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It has been recently argued that inserting a probe D3-brane in a flux background breaks supersymmetry
spontaneously instead of explicitly, as previously thought. In this paper we argue that such spontaneous
breaking of supersymmetry persists even when the probe D3-brane is kept in a curved background with an
internal space that does not have to be a Calabi-Yau manifold. To show this we take a specific curved
background generated by fractional 3-branes and fluxes on a non-Kähler resolved conifold where
supersymmetry breaking appears directly from certain worldvolume fermions becoming massive. In fact
this turns out to be a generic property even if we change the dimensionality of the antibrane, or allow
higher-order fermionic interactions on the antibrane. We argue for the former by taking a probe D7-brane in
a flux background and demonstrate the spontaneous breaking of supersymmetry using worldvolume
fermions. We argue for the latter by constructing an all-order fermionic action for the D3-brane from
which the spontaneous nature of supersymmetry breaking can be demonstrated by bringing it to a κ-
symmetric form.
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I. INTRODUCTION

It has recently been shown [1,2] that a probe D3-brane in
a flux background breaks supersymmetry spontaneously,
and furthermore, if the D3 is placed on an orientifold plane,
the only low-energy field content is a single massless
fermion.1 The implications of this are twofold: 1) that
supersymmetry (SUSY) breaking is spontaneous, as
opposed to explicit, indicates that there is no perturbative
instability in the D3-D3 system famously used to construct
the Kachru-Kallosh-Linde-Trivedi (KKLT) de Sitter sol-
ution [6], and 2) as the only four-dimensional field content
is a single massless fermion, which can be expressed in the
d ¼ 4 N ¼ 1 supergravity theory as the spinor component
of a nilpotent multiplet, this provides a natural starting
point for a string theory embedding of the inflation models
proposed in Refs. [7–9] and other works.
This result, and the connection to string cosmology,

provides impetus to further investigate Dp-brane systems in
order to populate the landscape of stable nonsupersym-
metric compactifications with Dp-branes, to better under-
stand supersymmetry breaking in these models, and to
perhaps stumble upon new string theory settings where de
Sitter space and inflation naturally arise. It is with these
goals in mind that we present three interconnected

analyses, which generalize and build upon the work of
Refs. [1–3].

A. Spontaneous vs. explicit supersymmetry
breaking with antibranes

Before we proceed with our analysis, let us start with a
discussion of spontaneous supersymmetry breaking.
Spontaneous supersymmetry breaking is a crucial

element of string theory model building. This is because
a consistent study of four-dimensional physics requires that
all or almost all moduli be stabilized, and all known
mechanisms of moduli stabilization2 are understood in
terms of a supersymmetric four-dimensional theory, e.g. the
complex structure moduli are fixed via the flux-induced
superpotential as in Ref. [11]. Without an underlying
supersymmetric theory, i.e. in the case that supersymmetry
is explicitly broken, it is not clear to what extent the known
methods of moduli stabilization are applicable.
Spontaneous symmetry breaking occurs when the

ground state of a theory does not respect the symmetries
of the action. This is an essential part of model building in
particle physics, supergravity, and string theory, as it gives
theoretical control over corrections to the action. The
situation in string theory is slightly more complicated than
in particle physics, since proposed de Sitter solutions in
string theory (for example KKLT [6]) rarely exist as the
ground state of the theory, but rather as metastable minima.
Given this, we will drop the phrase “ground state” from our
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1See also Refs. [3,5], and especially the key papers in Ref. [4],

that motivated the research on spontaneous SUSY breaking in the
presence of a D3-brane.

2With the exception of “string gas” moduli stabilization; see
e.g. Ref. [10].
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definition, and instead refer to nonsupersymmetric states in
a supersymmetric theory as spontaneously breaking the
supersymmetry.
In simple cases, for example Ref. [2], there is a smoking

gun of spontaneous supersymmetry breaking by antibranes:
a worldvolume fermion remains massless, which one can
identify with the Goldstino of SUSY breaking. However, as
discussed in Ref. [3], it will not in general be true that a
worldvolume fermion remains massless. Instead, the
Goldstino of SUSY breaking will be some combination
of open- and closed-string modes. Thus a more general
diagnostic of spontaneous breaking is needed, which we
will now develop. We will see that even in the absence of a
massless fermion on the brane, supersymmetry breaking
can still be shown to be spontaneous.
Our diagnostic for spontaneous supersymmetry breaking

by a probe Dp-brane is the following: a solution breaks
supersymmetry spontaneously if it is a solution of the
theory with the action

S ¼ SIIB þ SD̄p; ð1Þ

where SIIB is action of type IIB supergravity. The above
action is explicitly supersymmetric, since an antibrane is
1=2 BPS, and thus negates the requirement to “find” the
Goldstino in order to deduce that supersymmetry breaking
is spontaneous. A probe D3 in a noncompact flux back-
ground without sources can be studied in this way. This
reasoning applies directly to our second example: a D7 in a
warped bosonic background without sources, which we
will study in Sec. III.
However, this diagnostic is limited in its applicability,

as many interesting backgrounds have explicit brane or
orientifold content in addition to the probe Dp. Fortunately,
the condition (1) can in fact be extended to apply to a
subset of these cases, by making use of string dualities to
relate a flux background with branes to a background
without branes. Again, this makes no recourse to the
Goldstino being a pure open-string mode, i.e. a worldvo-
lume fermion.
Our first example in this paper, aD3 in a resolved conifold

background with wrapped 5-branes, which we study in
Sec. II, is an example where dualities must be used to make
sense of Eq. (1). One way to arrive at the resolved conifold
with wrapped 5-branes background is as a solution to
S ¼ SIIB þ SD5, in which case the addition of a D3 would
break supersymmetry explicitly, since the D5 and D3 are
invariant under different κ symmetries. However, the
resolved conifold background can alternatively be found
as the dual to the deformed conifold with fluxes and no
branes3; see for example Refs. [13,14]. In this dual frame the
underlying action is source-free, and the addition of a D3

(again in the dual deformed conifold) will break SUSY
spontaneously. The deformed conifold with D3 can then be
dualized back to a resolved conifold with a wrapped D5
alongwith aD3, but the spontaneous (as opposed to explicit)
nature of SUSY breaking is only manifest in the dual frame.
As we will see, backreaction of the D3 on the resolved

conifold induces masses for all the fermions, so there is no
obvious candidate for the Goldstino; this further indicates
that the resolved conifold with a wrapped D5 and a D3
system exhibits explicit breaking of supersymmetry. This is
consistent with our discussion above: the spontaneous
nature of SUSY breaking is only manifest in the dual
deformed conifold description. In terms of moduli stabi-
lization, a dual description in terms of spontaneous break-
ing allows one to consistently define a superpotential for
both the Kähler and complex structure moduli, which is
precisely the feature of “spontaneous breaking” that is
useful for studying 4d physics from string theory.

