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We consider finite charge density geometries which interpolate between AdS2 ×R2 in the infrared and
AdS4 in the ultraviolet, while traversing an intermediate regime of anisotropic Lifshitz scaling and
hyperscaling violation. We work with Einstein-Maxwell-dilaton models and only turn on a background
electric field. The spatially modulated instabilities of the near-horizon AdS2 part of the geometry are used
to argue that the scaling solutions themselves should be thought of as being unstable—in the deep
infrared—to spatially modulated phases. We identify instability windows for the scaling exponents z and θ,
which are refined further by requiring the solutions to satisfy the null energy condition. This analysis
reinforces the idea that, for large classes of models, spatially modulated phases describe the ground state of
hyperscaling violating scaling geometries.
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I. INTRODUCTION

Recent years have seen growing interest in applying
AdS/CFT methods to condensed matter systems whose
underlying degrees of freedom are strongly coupled and
notoriously difficult to explore using traditional methods.
New gravitational solutions and instabilities have provided
a rich playground for describing novel phases of quantum
matter whose behavior is poorly understood. As an exam-
ple, classes of scaling geometries which break Lorentz
invariance have been used to model some of the unconven-
tional properties observed in non-Fermi liquids and
strongly correlated electron systems.
Lately the focus has shifted to probing and classifying

gravitational solutions with spatial anisotropy and/or inho-
mogeneities, motivated by new qualitative and quantitative
insights into transport in systems with broken translational
invariance. A rich structure has emerged from holographic
realizations of spatiallymodulated phases (see [1–4] for early
work), which appear in condensed matter in a number of
settings—nematics, smectics and charge/spin density waves
being prime examples. Interestingly, some of the anisotropic
ground states resulting from the breaking of translational
invariance have played a key role in recent attempts to model
holographically the formation of a crystal structure (see e.g.
[5]). We refer the reader to [6–10] for recent constructions of
the inhomogeneous geometries resulting from the back-
reaction of spatially modulated perturbations.
In this paper,we are interested in the deep infrared fate of a

class of (four-dimensional) solutions which exhibit aniso-
tropic Lifshitz scaling and hyperscaling violation. As we
will see shortly, they arise as exact solutions to simple
Einstein-Maxwell-dilaton models [11–17]. More generally,
however, they should be thought of as arising in the
intermediate, “mid-infrared” region of more complicated

geometries, which typically flow in the infrared to either
AdS2 ×R2 (as emphasized in [18–21]) or a spacetime
conformal to it. In the former case, the extensive entropy
associated with the AdS2 ×R2 near-horizon description
raises the question of what is the nature of their true
ground state.
It is by now well known that AdS2 × R2 suffers from

spatially modulated instabilities in a number of construc-
tions (see e.g. [22,23]). The presence of such unstable
modes suggests that, in appropriate regions of phase space,
the endpoint of scaling solutions with a “naïve” AdS2
infrared completion should also be spatially modulated
phases. This logic was advocated in [24] for anisotropic,
hyperscaling violating solutions supported by a constant
magnetic field. It was also corroborated by the comple-
mentary analysis of [25], which identified striped instabil-
ities by examining the scaling geometries directly (without
assuming a flow to AdS2 in the IR), but relied crucially on
the presence of an axionic term. In fact, in all of these cases,
the presence of instabilities was directly tied to terms that
violated time reversal (T) and parity (P) invariance.
However, it emphasized recently in [26] that T and/or P
violation are in fact not needed in order for AdS2 ×R2 to
become unstable to spatially modulated perturbations.
Here we revisit the analysis of [24] and apply it to scaling

solutions at finite charge density, more relevant to the
condensed matter context and in particular to compressible
phases of matter. As in [24], we will rely on the assumption
that these scaling solutions are approaching AdS2 ×R2 in
the infrared. Building on [26], we will identify the onset of
spatially modulated instabilities for certain classes of
anisotropic, hyperscaling violating solutions. Ensuring that
null energy conditions are satisfied will refine the analysis
further. As we will see, for large classes of models phases
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with stripe order arise quite generically as the natural
infrared description of these scaling solutions.

