
topological piece in a way similar to what we had in
(3.62) before. Let us concentrate on the second piece in
(3.62), namely the topological term. For the present case, it
is more instructive to Euclideanize everything, as we hinted
in Sec. IVA 1. Assuming this, we get

Z
Σ11

C3 ∧ G4 ∧ G4 ¼ ~c2

Z
Σ4

F ∧ F ; ð4:58Þ

where both Σ11 and Σ4 are 11- and four-dimensional
Euclidean spaces respectively, and the coupling constant
~c2 is defined as

~c2 ≡
Z
Σ7

hC3i ∧ ω ∧ ω; ð4:59Þ

with ω ¼ dζ as described in (4.56) above, Σ7 is the G2

structure manifold in M-theory and hC3i is the expectation
value of the three-form potential ðC3Þrψϕ1

which may be
extracted from the four-form G4 in (4.52) using the
vielbeins (4.53).

68One encounters various subtleties in the duality procedure,
which have been explained in detail in [44].
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One of the key differences between ~c2 in (4.59) and c2 in
(3.63) is the orientations of hC3i appearing in both.
Previously we needed three-form potential of the form
ðC3Þ3rϕ1

(3.67) to determine c2 in (3.63). Such a component
was generated from the subtle flux arrangement on the two-
cycle of the warped Taub-NUT space to stabilize the D5-D5
pairs against tachyonic instabilities. Now we do not have
such instabilities, and the three-form potential does appear
more naturally from (4.52).
Once we allow for the non-Abelian extension, the

coefficient of the topological term ~c2 will remain the same
as (4.59) with a SUðNÞ trace inserted in the action (4.59),
similar to what we had in Sec. III B 6. The boundary theory
may now be derived in a much simpler way than what we
had in Sec. III B 12. To proceed, we will first assume that
the Euclidean space Σ4 may be written as Σ4 ¼ S3

ð1Þ ×Rþ

where Rþ is parametrized by x3 in either the M-theory or
the type IIB metrics. Taking x3 orRþ to be the half line, we
can easily infer the boundary theory to be

Sov ¼ ð ~b2 þ ~c2Þ
Z
S3ð1Þ

Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�
;

ð4:60Þ

where the trace is in the adjoint representation of SUðNÞ
and A is the non-Abelian gauge field derived from F once
we allow for the full non-Abelian extension in M-theory
(this is similar to what we had in Sec. III B 6). The
coefficient ~c2 is of course the one in (4.59), however ~b2
is new. We expect ~b2 to appear in a somewhat similar way
as b2 appearing in (3.230) earlier. In other words, in the
presence of a boundary, the kinetic term is not completely
Q invariant, and a piece proportional to (4.58) should
appear as described in (3.230). Considering this, reprodu-
ces (4.60).
The attentive reader must have noticed the key difference

between (3.241) and (4.60). The former is constructed from
a modified gauge fieldAd by combining the original gauge
fieldA and the Coulomb branch scalars ϕ as in (3.240). For
the present case, the vector multiplet has no scalars, and
assuming we keep vanishing expectation values of the
scalars in the chiral multiplets, the boundary theory will be
constructed solely using the non-Abelian gauge field A,
leading to (4.60). Quantum mechanically however the
difference is only in the choices of the coupling constants
for the boundary theories (3.241) and (4.60). This is
because of the following path integral equivalence in the
Euclidean formalism:

Z
C
DAd exp ½−SbndðAdÞ�FðAdÞ

¼
Z
C
DA exp ½−SbndðAÞ�FðAÞ; ð4:61Þ

where FðAÞ is any observable in the theory and C is the
integration cycle. Therefore in the path integral Ad is just a
dummy variable and can be replaced by the gauge field A.
Although our discussion above is a bit sloppy as we are
ignoring many subtle points, the essential physics is
captured in (4.61). For more details on the equivalence
of two path integrals for both real and complex gauge
fields, one may refer to Sec. 2.4 of [11].
The three-dimensional boundary theory (4.60), defined

on S3
ð1Þ, remains the same when we go to the mirror type

IIA side. Since the SYZ transformations [43,44] do not
change the spacetime metric, the three-cycle S3

ð1Þ on the

type IIB side goes unchanged to the type IIA side. However
the D5-branes wrapped on the two-cycle of the non-Kähler
resolved conifold become D6-branes wrapped on the three-
cycle S3

ð2Þ of the non-Kähler deformed conifold. The world

volume of the D6-branes is now (4.7), and therefore a flop
operation (4.8) will transfer the boundary theory (4.60)
defined on the three-cycle S3

ð1Þ to the three-cycle S
3
ð2Þ of the

deformed conifold, giving us

Sov ¼ ð ~b2 þ ~c2Þ
Z
S3ð2Þ

Tr

�
A ∧ dAþ 2i

3
A ∧ A ∧ A

�
;

ð4:62Þ

where, although we use the same notation of (4.60), A
should be thought of as the gauge field defined on S3