B. Outline of the paper

Our first analysis, studied in Sec. II, considers a probe
D3-brane, not in a Calabi-Yau background [11,15] as
studied in Ref. [2], but in a non-Kähler resolved conifold
background with integer and fractional 3-branes. We will
construct a supersymmetric deformation to the Calabi-Yau
resolved conifold that converts it to a non-Kähler resolved
conifold, provides a nonzero curvature to the internal space,
and which induces a nonzero amount of imaginary self-
dual (ISD) fluxes. Once a probe D3 is introduced, super-
symmetry is spontaneously broken by the coupling of ISD
fluxes to the worldvolume fermions, giving masses to the
worldvolume fermions. This breaking is in fact “soft” as the
fluxes and fermion masses are set by the non-Kählerity of
the internal space, which is in turn a tunable parameter. The
picture is somewhat similar to the case with Calabi-Yau
internal space as studied in Ref. [2] but the analysis differs
in terms of fluxes and backreaction. In particular, the
analysis in the probe approximation now yields two
massless fermions, as opposed to one in Ref. [2]. This
result is modified upon considering backreaction of the D3
on the bulk fluxes, which generates both (2, 1) and (1, 2) 3-
form fluxes, inducing masses for all the worldvolume
fermions, i.e. there are zero massless fermions remaining
in the spectrum. We also study certain aspects of de Sitter
vacua from our analysis. It interesting to note that a curved
internal space appears to be a requirement for de Sitter
solutions in string theory, at least in many contexts,
especially negatively curved internal spaces (see for exam-
ple Ref. [16] and references therein). With this in mind, we
consider moduli stabilization in this background, and the
connection to de Sitter space in this model.
The physics discussed above remains largely unchanged

even if we change the dimensionality of the antibrane. In
Sec. III, we consider a second application of antibrane

3The dual is succinctly described in supergravity when the
number of wrapped D5-branes is very large [12,13].
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fermionic actions and take a probe4 D7-brane, this time
working with a Calabi-Yau background. Supersymmetry is
again broken spontaneously via flux-induced fermion
masses, and the masses are proportional to the piece of
the 3-form flux which is ISD in the space transverse to
the brane. In the D3 case, where the transverse space is the
entire internal space, this flux is precisely the flux of
the Giddings-Kachru-Polchinski (GKP) background.5

However, in the D7 case, the fermion masses are now
sourced by the subset of these fluxes which are ISD in the
two directions transverse to the brane. In other words, the
fermion masses are now determined solely by fluxes that
have two legs on the brane, and one leg off. We show that
for a special class of flux background there can be many
massless fermions in the low-energy spectrum, while in a
general flux background there may be none. This provides
yet another instance of a string theory realization of
nilpotent Goldstinos,6and a possible starting point for
inflation and de Sitter solutions.
Our final application is actually closer to a derivation; we

study the fermionic D3 action at all orders in the fermionic
expansion. To do this, we promote the bosonic fields to
superfields, and discuss the physics at the self-dual point.
At the self-dual point we can use U-dualities to relate
various pieces of the multiplet and consequently determine
the fermionic completions of the different fields. Once we
move away from the self-dual point, we can determine the
fermionic completions of all the bosonic fields in a compact
form. As an added bonus, we find that the all-order
fermionic action can be written in a manifestly κ-symmetric
form, even without precise details of the form of the terms
in the action. The orientifolding action can then be easily
incorporated in the action. This indicates that the sponta-
neous nature of supersymmetry breaking by antibranes,
both in the presence and in the absence of an orientifold
plane, is not a leading-order effect, but in fact continues to
be true to all orders. This puts the conclusions of
Refs. [1,2], and its implications for KKLT, on solid footing.
We conclude with a short discussion of the implications

of our work and directions for future research.

II. D3-BRANE IN A RESOLVED CONIFOLD
BACKGROUND: SOFT (AND SPONTANEOUS)

BREAKING OF SUPERSYMMETRY

The breaking of supersymmetry by a probe D3-brane in
a warped bosonic background was studied recently in
Ref. [2]. They studied a D3-brane in a GKP background,
and found that supersymmetry was spontaneously broken

by the coupling of ISD fluxes to the worldvolume fermions.
In this section we perform a similar analysis, focusing
instead on a probe D3-brane in a resolved conifold back-
ground. We will consider a deformation to the Calabi-Yau
resolved conifold which maintains supersymmetry but
provides a nonzero curvature to the internal space, and
which induces ISD 3-form fluxes from a set of integer and
fractional D3-branes. Once a probe D3 is introduced,
supersymmetry is again spontaneously (and softly) broken
by the coupling of ISD fluxes to the worldvolume fermions,
and the fermion masses can be straightforwardly computed.
As we will see, the “soft” nature of supersymmetry
breaking is due to the tunable nature of the non-
Kählerity of the internal manifold.
The key details of the fermionic action for a D3-brane in

a warped bosonic background are given in Ref. [2]. These
will be the starting point of our analysis, so here we merely
quote them. The worldvolume action is given, in a
convenient κ-symmetry gauge, by

LD3
f ¼ T3e4A0θ1

�
2e−ϕΓμ∇μ −

i
12

ðGISD
mnp − GISD

mnpÞΓmnp

�
θ1

ð2Þ
where θ1 is a 16-component7 10d Majorana-Weyl spinor,8

and we have defined the 3-form flux G3 as Gð3Þ ¼
Fð3Þ − τHð3Þ. The 16-component spinor θ1 can be decom-
posed into four 4dDirac spinors λ0, λi with i ¼ 1, 2, 3. On a
Calabi-Yau manifold, the λ0 is a singlet under the SU(3)
holonomy group of the internal Calabi-Yau manifold while
the λi transform as a triplet.
We can now rewrite the D3-brane action (2) using the 4d

decomposition of the θ1 spinor in the following way:

LD3
f ¼ 2T3e4A0−ϕ

�
λ0−γ

μ∇μλ
0þ þ λj−γ

μ∇μλ
iþδij

þ 1

2
m0λ

0þλ0þ þ 1

2
m0λ

0
−λ

0
− þmiλ

0þλiþ þm{λ
0
−λ

{
−

þ 1

2
mijλ

iþλ
j
þ þ 1

2
m{ jλ

{

−λ
j
−

�
; ð3Þ

where we use � subscripts to denote 4d Dirac spinors that
satisfy λ� ¼ 1

2
ð1� i ~Γ0123Þλ, and the masses are defined as

m0 ¼
ffiffiffi
2

p

12
ieϕΩuvwGISD

uvw; from ð0; 3Þ flux; ð4Þ

mi¼−
ffiffiffi
2

p

4
eϕeui G

ISD
uvwJ

vw; from nonprimitive ð1;2Þ flux;
ð5Þ

4By assuming such a heavy object as a probe simply means
that the logarithmic backreactions of the D7-brane on geometry
and fluxes are suppressed by powers of gs.

5Henceforth by GKP background we will always mean the
background proposed in Refs. [11,15].

6See Refs. [17–19] for even more examples.

716 complex components, or 32 real components.
8We have already fixed κ symmetry.
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mij ¼
ffiffiffi
2

p

8
ieϕðewi etj þ ewj e

t
iÞΩuvwguugvvG

ISD
tu v;

from primitive ð2; 1Þ flux; ð6Þ

where J andΩ are the Kähler form and holomorphic 3-form
respectively.
We are interested in a more general background, where

the SU(3) holonomy will be broken by a perturbation to the
geometry. Compactifications on manifolds with SU(3)
structure but not SU(3) holonomy have been studied in,
for example, Refs. [20] and [21]. These are non-Kähler
manifolds, which in general may or may not have an
integrable complex structure, and are classified by five
torsion classes Wi [22–24]. The simplest case, where all
five torsion classes vanish, is a Calabi-Yau manifold that
supports no fluxes. We are looking for the case with fluxes,
so that we can make use of Eqs. (4), (6), and (5), and
therefore some of the torsion classes must be nonzero.
Moreover, the non-Kähler manifold that we need has to

be a complex manifold, otherwise the flux decomposition
in terms of (2, 1), (1, 2) or (0, 3) forms would not make any
sense. In addition, the manifold should be noncompact,
so as to avoid any tension with Gauss’ law. The simplest
internal manifold that satisfies our requirements is the
resolved conifold with a non-Kähler metric which allows
an integrable complex structure (and by definition does not
have a conifold singularity).
The goal of this section will be to study the action (2)

or (3) in a resolved conifold with an arbitrary amount of
D3-branes and delocalized five branes (see Refs. [25] and
[26] for more details on delocalized sources). More
precisely, we will put a D3-brane in a supersymmetric
background with metric given by

ds2¼ 1

e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3þΔ

p ds20123þe2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3þΔ

p
ds26; ð7Þ

where eϕ is related to the type IIB dilaton eϕB as ϕB ¼ −ϕ
and the factor Δ encodes the backreaction of the 3-branes.
It is defined using a parameter β as

Δ ¼ sinh2 βðe2ϕ=3 − e−4ϕ=3Þ: ð8Þ

The other piece appearing in Eq. (7) is ds26, which is the
metric of the internal six-dimensional non-Kähler resolved
conifold. This is expressed in terms of the coordinates (r, ψ ,
θi, ϕi) in the following way:

ds26 ¼ F1dr2 þ F2ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2

þ
X2
i¼1

F2þiðdθ2i þ sin2 θidϕ2
i Þ; ð9Þ

where the resolution parameter is proportional to F3 − F4.