II. THE SETUP

We work with four-dimensional Einstein-Maxwell-
dilaton (EMD) gravity,

L ¼ R −
1

2
ð∂ϕÞ2 − fðϕÞFμνFμν − VðϕÞ; ð1Þ

with the scalar potential VðϕÞ and the gauge kinetic
coupling fðϕÞ for now left entirely arbitrary. The equations
of motion for this system are

Rμν ¼
1

2
ð∂μϕ∂νϕþ VgμνÞ −

1

2
fðgμνF2 þ 4FμρF

ρ
νÞ;

∇μðfFμνÞ ¼ 0; □ϕ − V 0 − f0F2 ¼ 0: ð2Þ

The background gauge field is taken to be purely electric,
with At ¼ QeAðrÞ and all other components vanishing. We
are interested in zero temperature geometries which inter-
polate between AdS2 ×R2 in the deep IR and AdS4 in the
UV, while traversing an intermediate scaling region
described by

ds2 ¼ r−2þθð−r−2ðz−1Þdt2 þ dr2 þ d~x2Þ: ð3Þ

In addition to the dynamical critical exponent z, the metric
(3) is characterized by a hyperscaling violating exponent θ,
thanks to which it is no longer scale invariant but trans-
forms as ds2 → λθds2 under t → λzt, r → λr, xi → λxi. The
intermediate geometry is supported by a gauge field of the
form A ∼ rθ−z−2dt, and a running scalar, ϕ ∼ log r, which
breaks the exact Lifshitz symmetry of the metric; hence, it
is only “Lifshitz-like.”
The exponents fz; θg modify the “usual” scalings of

thermodynamic quantities, giving e.g. s ∼ Tðd−θÞ=z for the
entropy of a (dþ 1)-dimensional field theory. The case
d − θ ¼ 1 has received particular attention because it leads
to logarithmic violations of the area law of entanglement
entropy, Sent ∼ A logA, a tell-tale of the presence of a Fermi
surface [17,27]. More generally, z and θ should be thought
of as tunable parameters—in the sense that they can be
chosen by changing appropriately the gauge kinetic func-
tion and scalar potential of the model—and (3) as a useful
laboratory to reproduce particular scalings of systems of
interest.
The scaling geometries (3) arise as exact solutions to the

model (1) when

f ∼ eαϕ and V ∼ e−ηϕ; ð4Þ

with fz; θg related to the Lagrangian parameters fα; βg
through

θ ¼ 4η

αþ η
; z ¼ 1þ θ

2
þ ð4 − θÞ2
2ð2 − θÞα2 : ð5Þ

In turn, these can be inverted to give

α2 ¼ ðθ − 4Þ2
ðθ − 2Þðθ − 2zþ 2Þ ; η ¼ θα

4 − θ
: ð6Þ

Finally, imposing the null energy conditions (NEC) [28] in
the intermediate region further constrains the physically
allowed values of z and θ,

ðθ − 2Þð2 − 2zþ θÞ ≥ 0;

ðz − 1Þð2þ z − θÞ ≥ 0: ð7Þ

The deep infared. In the IR we require the scalar to settle
to a constant, ϕ ¼ ϕ0, and demand the metric to become
that of AdS2 ×R2,

ds2 ¼ L2

�
−r2dt2 þ dr2

r2
þ d~x2

�
: ð8Þ

These requirements on the IR geometry are easy to satisfy
for the class of theories described by (1), for appropriate
choices1 of the scalar potential VðϕÞ and gauge kinetic
function fðϕÞ, as shown in a number of examples in
the literature. We refer the reader to the arguments of e.g.
[18–21] and [24] for further details. We emphasize that in
this paper we are not going to explicitly construct the
solutions which interpolate between the UV and the IR
AdS2 ×R2 geometry, traversing the intermediate hyper-
scaling violating regime. We will work under the
assumption that such flows can be easily realized.
The equations of motion resulting from requiring a

constant scalar and the geometry (8) in the IR then yield
the following near-horizon conditions on the gauge kinetic
function and scalar potential,

Vðϕ0Þ ¼ −
1

L2
; ð9Þ

V 0ðϕ0Þfðϕ0Þ ¼ −Vðϕ0Þf0ðϕ0Þ; ð10Þ

Q2
e ¼ −

1

2Vðϕ0Þfðϕ0Þ
: ð11Þ

We see from (9) and (11) that Vðϕ0Þ < 0 and fðϕ0Þ > 0 are
needed to ensure that the charge Qe and the AdS radius L
are real.

