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We compute one-loop free energy for D ¼ 4 Vasiliev higher spin gravities based on Konstein-Vasiliev
algebras huðm; nj4Þ, hoðm; nj4Þ, or huspðm; nj4Þ and subject to higher spin-preserving boundary
conditions, which are conjectured to be dual to the UðNÞ, OðNÞ or USpðNÞ singlet sectors, respectively,
of free conformal field theories (CFTs) on the boundary of AdS4. Ordinary supersymmetric higher spin
theories appear as special cases of Konstein-Vasiliev theories, when the corresponding higher spin algebra
contains OSpðN j4Þ as a subalgebra. In AdS4 with an S3 boundary, we use a regularization scheme for
individual spins that employs their character such that the subsequent sum over all spins is finite, thereby
avoiding the need for additional regularization. We find that the contribution of the infinite tower of bulk
fermions vanishes. As a result, the free energy is the sum of those which arise in type A and type B models
with internal symmetries, the known mismatch between the bulk and boundary free energies for type B
model persists, and ordinary supersymmetric higher spin theories exhibit the mismatch as well. The only
models that have a match are type A models with internal symmetries, corresponding to n ¼ 0. The
matching requires identification of the inverse Newton constant G−1

N with N plus a proper integer as was
found previously for special cases. In AdS4 with an S1 × S2 boundary, the bulk one-loop free energies
match those of the dual free CFTs for arbitrary m and n. We also show that a supersymmetric double-trace
deformation of free CFT based on OSpð1j4Þ does not contribute to the OðN0Þ free energy, as expected
from the bulk.
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I. INTRODUCTION

It has been known for some time that the conjectured
holographic duals of higher spin (HS) gravities [1] can be
as simple as free conformal field theories (CFTs) living
on the boundary of anti-de Sitter spacetime. Moreover, it
has also been noted that the duality is expected to arise in
weakly coupled regimes of both bulk and boundary field
theories. Therefore, one expects that higher spin AdS/CFT
correspondence should be amenable to test order by order
in perturbation theory.
Free CFTs arise in conjectured dualities in the context of

parity invariant HS gravities in four dimensions subject to
HS symmetry-preserving boundary conditions. There are
two types of parity invariant Vasiliev HS gravities, known
as type A and B [2]. In their simplest forms, they both
contain an infinite tower of massless even spin fields, each
occurring once. They differ from each other in the parity of
the spin-0 field, which is parity even (odd) in type A (B)
theory. It has been conjectured that type A theory with a
Δ ¼ 1 boundary condition imposed on the scalar is dual to

the OðNÞ singlet sector of N free real scalars [3], while
type B theory with aΔ ¼ 2 boundary condition imposed on
the pseudoscalar is dual to theOðNÞ singlet sector ofN free
Majorana fermions [2] (for earlier work in which HS
holography involving CFTs with matrix valued free fields,
see Ref. [4]). These are HS symmetry-preserving boundary
conditions, with standard boundary conditions imposed on
all other fields understood. The dual CFT can be altered by
changing the boundary conditions imposed on the spin-0
field in such a way that they break HS symmetry. For
instance, type A model with a Δ ¼ 2 boundary condition
on the scalar is conjectured to be dual to the critical OðNÞ
vector model [3], while the type B model with a Δ ¼ 1
boundary condition imposed on the pseudoscalar is con-
jectured to be dual to the OðNÞ Gross-Neveu model [2].
An important test of the holography is to match the free

energy of the bulk theory with that of the CFT defined on
the conformal boundary of the bulk geometry. Assuming
the bulk HS theory possesses an action formulation, the
partition function evaluated on Euclidean AdS4 can be
expanded in terms of GN as

Fbulk ¼
1

GN
Fð0Þ
bulk þ Fð1Þ

bulk þ GNF
ð2Þ
bulk þ � � � : ð1:1Þ
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When the bulk Euclidean AdS4 is the hyperbolic space H4

of which the conformal boundary is a round S3, the free
energy of the bulk HS theory should match with that of a
free CFTon a round S3. The free energy of a free CFTon S3

takes the simple form [5]

FCFT ¼ NFð0Þ
CFT; ð1:2Þ

where Fð0Þ
CFT is the free energy of a single component in the

UðNÞ orOðNÞ vector model. The zeroth-order contribution

Fð0Þ
bulk has not been computed so far due to the lack of an

action for Vasiliev theory with all the required properties.
We will return to this point in the conclusions. Matching
Fbulk with FCFT necessarily requires that Fbulk is propor-

tional to Fð0Þ
CFT at each order in the small GN expansion and

that GN is identified in terms of N as

G−1
N → γðN þ ΔNÞ; ð1:3Þ

with γ and ΔN being constants, and ΔN should be a fixed
integer for a given bulk/boundary dual pair. Therefore, the
higher-order quantum corrections affect simply the relation
between GN and N. Assuming Fronsdal type quadratic
action for the massless HS fields, one-loop computations
have shown that these requirements are fulfilled in the
conjectured duality between type A theory and the bosonic
OðNÞ vector model [6]. However, for the conjectured
duality between type B theory and the fermionic OðNÞ
vector model [2], these requirements are not satisfied since

Fð1Þ
bulk and F

ð0Þ
CFT are not proportional to each other. Matching

of the free energy was also found in the type A/critical
OðNÞ vector duality, but not in the type B=OðNÞ Gross-
Neveu duality. In the critical OðNÞ vector model, the
conformal dimensions of HS currents receive quantum
corrections. The leading 1=N corrections are summarized
in Ref. [7]. These anomalous dimensions of HS currents at
Oð1=NÞ should be compared with the one-loop corrections
to the AdS energies of HS fields computed directly from the
bulk HS theory. It would be interesting to check whether
they match precisely.
The principal aim of this paper is to extend the one-loop

tests by computing the free energies in a wider class of HS
theories in four dimensions that are expected to be dual to
free CFTs on the boundary of AdS4. In particular, we wish
to study the consequences of supersymmetry which com-
bine type A and type B spectra of fields with an infinite
tower of massless fermions. The underlying HS algebras,
denoted by huðm; nj4Þ, hoðm;nj4Þ, and huspðm; nj4Þ, and
their representations were determined some time ago by
Konstein and Vasiliev [8]. These representations are
obtained from two-fold tensor products of bosonic and
fermionic singleton representations of SOð3; 2Þ which also
carry fundamental representations of classical Lie groups.
Vasiliev equations for these theories are described in detail

in Ref. [9]. Their spectral properties will be summarized in
the next section. It suffices to mention here that generically
their underlying HS algebras serve as infinite-dimensional
supersymmetry algebras, and only in special cases, namely
when m ¼ n ¼ 2k for some k corresponds to the funda-
mental spinor representation of OðN Þ, they contain the
AdS4 superalgebra OSpðN j4Þ, in which case the single-
tons in the boundary CFT are in the spinor representations
of the R-symmetry group SOðN Þ.1 We shall also consider
the extension of these models by introduction of internal
symmetry [9].
When the boundary of AdS4 is S3, we compute the

one-loop free energy by using a regularization scheme for
individual spins that employs their character such that the
subsequent sum over all spins is finite. Thus, we avoid
the need for additional regularization in summing over an
infinite tower of HS fields. This approach has been
utilized in Ref. [10] for the sum over all bosons. Here,
we adapt the method for summing over the tower of HS
fermions and the even and odd spin towers of HS fields
separately. Furthermore, we find that the contribution of
the infinite tower of fermionic fields to the free energy
vanishes. Putting all results together, we find that the
bulk free energy may match that of the dual free CFT
only for type A models. Their spectra consist of bosonic
fields arising from the tensor product of two bosonic
singletons in the fundamental representation of classical
Lie groups. The matching requires identification of the
inverse Newton constant G−1

N with N plus a proper
integer as was found previously for special cases. Note
that the mismatch in the free energy at one loop occurs in
particular for type B models of which the spectra consist
of bosonic fields arising from the tensor product of two
spinor singletons in the fundamental representation of
classical Lie groups.
When AdS4 is written in the thermal AdS coordinates,

with the boundary being S1 × S2, we find that the bulk one-
loop free energies match those of the dual free CFTs for
generic Konstein-Vasiliev models.
The N ¼ 1 higher spin theory admits an N ¼ 1 mixed

boundary condition which corresponds to adding a
supersymmetric double-trace deformation in the free CFT.
We show that such a double-trace deformation does not
contribute to the OðN0Þ free energy, compatible with the
fact that imposing the mixed boundary condition does not
change the bulk spectrum and therefore the bulk one-loop
free energy remains the same.
The rest of the paper is organized as follows. In Sec. II,

we review the spectra of HS gravities based on HS algebras

1In order to distinguish the notion of supersymmetry in generic
Konstein-Vasiliev models, where supersymmetry is in the higher
spin sense, from the special cases where OSpðN j4Þ arises as a
subalgebra, we shall sometimes refer to the latter ones as
“ordinary supersymmetric HS theories.”
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huðm; nj4Þ, hoðm; nj4Þ, and huspðm; nj4Þ. In Sec. III, we
compute the one-loop free energies of these theories in
AdS4 with an S3 boundary, where we also consider the
ordinary supersymmetric HS theories with internal
symmetry. We adopt an alternate regularization scheme
introduced in Ref. [10] in the bosonic sector, then
generalize the method also to the fermionic sector. As
mentioned above, this method gives rise to a convergent
sum over the contributions of an infinite tower of HS
fields, thereby avoiding the need for additional regu-
larization. In Sec. IV, we compare the results obtained in
the bulk with the corresponding ones in the boundary
CFTs. In Sec. V, we implement the one-loop test to HS
theories in thermal AdS with the dual CFTs on the
boundary S1 × S2. In Sec. VI, we study a possible mixed
boundary condition for N ¼ 1 higher spin theory and
the effect on the free energy on the CFT side where a
supersymmetric double-trace deformation is turned on.
We summarize and comment on our results in Sec. VII
and comment on possible ways to approach the problem
of mismatch of free energies in type B and ordinary
supersymmetric HS theories and their conjectured duals.
We also comment on the action formulation proposed in
Ref. [11] in the context of classical free energy in the
bulk. The validity and detailed calculation of the
alternate regularization method adopted in this paper
are shown in the Appendix.