We will start by making an ansatz for the warp factors
FiðrÞ appearing in Eq. (9) which will allow us to see how to
go from a Ricci-flat Calabi-Yau metric to a non-Kähler
metric on a resolved conifold. A more generic class of
solutions for the warp factors exists and has been discussed
in Ref. [26], but we will only consider a subset given by

F1 ¼
1

F
þ δF; F2 ¼

r2F
9

; F3 ¼
r2

6
þ a21ðrÞ;

F4 ¼
r2

6
þ a22ðrÞ; ϕ ¼ ϕðrÞ; ð10Þ

where F, δFðrÞ, a1ðrÞ, and a2ðrÞ, are functions of the radial
coordinate only. From the above ansatz, it is easy to see
where the Calabi-Yau (CY) case fits in. It is given by

FðrÞ≡ FCY ¼
�
r2 þ 9a2

r2 þ 6a2

�
; δFðrÞ ¼ 0;

a1ðrÞ ¼ a; a2ðrÞ ¼ 0; ϕ ¼ 0: ð11Þ

The Calabi-Yau case is fluxless (with the vanishing of the
flux enforced by supersymmetry), and has a constant
dilaton. Once we switch on fluxes, we can no longer
assume that the other pieces of the warp factors appearing
in Eq. (10) vanish.
As a cautionary tale, let us first consider whether we can

perturb away from the Calabi-Yau resolved conifold simply
by allowing for a small perturbation in FðrÞ and ϕðrÞ. We
will see that this in fact does not lead to useful results, and
thus we will need to be more careful in constructing our
geometry. Nonetheless, it is useful for establishing an
algorithm for constructing solutions.
Consider a small perturbation to Eq. (11) of the form

FðrÞ ¼ FCY þ σfðrÞ; δFðrÞ ¼ 0;

a1ðrÞ ¼ ae−ϕ; a2ðrÞ ¼ 0; ð12Þ

where σ is a dimensionless expansion parameter, that
satisfies the EOMs and takes the solution from the
Calabi-Yau resolved conifold to the non-Kähler resolved
conifold. We can narrow down our perturbation scheme by
allowing the dilaton field to behave in the following way:

ϕðrÞ ¼ log

�
1

rσ

�
; ð13Þ

which would guarantee the existence of a small parameter σ
that, while preserving supersymmetry, would be respon-
sible in taking us away from the Calabi-Yau case. In the
limit σ → 0, we go back to the fluxless Calabi-Yau case.
This geometry is of course singular in the r → ∞ limit, but
we will assume for this discussion that the geometry is
capped off at some sufficiently large r. In any case, this
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issue will not be important, as this perturbation fails for
other reasons.
A way to construct such a background has already been

discussed in Ref. [26], and therefore we will simply quote
some of the steps. The best and probably the easiest way to
analyze such a background is by using the torsion classes.
For us the relevant torsion classes are W4 and W5. They
can be expressed in terms of the warp factors FiðrÞ and the
dilaton ϕðrÞ in the following way:

W4 ¼
F3r −

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
4F3

þ F4r −
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
4F4

þ ϕr;

ReW5 ¼
F3r

12F3

þ F4r

12F4

þ F2r − 2
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
12F2

þ ϕr

2
: ð14Þ

The other torsion classes take specific values, with W3

determining the torsion. This solution is generated by
following the duality chain described in Ref. [26], which
generates both the Ramond-Ramond (RR) and the Neveu-
Schwartz (NS) 3-forms F 3 and H3 respectively.
Our aim then is to use these torsion classes to determine

the functional form for the warp factors Fi using the
specific variation of the ansatz (10) i.e. Eqs. (12) and (13).
The key relation, that allows us to find the connection
between FðrÞ and the dilaton ϕðrÞ, is the supersymmetry
condition:

2W4 þ ReW5 ¼ 0: ð15Þ

Plugging in the ansatz (12) and Eq. (13) into Eq. (15) will
allow us to determine fðrÞ completely in terms of the radial
coordinate r and the resolution parameter a2. The func-
tional form for fðrÞ turns out to be a nontrivial function
of r:

fðrÞ¼ 2

ð6a2þr2Þ
�
27a2ð6a2þr2Þ

�X3
i¼1

Φiðr;a2Þþr2 logr

�

−ð9a2þr2Þð6a2þr2Þ
�
3 log

�
r2

6a2
þ1

�

þ2−
r2 logr
6a2þr2

��
; ð16Þ

which is defined for a2 > 0. For vanishing a2 the functional
form for fðrÞ simplifies and has been studied earlier in
Ref. [27]. The other variables appearing in Eq. (16) are
defined in the following way:

Φ1ðr; a2Þ ¼ 2F
ð0;0;1;0Þ
1

�
−1; 2; 3;−

r2

6a2

�
;

Φ2ðr; a2Þ ¼ 2F
ð0;1;0;0Þ
1

�
−1; 2; 3;−

r2

6a2

�
;

Φ3ðr; a2Þ ¼ 2F
ð1;0;0;0Þ
1

�
−1; 2; 3;−

r2

6a2

�
; ð17Þ

where the notation 2F
ð0;1;0;0Þ
1 refers to ∂y2F1½x; y; z;w�, and

similarly for 2F
ð1;0;0;0Þ
1 and 2F

ð0;0;1;0Þ
1 . This perturbation to

FðrÞ corresponds to introducing a small Ricci scalar on the
internal space. This could be computed using the torsion
classes [28], or computed directly using standard general
relativity (GR) techniques. Using GR techniques, we find
that a simple expression emerges for a small resolution
parameter a2 and a small value for the parameter σ:

δR6 ¼ −
72σ

r2

�
3 − 2 log

�
6a2

r2

��
; ð18Þ

which is negative for r ≥ 1.2a. Furthermore one can check
that for general a, i.e. not small a, while the expression for
δR6 is no longer simple, it is negative definite. It is
interesting to note that negatively curved internal spaces
have been widely studied as a mechanism for finding de
Sitter solutions in string theory; see the discussion and
references in Ref. [16].
The above analysis, although interesting because of the

control we can have on the non-Kählerity of the internal
manifold, is ultimately not useful for finding the masses of
theD3worldvolume fermions, as it in fact renders the internal
manifold with a nonintegrable complex structure. Thus,
there exists an almost complex structure but the manifold
itselfmaynot be complex.9 Thismeanswe cannot decompose
our G3 flux in terms of (1, 2), (2, 1) or (0, 3) forms in a global
sense, making the fermionic mass decompositions given in
Eqs. (6), (5) and (4), not very practical in analyzing the
fermions on the probe D3. This of course does not mean that
we cannot study the spontaneous SUSYbreaking;we can, but
the analysis will not be so straightforward as it was with the
complex decomposition of the 3-form fluxes.
The question then is: can we have a complex non-Kähler

resolved conifold satisfying a more generic ansatz like
Eq. (10) where we can use Eqs. (4), (6), and (5), to study
spontaneous SUSY breaking with a probe D3? The answer
turns out to be in the affirmative, and in the following
section we elaborate the story.10

9There might exist a nontrivial integrable complex structure,
but we have not been able to find one.