1They have to be such to allow the scalar to settle to a constant
in the deep IR, while also sustaining an intermediate hyperscaling
violating regime. The latter is guaranteed if V and f reduce to (4)
in the intermediate portion of the geometry.
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The ultraviolet. In order to operate within the standard
holographic framework, in the deep ultraviolet we are
interested in solutions which approach AdS4 with a
constant scalar ϕ ¼ ϕUV. The UV value of the scalar is
then determined entirely by the condition that the effective
scalar potential Veff ¼ VðϕÞ þ fðϕÞF2 admits an extre-
mum, ∂ϕVeffðϕUVÞ ¼ 0. However, we should emphasize
that the structure of the instabilities and the main point of
this analysis are linked to the infrared portion of the
geometry and are largely insensitive to the UV. Thus,
the main results of this paper will not be directly affected by
the choice of other UV fixed points.

III. SPATIALLY MODULATED INSTABILITIES

The spatially modulated instabilities of electrically
charged AdS2 ×R2 solutions to the class of models (1)
were analyzed recently in [26]. Here we build on the final
results of their analysis and identify instability windows for
the parameters of the theory—first by working in a small-
momentum approximation and then by considering a few
simple exact cases. In Sec. IV, we will apply this instability
analysis to fz; θg scaling solutions assumed to have an
AdS2 ×R2 infrared completion.
After turning on the following set of time dependent,

spatially modulated linear fluctuations of the AdS2 ×R2

background geometry,

δϕ ¼ e−iωthðrÞ cos kx1;
δgtt ¼ L2r2e−iωthttðrÞ cos kx1;

δgxixi ¼ L2e−iωthxixiðrÞ cos kx1;
δgtx1 ¼ L2e−iωthtx1ðrÞ sin kx1;
δAt ¼ −Ee−iωtatðrÞ cos kx1;
δAx1 ¼ −Ee−iωtax1ðrÞ sin kx1; ð12Þ

with i ¼ f1; 2g and working in radial gauge, one can use
the remaining gauge freedom2 to identify three gauge
invariant combinations, Φi ¼ htt þ 2a0t, Φ2 ¼ gx2x2 and
Φ3 ¼ h. Letting ~v ¼ fΦ1;Φ2;Φ3g, the fluctuation equa-
tions then take the form [26] of three mixed modes
propagating on AdS2,

�
ω2

r2
þ r2∂2

r þ 2r∂r

�
~v ¼ M2~v: ð13Þ

The mass matrix M is given by3

M2 ¼

2
64
2þ 2τ21 þ k2 −2k2 2τ1ð2 − k2 − τ2 − v2Þ

−1 k2 −2τ1
−τ1 0 k2 þ v2 þ τ2

3
75;

ð14Þ

where the parameters τ1, τ2, v2 are defined [26] through the
expansions of the gauge kinetic function and scalar
potential around the infrared value of the scalar ϕ0,

f ¼ f0

�
1þ τ1ðϕ − ϕ0Þ −

τ2
2
ðϕ − ϕ0Þ2 þ � � �

�
; ð15Þ

V ¼ v0

�
1 − τ1ðϕ − ϕ0Þ −

v2
2
ðϕ − ϕ0Þ2 þ � � �

�
: ð16Þ

Notice that f0 > 0 and v0 < 0 and the equations of motion
(9)–(10) were used to relate to each other the terms linear
in ϕ.
Spatially modulated instabilities in this system are