II. KONSTEIN-VASILIEV AND
SUPERSYMMETRIC HIGHER SPIN THEORIES

The group theoretical building blocks for the con-
struction of the physical spectra of HS theories in AdS4
are the singleton representations of SOð3; 2Þ. There are
two of them referred to as Di and Rac. Using the
standard notation DðE0; sÞ for the discrete unitary
representations of spð4;RÞ ∼ SOð3; 2Þ, where E0 is
the lowest energy and s is the spin of the lowest
weight state, Di refers to the Dð1; 1=2Þ, and Rac refers
to the Dð1=2; 0Þ representations. An important property

these representations have is given by Flato-Fronsdal
theorem which states that

Rac ⊗ Rac ¼
X∞
s¼0

Dð1þ s; sÞ;

Di ⊗ Di ¼ Dð2; 0Þ þ
X∞
s¼1

Dð1þ s; sÞ;

Di ⊗ Rac ¼
X∞
s¼0

Dð3=2þ s; 1=2þ sÞ; ð2:1Þ

where s ¼ 0; 1; 2;…. The representations Dð1þ s; sÞ are
massless spin s fields, and Dð2; 0Þ is a massless
pseudoscalar field. To introduce internal symmetry,
consider the singleton representations

Sþ≔ ðRac;mÞ⊕ ðDi;nÞ; S− ≔ ðDi;mÞ⊕ ðRac;nÞ; ð2:2Þ

where m labels the fundamental representations of uðmÞ
or uspðmÞ or a vector representation of soðmÞ. It has
been shown that the physical spectra of three types of
HS theories, based on HS algebras denoted by
huðm; nj4Þ, hoðm; nj4Þ, and huspðm; nj4Þ, are obtained
from the following tensor products of the singletons,

huðm; nj4Þ∶ Sþ ⊗ S̄þ; huðn;mj4Þ∶ S− ⊗ S̄−; ð2:3Þ

hoðm; nj4Þ∶ ðSþ ⊗ SþÞS; hoðn;mj4Þ∶ ðS− ⊗ S−ÞS;
ð2:4Þ

huspðm; nj4Þ∶ ðSþ ⊗ SþÞA;
huspðm; nj4Þ∶ ðS− ⊗ S−ÞA; ð2:5Þ

where ð·ÞS and ð·ÞA stand for symmetric and antisym-
metric tensor products, respectively. These algebras
contain uðmÞ ⊗ uðnÞ, oðmÞ ⊗ oðnÞ, and uspðmÞ ⊗
uspðnÞ as maximal bosonic subalgebras. The resulting
spectra are as follows [8],

huðm; nj4Þ ∶ ðm2 − 1; 1Þ ⊕ ð1; n2 − 1Þ ⊕ ð1; 1Þ ⊕ ð1; 1Þ s ¼ 0; 1; 2; 3;…

ðm; n̄Þ ⊕ ðm̄; nÞ s ¼ 1
2
; 3
2
; 5
2
;…

hoðm; nj4Þ ∶
�
1
2
mðm − 1Þ; 1

�
⊕

�
1; 1

2
nðn − 1Þ

�
s ¼ 1; 3;…�

1
2
mðmþ 1Þ − 1; 1

�
⊕

�
1; 1

2
nðnþ 1Þ − 1

�
⊕ ð1; 1Þ ⊕ ð1; 1Þ s ¼ 0; 2; 4;…

ðm; nÞ s ¼ 1
2
; 3
2
; 5
2
;…

huspðm; nj4Þ ∶
�
1
2
mðmþ 1Þ; 1

�
⊕

�
1; 1

2
nðnþ 1Þ

�
s ¼ 1; 3;…�

1
2
mðm − 1Þ − 1; 1

�
⊕

�
1; 1

2
nðn − 1Þ − 1

�
⊕ ð1; 1Þ ⊕ ð1; 1Þ s ¼ 0; 2; 4;…

ðm; nÞ s ¼ 1
2
; 3
2
; 5
2
;…;

ð2:6Þ
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where the dimensions of the representations are shown.
While there are the isomorphisms huðm;nj4Þ∼huðn;mj4Þ,
hoðm;nj4Þ∼hoðn;mj4Þ, and huspðm;nj4Þ∼huspðn;mj4Þ,
the corresponding spectra listed above form inequivalent
representations since there are fm2; mðmþ 1Þ=2; mðm −
1Þ=2g scalars in Dð1; 0Þ representations, and fn2; nðnþ
1Þ=2; nðn − 1Þ=2g scalars in Dð2; 0Þ representations of
SOð3; 2Þ, in the cases of huðm; nj4Þ, hoðm; nj4Þ, and
huspðm; nj4Þ, respectively. The models with mn > 0
contain fermions and are based on HS algebras that are
superalgebras in the sense that they involve bosonic and
fermionic generators and graded commutators. However,
unless m ¼ n ¼ 2N=2−1 or m ¼ n ¼ 2ðN−1Þ=2, these alge-
bras do not contain a finite-dimensional superalgebra
and as such they are infinite-dimensional algebras. In the
case of m ¼ n ¼ 2N=2−1, the Rac and Di belong to left-
and right-handed fundamental spinor representations of
SOðN Þ, and we have the isomorphisms

shsEðN j4Þ ≅

8>><
>>:

huð2N
2
−1; 2

N
2
−1j4Þ N ¼ 2mod 4;

huspð2N
2
−1; 2

N
2
−1j4Þ N ¼ 4mod 8;

hoð2N
2
−1; 2

N
2
−1j4Þ N ¼ 8mod 8:

ð2:7Þ
The HS superalgebra shsEðN j4Þ contains the N extended
AdS4 superalgebra OSpðN j4Þ as a subalgebra. In the
case of m ¼ n ¼ 2ðN−1Þ=2, the Di and Rac belong to the
2ðN−1Þ=2 dimensional fundamental spinor representations of
SOðN Þ, and we have the isomorphisms

shsEðN j4Þ≅
�
hoð2ðN−1Þ=2; 2ðN−1Þ=2j4Þ N ¼ 1mod 8;

huspð2ðN−1Þ=2; 2ðN−1Þ=2j4Þ N ¼ 5mod 8:

ð2:8Þ

As for the case of N ¼ 3mod 4, it has been shown in
Ref. [9] that it is equivalent to the case of N ¼ 4mod 4.
The OSpðN j4Þ supermultiplet content of the spectra
described above can be determined in a straightforward

way, but this information is not needed for the purposes of
this paper.
The supersymmetric HS models described above can be

extended by the introduction of internal symmetry. In this
case, the Di and Rac representations not only carry the
spinor representation of SOðN Þ but also a fundamental
representation of a classical Lie algebra. Working out their
tensor products yields the spectrum of the expected dual
HS theory, which can be found in Table 5 of Ref. [9].

III. FREE ENERGIES OF KONSTEIN-VASILIEV
HIGHER SPIN THEORIES IN AdS4

WITH AN S3 BOUNDARY

In this section, we shall compute the free energy of
Konstein-Vasiliev HS theories in AdS4 with an S3 boun-
dary, imposing the HS symmetry-preserving boundary
conditions. Free energy of bosonic HS fields in AdS4
has been studied in Refs. [6,12–14]. The regularization
scheme that has been used in summing over the infinite
tower of HS fields, however, is very complicated. Here, we
employ a simpler alternate method which utilizes the
character of the irreducible representation of SOð2; 3Þ.
As an important consequence, the regularized individual
spin contributions are such that the subsequent sum over
the infinite tower of higher spins is finite, thereby avoiding
the need for additional regularization of this sum. This
method was introduced in Ref. [10] to compute the one-
loop free energy of massive HS fields but was not applied to
the computation of the above free energies to exhibit the
contributions of the infinite tower of odd and even spins
separately. In what follows, we shall use the alternate
method to compute these contributions separately. We then
generalize the method and apply it to the computation in the
bulk fermion sector in the subsequent subsection.
The one-loop correction to the free energy is defined

as Fð1Þ ¼ − logZð1Þ where Zð1Þ is the one-loop partition
function. For HS theory with nS real scalars; nP pseudo-
scalars; n1 copies of fields with s ¼ 1; 3;…;∞; n2 copies
of fields with s ¼ 2; 4;…;∞ fields; and nF copies of
spin-1=2; 3=2;…;∞ fields, we have

Fð1ÞðnS; nP; n1; n2; nFÞ ¼
1

2
nS log det1DBð1; 0Þ þ

1

2
nP log det2DBð2; 0Þ

þ 1

2
n1

X∞
k¼0

½log detDBð2kþ 2; 2kþ 1Þ − log detDBð2kþ 3; 2kÞ�

þ 1

2
n2

X∞
k¼1

½log detDBð2kþ 1; 2kÞ − log detDBð2kþ 2; 2k − 1Þ�

−
1

2
nF log detDF

�
3

2
;
1

2

�

−
1

2
nF

X∞
k¼1

�
log detDF

�
kþ 3

2
; kþ 1

2

�
− log detDF

�
kþ 5

2
; k −

1

2

��
; ð3:1Þ
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where we have defined

DBðΔ; sÞ ¼ ½−∇2 þ ΔðΔ − 3Þ − s�;

DFðΔ; sÞ ¼
�
−∇2 þ ΔðΔ − 3Þ þ 9

4

�
: ð3:2Þ

The negative contributions in the bosonic sector and the
positive contributions in the fermionic sector are due to
ghosts. In computing det1 and det2, the irregular (Δ− ¼ 1)
and regular (Δþ ¼ 2) boundary conditions are to be used.
For a differential operator of the form D ¼ −∇2 þ X, or

D ¼ −∇2 þ Y, writing

− log detD ¼
Z

∞

0

dt
t
KDðtÞ; KDðtÞ ≔ Tr½e−tD� ð3:3Þ

and defining the spectral zeta function

ζDðzÞ ≔
1

ΓðzÞ
Z

∞

0

dt tz−1KDðtÞ; ð3:4Þ

one finds the standard result [15]

− log detD ¼ ζDð0Þ logðl2Λ2Þ þ ζ0Dð0Þ; ð3:5Þ
where l is the AdS radius and Λ is the renormalization
scale. For fields of arbitrary spins in hyperbolic space H4,
the spectral zeta function technique has been developed in
Refs. [16,17] to compute their one-loop effective potentials.