10Note that there is some subtlety with the mapping to Ref. [29]
at this stage, for example the possibility of a non-Kähler special
Hermitian solution with a constant dilaton that we get here
demanding supersymmetry as opposed to a Calabi-Yau resolved
conifold with a constant dilaton studied in Ref. [29]. This has
been discussed in detail in Ref. [26] so we will not dwell on this
any further.
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A. A SUSY perturbation of the resolved conifold

Let us start with a simple example of a D3-brane located
at a point in an internal manifold specified by the metric ds26
where ds26 is given by

ds26 ¼ dr2 þ gmndymdyn; ð19Þ

where (r, ym) are the coordinates of the internal six-
dimensional space. To avoid contradiction with Gauss’
law, the internal manifold has to be noncompact, although a
compact example could be constructed by either inserting
orientifold planes, or antibranes. Details of this will be
discussed later. The backreaction of the D3-brane converts
the vacuum manifold

ds2vac ¼ ds20123 þ ds26; ð20Þ

with ds20123 being the Minkowski metric along the space-
time directions, to the following:

ds210 ¼
1ffiffiffi
h

p ds20123 þ
ffiffiffi
h

p
ds26; ð21Þ

where h is the warp factor. The five-form flux in the
background (21) is now given as

F 5 ¼
1

gs
ð1þ �10Þdh−1 ∧ dx4: ð22Þ

The above analysis is generic, but it is highly nontrivial to
actually compute the warp factor h. For a complicated
internal space, the equation for h typically becomes an
involved second-order partial differential equation.
Furthermore, in the presence of other type IIB fluxes,
for example the 3-form fluxes H3 and F 3, the metric is
more complicated than Eq. (21). Additionally, the string
coupling constant generically will not be constant.
There is, however, a way out of the above conundrum if

we analyze the picture from a more general setting. We can
use the powerful machinery of torsional analysis [23,24,30]
to write the background of a D5-brane wrapped on some
two-cycle, parametrized by (θ1;ϕ1), of a generic six-
dimensional internal space. Assuming that the size of
the wrapped cycle is smaller than some chosen scale,
any fluctuations along the (θ1;ϕ1) will take very high
energy to excite. This means at low energies the theory will
be of an effective D3-brane11 and the source charge of the
wrapped D5-brane C6 will decompose as

C6ð~x; θ1;ϕ1Þ ¼ C4ð~xÞ ∧
�
eθ1 ∧ eϕ1ffiffiffiffi

V
p

�
; ð23Þ

where V is the volume of the two-cycle on which we have
the wrapped D5-brane. Therefore using the criteria (23), the
supergravity background for the configuration of the
effective D3-brane is given by

ds2 ¼ e−ϕds20123 þ eϕds26;

F 3 ¼ e2ϕ �6 dðe−2ϕJÞ; ð24Þ

where ϕ is the dilaton and the Hodge star and the
fundamental form J are with respect to the dilaton
deformed metric e2ϕds62. The 5-brane charge in Eq. (24)
decomposes as Eq. (23) once we express it as a seven-form
F 7 ¼ �10F 3. The metric ds26 is in general a noncompact
non-Kähler metric that may not even have an integrable
complex structure.
If we allow for background 3-forms F 3 and H3, the

above background (24) changes. One way to see the change
would be to work out the precise EOMs. However there
exists another way, using a series of duality transforma-
tions, to study the background in the presence of the 3-form
fluxes. The steps have been elaborated in Refs. [26,33,34].
The solutions we will study here are specific realizations of
the general solutions found and analyzed in Ref. [26],
where supersymmetry of the final “dualized” solution was
explicitly confirmed.12 The idea is the following:
(1) Compactify the spatial coordinates x1;2;3 and T-

dualize three times along these directions. The
resulting picture will now be in type IIA theory.

(2) Lift the type IIA configuration to M-theory and
make a boost along the eleventh direction using a
boost parameter β. This boosting will create the
necessary gauge charges.

(3) Reduce this down to type IIA and T-dualize three
times along the spatial coordinates to go to type IIB
theory. The IIB background now automatically has
the 3-form fluxes, as well as a five-form flux.

The result of this duality procedure is that the type IIB
background (24) now converts to exactly what we expect in
Eq. (21), namely13

11Also known as a fractional D3-brane. There is yet another
way to generate a fractional D3-brane which we do not explore
here. For example if we take wrapped D5-D5-branes with (n1, n2)
amount of gauge fluxes on each of them, then we can have
bound D3-branes with charges n1 and n2 respectively. If ni are
fractional, these give fractional 3-branes with vanishing global
5-brane charges. See Refs. [31,32] for more details.

12In addition, the fact that the T-duality transformations lead to
solutions that solve explicitly the supergravity EOMs has been
shown earlier in Refs. [35–37]. In Refs. [21] and [26], this was
confirmed using torsion classes. The subtlety that such trans-
formations do not lead to nontrivial Jacobians follows from the
fact that the supergravity fields have no dependence on the
T-duality directions. If the supergravity fields start to depend on
the T-duality directions, there will arise nontrivial Jacobians as
discussed in some detail in Ref. [38]. We thank the referee for
raising this question.

13There is some subtlety in interpreting the final background
with fluxes or with sources. This has been discussed in Ref. [34]
which the readers may refer to for details.
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ds2 ¼ 1ffiffiffi
h

p ds20123 þ
ffiffiffi
h

p
ds26

¼ 1

e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3 þ Δ

p ds20123 þ e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3 þ Δ

p
ds26;

ð25Þ

confirming the low-energy effective D3-brane behavior,
and the following background for the three- and the five-
form fluxes:

F 3 ¼ cosh βe2ϕ �6 dðe−2ϕJÞ; H3 ¼ − sinh βdðe−2ϕJÞ;
d ~F 5 ¼ − sinh β cosh βe2ϕdðe−2ϕJÞ ∧ �6dðe−2ϕJÞ; ð26Þ

with the type IIB dilaton eϕB ¼ e−ϕ. One may verify that
Eqs. (25) and (26) together solve the type IIB EOMs.
We will concentrate on a specific background given by a

(generically non-Kähler) singular, resolved or deformed
conifold. The typical internal metric ds26 in this class is
given by a variant of Eq. (9) as

ds26 ¼ F1dr2 þ F2ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2

þ
X2
i¼1

F2þiðdθ2i þ sin2θidϕ2Þ

þ F5 sinψðdϕ1dθ2 sin θ1 þ dϕ2dθ1 sin θ2Þ
þ F6 cosψðdθ1dθ2 − dϕ1dϕ2 sin θ1 sin θ2Þ; ð27Þ

where FiðrÞ are warp factors that are functions of the
radial coordinate r only14 and in the following, unless
mentioned otherwise, we will only consider the resolved
conifold, i.e we take F5 ¼ F6 ¼ 0 henceforth. The
above background (27) can be easily converted to a
background with both H3 and F 3 fluxes by the series of
duality specified above. Using Eq. (25), our background
becomes

ds2¼ 1

e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3þΔ

p ds20123þe2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3þΔ

p
ds26;

F 3¼−e2ϕcoshβ

ffiffiffiffiffiffi
F2

F1

s
ðg1eψ ∧eθ1 ∧eϕ1

þg2eψ ∧eθ2 ∧eϕ2
Þ;

~F 5¼−sinhβcoshβð1þ�10ÞC5ðrÞdψ ∧Y2
i¼1

sinθidθi∧dϕi;

H3¼ sinhβ½ð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
−F3rÞer∧eθ1 ∧eϕ1