ð2Þ.
Knots may now be inserted on S3

ð2Þ using D2-brane (or D4-
brane) surface operators as shown in Fig. 14. The con-
struction parallels the discussion in Sec. III C 1 in spirit
only as specific details differ. The difference of course
stems from the construction of the Ooguri-Vafa model [8]
starting with Table II compared to the construction in
Sec. III starting with Table I. The flop operation (4.8) with
the added complication of geometric transition, as well as
the absence of the Coulomb branch scalars, in fact makes it
harder to implement a similar procedure as in Sec. III C 1.
We will therefore not analyze the story further and only
make few observations keeping most of the details for the
sequel.
The first observation is the M-theory lift of the knot

configurations on S3
ð2Þ. The uplift leads to M2-brane states69

in the G2 structure manifold of the second kind associated
with three T-dualities (see discussion above). These M2-
brane states do not wrap the 11-dimensional circle, so are
distinct from the ones leading to non-Abelian enhancement
discussed for the G2 structure manifold of the first kind

69We can also entertain M5-brane states related to D4-branes in
type IIA. This is allowed because we only require codimension
two singularities in S3

ð2Þ ×Rþ space, and as such can come from
both D2 and D4-branes. This is depicted in Fig. 14.
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associated with one T-duality. This would then be the uplift
of the surface operators in M-theory.
The second observation is that the knots appearing from

the surface operators do not follow a similar pathway that
we developed earlier in Sec. III C 1 and III C 2 for Witten’s
model [11]. This is because we cannot study the Abelian
version now as the model is only defined for large N,
implying that our earlier analysis of the knots using
operators Ak, Bk and Cð2;σjÞ in Sec. III C 2 may not be
possible now. Second, similar manipulations to the BHN
equations that we did in Sec. III C 1 now cannot be
performed.
What can be done here? There is one well-known

procedure that we can follow. We can use the canonical
quantization approach by slicing the three-cycle S3

ð2Þ
containing the knot K into many pieces so that each piece
appears locally as S2

ð2Þ ×Rwhere S2
ð2Þ is a two-dimensional

sphere with punctures pi’s. On every piece, the action
(4.62) in gauge A0 ¼ 0 gives classical solution F ij ¼ 0.
One may compare this to the classical solution F 12 ¼ 0
that we get from (4.60)—which in turn may be assumed to
be the special case of (3.172) with the scalar fields switched
off. The constraint implies that the physical space fAg to
be moduli space of flat connections on the punctured sphere
S2
ð2Þ (modulo gauge transformation) which has a finite

volume. After imposing the constraint and then quantizing
gives a finite dimensional Hilbert space HðS2ð2Þ;piÞ, with

i ¼ 1; 2;…r, whose states are related to the r-point
correlation functions of the Wess-Zumino-Novikov-
Witten conformal field theory (WZNW model) in the

two-dimensional sphere S2
ð2Þ [54]. The WZNW model

possesses level k current algebra symmetry Gk besides
the conformal symmetry, where the Chern-Simons cou-
pling k≡ 2πð ~b2 þ ~c2Þ is identified with the level k of
WZNW models.
This connection between Chern-Simons theory (4.62)

and WZNW model [2,3] brings us to the familiar play-
ground where a path integral of the form (4.61), now
defined with (4.62), may be identified with a quantum state
in the Hilbert space of a WZNW model with r punctures.
The story can be elaborated by working out the link
invariants; one example is shown in Fig. 15, but we will
not do so here. Our aim is to find a supergravity link to this
construction, and we leave this for the sequel.
The third observation is related to geometric transition in

the wrapped D6-branes’ picture. Under geometric transi-
tion, the D6-branes wrapped on the three-cycle S3

ð2Þ of a
non-Kähler deformed conifold disappear and are replaced
by a non-Kähler resolved conifold with fluxes and no
branes. What happens to the knot configurations on S3

ð2Þ?
This was the conundrum that we started off with in
Sec. II B. Introducing the D2-brane surface operators (or
equivalently D4-brane surface operators) in the wrapped
D6-branes’ picture now resolves the conundrum. After
geometric transition, even though the D6-branes disappear,
the D2-brane (or D4-brane) configurations that are respon-
sible for the knots, as shown in Fig. 14, continue to survive
on the resolved conifold side. Thus the gravity dual, which
is our non-Kähler resolved conifold with fluxes, now
equipped with the D2-brane (or D4-brane) states, continues
to retain all the information of knots and knot invariants and
may be extracted with high fidelity.

FIG. 14. Knot K on D6-branes wrapped on S3
ð2Þ of a deformed

conifold is represented by a D2-brane (or D4-brane) surface
operator that intersects the D6-branes onK. This picture is before
geometric transition. After geometric transition, the D6-branes
disappear and are replaced by fluxes on a non-Kähler resolved
conifold, but the D2-brane (or D4-brane) state survives on the
dual side retaining all information of the knot K.