present when, at finite momentum, at least one of the mass
eigenvalues violates the AdS2 BF bound, i.e. when
m2

i < − 1
4
. Here we are going to focus exclusively on the

static, ω ¼ 0modes appearing at the onset of the instability.
From the structure of the mass matrix, we immediately see
that the eigenvalues m2

i are controlled by τ1 and the
combination (τ2 þ v2). Finally, the fact that these insta-
bilities are triggered without the need for P or T violation is
reflected by the structure of the mass matrix, which
depends only on k2 and not on k. It is also reflected by
the fact that the “dangerous” modes are indeed static and
correspond to δgtx1 ¼ δAx1 ¼ 0 [26].

A. Conditions for instabilities

In the zero momentum case, the mass matrix simplifies
and one finds

m2
i ¼ f0; 2; 2τ21 þ τ2 þ v2g: ð17Þ

Thus, the system will have unstable modes already at k ¼ 0
when the parameters are such that

2τ21 þ τ2 þ v2 < −
1

4
: ð18Þ

However, these perturbations do not break translation
invariance and should indicate instabilities to the formation
of other AdS2 × R2 solutions or geometries conformal to it.
Since here we are interested in (stripe) instabilities triggered
at finite momentum, we will work under the assumption
that (18) is never satisfied, so that all the eigenvalues (17)
are guaranteed to be above the AdS2 BF bound.
At finite momentum the eigenvalues can be solved for

exactly, but are significantly cumbersome. We start by
working in a small momentum approximation, which will
be enough to illustrate the main point we are after. For a

2The perturbations are left invariant by a coordinate trans-
formation combined with aUð1Þ gauge transformation, discussed
in detail in [26].

3We are using the mass matrix notation of [26].
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couple of special parameter choices, we will also make use
of the exact eigenvalues.
Small momentum expansion. Assuming that the matrix

eigenvalues have a momentum expansion of the form

λ ¼ λ0 þ k2λ1 þOðk4Þ;

and using the fact that we know their zero-momentum
values λ0 from (17), we find (provided that τ2 þ v2 ≠ −2τ21)
the following expressions:

m2
1 ¼ 0þOðk4Þ; ð19Þ

m2
2 ¼ 2þ k2

�
2τ21 þ 2ðτ2 þ v2Þ − 4

2τ21 þ ðτ2 þ v2Þ − 2

�
þOðk4Þ; ð20Þ

m2
3 ¼ 2τ21 þ ðτ2 þ v2Þ þ k2

�
4τ21 þ ðτ2 þ v2Þ − 2

2τ21 þ ðτ2 þ v2Þ − 2

�

þOðk4Þ: ð21Þ

We will come back to the case τ2 þ v2 ¼ −2τ21, which
needs to be analyzed separately, shortly. Notice that to see
potential instabilities associated with the first eigenvalue
becoming negative we must go to higher order in
momentum,

m2
1 ¼

1

2

�
τ2 þ v2

2τ21 þ τ2 þ v2

�
k4

þ
�
2τ21 − ðτ2 þ v2Þτ21 − ðτ2 þ v2Þ2

2ð2τ21 þ τ2 þ v2Þ2
�
k6 þ � � � :

Here we will content ourselves with examining the struc-
ture of the remaining two eigenvalues, neglecting terms of
order Oðk4Þ and higher. We don’t expect any qualitative
differences by including higher order terms in momentum.
We will take the onset of the instability to be signaled

by the condition that the k2 dependent terms become
negative—the logic being that for an appropriate value
of the momentum k ¼ k�, this contribution will win over
the leading k ¼ 0 term, pushing at least one of the mass
eigenvalues below the AdS2 BF bound.4 In particular,
examining both m2 and m3, we see that the k-dependent
terms become negative when

1 −
1

2
ðτ2 þ v2Þ < τ21 < 2 − ðτ2 þ v2Þ ; ð22Þ

which we therefore identify with the “window” for insta-
bilities (provided that τ2 þ v2 ≠ −2τ21). Note that from this

relation we learn that (small k) unstable modes are only
possible for τ2 þ v2 < 2.
Exact eigenvalues. For certain parameter choices the

mass eigenvalues are easy to analyze exactly, without
resorting to any small momentum expansion:

(i) Case 1. The case τ2 þ v2 ¼ −2τ21, which was omit-
ted from the small k analysis above, gives

m2
i ¼

�
k2; 1þ k2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2ð1þ τ21Þ

q �
: ð23Þ

The last eigenvalue is the only one which can dip
below the AdS2 BF bound; in fact, it attains its

lowest value at k2� ¼ τ2
1
ð2þτ2

1
Þ

2ð1þτ2
1
Þ , where it equals

m2
min ¼ −

1

2

τ41
1þ τ21

: ð24Þ

Violations of the AdS2 BF bound and therefore
instabilities will occur whenever m2

min < − 1
4
, which

translates to

τ21 > 1: ð25Þ

(ii) Case 2. Another special parameter choice is
τ2 þ v2 ¼ 2, which as we noted above “closes”
the instability window (22). In this case, the mass
matrix simplifies significantly and we have

m2
1 ¼ k2 þ 2;

m2
2;3 ¼ 1þ k2 þ τ21

þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2ð1þ τ21Þ þ 2τ21 þ τ41

q
:

All the squared-mass eigenvalues are now non-
negative (the third one attains its minimum at
k ¼ 0) and therefore we don’t see any unstable
modes, as anticipated from (22).

A more exhaustive analysis of the exact mass eigenvalues is
beyond the scope of this paper.

IV. THE INTERMEDIATE SCALING REGIME

So far we have restricted our attention to the instabilities
of AdS2 ×R2 solutions to the class of models (1).
However, what we are after is what they can teach us
about the true ground state of the scaling solutions (3).
Recall that our interest is in geometries which contain an
intermediate fz; θg scaling branch, and relax to AdS2 ×R2

only in the deep IR. For solutions of this type, we can use
the instability analysis of Sec. III to argue that the scaling
geometries themselves should be thought of as being
unstable—in the deep infrared—to spatially modulated
phases. The relations (22) and (25) then translate into

4Clearly, this has to be done within the regime of validity of the
small k eigenvalue approximation we are employing.
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conditions on the values of z and θ associated with infrared
instabilities.
In order to introduce the ‘minimal’ set of ingredients

needed to support the geometries (3), we assume a simple
gauge kinetic function of the form

fðϕÞ ¼ eαϕ: ð26Þ

With this choice, the coefficients τ1 and τ2 defined in (15)
are just

τ1 ¼ α; τ2 ¼ −α2: ð27Þ

Next, we take the scalar potential to be of the form

VðϕÞ ¼ V0e−ηϕ þ VðϕÞ; ð28Þ

where we assume that the first term is responsible for
driving the intermediate hyperscaling violating regime
while VðϕÞ is negligible there. Given these assumptions,
the exponents z and θ can then be gotten from α and η by
using (5). Finally, expanding the potential about ϕ0, we
extract

v2 ¼ L2ðη2V0e−ηϕ0 þ V 00Þ ¼ L2ðV 00 − η2VÞ − η2; ð29Þ

where we made use of (9) and it is understood that V and V 00
are evaluated at ϕ0.
Looking back at the small-momentum instability win-

dow (22) we derived in Sec. III, it can now be rewritten as

α2 > 2 − v2 > 0; ð30Þ

or, entirely in terms of z, θ and V:

ðθ − 4Þ2
ðθ − 2Þðθ − 2zþ 2Þ > 2 − L2V 00ðϕ0Þ

þ θ2

ðθ − 2Þðθ − 2zþ 2Þ ½1þ L2Vðϕ0Þ� > 0:
ð31Þ

Scaling geometries with an infrared AdS2 completion and
whose fz; θg exponents satisfy this inequality—for appro-
priate values of Vðϕ0Þ and V 00ðϕ0Þ—will then be unstable
to the formation of spatially modulated phases. The NEC
conditions (7) should also be imposed and further constrain
the range of z and θ, as we show below. Although we won’t
do it here, imposing thermodynamical stability would lead
to additional restrictions.
Perhaps more interesting is case 1, which had a simple

exact solution and exhibited instabilities when (25) was
satisfied. What this condition tells us is that scaling
solutions with z and θ in the range