þð
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
−F4rÞer∧eθ2 ∧eϕ2

�; ð28Þ

with a dilaton eϕB ¼ e−ϕ and with Δ defined as in Eq. (8),

Δ ¼ sinh2βðe2ϕ=3 − e−4ϕ=3Þ; ð29Þ

and β is the boost parameter discussed above while the
others, namely (g1, g2, C5) are given by

g1ðrÞ ¼ F3

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F4r

F4

�
;

g2ðrÞ ¼ F4

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3r

F3

�
;

C5ðrÞ ¼
Z

r e2ϕF3F4

ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
F1

�� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3r

F3

�
2

þ
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F4r

F4

�
2
�
dr: ð30Þ

The above background for the D3-brane is consistent as
long as the energy is less than the inverse size of the sphere
parametrized by (θ1, ϕ1). For vanishing size of the sphere,
which would happen for a singular conifold, our analysis
continues to hold to arbitrary energies.
Equation (28) contains all the information that we need, so

now the relevant question is to find appropriate warp factors
that allow us to have a non-Kähler resolved conifold with an
integrable complex structure. A simple analysis of the fluxes
along the lines of Ref. [26] will tell us that an integrable
complex structure is possible when the dilaton has no profile
in the internal direction. Thismeanswe can take, without any
loss of generality, a vanishing dilaton inducing the following
complex structure on the internal space:

τk ≡ ði coth β; i; iÞ: ð31Þ

Themetric on the internal space now is not too hard to find if
one takes care of all the subtleties pointed out in Ref. [26].
The subtleties are generically related to flux quantization and
integrability conditions. Once the dust settles the metric
becomes

ds2 ¼ 4F2
2r

�
1 −G
2þ F2

�
dr2

þ F2ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ2
þ Gðdθ21 þ sin2 θ1dϕ2

1Þ

þ Gð1 − GÞ
�

F2

2þ F2

�
ðdθ22 þ sin2 θ2dϕ2

2Þ; ð32Þ

where F2ðrÞ is taken to be dimensionless. This means all
terms of the metric are dimensionless, and thus if r has a
dimension of length, the warp factor should have the
dimension of inverse length. This works out fine because

14One may generalize this to make the warp factors Fi
functions of all coordinates except (θ1;ϕ1), i.e the directions
of the wrapped brane. We will not discuss the generalization here.
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the coefficient of dr2 is indeed the derivative ofF2. We could
also rewrite the metric with dimensionful warp factors but
this would not change any of the physics. Note also thatGðrÞ
appearing in Eq. (32) is not an independent function, but
depends on F2 in the following way:

ð1 −GÞ3 ¼ ð2þ F2Þ3
F2ð3þ 2F2Þ2

; ð33Þ

and therefore an appropriate choice of F2 will fix the func-
tional form for G. Furthermore, the resolution parameter for
the resolved conifold is no longer a constant, but a function of
the radial coordinate r that takes the following form:

a2ðrÞ≡ ð2þGF2ÞG
2þ F2

; ð34Þ

which is by construction a positive-definite function provided
G remains positive definite everywhere. It is definitely a well-
behaved function at any point in r since F2 > 0 and if F2 is
chosen to be a well-behaved function of r. Positivity of G
implies that at any point in r, F2 should satisfy

F3
2 þ 2F2

2 − F2 >
8

3
; ð35Þ

which is not hard to satisfy. This also implies G < 1 at any
point in r. A simple choice of F2ðrÞ would be to consider the
following functional form that should make all the warp
factors positive definite:

F2ðrÞ ¼ 1.1022þ ~F2
2ðrÞ; ð36Þ

assuming ~F2ðrÞ never hits zero at any point in r. We can also
bring our metric (32) to the form (10) by appropriately
defining δF; a1ðrÞ and a2ðrÞ.
It is now time to determine the fluxes that preserve the

background supersymmetry. As is well known, the fluxes
should be ISD and primitive, so the appropriate choice is to
take (2, 1) forms. This can be easily worked out from
Eq. (28), and once we fix the complex structure to be
Eq. (31), and with the above warp factors and dilaton, the
3-form flux takes a particularly simple form15:

G3 ¼
sinh β

4
ffiffiffiffi
H

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

ffiffiffiffi
H

pq �� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F3r

F3

�
−
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F4r

F4

��
ðE1 ∧ E3 ∧ E3 − E1 ∧ E2 ∧ E2Þ;

¼
ffiffiffiffi
F

p ð2 − FδFÞ
8cosechβ

��
rFδF − 12a1a1r

r2 þ 6a21

�
−
�
rFδF − 12a2a2r

r2 þ 6a22

��
ðE1 ∧ E3 ∧ E3 − E1 ∧ E2 ∧ E2Þ; ð37Þ

which is ISD, primitive, and a (2,1) form. In the second line
we have used the ansatz (10) with a vanishing dilaton. Note
also that the three functions δF, a1, and a2 are constrained
by supersymmetry, via Eq. (15), which is a first-order
ordinary differential equation. The SUSY condition also
forces the (1, 2) components of G3 to vanish identically.
One can see that the boost parameter β, which counts the

units of F 3 flux, or equivalently the number of delocalized
[25] 5-branes, in the resolved conifold background, con-
trols the amount of ISD flux. Naively, if we take β → 0, the
flux vanishes. However the complex structure (31) also
blows up in this limit, so the vanishing β case has to be
studied differently. This is indeed the case because, in the
language of Ref. [26], taking β → 0 takes us to the “before
duality” picture where only RR 3-form fluxes are present.
Therefore the way we derived our background, we can take
β arbitrarily small but not zero.
This completes our analysis of the supersymmetric

fluxes on a non-Kähler resolved conifold background that
allows an integrable complex structure. In the following
section we will insert a D3-brane in this background and
study the fluxes and the corresponding supersymmetry-
breaking scenario using the worldvolume action. We start
with the bosonic action for a D3-brane in this background.

B. Bosonic action for a D3-brane

Before considering a D3, let us consider a D3. In the
previous section we saw how to incorporate the back-
reaction of a single (or generically N) effective D3-brane in
a flux background. We can compute the bosonic action of

15Where the Ei are defined as

E1 ¼ e1 þ i coth βe2; E2 ¼ e3 þ ie4; E3 ¼ e5 þ ie6;
with

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

ffiffiffiffi
H

pq
er;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

ffiffiffiffi
H

pq
ðdψ þ cos θ1dϕ1 þ cos θ2dϕ2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

ffiffiffiffi
H

pq
eψ ;

e3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F3

ffiffiffiffi
H

pq �
− sin

ψ

2
eϕ1

þ cos
ψ

2
eθ1

�
;

e4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F3

ffiffiffiffi
H

pq �
cos

ψ

2
eϕ1

þ sin
ψ

2
eθ1

�
;

e5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F4

ffiffiffiffi
H

pq �
− sin

ψ

2
eϕ2

þ cos
ψ

2
eθ2

�
;

e6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
F4

ffiffiffiffi
H

pq �
cos

ψ

2
eϕ2

þ sin
ψ

2
eθ2

�
:
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the D3-brane in this background, not as a probe, but as an
actual backreacted object. This is different from what has
been done earlier in Refs. [3,35,39–43] where the D3-brane
has been considered as a probe in a GKP background
[11,15] of the form

ds2¼ e2Agμνdxμdxνþe−2Agmndymdyn;

G3¼F 3þ τH3; F 5¼ð1þ�10Þdα∧ dvolR3;1 ; ð38Þ

where τ ¼ C0 þ ie−ϕB and α ¼ e4A. For our case, with the
backreaction of the D3-branes taken into account, we can
define the following quantities:

e2A ¼ ffiffiffi
α

p ¼ 1

e2ϕ=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ϕ=3 þ Δ

p ; gμν ¼ ημν;