FIG. 15. An example of a trefoil knot computation in the
Ooguri-Vafa model. The knot invariant is now proportional to
hΨ0jΨi, which is somewhat similar in spirit with the knot
invariants computed earlier. The details however differ.
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V. DISCUSSIONS AND CONCLUSIONS

In recent times we have understood that knot invariants
like Jones polynomial in three-dimensional spaceW can be
computed by understanding the solutions of certain elliptic
partial differential equations in four-dimensional space V,
where W is the boundary of V. These equations were
originally derived in a topologically modifiedN ¼ 4 super
Yang-Mills by imposing a localization condition into the
Chern-Simons theory in the three-dimensional boundaryW
[11]. The restriction to the three-dimensional boundary was
realized by switching on an axionic field in the four-
dimensional gauge theory defined on V ¼ W ×Rþ. This
way various details about knot configurations may be
addressed directly using the dynamics of four-dimensional
gauge theory.
In a parallel development, Ooguri-Vafa [8] studied

SUðNÞ knot invariants using a topological theory generated
by wrapping D6-branes on three-cycle of a deformed
conifold. Here the knot invariants may be associated to
counting certain BPS configurations that have origins in the
gravity dual of the wrapped D6-branes’ configuration. The
gravity dual is given by a resolved conifold with topologi-
cal fluxes.
In the first part of our work we present an alternative

derivation of the results of [11]. We show that the physics
studied in both W and V can be derived from a configu-
ration in M-theory on a certain seven-dimensional manifold
with fluxes and no branes other than the M2-branes. These
M2-branes serve a dual purpose: one set of configurations
lead to non-Abelian gauge theory in V; and another set of
configurations lead to surface operators in V that are
responsible for knots in W.
Restricting the knots to the boundary W is achieved by

switching on a dipole or a RR deformation in V that can be
parametrized from supergravity. The M-theory uplifts lead
to a seven-dimensional manifold, as mentioned above, of
the form of a warped Taub-NUT space fibered over a three-
dimensional base. Supergravity analysis leads to a four-
dimensional Hamiltonian (3.158), from where a series of
BPS equations are derived. A set of these BPS equations is
exactly the localization equations of [11,12], and we call
them the BHN equations (the acronym stands for
Bogomolnyi, Hitchin and Nahm). The remaining sets of
the BPS equations are shown to be solved exactly using
supergravity variables. Therefore one of our results was to
show that such equations emerge from M-theory compac-
tifications and their coefficients are succinctly interpreted in
terms of supergravity parameters.
We also considered various types of solutions of such

BHN equations along with their deformations. One pos-
sibility is to have codimension three solutions denoted by
’t Hooft operators. These solutions appear as opers, and we
discuss them briefly here attempting a supergravity inter-
pretation. Another possibility is to have codimension two
solutions denoted by surface operators. We make a detailed

study of this in our work and show how the surface
operators, which we interpret as certain configuration of
M2-branes, modify the BHN equations. These modifica-
tions are given by introducing delta function sources whose
coefficients can be traced to the supergravity parameters in
our model. Additionally we argue how the M2-brane
surface operators help us to study the link invariants for
various knot configurations in the Abelian case.
In the second part of the paper we argue how the Ooguri-

Vafa model may also be derived from a configuration
in M-theory defined on a different seven-dimensional
manifold that is given by another warped Taub-NUT
fibered over a three-dimensional base. The warping and
fluxes now are such that the supersymmetry is reduced to
N ¼ 1, and the seven-dimensional manifold has a G2

structure. Nevertheless, many of the physics discussed in
the first part of the paper follow a similar route in the
second part too. There are crucial differences of course,
which we point out in our paper. For example the
topological theory is simpler now, but the analysis of knots
using surface operators is harder because there is no
Abelian simplification that can be performed now. There
is also a relocation of the knots on the three-cycle of the
deformed conifold instead on the spacetime boundary W
earlier. This relocation is associated to a flop transition that
can be performed on the mirror type IIA side. In our
opinion these are all new results.
There are a number of future directions. For example, in

the first part we only studied the link invariants for the
Abelian case, so a natural question would to investigate the
non-Abelian scenario. This is harder because, as we dis-
cussed in the text, the effect of the non-Abelian configura-
tion of the surface operators on the BHN equations is
difficult to handle. Thus solving the BHN equations and
interpreting the knots in terms of solutions of the BHN
equations in the non-Abelian case will be more challenging.
For the second part we only make the barest beginnings

in this direction, and leave most of the details for the sequel.
For example, the configuration of the surface operators in
terms of M2- or M5-branes, details about the flop transition
and the subsequent analysis of knot invariants still remain
to be elaborated. Other connections to A-polynomial of
[21], Khovanov homology [4] etc. have not been touched
here at all, and we expect to study them in the sequel. Thus
we see that the two connections to M-theory seven-
manifolds explored in this paper lead to a rich spectrum
of ideas that can allow us to have a fruitful dialogue
between M-theory supergravity on one hand and topologi-
cal field theory and mathematics on the other.
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