ðθ − 4Þ2
ðθ − 2Þðθ − 2zþ 2Þ > 1 ð32Þ

will have spatially modulated fluctuations provided VðϕÞ
satisfies the following relation:

8

θ − 2zþ 2
¼ L2

�
V 00ðϕ0Þ −

θ2

ðθ − 2Þðθ − 2zþ 2ÞVðϕ0Þ
�
:

ð33Þ

We illustrate case 1 in Fig. 1. The dark (blue) region
contains the values of the exponents z and θ compatible
with (32) and with the null energy conditions (7). Thus, it
indicates the portion of phase space susceptible to insta-
bilities for the analysis of case 1. The remaining light (pink)
region represents values of fz; θg allowed by NEC but
outside of this particular instability window (see [29] for a
plot of NEC for models with more complicated matter
content). Note that for this case, the “special” value
θ ¼ 1—associated with a log violation of the entanglement
entropy in this number of dimensions—is associated with
an unstable geometry for 1.5 ≤ z ≤ 6.
In summary, for appropriate scalar potential profiles there

will be regions of phase space in which conditions such as
(31), (32) and (33) are easily satisfied. This suggests that—
for the corresponding parameter choices—phases with
spatial modulation are indeed the ultimate ground states
of these classes of scaling solutions.

FIG. 1. The dark (blue) shaded region represents the values of z
and θ compatible with NEC and associated with the spatially
modulated instabilities predicted by (32) for case 1. The lighter
(pink) shaded regions contains the remaining values of fz; θg
allowed by NEC but outside the instability window (32). We are
plotting the range −7 < θ < 9, −3 < z < 7.
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A. Examples

For concreteness, we consider a few explicit examples:
(1) When V 00ðϕ0Þ ¼ η2Vðϕ0Þ, the expression (29) re-

duces to v2 ¼ −η2. All the instabilities of the system
then are controlled entirely by the values of α and η.
This condition is clearly satisfied, for instance, when
the full scalar potential is V ∼ cosh ηϕ, a choice used
in several constructions in the literature.
The small-k instability window (31) then takes the

simple form

α2 − η2 > 2: ð34Þ

Expressing it in terms of z and θ, we see that we
should expect spatially modulated instabilities trig-
gered by small momentum modes when

−4 < θ − 2zþ 2 < 0: ð35Þ

The NEC conditions further restrict the allowed
range of z and θ, as shown in Fig. 2. As previously,
the dark (blue) shaded region contains the values of z
and θ compatible with NEC and susceptible to
instabilities according to (35). The remaining lighter
(pink) region represents the additional fz; θg values
allowed by NEC but which fall outside of this
particular instability window.

In the Lorentz invariant case z ¼ 1, the instability
condition (35) becomes

−4 < θ < 0; ð36Þ

while, when the hyperscaling violating exponent
vanishes θ ¼ 0, it becomes

1 < z < 3: ð37Þ

Both conditions are automatically consistent with
NEC. Finally, for the special θ ¼ 1 case, the
instability window becomes

3

2
< z <

7

2
; ð38Þ

also compatible with NEC. Notice that all of these
relations are clearly visible in Fig. 2.

(2) For a racetrack-type potential,

VðϕÞ ¼ V0e−ηϕ þ V1eγϕ; ð39Þ

requiring as usual an IR AdS2 ×R2 and after some
manipulations we find v2 ¼ αðγ − ηÞ − ηγ. Small-k
perturbations then trigger instabilities when

0 < 2þ αðη − γÞ þ ηγ < α2; ð40Þ

or equivalently when

0 < 2þ θ½4ð1 − κÞ þ θð2κ − 1Þ�
ðθ − 2Þðθ − 2zþ 2Þ

<
ðθ − 4Þ2

ðθ − 2Þðθ − 2zþ 2Þ ; ð41Þ

where we defined κ≡ γ=η for convenience.
On the other hand, the exact case 1 of Sec. III tells

us that we should expect instabilities in the range
(32) whenever γ ¼ −α. As usual, to satisfy NEC one
must further impose (7).