A. Bosons

Upon Euclideanization of AdS4 to H4, the boundary is
S3, and in this setting various free energies of the bosonic
HS theory are given by

Fð1Þ
even1 ¼−

1

2

�
ζBð1;0Þð0Þþ

X∞
s¼2;4;…

ðζBðsþ1;sÞð0Þ

−ζBðsþ2;s−1Þð0ÞÞ
�
logðl2Λ2Þ

−
1

2

�
ζB0ð1;0Þð0Þþ

X∞
s¼2;4;…

ðζB0ðsþ1;sÞð0Þ−ζB0ðsþ2;s−1Þð0ÞÞ
�
;

Fð1Þ
even2 ¼−

1

2

�
ζBð2;0Þð0Þþ

X∞
s¼2;4;…

ðζBðsþ1;sÞð0Þ

−ζBðsþ2;s−1Þð0ÞÞ
�
logðl2Λ2Þ

−
1

2

�
ζB0ð2;0Þð0Þþ

X∞
s¼2;4;…

ðζB0ðsþ1;sÞð0Þ−ζB0ðsþ2;s−1Þð0ÞÞ
�
;

Fð1Þ
odd ¼−

1

2

X∞
s¼1;3;…

ðζBðsþ1;sÞð0Þ−ζBðsþ2;s−1Þð0ÞÞ logðl2Λ2Þ

−
1

2

X∞
s¼1;3;…

ðζB0ðsþ1;sÞð0Þ−ζB0ðsþ2;s−1Þð0ÞÞ; ð3:6Þ

where Fð1Þ
even 1 and Fð1Þ

even 2 denote the total free energy of all
even spin fields s ¼ 0; 2; 4 � � �, in which the scalar satisfies
Δ ¼ 1 and Δ ¼ 2 boundary conditions, respectively, and

Fð1Þ
odd denotes the total free energy of all odd spin fields

s ¼ 1; 3; 5 � � �.
As stated earlier, we now employ a method simpler than

those used previously, utilizing the character of the irre-
ducible representation of SOð2; 3Þ. The method is based on
the observation that the spectral zeta function of a bosonic
spin-s field can be recast in the form [10]

ζBðΔ;sÞðzÞ¼
1

ΓðzÞ
Z

∞

0

dβ

�
μðz;βÞþνðz;βÞ ∂

2

∂α2
�
χΔ;sðβ;αÞjα¼0;

ð3:7Þ

in which

χΔ;sðβ; αÞ ¼
e−βðΔ−3

2
Þ sin½ðsþ 1

2
Þα�

4 sinh β
2
sin α

2
ðcosh β − cos αÞ ;

μðz; βÞ ¼ 1

3
sinh

β

2

�
f1ðz; βÞ

�
−6þ sinh2

β

2

�

þ 4f3ðz; βÞsinh2
β

2

�
;

νðz; βÞ ¼ −4f1ðz; βÞsinh3
β

2
;

fnðz; βÞ ¼
ffiffiffi
π

p Z
∞

0

duun tanhðπuÞ
�
β

2u

�
z−1

2

Jz−1=2ðuβÞ;

ð3:8Þ
where χΔ;sðβ; αÞ is the character of a representation of
SOð3; 2Þ labeled by DðΔ; sÞ. Owing to the e−βðΔ−3

2
Þ factor

in the character,
P

sζðΔ;sÞðzÞ is convergent. Therefore, no
regularization is needed in performing the sum over
infinitely many spins. This is the desired feature for
computing the one-loop free energy of HS theory where
the summation over infinitely many spins is encountered. It
was also noticed by Ref. [10] that, since the one-loop free
energy depends only on ζð0Þ and ζ0ð0Þ, an alternate zeta
function ~ζðzÞ is physically equivalent to the original ζðzÞ,
provided that ~ζð0Þ ¼ ζð0Þ, and ~ζ0ð0Þ ¼ ζ0ð0Þ. Thus, for the
convenience of calculation, one can in fact utilize an
alternate zeta function which is physically equivalent to
the original zeta function. For bosonic HS fields, one
choice of the alternate zeta function takes the form [10]

~ζBðΔ;sÞðzÞ ¼
1

Γð2zÞ
Z

∞

0

dβ β2z−1 coth
β

2

×

�
1þ

�
sinh2

β

2

�
∂2
α

�
χΔ;sðβ; αÞ






α¼0

: ð3:9Þ

The physical equivalence between the alternate spectral
zeta function and the original one (3.7) is shown in the
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Appendix. The total character of all even spin fields and
that of all odd spin fields are computed as

χeven1ðβ;αÞ¼ χ1;0ðβ;αÞ
þ

X
s¼2;4;…

ðχsþ1;sðβ;αÞ−χsþ2;s−1ðβ;αÞÞ

¼ 1þ cosαþ coshβþ cosh2β
4ðcosα− coshβÞ2ðcosαþ coshβÞ ; ð3:10Þ

χeven2ðβ;αÞ¼ χ2;0ðβ;αÞ
þ

X
s¼2;4;…

ðχsþ1;sðβ;αÞ−χsþ2;s−1ðβ;αÞÞ

¼ 1þ cosαþ cos2αþ coshβ
4ðcosα− coshβÞ2ðcosαþ coshβÞ ; ð3:11Þ

χoddðβ;αÞ ¼
X

s¼1;3;…

ðχsþ1;sðβ; αÞ − χsþ2;s−1ðβ; αÞÞ

¼ cos αþ cosh β þ 2 cos α cosh β
4ðcos α − cosh βÞ2ðcos αþ cosh βÞ : ð3:12Þ

Substituting the results above into (3.9), we find

~ζBeven;1ðzÞ ¼
1

Γð2zÞ
Z

∞

0

dβ β2z−1
cosh2β
4sinh3β

;

~ζBeven;2ðzÞ ¼ −
1

Γð2zÞ
Z

∞

0

dβ β2z−1
1þ 2 cosh β
4sinh3β

;

~ζBoddðzÞ ¼ −~ζBeven 1ðzÞ: ð3:13Þ

With the help of the following identities,

1

sinh3 β
2

¼ 2

β2
∂2

∂x2
1

sinh βx
2






x¼1

−
1

2 sinh β
2

;

4−zζ

�
2z;

a
2

�
¼ 1

Γð2zÞ
Z

∞

0

dβ β2z−1
e−aβ

1 − e−2β
; ð3:14Þ

where ζða; bÞ is the Hurwitz zeta function, we finally
obtain

~ζBeven 1ðzÞ ¼ 4−ð2þzÞ
�
3ζ

�
2z;−

1

2

�
þ 4ζ

�
2z − 2;−

1

2

�

þ 8ζ

�
2z − 1;−

1

2

�
þ ð4z − 1Þζð2zÞ

þ 3ð4z − 4Þζð2z − 2Þ − 4ð4z − 2Þζð2z − 1Þ
�
;

~ζBeven 2ðzÞ ¼ 4−ð1þzÞ½−4ζð2z − 2; 0Þ − 4ζð2z − 1; 0Þ
þ ð4z − 1Þζð2zÞ
− 4zζð2z − 2Þ þ 4ζð2z − 1Þ�: ð3:15Þ

By using the relation between Fð1Þ and spectral zeta
function, one arrives at the results

Fð1Þ
even 1 ¼

1

16

�
2 log 2 −

3ζð3Þ
π2

�
;

Fð1Þ
even 2 ¼

1

16

�
2 log 2 −

5ζð3Þ
π2

�
;

Fð1Þ
odd ¼ −Fð1Þ

even 1: ð3:16Þ

Note that the potential logarithmic divergences in Fð1Þ
even 1

and Fð1Þ
even 2 have canceled out, and the above finite results

are from ~ζB0ð0Þ terms, in agreement with Ref. [6].
Furthermore, these results can be used as building blocks
for the computation of the free energies of the Konstein-
Vasiliev models we are interested in, thanks to the obser-
vation that for all those models discussed in Sec. II it is
always the case that

n2 ¼ nS þ nP; ð3:17Þ
where we recall that n2 is number of copies of even fields
with s ¼ 2; 4;…∞; nS is the number of scalars; and nP is
the number of pseudoscalars.

B. Fermions

We now compute the one-loop free energy of all
fermionic HS fields. The spectral zeta function of a
spin-s fermion field is given by

ζFðΔ;sÞðzÞ¼
1

ΓðzÞ
Z

∞

0

dβ

�
μðz;βÞþνðz;βÞ ∂

2

∂α2
�
χΔ;sðβ;αÞ






α¼0

;

ð3:18Þ

where

χΔ;sðβ; αÞ ¼
e−βðΔ−3

2
Þ sin½ðsþ 1

2
Þα�

4 sinh β
2
sin α

2
ðcosh β − cos αÞ ;

μðz; βÞ ¼ 1

3
sinh

β

2

�
f1ðz; βÞ

�
−6þ sinh2

β

2

�

þ 4f3ðz; βÞsinh2
β

2

�
;

νðz; βÞ ¼ −4f1ðz; βÞsinh3
β

2
;

fnðz; βÞ ¼
ffiffiffi
π

p Z
∞

0

duun cothðπuÞ
�
β

2u

�
z−1

2

Jz−1=2ðuβÞ:

ð3:19Þ
To compute the one-loop free energy of all fermionic
HS fields, we propose the following alternate spectral
zeta function, which is much easier to use. The physical
equivalence between the alternate spectral zeta function
(3.20) and the original one (3.18) is shown in the Appendix,
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~ζFðΔ;sÞðzÞ ¼
1

Γð2zÞ
Z

∞

0

dββ2z−1

×

�
1

4
sinh

β

2
þ 1

sinh β
2

þ sinh
β

2
∂2
α

�
χΔ;sðβ; αÞ






α¼0

:

ð3:20Þ
The sum of characters of all fermionic HS fields is
computed as

χ3
2
;1
2
ðβ; αÞ þ

X∞
s¼3=2

½χsþ1;sðβ; αÞ − χsþ2;s−1ðβ; αÞ�

¼ cos α
2
cosh β

2

ðcos α − cosh βÞ2 : ð3:21Þ

It is straightforward to check that�
1

4
sinh

β

2
þ 1

sinhβ
2

þ
�
sinh

β

2

�
∂2
α

�

×

�
χ3
2
;1
2
ðβ;αÞþ

X∞
s¼3=2

½χsþ1;sðβ;αÞ−χsþ2;s−1ðβ;αÞ�
�





α¼0

¼0;

ð3:22Þ
which indicates that the total one-loop free energy of
fermionic HS fields in fact vanishes.