Φþ ¼ 2

e2ϕcosh2β − sinh2β
; Φ− ¼ 0: ð39Þ

The above equation implies that the scalar fields on a D3-
brane are completely massless (as the masses of the scalar
fields are determined by Φ− [3]). Other details regarding
the action can be worked out from Refs. [3,35,39–43].
Let us now consider a D3 in this background. We will

take this as a probe so that the backreaction of the antibrane
will not be felt strongly in Eq. (28). Details of this will be
discussed in the next section. For the time being we shall
assume that a small profile for the dilaton is now switched
on, along with small changes in the 3-form fluxes.
Furthermore, the tachyonic instability of the antibrane will
not be visible in the probe limit. The worldvolume multiplet
on the antibrane will have the usual vector field Aμ and six
scalars φm associated with the six internal directions of the
resolved conifold (27). The bosonic action in the Einstein
frame is then given by

SD3 ¼ −τD3l4s

Z
d4x

�
π

2g2s
fμνfμν þ

π

gs
gmnDμφ

mDμφn

þ π

gs
∂m∂nΦþφmφn þ Lint

�
; ð40Þ

where the interaction Lagrangian Lint is given by the
following expression:

Lint¼
2π

l2sgs
∂mΦþφmþ iπ

12
ΦþðReGþÞmnpφ

mφnφpþ π

l4sgs
Φþ;

ð41Þ

where gmn is the metric of the internal non-Kähler resolved
conifold (27) and Gþ ¼ ð�6 þ iÞG3 where �6 is the Hodge
star with respect to the warped metric (38).
For a conifold background, there are five compact

scalars, namely (φθ1 , φϕ1 , φθ2 , φϕ2 , φψ ), and one non-
compact scalar φr. The compact scalars are all massless,
and the mass of the noncompact scalar is given by

m2
φr ¼ π

gs

�∂2Φþ
∂r2

�

¼ 8πe2ϕcosh2β
gsðe2ϕcosh2β − sinh2βÞ2

×

��
e2ϕcosh2β þ sinh2β
e2ϕcosh2β − sinh2β

��∂ϕ
∂r
�

2

−
1

2

∂2ϕ

∂r2
�
; ð42Þ

where due to the presence of the linear interaction in
Eq. (40), the noncompact scalar is shifted from its original
value φr to the following:

~φr ≡ φr þ 1

l2s

� ∂
∂r log

�∂Φþ
∂r
��

−1
: ð43Þ

In a generic setting, where the warp factors and the dilaton
ϕ are functions of all the internal coordinates, all six scalars
would be massive and the antibrane will be fixed at a
point in the internal space where the mass matrix is
extremized.
However, the background we have constructed has a

constant dilaton, and thus Φþ is constant and φr is
massless. If one allows for a small dilaton profile, for
example by perturbing beyond the probe limit, a mass is
generated for φr. In the limit where β is small, this happens
at the point where the dilaton satisfies the following
differential equation:

∂3ϕ

∂r3 − 6

�∂2ϕ

∂r2 −
2

3

�∂ϕ
∂r
�

2
� ∂ϕ
∂r þOðβÞ ¼ 0: ð44Þ

For the solution discussed above, and allowing for some D3
backreaction in the form of a small profile for the dilaton,
Φþ takes the following simple form (for arbitrary values
of β):

Φþ ¼ 2 − 4ϕðrÞcosh2β þOðϕ2Þ: ð45Þ

This form of Φþ will fix φr to be 0. The remaining
scalars can be stabilized along the lines of Ref. [44]; the
angular moduli receive masses upon “gluing” the non-
compact throat geometry onto a compact Calabi-Yau.
Alternatively, one can place the D3 directly on an orienti-
fold plane, as in Ref. [17], which fixes all the scalars and
gauge fields.16

16Formore details on orientifolding conifolds see Refs. [45,46],
and for the consistency of placing antibranes on orientifolds of
conifolds see Ref. [17].
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C. SUSY breaking and the fermionic action for a D3

Now let us return to the fermionic action, which we gave
inEq. (3). Themasses of the fermions are dictated by the ISD
3-form fluxG3 given in Eq. (37), which is valid strictly in the
probe approximation. The backreaction of the D3 induces
corrections to the flux, which we will come back to shortly.
Staying within the probe approximation, the flux is given

by Eq. (37),

G3 ¼
ffiffiffiffi
F

p ð2−FδFÞ
8cosechβ

��
rFδF−12a1a1r

r2þ6a21

�

−
�
rFδF−12a2a2r

r2þ6a22

��
ðE1 ∧E3 ∧E3−E1 ∧E2 ∧E2Þ:

Clearly the masses m0 and mi will be zero (since G3 is ISD
and primitive). The breaking of supersymmetry is done
purely through the mass matrix mij, defined in Eq. (6).
Evaluating these masses explicitly, we find

m23¼m32¼
ffiffiffi
2

p

8
ijG3j; m12¼m21¼m13¼m31¼0; ð46Þ

where jG3j is

jG3j ¼
sinh β
8

ffiffiffiffi
F

p
ð2 − FδFÞ

��
rFδF − 12a1a1r

r2 þ 6a21

�

−
�
rFδF − 12a2a2r

r2 þ 6a22

��
: ð47Þ

From this we see that the λ2 and λ3 fermions will have a
mass induced by G3, which spontaneously breaks the
N ¼ 1 supersymmetry of the resolved conifold. This
leaves two massless fermions, λ0 and λ1, as the low-energy
field content. This is in contrast to a D3 in a GKP
background, studied in Ref. [2], where there was only a
single massless fermion. Interestingly, the scale of SUSY
breaking is controlled by δFðrÞ, a1r, and a2r, and thus we
can easily allow for soft breaking of supersymmetry.

D. Perturbing away from the probe limit

Let us now consider perturbing away from the probe
limit, which corresponds to taking the D3 to be a large yet
finite distance away from the D5-brane (fractional D3). We
will neglect subtleties regarding boundary conditions,
which can lead to divergences in the fluxes when a stack
of D3’s is considered (see e.g. Ref. [47] and more recently
Ref. [48]), and also continue to study only a single D3. As
we will see, even with this issue neglected, backreaction
changes the story considerably. In the presence of a probe
D3, the background changes from what we have thus far
studied. The question then is to compute the changes in the
background metric and fluxes to account for the fermionic
masses on the antibrane worldvolume. We will not attempt

to find an exact backreacted solution with a D3, but rather
take on a simpler task; we can compute the leading
corrections to the fluxes and thus fermion masses by
perturbing away from the probe limit.
The situation is not as hard as it sounds. Due to the

(perturbatively) probe nature of the D3, and as we hinted
before, the tachyonic degree of freedom will not be visible
at the supergravity level. Furthermore the backreaction of
the D3-brane will appear from its energy-momentum tensor
that comes solely from the Born-Infeld part (the Chern-
Simons piece, that can distinguish between a brane and an
antibrane, does not contribute to the energy-momentum
tensor). This is good because then at the supergravity level
we are effectively inserting a 3-brane in a wrapped D5-
brane background. To compensate for this new source of
the energy-momentum tensor the warp factors change
slightly as

Fi → Fi þ δFi; ð48Þ
where this change is over and above the δF change in
Eq. (10) that was there in the absence of a D3-brane.17 The
dilaton ϕ also changes from zero to δϕ, but, as a first trial,
we keep the complex structure of the non-Kähler resolved
conifold fixed to Eq. (31) (as we shall see, this will have to
be changed). Note that for a supersymmetric perturbation,
the complex structure would have also changed exactly in a
way so as to remove any (1,2) fluxes. Taking this into
account, the ISD primitive (2,1) flux (37) now changes to
the following additional piece:

δGð1Þ
3 ¼ sinhβ

4
ffiffiffiffi
H

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

ffiffiffiffi
H

pq �
1þδF1

2F1

þ3

4

δH
H

�

×

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
2

�
δF1

F1

þδF2

F2

��
1

F3

−
1

F4

�
þ
�
δF4r

F4

−
δF3r

F3

�

þ
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
−F4r

F4

��
δF4

F4

−δϕ

�
−
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
−F3r

F3

�

×

�
δF3

F3

−δϕ

��
ðE1∧E3∧E3−E1∧E2∧E2Þ; ð49Þ

which is again a primitive (2,1) form. When combined with
the primitive (2,1) piece that we had in Eq. (37), this would
enter the mass formula given in Eq. (6) to give masses to the
corresponding fermions. Note that, the Ei’s appearing
above are the original vielbein used earlier to write the
(2, 1) flux (37), but could be replaced by the modified
vielbein under Eq. (48), i.e.