(3) That these spatially modulated instabilities are quite
generic, at least in the sense that models that exhibit
them are easy to construct, should be by now clear.
As one last example to further illustrate this point,
consider

VðϕÞ ¼ V0e−ηϕ þ V1eγϕ þ V2eδϕ: ð42Þ

Requiring AdS2 ×R2 in the IR in this case gives

v2 ¼ −L2V2eδϕ0ðηþ δÞðγ − δÞ þ αðγ − ηÞ − ηγ:

ð43Þ

Looking for simplicity again at the instability
window (32), recall that it will be valid provided
that (33) is obeyed. For this potential, this boils
down to choosing V2 so that

FIG. 2. The dark (blue) shaded region denotes the values of z
and θ compatible with NEC and susceptible to instabilities, for
the special example described by (35). The light (pink) region
contains the remaining values of fz; θg allowed by NEC.
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V2 ¼
α2 þ αðγ − ηÞ − γη

L2eδϕ0ðηþ δÞðγ − δÞ ; ð44Þ

a condition which should be easy to satisfy—apart
from potential pathologies—irrespective of the val-
ues of the remaining Lagrangian parameters.

(4) Finally, we would like to point out that when the
scalar potential is a single exponential,

VðϕÞ ¼ V0e−ηϕ; ð45Þ

the requirement of AdS2 ×R2 in the infrared forces
α ¼ η. We then have

τ1 ¼ α; v2 ¼ τ2 ¼ −α2; ð46Þ

which “trivially” satisfies τ2 þ v2 ¼ −2τ21 and is
therefore an example of case 1. However, when
α ¼ η the solution corresponds to z ¼ ∞ and is just
AdS2 ×R2 everywhere, with no intermediate re-
gime of the type we have been describing.

V. FINAL REMARKS

For fz; θg scaling solutions with an AdS2 IR completion,
the presence of finite-momentum modes which trigger
instabilities in the near-horizon region can be used to
argue that the full geometry should be expected to be
unstable to spatially modulated phases. This logic led us to
map the AdS2 instability windows (22) and (25) we
identified in Sec. III to conditions for the parameters z
and θ characterizing the intermediate scaling regime—in a
small-k approximation in (31) and for a simple exact case in
(32). Depending on the detailed structure of the scalar
potential, there will be regions of phase space in which such
instability conditions are satisfied—in addition, models
obeying these relations can be engineered in a straightfor-
ward manner.

A drawback of this analysis is that it doesn’t allow one to
make “universal” statements about which fz; θg scaling
solutions will be unstable, without fully specifying the
scalar potential—knowledge of the infrared behavior of
the geometry is clearly not enough to uniquely determine the
intermediate scaling region. Moreover, while the perturba-
tions we used here are more generic than those of [24], we
have relied mostly on a small-k expansion, and therefore
have not identified all possible sources of instability.
Nonetheless, the analysis in this paper reinforces the idea

that spatially modulated phases seem to arise generically in
the deep IR of a large class of scaling solutions with
hyperscaling violation. While it would be interesting to
have an explicit supergravity realization of the types of
flows advocated here, there shouldn’t be any fundamental
obstacle to finding them. More broadly, it would be useful
to have a better understanding of what differentiates
between the possible IR completions of these classes of
scaling solutions, and in particular whether they approach
AdS2 ×R2 or a geometry conformal to it, or even more
general classes of anisotropic geometries—all cases asso-
ciated with very different physics and transport properties.
Further exploring the rich IR behavior of scaling solutions
of this type—and properties of anisotropic and/or inho-
mogeneous ground states more generally—will
undoubtedly continue to bring fresh insights into strongly
correlated phases of matter.
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