C. Summary

For a Konstein-Vasiliev higher theory consisting of nS
real scalars; nP pseudoscalars; n1 copies of fields with
s ¼ 1; 3;…;∞; n2 ¼ nS þ nP copies of fields with s ¼ 2;
4;…;∞ fields; and nF copies of spin-1=2; 3=2;…;∞
fields, we have

Fð1ÞðnS; nP; n1; n2; nFÞ ¼
log 2
8

ðnS þ nP − n1Þ

−
ζð3Þ
16π2

ð3nS þ 5nP − 3n1Þ;
ð3:23Þ

where we have used the relation n2 ¼ nS þ nP. The values
of nS, nP, and n1 can be read off from (2.6) for various
Konstein-Vasiliev models. Substituting them into the equa-
tion above, we obtain

huðm; nj4Þ∶ Fð1Þ
hu ¼ −

ζð3Þ
8π2

n2; ð3:24Þ

hoðm;nj4Þ∶ Fð1Þ
ho ¼ log2

8
ðmþnÞ− ζð3Þ

16π2
ð3mþ4nþn2Þ;

ð3:25Þ
huspðm; nj4Þ∶ Fð1Þ

husp ¼ −
log 2
8

ðmþ nÞ

þ ζð3Þ
16π2

ð3mþ 4n − n2Þ: ð3:26Þ

The one-loop free energy of huspðm; nj4Þ model is related
to the one of the hoðm; nj4Þ model via m → −m, n → −n.
The ordinary supersymmetric HS models correspond to the
casesm ¼ n ¼ 2

N
2
−1 for evenN and m ¼ n ¼ 2ðN−1Þ=2 for

odd N .
As for the ordinary supersymmetric HS models with

internal symmetries, we recall that their spectra can be
obtained by assigning fundamental representations of the
internal symmetry group to the OSpðN j4Þ singletons
and working out the their two-fold tensor products. The
resulting spectra are provided in Table 5 of Ref. [9]. In
particular, the number of fermions with s ¼ 1

2
mod 2 and

s ¼ 3
2
mod 2 are the same. As a consequence, the contri-

butions of the fermions to the one-loop free energy will
continue to vanish since in (3.20) we found that fermions
with each half-integer spin occurring once give a vanishing
contribution. Consequently, the bulk free energy becomes
the sum of free energies of type A and type B models with
the desired internal symmetries, and both log 2 and ζð3Þ
terms will show up in the one-loop free energy. This
information is sufficient to perform the one-loop test by
means of comparing the bulk and boundary free energies,
as we shall see at the end of the next section.

IV. FREE ENERGIES OF FREE CFTS
ON S3 AND COMPARISON

The free energies of free scalars and free fermions which
are conformally coupled to S3 have been studied in Ref. [5].
A conformally coupled free scalar and a free fermion on S3

are described by the following two actions, respectively,

SS ¼
1

2

Z
d3x

ffiffiffi
g

p �
ð∇ϕÞ2 þ 3

4L2
ϕ2

�
;

SD ¼ 1

2

Z
d3x

ffiffiffi
g

p
ψ†ðiDψÞ; ð4:1Þ

where L is the radius of the round S3. Free energies of the
above two theories are defined as usual:

FS ¼ − logZS ¼
1

2
log det½Λ−2OS�; O ¼ −∇2 þ 3

4L2
;

FD ¼ − logZD ¼ − log det½Λ−1OD�; O ¼ iD: ð4:2Þ

Using the zeta function, FS and FD can be computed
straightforwardly, and the results are [5]

FS ¼
1

16

�
2 log 2 −

3ζð3Þ
π2

�
; FD ¼ 1

8

�
2 log 2þ 3ζð3Þ

π2

�
:

ð4:3Þ

Notice that the free energy of a Majorana fermion on S3

is 1
2
FD.
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A bulk HS theory is conjectured to be dual to a free
vector model when the boundary conditions of the bulk
fields preserve the HS symmetry [3,4], which is the case
here. Assuming the bulk HS theory possesses an action, its
free energy associated with AdS4 should have the form
displayed in (1.1) where GN is the Newton’s constant.
In cases where the boundary of AdS4 is S3, the bulk free
energy should be compared with that of a free vector model
on S3 order by order in 1=N expansion. Hence, the
comparison requires an identification between GN and
N. It was suggested by Ref. [6] that in general the relation
betweenGN and N is of the form given in (1.3) where γ and
ΔN are constants and especially ΔN should be an integer.
The basic fields in the vector model constitute a vector in
the fundamental representation of a classical Lie group,
which can be UðNÞ, OðNÞ, or USpðNÞ in our cases. The
free energy of a free vector model can be computed exactly
and be put in the form2

FCFT ¼ NFð0Þ
CFT; ð4:4Þ

where we use Fð0Þ
CFT to denote the contribution of a single

component in the vector. For Fbulk to match with FCFT, it is
clear that the bulk free energy at each order in GN

expansion should all be proportional to Fð0Þ
CFT.

Various one-loop tests of HS holography have been
carried out in the literature [6,12]. For instance, the non-
minimal type Amodel is conjectured to be dual to theUðNÞ
singlet sector of N complex scalars. When HS symmetry is

preserved by the boundary condition, Fð1Þ
bulk was found to be

zero, indicating that G−1
N is identified with N at one-loop

order. For the minimal A model, the conjectured dual CFT
is the OðNÞ singlet sector of N real scalars. In this case,

Fð1Þ
bulk is equal to FS, the free energy of a real free scalar

(4.3). Thus, matching the bulk and boundary free energies
at one-loop order requires G−1

N being identified with N − 1.
The huspð2; 0j4Þ Vasiliev theory is conjectured to be dual
to the USpðNÞ singlet sector of N complex scalars, and

Fð1Þ
bulk is equal to −FS. Therefore, for huspð2; 0j4Þ higher

spin theory, G−1
N is identified with N þ 1 at one-loop order.

In this section, we consider the cases in which the bulk
HS symmetry is preserved by the boundary condition, thus
the CFT duals are certain singlet sectors of free CFTs
composed by free scalars and free fermions. For the
huðm; nj4Þ theory, the dual CFT consists of Nm complex
free scalars ϕia; i ¼ 1; 2;…N; a ¼ 1; 2;…m; and Nn
Dirac fermions ψ ir, r ¼ 1; 2;…n. The m2 Δ ¼ 1 scalars
and n2 Δ ¼ 2 pseudoscalars correspond to the operators

ϕ̄iaϕ
ib; ψ̄ iaψ

ib: ð4:5Þ
The free energy of this theory is given by

FCFT ¼ NFð0Þ
CFT; Fð0Þ

CFT ¼ 2mFS þ nFD; ð4:6Þ
where FS and FD are given in (4.3).
For the hoðm; nj4Þ theory, the dual CFT consists of Nm

real free scalars ϕia; i ¼ 1; 2;…N; a ¼ 1; 2;…m; and Nn
majorana fermions ψ ir, r ¼ 1; 2;…n. The m2 Δ ¼ 1 scalar
fields and n2 Δ ¼ 2 pseudoscalars correspond to the
operators

ϕiaϕjbδij; ψ̄ iaψ jbδij: ð4:7Þ
The free energy is given by

FCFT ¼ NFð0Þ
CFT; Fð0Þ

CFT ¼ mFS þ
1

2
nFD: ð4:8Þ

For the huspðm; nj4Þ theory, the dual CFT consists of Nm
complex free scalars ϕia; i ¼ 1; 2;…N; a ¼ 1; 2;…m;
and Nn Dirac fermions ψ ir, r ¼ 1; 2;…n, subject to the
symplectic reality condition. The m2 Δ ¼ 1 scalar fields
and n2 Δ ¼ 2 pseudoscalars correspond to the operators

ϕiaϕjbΩij; ψ̄ iaψ jbΩij; ð4:9Þ
where Ωij is the USpðNÞ invariant tensor. The free energy
of this theory is given by

FCFT ¼ NFð0Þ
CFT; Fð0Þ

CFT ¼ mFS þ
1

2
nFD: ð4:10Þ

Since supersymmetric HS theories can be mapped to
special cases of Konstein-Vasiliev models, we will not give
separate discussions on them.
As discussed before, duality between the bulk HS theory

and boundary free CFT may be achieved only if Fð1Þ
bulk is

proportional to Fð0Þ
CFT. Using (3.23), (4.3), (4.6), (4.8), and

(4.10), we find that this requirement amounts to

ðmþ nÞð3nS þ 5nP − 3n1Þ ¼ 3ðm − nÞðnS þ nP − n1Þ;
ð4:11Þ

obtained by setting the ratios of log 2 and ξð3Þ dependent
terms equal to each other. Taking the values of nS, nP, and
n1 from (2.6), these ratios for the bulk sides can be read off
from (3.24), (3.25), and (3.26) in terms ofm and n. One can
show that for all three Konstein-Vasiliev models, the only
solution to the equation above is given by n ¼ 0, which
implies bosonic type A models. In this case, the log 2 and
ζð3Þ dependent terms arise in the same ratio as of a single
real scalar field, and we have the result

Fð1Þ
huðm;0j4Þ ¼ 0; Fð1Þ

hoðm;0j4Þ ¼ mFS; Fð1Þ
hoðm;0j4Þ ¼ −mFS:

ð4:12Þ

2Strictly speaking, the bulk HS theory is dual to the UðNÞ,
OðNÞ, or USpðNÞ singlet sector of a free CFT. The partition
function of a free CFT on S3 is evaluated in the vacuum which is
already a singlet state under the corresponding symmetry group
in each case. Thus, imposing the singlet constraint should not
affect the free energy.
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Therefore, assuming that Fð0Þ
bulk ¼ Fð0Þ

CFT, the bulk and
boundary free energies match with each other, provided
that

huðm; 0j4Þ∶ G−1
N → N;

hoðm; 0j4Þ∶ G−1
N → N − 1;

huspðm; 0j4Þ∶ G−1
N → N þ 1: ð4:13Þ

The holographic dictionaries relating GN to N in various
HS models have been put forward in Ref. [6] via testing
the holography of huð1; 0j4Þ, hoð1; 0j4Þ, and huspð2; 0j4Þ
models at one-loop level. Here, we have extended the
validity of these holographic mappings to huðm; 0j4Þ,
hoðm; 0j4Þ, and huspðm; 0j4Þ Konstein-Vasiliev models.
We see that the inclusion of the infinite tower of bulk
fermions does not cure the problem with the mismatch of
the free energies in the type B model, which corresponds to
the case in which m ¼ 0 and n ≠ 0, and its conjectured
dual.
Finally, we consider the ordinary supersymmetric mod-

els with internal symmetry discussed earlier, the spectra of
which are given in Table 5 of Ref. [9]. In Sec. III, we found
that the contributions of the bulk fermions give vanishing
contributions to one-loop free energy and consequently
the bulk one-loop free energy becomes the sum of the ones
of type A and type B models with the desired internal
symmetries. In particular, there is still a nonvanishing ζð3Þ
term. On the other hand, it is easy to show that the ζð3Þ
dependent terms on the CFT side vanish. Therefore, we
conclude the problem of free energy mismatch will persist
in ordinary supersymmetric HS theories with internal
symmetry.