Ei → Ei þ δEi; ð50Þ

17Note that due to the probe nature, δF5 ¼ δF6 ¼ 0 along with
vanishing (F5, F6), so that the form of the metric remains (27) and
the topology does not change.
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without changing any physics. This will also be the case for
all other (2, 1) and (1, 2) perturbations that we shall discuss
below: we will express them in terms of old vielbeins
although we could also use Eq. (50). Using the old
vielbeins Ei, we do however develop an additional con-
tribution to the (2, 1) flux, other than Eqs. (37) and (49),
that typically takes the following form:

δGð2Þ
3 ¼ ðα1δF þ α2a1r þ α3a3rÞ

× ðEi ∧ δEj ∧ Ek � σEi ∧ Ej ∧ δEkÞ; ð51Þ

where αiðrÞ and σðrÞ are certain well-defined functions of r
that could be derived from our flux formulas discussed
above. We cannot simply ignore this term as it is of the
same order as the second line in Eq. (49) above, but we can
absorb this in Eq. (37) by resorting to the modified vielbein

(50). The conclusion then remains unchanged: all δGðkÞ
3 will

be expressed in terms of Ei, but the original (2, 1) flux (37)
will now be expressed in terms of Eq. (50) under pertur-
bative backreaction of the D3-brane.
Coming back to our analysis, the primitive (2,1) pieces

are involved in determining the masses, but we do also get
another (2, 1) piece that is neither primitive nor ISD. This
appears because we have not changed our complex struc-
ture, and it is given by the following form:

δGð3Þ
3 ¼ GðδϕÞ

0

�� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
− F4r

F4

�
E1 ∧ E2 ∧ E2

þ
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F3r

F3

�
E1 ∧ E3 ∧ E3

�
; ð52Þ

which becomes an ISD primitive form when the sum of the
coefficients of the two terms vanish. This is no surprise
because it is exactly the supersymmetry condition that we
had in Ref. [26]. We have also defined the coefficient GðrÞ
in terms of the warp factorsH and F1 in the following way:

GðδϕÞ
0 ≡ −

δϕ sinh β

4
ffiffiffiffi
H

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

ffiffiffiffi
H

pq �
1þ δF1

2F1

þ 3

4

δH
H

�
: ð53Þ

Additionally, under supersymmetry δϕ vanishes, so this
term never shows up. For the present case, clearly we
cannot impose the supersymmetry conditions. However if
we change the complex structure (31) a bit as

δτk ¼ ðiδϕ coth β; 0; 0Þ; ð54Þ
instead of keeping it completely rigid as we discussed
above, we can make this term vanish. Note that some care is
required to interpret this result. As mentioned earlier, we
can change the complex structure to absorb any appearance
of (1, 2) forms so that supersymmetry is restored. This case
should then be interpreted differently. As we shall see
below, we do get (1, 2) forms and they will be nonzero for

the shifted complex structure (54) as well as for the original
complex structure (31).
The (1, 2) piece is given by the following form:

δGð4Þ
3 ¼ sinh β

4
ffiffiffiffi
H

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
F1

ffiffiffiffi
H

pq �
1þ δF1

2F1

þ 3

4

δH
H

�

×

� ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
2

�
δF1

F1

þ δF2

F2

��
1

F3

þ 1

F4

�

−
�
δF4r

F4

þ δF3r

F3

�
−
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F4r

F4

�
δF4

F4

−
� ffiffiffiffiffiffiffiffiffiffiffi

F1F2

p
− F3r

F3

�
δF3

F3

�
× ðE2 ∧ E1 ∧ E2 þ E3 ∧ E1 ∧ E3Þ; ð55Þ

which is an ISD but nonprimitive form, and therefore breaks
supersymmetry. As before, we have ignored terms of the
form δFiδFj and δFiδϕ, as we are assuming the perturba-
tions to be small. When the perturbations are not small we
need to usemore exact expressionswhich canbederivedwith
some effort, but we will not do this here. The above (1, 2)
form (55) enters the mass formula (5), inducing a nonzero

m1. This acts as an interaction between λ
1 and λ0. Similarly,

δGð3Þ
3 induces an interaction m1λ

0λ1. This is given by

m1 ¼
1ffiffiffi
2

p eδϕjδGð3Þ
3 j; ð56Þ

where jδGð3Þ
3 j is the coefficient of ðE2 ∧ E1 ∧ E2 þ E3 ∧

E1 ∧ E3Þ in Eq. (55).
Note that in deriving the perturbations to our background

we did not find any (0, 3) or imaginary anti-self-dual (IASD)
forms. This is expected from the probe nature of our
analysis. On the other hand the (1, 2) form that we got
above in Eq. (55) cannot be absorbed by the change in the
complex structure (54). However one might ask if a more
generic analysis could be performed. In other words, is it
possible to find the most generic (2, 1) and (1, 2) perturba-
tions in the non-Kähler resolved conifold background?
The way to answer this question would be to first find the

complete basis for the (2, 1) and (1, 2) forms in the resolved
conifold background. This has been studied in Ref. [49],
and we reproduce it here for completeness. The bases for
the (2, 1) forms are

u1 ≡ E1 ∧ E2 ∧ E2 − E1 ∧ E3 ∧ E3;

u2 ≡ E1 ∧ E2 ∧ E3 − E1 ∧ E3 ∧ E2;

u3 ≡ E1 ∧ E2 ∧ E1 þ E2 ∧ E3 ∧ E3;

u4 ≡ E1 ∧ E3 ∧ E1 − E2 ∧ E3 ∧ E2;

u5 ≡ E2 ∧ E3 ∧ E1; ð57Þ
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where all of them are ISD and primitive. The first basis, u1,
was used earlier to write both the original and the perturbed
(2, 1) forms. The bases (u2;…; u5) are useful when the D3
backreaction is not as simple asEq. (48). Thus a generic (2, 1)
perturbation can be of the form

δGð2;1Þ
3 ¼

X5
n¼1

anun; ð58Þ

where an could be functions of all the coordinates of the
internal non-Kähler resolved conifold. We can then use
Eq. (58) in Eq. (6) to expresses the masses of the relevant
fermions on theD3-brane.Most importantly, it will in general
no longer be the case that λ1 is massless, since more general
(2,1) fluxes induce nonzero masses, i.e. we will now have

m12 ≠ 0; m13 ≠ 0: ð59Þ
One may similarly construct the complete basis for the (1, 2)
forms for the resolved conifold background. We will again
require our basis forms to be ISD to solve the background
EOMs. For a (1, 2) form this is possible only if it is
proportional to the fundamental form J, thus restricting the
number of such forms to be just three. They are given by [49]

w1 ≡ E1 ∧ E1 ∧ E3 þ E2 ∧ E2 ∧ E3;

w2 ≡ E1 ∧ E1 ∧ E2 − E3 ∧ E2 ∧ E3;

w3 ≡ E2 ∧ E1 ∧ E2 þ E3 ∧ E1 ∧ E3; ð60Þ

where one may check that they are ISD but not primitive. We
had used w3 earlier to express the (1, 2) perturbation in
Eq. (55). Thus a more generic nonsupersymmetric perturba-
tion in the presence of a D3-brane can be expressed by the
following (1, 2) form:

δGð1;2Þ
3 ¼

X3
n¼1

bnwn; ð61Þ

wherebn, as foran above, could begeneric functions of all the
coordinates of the internal non-Kähler resolved conifold. This
could now be inserted into Eq. (5) to determine the mixing
between the λ0� and λi� fermions, i.e.

m1 ≠ 0: ð62Þ

The consequence of this is that the backreaction-induced
fluxes give a mass to λ0 and λ1, and hence there are no
massless fermions left in the spectrum. This is a striking
difference to the probe approximation, where there were two
massless fermions.
Let us take a moment to consider why this is the case.