V. ONE-LOOP FREE ENERGIES OF
SUPERSYMMETRIC HIGHER SPIN THEORIES

IN AdS4 WITH S1β × S2 BOUNDARY

In thermal AdS4, the one-loop free energy of the bulk
theory takes the form [13]

Fð1Þ
bulk ¼ FðβÞbulk þ βEc bulk þ abulk logΛ; ð5:1Þ

where β is the period of the imaginary time, FðβÞbulk is the
thermal free energy which can be computed by taking
the log of the thermal partition function as FðβÞbulk ≡
β−1 logZbulk with Zbulk ≡ tr e−βHbulk , and abulk is the
anomaly coefficient related to the Seeley coefficient. The
trace denotes the sum over all HS particle states. abulk is
proportional to the integral of local curvature invariants and
should be the same for AdS4 with an S3 boundary and for
the thermal AdS4. Thus, after summing over spins, the total
abulk should vanish as shown in previous sections. Ec bulk is
the one-loop contribution to the Casimir energy which can

be extracted from the thermal free energy in a standard way
[cf. Eqs. (5.5) and (5.6)].
The free energy of the UðNÞ, OðNÞ, or USpðNÞ singlet

sector of a free vectorial CFT on S1β × S2 takes a similar
form,

FCFT ¼ FsingletðβÞCFT þ βEcCFT þ aCFT logΛ; ð5:2Þ

in which FðβÞCFT is the free energy of the subsector in
Hilbert space consisting of only the states that are invariant
under the required symmetry group. The Casimir energy
EcCFT is given by NE0, where E0 is the Casimir energy
of a single conformally invariant free field on S1β × S2.
The anomaly coefficient aCFT vanishes on S1β × S2, which
is conformally flat and has vanishing Euler number.
Therefore, there are no logarithmic divergent terms on
both the bulk and the boundary sides. There remains
comparison of the thermal part of the free energies and
the Casimir energies on both sides. The thermal parts of the
free energies are expected to match since, by definition, the
bulk and boundary thermal partition functions which give
rise to the corresponding thermal free energies are both
equal to the character of the HS algebra associated with
the spectrum of the HS theory. The comparison between
the bulk and boundary Casimir energies, however, is not
straightforward, since, different from Ec bulk, the Casimir
energy on the CFT side is not directly related to the thermal
free energy of the singlet sector through (5.5). Holographic
matching of the free energies atOðN0Þ demands that Ec bulk
is an integer times the Casimir energy of a single con-
formally invariant free field on S1β × S2.
In this section, we first study the one-loop free energy of

Konstein-Vasiliev theory in thermal AdS4 with an S1β × S2

boundary. We then compare the bulk result with the free
energy of the corresponding dual CFTatOðN0Þ. Recall that
there exist generalizations of d > 4 Vasiliev theory which
are dual to the UðNÞ or OðNÞ singlet sector of free scalars
or fermions [18]. The free energy of this type of HS theory
in thermal AdSd has been calculated in Ref. [13] and
compared withOðN0Þ term in the free energy of the largeN
UðNÞ or OðNÞ vectorial free CFT. It was found that the
matching of the free energy implies shifts in the relation
between G−1

N and N at leading order by an integer.
Different from Ref. [13] where the bulk theories are

purely bosonic, in our case the bulk theory includes also
fermionic HS fields. Accordingly, the dual CFT consists of
both scalars and fermions. In particular, the fermionic HS
fields are dual to the bilinear conserved currents built out of
both scalars and fermions. State operator correspondence
then implies the existence of scalar-fermion mixed states
in the Hilbert space that are singlet under the required
symmetry group. These scalar-fermion mixed states con-
tribute to the thermal free energy of the singlet sector
nontrivially, which means that the FsingletðβÞ for a CFT
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involving both scalars and fermions cannot be obtained by
a simple sum of the FsingletðβÞ’s of a pure-scalar CFTand of
a pure-fermion CFT.
Below, we start with the computation of the free energies

in Konstein-Vasiliev models, which include supersymmet-
ric HS theories as special cases. The story is far more
elaborate in higher dimensions. In particular, we refer the
reader to Refs. [19–21] for the case of five dimensions and
Ref. [22] for the case of seven dimensions.

A. Bulk side

As stated earlier, the one-loop free energy of a massless
field in thermal AdS4 has the structure displayed in (5.1)
with the vanishing log divergence. FðβÞ can be obtained
from the grand canonical partition function as

For bosons∶ FðβÞbulk ¼ −
X∞
m¼1

1

m
ZðmβÞ; ð5:3Þ

For fermions∶ FðβÞbulk ¼
X∞
m¼1

ð−1Þm
m

ZðmβÞ: ð5:4Þ

Here, ZðβÞ is the one-particle canonical partition function.
The Casimir energy Ec bulk can be obtained from the energy
ζ-function as

Ec bulk ¼ � 1

2
ζEð−1Þ; ð5:5Þ

where � correspond to bosonic and fermionic cases,
respectively. The energy ζ-function is related to the one-
particle partition function by a Mellin transform:

ζEðzÞ ¼
1

ΓðzÞ
Z

∞

0

dββz−1ZðβÞ: ð5:6Þ

In d ¼ 4, the thermal one-particle partition function for a
scalar field is given by

ZðΔÞ
0 ¼ qΔ

ð1 − qÞ3 Δ >
1

2
; ð5:7Þ

where Δ is the AdS energy and q ¼ e−β [23]. The thermal
one-particle partition function for an s ≥ 1

2
massless field

takes the form

ZsðβÞ ¼
qsþ1

ð1 − qÞ3 ½2sþ 1 − ð2s − 1Þq�: ð5:8Þ

From the results derived in Ref. [13], we deduce the useful
formulas,3

Fð1Þ
even 1 ¼ FðβÞeven 1 ¼ −

X∞
m¼1

1

m
Zeven 1ðmβÞ;

Zeven 1ðβÞ ¼
1

2

qð1þ qÞ2
ð1 − qÞ4 þ 1

2

qð1þ q2Þ
ð1 − q2Þ2

¼ 1

2
½ ~Z0ðβÞ�2 þ

1

2
~Z0ð2βÞ;

Fð1Þ
even 2 ¼ FðβÞeven 2 ¼ −

X∞
m¼1

1

m
Zeven 2ðmβÞ;

Zeven 2ðβÞ ¼
2q2

ð1 − qÞ4 −
q2

ð1 − q2Þ2 ¼
1

2
½ ~Z1

2
ðβÞ�2 − 1

2
~Z1

2
ð2βÞ;

Fð1Þ
odd 1 ¼ FðβÞodd ¼ −

X∞
m¼1

1

m
ZoddðmβÞ;

ZoddðβÞ ¼
1

2

qð1þ qÞ2
ð1 − qÞ4 −

1

2

qð1þ q2Þ
ð1 − q2Þ2

¼ 1

2
½ ~Z0ðβÞ�2 −

1

2
~Z0ð2βÞ; ð5:9Þ

where for later convenience we express the results in terms
of the characters ~Z0ðβÞ and ~Z1

2
ðβÞ of the conformally

coupled free scalar and the free real fermion which realize
the spin-0 and spin-1

2
singleton representations of the

SOð3; 2Þ, respectively,

~Z0ðβÞ ¼
q

1
2ð1þ qÞ
ð1 − qÞ2 ; ~Z1

2
ðβÞ ¼ 2q

ð1 − qÞ2 : ð5:10Þ

By using (5.5) and (5.6), one can show that Zeven 1ðβÞ,
Zeven 2ðβÞ, andZoddðβÞ all lead to vanishing Casimir energy
[13].4 Therefore, we simply dropped the Ec term in (5.9).
Also, one should note that

1

2
½ ~Z1

2
ðβÞ�2 þ 1

2
~Z1

2
ð2βÞ ¼ 1

2
½ ~Z0ðβÞ�2 −

1

2
~Z0ð2βÞ: ð5:11Þ

For all the fermionic fields, we find that the total one-
particle canonical partition function is given by

ZFðβÞ ¼
X∞
s¼1

2

qsþ1

ð1 − qÞ3 ½2sþ 1 − ð2s − 1Þq�

¼ 2q
3
2ð1þ qÞ

ð1 − qÞ4 ¼ ~Z0ðβÞ ~Z1
2
ðβÞ: ð5:12Þ

Using the total one-particle canonical partition function, we
can construct the energy ζ-function for fermions:

3In the rest of this subsection, the thermal free energies and
partition functions refer to those of the bulk theory.

4A similar technique using the SOð3; 2Þ character has been
applied to compute the one-loop free energy of HS theories
constructed using higher-order singletons [24] in thermal AdS4,
where the vanishing of Casimir energy was also observed.
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ζFEðzÞ ¼
1

ΓðzÞ
Z

∞

0

dββz−1
2e−

3
2
βð1þ e−βÞ

ð1 − e−βÞ4

¼ 2
X∞
n¼1

�
nþ 2

3

���
nþ 1

2

�
−z

þ
�
nþ 3

2

�
−z
�

¼ 1

8
ζ

�
z;
5

2

�
−

1

12
ζ

�
z − 1;

5

2

�
−
1

2
ζ

�
z − 2;

5

2

�

þ 1

3
ζ

�
z − 3;

5

2

�
−
1

8
ζ

�
z;
3

2

�
−

1

12
ζ

�
z − 1;

3

2

�

þ 1

2
ζ

�
z − 2;

3

2

�
þ 1

3
ζ

�
z − 3;

3

2

�
: ð5:13Þ

This vanishes at z ¼ −1. Therefore, the total Casimir
energy for fermionic HS fields vanishes in thermal AdS4
as well, and the correspoding one-loop free energy is
simply

Fð1ÞF ¼ FðβÞFbulk ¼
X∞
m¼1

ð−1Þm
m

ZFðmβÞ: ð5:14Þ

Summarizing the results above and using the spectra given
in (2.6), we find that the one-loop free energies for generic
Konstein-Vasiliev HS theories are given by

huðm; nj4Þ∶ Fð1Þ
hu ¼ −

X∞
k¼1

1

k
½m ~Z0ðkβÞ þ nð−Þkþ1 ~Z1

2
ðkβÞ�2;

ð5:15Þ

hoðm;nj4Þ∶ Fð1Þ
ho ¼−

X∞
k¼1

1

2k
ð½m ~Z0ðkβÞþnð−Þkþ1 ~Z1

2
ðkβÞ�2

þm ~Z0ð2kβÞ−n ~Z1
2
ð2kβÞÞ; ð5:16Þ

huspðm;nj4Þ∶ Fð1Þ
husp¼−

X∞
k¼1

1

2k
ð½m ~Z0ðkβÞ

þnð−Þkþ1 ~Z1
2
ðkβÞ�2

−m ~Z0ð2kβÞþn ~Z1
2
ð2kβÞÞ: ð5:17Þ

The free energy of huspðm; nj4Þ theory can be obtained
from that of the hoðm; nj4Þ theory by m → −m, n → −n.

B. CFT side and comparison

In this section, we calculate the partition function of the
singlet sector of free CFTs on S1β × S2. We closely follow
the technique developed in Refs. [25,26]. The partition
function of a CFT on S1β × S2 is equal to the thermal
partition function due to the vanishing of Casimir energy
[24] and logarithmic divergence. Therefore, we have

ZðβÞ ¼
X

i∈physical states
qEi ; q ¼ e−β; ð5:18Þ

where the physical states are restricted to be the singlet
states of UðNÞ, OðNÞ, or USpðNÞ for our purpose. We
have also used the fact that there is no nontrivial chemical
potential in the system. The thermal partition functions of
the UðNÞ and OðNÞ singlet sectors of free scalar and free
fermion theories have been studied in Refs. [13,27]. We
generalize their results to the cases with both scalars and
fermions. We first consider theUðNÞ singlet sector of a free
CFTwith Nm complex free scalars and Nn Dirac fermions.
As shown in Refs. [13,27], the thermal partition function
can be expressed as a path integral localized on the
eigenvalues of the UðNÞ matrix,

ZUðNÞðβÞ ¼ e−FðβÞUðNÞ ¼
Z YN

i¼1

dαie−Sðα1;…αNÞ;

Sðα1;…αNÞ ¼ −
1

2

XN
i≠j¼1

log sin2
αi − αj

2
þ 2

XN
i¼1

fβðαiÞ;

fβðαÞ ¼
XN
k¼1

ckðβÞ cosðkαÞ;

ckðβÞ ¼ −
1

k
½m ~Z0ðkβÞ þ nð−Þkþ1 ~Z1

2
ðkβÞ�; ð5:19Þ

where the matter contents affect the effective action through
ckðβÞ. In the large N limit, the integral over αi can be
replaced by the path integral over the eigenvalue density
ρðαÞ, α ∈ ð−π; πÞ. ρðαÞ satisfies the standard normalization

Z
π

−π
dαρðαÞ ¼ 1: ð5:20Þ

The effective action in terms of ρðαÞ takes the form

SðρÞ¼N2

Z
dαdα0Kðα−α0ÞρðαÞρðα0Þ

þ2N
Z

dαρðαÞfβðαÞ;

Kðα−α0Þ¼−
1

2
logð2−2cosαÞ; fβðαÞ¼

XN
k¼1

ckðβÞcosðkαÞ:

ð5:21Þ

Integrating out ρ, one obtains

FðβÞUðNÞ ¼−
X∞
k¼1

k½ckðβÞ�2

¼−
X∞
k¼1

1

k
½m ~Z0ðkβÞþnð−Þkþ1 ~Z1

2
ðkβÞ�2; ð5:22Þ
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which coincides with one-loop free energy for huðm; nj4Þ
higher spin theory (5.15). Next, we study the OðNÞ singlet
sector of a free CFT with Nm real free scalars and Nn
Majorana fermions. This is a generalization of the results in
Ref. [13], where the free CFT consists of only scalars or
fermions. It is suggested in Ref. [13] that one can choose N
to be even, namely N ¼ 2N for simplicity in large N.
The difference between even N and odd N cases is at
the next order in 1=N expansion. The free energy of the
Oð2NÞ singlet sector of a free CFT with Nm real free
scalars and Nn Majorana fermions can again be written
as a path integral over the eigenvalues of the OðNÞ matrix.
The effective potential of the OðNÞ singlet sector is given
by [13]

Sðα1;…αNÞ ¼ −
1

2

XN
i≠j¼1

log sin2
αi − αj

2

−
1

2

XN
i≠j¼1

log sin2
αi þ αj

2
þ 2

XN
i¼1

fβðαiÞ;

ð5:23Þ
where fβ is the same as the one in (5.19). The effective
potential for theOðNÞ singlet sector differs from that of the
UðNÞ by the log sin2α terms which come from the Van der
Monde determinant or the Haar measure. In the large N
limit, the path integral over αi can again be recast into an
integral over the eigenvalue density ρðαÞ. After integrating
out ρ, one obtains

FðβÞOðNÞ ¼ −
X∞
k¼1

k
2

�
½ckðβÞ�2 −

2

k
c2kðβÞ

�

¼ −
X∞
k¼1

1

2k
ð½m ~Z0ðkβÞ þ nð−Þkþ1 ~Z1

2
ðkβÞ�2

þm ~Z0ð2kβÞ − n ~Z1
2
ð2kβÞÞ; ð5:24Þ

which matches the one-loop free energy of hoðm;nj4Þ HS
theory in (5.16). In the last case, we consider the USpðNÞ
singlet sector of a free CFT with Nm complex free scalars
ϕia; i ¼ 1; 2;…N; a ¼ 1; 2;…m; and Nn Dirac fermions
subject to the symplectic real condition. Since N is even in
this case, we denote N by 2N. The effective potential of the
USpðNÞ singlet sector takes the form

Sðα1;…αNÞ¼−
1

2

XN
i≠j¼1

logsin2
αi−αj

2
−
1

2

XN
i;j¼1

logsin2
αiþαj

2

−
1

2

XN
i¼1

logsin2αiþ2
XN
i¼1

fβðαiÞ: ð5:25Þ

In the large N limit, the path integral over αi can be
evaluated by using the same technique as before. The free
energy of the USpðNÞ singlet sector of a free CFT is
obtained as

FðβÞUSpðNÞ ¼ −
X∞
k¼1

k
2

�
½ckðβÞ�2 þ

2

k
c2kðβÞ

�

¼ −
X∞
k¼1

1

2k
ð½m ~Z0ðkβÞ þ nð−Þkþ1 ~Z1

2
ðkβÞ�2

−m ~Z0ð2kβÞ þ n ~Z1
2
ð2kβÞÞ; ð5:26Þ

which matches the one-loop free energy of huspðm;nj4Þ
HS theory in (5.17).

VI. MIXED BOUNDARY CONDITIONS IN BULK
AND INTERACTING N = 1 SCFT

In N ¼ 1 HS theory, the OSpð1j4Þ invariant boundary
conditions are given in Ref. [2].5 To describe this, we
write the boundary behavior (ρ → 0) of the complex scalar
ϕ ¼ Aþ iB as

A ¼ ραþ þ ρ2βþ; B ¼ ρα− þ ρ2β− ð6:1Þ
and define the 3D, N ¼ 1 superfields

Φ−¼ α−þ iθ̄η− −
θ̄θ

2 i
βþ; Φþ ¼ αþþ iθ̄ηþþ θ̄θ

2 i
β−: ð6:2Þ

The boundary conditions preserving OSpð1j4Þ take the
form

Φ− ¼ λΦþ; ð6:3Þ
where λ is an arbitrary real number. In terms of the new
scalar fields, we have

A0 ¼ sin ϑA − cosϑB; B0 ¼ cos ϑAþ sinϑB; ð6:4Þ
where tanϑ ¼ λ, and the boundary condition (6.3) is
equivalent to

α0þ ¼ 0; β0− ¼ 0: ð6:5Þ
The linearized bulk scalar field equations would remain the
same form under the SOð2Þ rotation, and thus the newly
defined scalar fields A0 and B0 possess the same Feffer-
Graham expansion as the original scalar fields A and B. The
boundary condition (6.5) implies that near the boundary

A0 ¼ ρ2β0þ; B0 ¼ ρα0−: ð6:6Þ
Therefore, in computing the one-loop free energy, A0
should have Δ ¼ 2, while B0 should have Δ ¼ 1,
which does not affect the N ¼ 1 HS spectrum and the
corresponding one-loop calculation. On the CFT side, the
boundary condition (6.3) implies the N ¼ 1 free CFT
being deformed by a supersymmetric double-trace term,

5Here, we correct a sign error in the result given by Ref. [2].
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ΔS ¼ λ

2

Z
d3xd2θO2; ð6:7Þ

where O is given by

O ¼ 1ffiffiffiffi
N

p W2; W ¼ φþ iθ̄ψ þ θ̄θ

2 i
f: ð6:8Þ

We compute the difference between the free energy of the
deformed CFT and that of the free CFT, following the
procedure adopted in Refs. [5,28]. Denoting the partition
function of the free CFT by Z0, we calculate

ΔF ¼ − log
Z
Z0

: ð6:9Þ

Using the Hubbard-Stratonovich transformation, we have

Z
Z0

¼ 1R
DΣ expð 1

2λ

R
dz0Σ2Þ

×
Z

DΣ
�
exp

�Z
dz

�
1

2λ
Σ2 þ ΣO

���
0

; ð6:10Þ

where Σ is an auxiliary superfield and z denotes the
supercoordinate. In the large N limit, the higher point
functions of O are suppressed. This allows us to write

�
exp

�Z
dzΣO

��
0

¼ exp

�
1

2

��Z
dzΣO

�
2
�

0

þ oð1=NÞ
�
: ð6:11Þ

Note that Σ and O are single-trace operators of N ¼ 1
superfields, say M and W, respectively, each with compo-
nent fields Ai, λi, Bi and ϕi, ψ i, fi, where B and f are
auxiliary fields and the index i stands for the representation
of OðNÞ. The component fields obey the following super-
conformal transformations,

δA ¼ 1

4
ξλ δϕ ¼ 1

4
ξψ ð6:12Þ

δλ ¼ ∂Aξ − 1

4
Bξþ Aη δψ ¼ ∂ϕξ − 1

4
fξþ ϕη ð6:13Þ

δB ¼ −ξ∇λ δf ¼ −ξ∇ψ ; ð6:14Þ

where ξ and η are spinors satisfying the conformal Killing
spinor equation ∇μξ ¼ γμη.
Integrating out the spinor coordinates θ and θ̄, we obtain

Z
dz

1

2λ
Σ2 ¼ 1

λ

Z
dx3

ffiffiffi
g

p �
BiAiAjAj þ 1

2
λiλiAjAj

þ λiλjAiAj

�

¼ 1

λ

Z
dx3

ffiffiffi
g

p ðΣ2Σ1 þ Σ3=2Σ3=2Þ; ð6:15Þ
Z

dzΣO ¼
Z

dx3
ffiffiffi
g

p �
fiϕiAjAj þ 1

2
ψ iψ iAjAj

þ BiAiϕjϕj þ 1

2
λiλiϕjϕj þ 2ψ iλjϕiAj

�

¼
Z

dx3
ffiffiffi
g

p ðO2Σ1 þ Σ2O1 þ 2O3=2Σ3=2Þ;

ð6:16Þ

where we defined

Σ1 ¼ AiAi; O1 ¼ ϕiϕi; Σ3=2 ¼ Aiλi; O3=2 ¼ ϕiψ i;

Σ2 ¼ BiAi þ 1

2
λiλi; O2 ¼ fiϕi þ 1

2
ψ iψ i; ð6:17Þ

with the lower indices labeling the dimension of the single-
trace operators.
With the above preparation, the second factor of (6.10) at

large N is

Z
DΣ exp

�
1

2λ

Z
dzΣ2 þ 1

2

��Z
dzΣO

�
2
�

0

�
¼
Z

DΣ exp

�
1

λ

Z
dx3

ffiffiffi
g

p ðΣ2Σ1 þ Σ3=2Σ3=2Þ

þ 1

2

��Z
dx3

ffiffiffi
g

p ðO2Σ1 þ Σ2O1 þ 2O3=2Σ3=2Þ
�

2
�

0

�

¼
Z

DΣ exp

�
1

λ

Z
dVðΣ2Σ1 þ Σ3=2Σ3=2Þ

þ 1

2

Z Z
dVdV 0ðΣ1ðxÞΣ1ðx0ÞhO2ðxÞO2ðx0Þi0

þ Σ2ðxÞΣ2ðx0ÞhO1ðxÞO1ðx0Þi0 þ 4Σ3=2ðxÞΣ3=2ðx0ÞhO3=2ðxÞO3=2ðx0Þi0Þ
�
;

ð6:18Þ
where dV ≡ dx3

ffiffiffi
g

p
and we dropped vanishing terms in the two-point function to reach the last line.
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The integral in (6.10) then becomes Gaussian, which integrates to give

Z
Z0

¼ detð1þ 2λhO3=2O3=2i0Þ
fdetðλ

2
hO2O2i0Þ detðλ2 hO1O1i0Þ detð1 − ðλ

4
hO2O2i0Þ−1ðλ4 hO1O1i0Þ−1Þg1

2

: ð6:19Þ

At λ → ∞, the change of the free energy compared to the
free theory is

ΔF ¼ − log
Z
Z0

¼ −tr logð2hO3=2O3=2i0Þ þ
1

2
tr log

�
1

2
hO2O2i0

�

þ 1

2
tr log

�
1

2
hO1O1i0

�
: ð6:20Þ

The two-point functions hO1O1i0 and hO2O2i0 can be
expanded in terms of scalar harmonics on S3 [28],

hOΔðxÞOΔðx0Þi0 ¼
X
lm

gΔlY
�
lmðxÞYlmðx0Þ; ð6:21Þ

where gΔl is given by

gΔl ¼ R3−2Δπ
3
223−Δ

Γð3
2
− ΔÞ

ΓðΔÞ
Γðlþ ΔÞ

ð3þ l − ΔÞ : ð6:22Þ

Since the harmonics satisfy orthonormal relations, we have

Z ffiffiffi
g

p
d3yhO2ðxÞO2ðyÞi0hO1ðyÞO1ðx0Þi0

¼
X
lm

gΔ¼2
l gΔ¼1

l Y�
lmðxÞYlmðx0Þ: ð6:23Þ

It is straightforward to see that gΔ¼2
l gΔ¼1 is independent

of l, and therefore according to Ref. [28], tr loghO2O2i0 þ
tr loghO1O1i0 does not contribute to ΔF.
Similarly, for the fermionic two-point function, it is

shown in Ref. [5] that tr loghO3=2O3=2i0 is also zero.
Therefore, in the IR, there is no modification to the free
energy given by the double-trace deformation.
When λ is small, one can apply perturbation theory to

compute ΔF induced by the deformation. As shown in
Ref. [5], the change of free energy caused by the deforma-
tion is proportional to the beta function of the deformation
coupling. The deformation appearing here is exactly
marginal in the N → ∞ limit, which implies that the beta
function of the coupling constant is suppressed by 1=N.
Thus, at small coupling, it can also be seen that the
deformation does not affect the OðN0Þ free energy. In
summary, although we have not computed the free energy
of the deformed theory for arbitrary λ, the vanishing of ΔF
at OðN0Þ in both the strong and weak coupling limits

provides strong evidence that ΔF does not receive OðN0Þ
contribution from the supersymmetric double-trace defor-
mation, which is exactly marginal in the N → ∞ limit.

VII. CONCLUSIONS

We have carried out a one-loop test of the conjectured
dualities between Konstein-Vasiliev HS theories in AdS4
with S3 and S1β × S2 boundaries. These theories are
based on the HS algebras huðm; nj4Þ, hoðm; nj4Þ, and
huspðm; nj4Þ which contain uðmÞ ⊕ uðnÞ, oðmÞ ⊕ oðnÞ,
and uspðmÞ⊕uspðnÞ as bosonic subalgebras. Generically,
these HS algebras can be interpreted as infinite-
dimensional supersymmetry algebras, and they do not
contain the extended AdS4 superalgebra OSpðN j4Þ as a
subalgebra. They do so only in the special case of m ¼
n ¼ 2

N
2
−1 for evenN or 2ðN−1Þ=2 for oddN . Our results for

the free energies extend previous ones [6,12,13] by the
inclusion of fermionic bulk degrees of freedom. In comput-
ing the one-loop free energies of bosonic and fermionic HS
fields in AdS4 with an S3 boundary, we have adopted the
modified spectral zeta function method suggested by
Ref. [10], thereby reproducing the one-loop free energy
for bosonic HS fields in a much simpler way without the
ambiguities encountered in Refs. [6,12]. We also find that
the total one-loop free energy of an infinite tower of bulk
fermionic fields vanishes.
Matching the bulk fields with boundary operators

suggests that the possible CFT duals of Konstein-
Vasiliev theories based on huðm; nj4Þ, hoðm; nj4Þ, and
huspðm; nj4Þ, and subject to HS symmetry-preserving
boundary conditions, are, respectively, the UðNÞ, OðNÞ,
and USpðNÞ singlet sectors of free scalars and free
fermions vector representations of the bosonic subalgebras
conformally coupled to S3. We find that the free energy of
the HS theory may match with that of the free CFT only
when the bulk theories are huðm; 0j4Þ, hoðm; 0j4Þ, and
huspðm; 0j4Þ Konstein-Vasiliev theories and with identi-
fications G−1

N ¼ γðN þ ΔNÞ with suitable integers ΔN.
These are generalized type A theories with bosonic scalars
on the boundary and bosonic bulk HS fields containing
even parity scalars. Thus, in particular, the free energies
for generalized type B models with fermions on the S3

boundary and bosonic HS fields including odd parity scalar
fields do not match. The mismatch in the case of m ¼ 0,
n ¼ 1 corresponding to the simplest type B model has
already been noted in Ref. [6] where the one-loop free
energy Fð1Þ ¼ −ζð3Þ=ð8π2Þ obtained in the bulk does not
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agree with the free energy of Dirac fermions on the S3

boundary. We have also calculated the free energies of
Konstein-Vasiliev theories in AdS4 with an S1β × S2 boun-
dary. In this case, we find that the free energies of all three
families of Konstein-Vasiliev theories match those of the
conjectured dual free CFTs.
Turning to the problem of mismatch in free energies of

the type B model and its conjectured dual, one may have to
take into account the issue of how to impose the OðNÞ
invariance condition on the CFT side. A natural way of
implementing it is to gauge the OðNÞ symmetry by means
of a vector gauge field with a level k Chern-Simons (CS)
kinetic term. This term breaks parity, but the result for the
free energy of the parity invariant model can be obtained in
a limit in which the CS gauge field decouples. It has been
suggested in Ref. [6] that as the fermions coupled to CS on
the boundary give rise to a shift in the level k, it may not be
justified to obtain the result for parity-preserving case by a
naive subtraction of a CS contribution from the free energy
on the CFT side. However, one expects that this effect
becomes irrelevant in the decoupling limit in which k → ∞.
In fact, we have examined the procedure of decoupling CS
in the large k limit by evaluating the S3 free energies for
the Aharony-Bergman-Jafferis (ABJ) model based on
UðNÞk ×Uð1Þ−k [29,30] and a few N ¼ 3 CS matter
theories in which the matter sector consists of fundamental
hypermultiplets [31–33]. After subtracting the contribution
from the pure CS term, we indeed obtain the free energies
of free vector models. Therefore, the puzzle of the free
energy mismatch in type B remains unresolved, and its
solution requires deeper understanding of HS/vector model
holography. In this context, it has been suggested by
Ref. [34] and explored further in Ref. [35] that the
vectorlike limit of the ABJ model based on UðNÞk ×
UðMÞ−k is given by

N; k → ∞ with λ≡ N
k

and M finite: ð7:1Þ
In this limit, the ABJ theory effectively behaves like a
N ¼ 6 CS gauged vector model with UðMÞ flavor sym-
metry [34]. Its bulk dual is conjectured to be the parity
violating N ¼ 6 UðMÞ gauged Vasiliev theory [34]. The
parity violating angle θ0 is conjectured to be related to the
CFT ’t Hooft coupling by θ0 ¼ πλ=2 [34].6

Turning to the question of free energy in the parity
invariant HS theory, we may first keep λ finite and consider
the limit λ → 0 that is required for the parity invariant
limit at the end.7 Different from the parity-preserving HS
theories, in the N ¼ 6 parity violating HS theory, a mixed
boundary condition needs to be imposed on the bulk Uð1Þ
gauge field in order to preserve the N ¼ 6 supersymmetry
[34]. The one-loop determinant of the bulk Uð1Þ gauge
field with mixed boundary conditions should contain a
logN term [36]. It was argued in Ref. [35] that the logN
term can be fully captured by the 1=N correction to the
anomalous dimension of the spin-0 ghost with the Δ−
boundary condition. This correction has not been computed
on the bulk side. However, with the assumption that it is
nonvanishing and parametrized by an undetermined con-
stant, the resulting bulk one-loop free energy has been
computed in Ref. [35]. Comparing this result with the free
energy of ABJ theory in the vectorlike limit (7.1), with the
free energy of pure UðMÞ CS subtracted, the matching of
the logN terms present in the free energies on both sides
leads to the identification [35]

GN ¼ γ

N
πλ

sinðπλÞ ; ð7:2Þ

where γ is an undetermined constant. On the other
hand, an exact expression for GN has been obtained from
the correlation function for two stress tensors on the CFT
side in Ref. [37]. Comparing the relevant terms in these
expressions for GN, one deduces that γ ¼ 2=π. Assuming
the stated value of γ, in the limit λ → 0, required for
obtaining the parity invariant HS theory, one finds the
relation GN ¼ 2=ðNπÞ which differs from the one that
appears in the HS/free vector model holography by a factor
of π. This is due to the fact that, while we assume that

Fð0Þ
bulk ¼ Fð0Þ

CFT in the HS/free vector model holography,
the example of HS/ABJ holography seems to suggest that

Fð0Þ
bulk ¼ Fð0Þ

CFT=γ. The above approach may seem to resolve
the free energy problem in the type B model; however, a
more rigorous computation of the one-loop free energy of
the bulk Uð1Þ gauge field with mixed boundary conditions
is needed to justify this value of γ. Furthermore, beyond the
logN dependence, the terms of higher order in 1=N have
not been compared in the matching of the free energies.
These issues clearly deserve further study.
Another interesting future direction is to consider HS/

free matrix model holography. In this case, the correspond-
ing bulk HS theory contains infinitely many massive HS
fields in addition to the usual massless ones. Recently, a
preliminary one-loop test of HS/free matrix model

6Besides the Newton constant which is small in the limit
described above, there is also a bulk ’t Hooft coupling
g2bulkM ∼M=N ≪ 1. String theory emerges when M=N ∼ 1.
Due to strong interactions, the HS particles form UðMÞ singlet
states which are described by the color neutral string states.
Since the M theory circle R11 ∼ ðM=k5Þ1=6 shrinks andffiffiffiffi
α0

p
=RAdS ∼ ðk=MÞ1=4 → ∞, this is a type IIA string in the high

energy limit. The N ¼ 6 parity violating UðMÞ gauged Vasiliev
theory can be perceived as a deconfinement phase of a type IIA
string when M=N ≪ 1, in which the string states fragment into
HS particles colored under UðMÞ [34].

7There are subtleties regarding the λ → 0 limit having to do
with the subtraction of the free energy coming from the CS term,
which may correspond to subtraction of an open string sector in
the bulk [34].
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holography was carried out in Ref. [10]. A dual pair
considered in Ref. [10] consists of a free scalar field,
namely the bosonic singleton Rac, in the adjoint repre-
sentation of SUðNÞ and a HS theory in AdS4 of which the
spectrum can be constructed from the two-, three-, and
four-fold tensor products of the Rac. The bulk fields are
dual to the single-trace of product of multiple Racs. The
one-loop free energies of the bulk fields belonging to the
first few Regge trajectories were computed in Ref. [10].
The one-loop free energy of the first trajectory comprised
of massless HS fields is equal to that of a real conformally
coupled scalar; however, such a feature ceases to exist for
higher trajectories. It is possible that after summing over all
trajectories, the total bulk free energy may possess a nice
property. But such a difficult task has not been completed.
It is also possible that supersymmetry may provide sim-
plifications, as we recall that in AdS5, the long multiplet of
SUð2; 2j4Þ gives rise to vanishing one-loop free energy
[19]. It should be noted that the matrix phase of the ABJ
model based on UðNÞk ×UðMÞ−k with M ∼ N has con-
served HS currents emerging in the limit λ → 0, which
implies the presence of massless HS particles in the
spectrum of a type IIA string. Thus, in the regime

M ∼ N; λ ¼ N=k → 0; ð7:3Þ

the duality between a IIA string on AdS4 × CP3 and ABJ
theory may provide an example of HS/free matrix model
duality [34] if the contribution from the CS term in the CFT
can be simply subtracted. For the string theory interpreta-
tion of this limit, we refer the reader to Ref. [38]. The point
we wish to stress here is that there are two regimes of type
IIA string theory on AdS4 × CP3 which remarkably give
two different supersymmetric HS theories, one of which is
expected to be dual to a vector model and the other to a
matrix model on the boundary of AdS4, and that the puzzle
we have encountered in the one-loop test of holography by
computing the free energies in the case of the vector model
remains to be investigated thoroughly in the case of the
matrix model.
A complete matching of the free energies on both sides

requires the knowledge of Fð0Þ
bulk which can only be

computed from the full action for HS theory. There exists
an action that takes the form of a Chern-Simons action in a
generalized spacetime of the form M9 ¼ X5 × Z4 where
Z4 is a twistor space with no boundary, and the spacetime
M4 resides on an open region of the boundary of X5 [11].
The action contains Lagrange multiplier master fields, but
they do not propagate to produce unwanted degrees of
freedom. What remains to be done is to add suitable HS
invariant deformations that reside on the boundary of M9,
which are highly restricted and for which candidates have
been proposed [11], and to construct a boundary action that
resides on the boundary of asymptotically AdS4 spacetime
M4 which has not been constructed so far. These are

needed for obtaining the field equations through an
appropriate variational principle, and once they are con-
structed, the full action can be quantized in a path integral
approach, and the Feynman rules can be derived, even
though the action does not have the traditional form
consisting of an infinite sum of Einstein-Hilbert term
and powers of curvature tensors and their derivatives. It
remains to be seen whether the result for the one-loop free
energy computed in this fashion agrees with that obtained
under the assumption that the quadratic action for the HS
fluctuations around AdS4 has the standard Fronsdal form
with two derivatives. In particular, it would be interesting to
determine if the mismatch in the free energies encountered
in the type B and ordinary supersymmetric HS theories and
their conjectured duals may find a resolution in a compu-
tation based on the action discussed above.
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Note added.—After this paper appeared on the arXiv, two
related papers [39,40] appeared the following day, where
the vanishing of the contribution from the bulk fermions
to the one-loop free energy has also been shown. It is
worth noting that the regularization scheme we use for the
individual spins is such that the subsequent sum over the
infinite tower of higher spins is finite, unlike the method
used in Refs. [39,40] where an additional regularization is
needed to perform this sum.

APPENDIX: COMPARISON
OF ζðΔ;sÞðzÞ WITH ~ζðΔ;sÞðzÞ

In this section, we will show that the alternate spectral
zeta function is physically equivalent to the original
spectral zeta in computing the one-loop free energy of
HS fields.

1. Bosonic case

For bosonic HS fields, the physical equivalence of the
alternate spectral zeta function and the original spectral zeta
function has been studied in Ref. [10] in the case of
summing over all integer spins. The crucial point is that for
a given HS field labeled by ðΔ; sÞ, the difference between
the alternate spectral zeta function and the original zeta
function can be expressed as a contour integral encircling
β ¼ 0 [10],
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~ζBðΔ;sÞðzÞ − ζBðΔ;sÞðzÞ

¼ 1

3

�
sþ 1

2

�
ν2
�
1

6
ν2 −

�
sþ 1

2

�
2
�

¼ z
2πi

I
dβ

2sinh3 β
2

β3

×
�

8

3β2
þ 2

sinh2 β
2

−
1

3
þ 4∂2

α

�
χΔ;sðβ; αÞ






α¼0

þOðz2Þ:

ðA1Þ
It has been shown in Ref. [10] that upon summing over all
integer spins, the contour integral vanishes. We have also
checked that this is also true for summing over all even
spins or odd spins separately.

2. Fermionic case

For fermionic HS fields, we will elaborate on the
physical equivalence of the alternate spectral zeta function
and the original spectral zeta function which has not been
studied elsewhere. For a fermionic HS field labeled by
ðΔ; sÞ, the original spectral zeta function is given by [17]

ζFðΔ;sÞðzÞ ¼
2sþ 1

6

Z
∞

0

du
u cothðπuÞ½u2 þ ðsþ 1

2
Þ2�

ðu2 þ ν2Þz ;

ðA2Þ
where ν ¼ Δ − 3

2
in D ¼ 4. Using the following identities,

�
sþ 1

2

��
u2 þ

�
sþ 1

2

�
2
�

¼
�
u2

d
dα

−
d3

dα3

�
sin

��
sþ 1

2

�
α

�




α¼0

;

1

ðu2 þ ν2Þz ¼
ffiffiffi
π

p
ΓðzÞ

Z
∞

0

dβe−βν
�
β

2u

�
z−1

2

Jz−1=2ðuβÞ; ðA3Þ

one can recast the spectral zeta function as in (3.18). The
alternate spectral zeta function proposed in (3.20) can be
computed exactly,

~ζFðΔ;sÞðzÞ ¼ ð2sþ 1Þ
�
1

32
−
sðsþ 1Þ

24

�
1

Γð2zÞ
×
Z

∞

0

dββ2z−1e−νβ
1

sinh2 β
2

þ 2sþ 1

16

1

Γð2zÞ
Z

∞

0

dββ2z−1e−νβ
1

sinh4 β
2

¼ 2sþ 1

24
½νðð2sþ 1Þ2 − 4ν2Þζð2z; νÞ

þ 4ζð2z − 3; νÞ − 12νζð2z − 2; νÞ
þ ð12ν2 − 4sðsþ 1Þ − 1Þζð2z − 1; νÞ�; ðA4Þ

from which we see that ~ζFðΔ;sÞð0Þ matches ζFðΔ;sÞð0Þ. The
latter takes the form

ζFðΔ;sÞð0Þ ¼
sþ 1

2

6

�
ν4

2
−
�
sþ 1

2

�
2

ν2
�

þ 1

3
ð2sþ 1Þ

�
1

240
þ ðsþ 1

2
Þ2

24

�
: ðA5Þ

It is easier to obtain this result of ζFðΔ;sÞð0Þ using (A2) than

(3.18). Next, we compute the first derivative of ~ζFðΔ;sÞðzÞ at
z ¼ 0, which is given by

~ζF0ðΔ;sÞð0Þ¼
2sþ1

12
½νðð2sþ1Þ2−4ν2Þζ0ð0;νÞþ4ζ0ð−3;νÞ

−12νζ0ð−2;νÞþð12ν2−4sðsþ1Þ−1Þζ0ð−1;νÞ�:
ðA6Þ

After some algebra, we obtain the difference between
~ζF0ðΔ;sÞð0Þ and ζF0ðΔ;sÞð0Þ,

~ζF0ðΔ;sÞð0Þ − ζF0ðΔ;sÞð0Þ ¼ −
1

24
ð2sþ 1Þ3ν2 þ 2sþ 1

9
ν4:

ðA7Þ

The technique involved in the calculation is analogous to
the bosonic case, and we refer readers to Appendix B of
Ref. [10] for more details. This result can again be
converted to a contour integral of β circling β ¼ 0,

~ζF0ðΔ;sÞð0Þ−ζF0ðΔ;sÞð0Þ¼2πi
I

dβ
2sinh3 β

2

β3

×

�
32

3β2
þ 2

sinh2 β
2

−
1

3
þ4∂2

α

�
χΔ;sðβ;αÞ:

ðA8Þ

From (3.21), one can see that the total character of the
fermionic sector including the contributions of all physical
fermionic higher fields and their ghosts gives rise to an even
function of β which has a vanishing contour integral.
Therefore, we have shown that in computing the one-loop
free energy of the whole fermionic sector, the alternate
spectral zeta function is physically equivalent to the
original one.
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