From the supergravity perspective, a D3 is equivalent to a
D3. The background we are considering has a wrapped D5-
brane, and since a D3-D5 system is nonsupersymmetric,

the induced fluxes will include supersymmetry-breaking
fluxes. It is these fluxes which give a mass to the would-be
massless fermions on the D3 worldvolume. In the GKP
analysis of Ref. [2], there was no D5-brane, and thus this
issue will not arise when considering backreaction.
This completes our discussion of spontaneous supersym-

metry breaking via massive fermions on the D3-brane
worldvolume. In the following section we will briefly dwell
on certain aspects of moduli stabilization and de Sitter space.

E. Moduli stabilization and de Sitter vacua

In order to construct a concrete phenomenological
model, the resolved conifold geometry we have studied
should be glued onto a compact, non-Kähler space. As
discussed in Ref. [44], and also Ref. [50], this gluing
induces corrections to the D3 scalar moduli masses.
In addition to this, a compact space requires charge

cancellation. Since charge cancellation is a global require-
ment, the necessary fluxes can be placed far from the
resolved conifold which contains the D3, so as not to
disrupt the local dynamics we have studied. In other words,
for the case that we study here, the internal six-dimensional
manifold (27) should be thought of as extending to a fixed
radius r ¼ r0, and beyond which a compact manifold is
attached. The boundary condition implies that at r ¼ r0, the
compact manifold should have a topology of S2 × S3. The
compact manifold is equipped with the right amount of
fluxes etc. that is necessary for global charge cancellation.
Finally, we note that moduli stabilization should be

included in this picture. We need to consider two sets of
moduli: the Kähler and the complex structure moduli of our
non-Kähler space. The moduli of compactifications on non-
Kähler manifolds was discussed in Ref. [51], and reviewed
in Ref. [52]. An interesting feature of these models is that
the radial modulus and the complex structure moduli can be
stabilized at tree level whereas the other Kähler moduli,
including the axio-dilaton need additional nonperturbative
effects for stabilization. There are also other moduli,
namely the moduli of the D3-brane, fractional 3-branes
and possible 7-branes (that we did not discuss here, but are
nonetheless important).
From the point of view of the Einstein equations, the

existence of de Sitter vacua is rather nontrivial to see.
Switching on Eqs. (58) and (61) gives masses to worldvo-
lume fermions and simultaneously fixes the complex
structure moduli (including the radial modulus) of our
non-Kähler space. However the potential generated by the
SUSY-breaking flux (61)

V ¼ 1

2κ210

Z
δGð1;2Þ

3 ∧ �δGð1;2Þ
3

Imτ
; ð63Þ

where τ is the axio-dilaton, vanishes identically. This
means the presence of a D3-brane takes a supersymmetric

DASGUPTA, EMELIN, and MCDONOUGH PHYSICAL REVIEW D 95, 026003 (2017)

026003-12



anti–de Sitter space to a nonsupersymmetric one, and
therefore does not contribute any positive vacuum energy
to the system. This conclusion is not new and is another
manifestation of the no-go condition of Gibbons-
Maldacena-Nunez [53,54], recently updated in Ref. [55].
This means that to allow for a positive cosmological
solution in the four space-time directions, the no-go
condition should be averted.18

This then brings us to the recent study done in Ref. [55]
from an uplift in M-theory. Quantum corrections play an
important role, and a positive cosmological constant is only
achieved in four space-time directions if the following
condition is satisfied:

hT μ
μiq > hT m

miq; ð64Þ

which is a generalization of the classical condition studied
in Ref. [53,54]. Here T mn is the energy-momentum tensor
and the subscript q denotes the quantum part of it. For more
details, and the derivation of this, the readers may want to
refer to Ref. [55].
This indicates that a concrete realization of de Sitter

vacua in this context, and a precise connection to KKLT [6],
would thus require including at least a subset of the above
corrections (similar to “Kähler uplifting” [56]). Note that
our setup would not involve the Kachru-Pearson-Verlinde
(KPV) process [57], whereby a stack of D3’s polarize into
an NS5, as we are only considering a single antibrane.

III. PROBE D7 IN A GKP BACKGROUND

In the previous section we generalized the work of
Refs. [1,2] to a more general background, and found several
interesting features. We now consider a different generali-
zation: we turn our attention to a D7 brane in a GKP
background. Similar to the D3 case, the D7-brane differs
from the D7-brane only in the sign of the κ-symmetry
projector, and the charge under the RR fields. The embed-
ding of D7-branes into flux compactifications has been the
focus of many works (for example Refs. [58], [59], [49],
and [60]). In particular, many details of the D7 and D7
fermionic action were worked out in Refs. [61] and [62].
Placing a D7 in a warped N ¼ 1 background will

spontaneously break supersymmetry. The breaking of
supersymmetry manifests itself in the fermionic action
via a mass for the fermions (see Ref. [61] for details),
and the spontaneous nature of SUSY breaking can be

deduced via the condition discussed in Sec. I A.
Furthermore, for general background fluxes, all the D7
worldvolume fermions are massive. Only under special
circumstances will there remain a massless fermion in the
low-energy spectrum; demonstrating this will be the focus
of this section. We will find that, under suitable conditions,
we have not only one massless fermion, but many. This is
similar to the D3 in a resolved conifold case studied in
Sec. II, where (in the probe approximation) we found not
one but two massless fermions.

A. The fermionic action for a D7 in a flux background

The quadratic fermionic action for a single Dp-brane (in
the string frame) was detailed in Ref. [43]: we will follow
their conventions in what follows. The only difference for
an antibrane is in the κ-symmetry projector, which changes
sign relative to the brane case. For the case of p ¼ 7 this
reads

SD7f ¼ −
1

2
T7ð2πα0Þ2

Z
d8ξeϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðGþ F Þ

p
θ

× ½1 − ΓD7ðF Þ�ðD − ΔÞθ; ð65Þ

where we scaled our action by an overall factor of ð2παÞ02
(to match with the convention of writing the gauge field as
2πα0Fμν). As before, the spinor θ is a ten-dimensional 64
(32) real (complex) component Majorana spinor, which is a
doublet of ten-dimensional (left-handed) 32 (16) real
(complex) component Majorana-Weyl spinors.
The factor ½1 − ΓD7ðF Þ� is the κ-symmetry projector,

which depends on the worldvolume flux F , and we have
defined

ΓD7 ¼ −iσ2
1ffiffiffiffiffiffi−gp Γ01234567 þOðF Þ; ð66Þ

and we take the brane to be along the x0;…; x7 coordinate
directions. The covariant derivative ~D on the brane is
defined as

D ¼ ðM−1ÞαβΓβ
~Dα; ð67Þ

where Mab is defined using F ab and the pull-back of the
metric gab as

Mab ¼ gab þ F ab; ð68Þ

with F ¼ P½Bð2Þ� þ 2πα0F2. We have also defined ~Dα as a
shifted covariant derivative,

~Dm ¼ DmI2 þ σ1Wm; ð69Þ

which we shall define in more detail momentarily. It is
important to note that the contraction D ¼ ΓmDm sums

18All the energy-momentum tensors are computed using both
the bosonic and the fermionic terms on the branes and the planes.
Note that the no-go conditions in Refs. [53–55] were derived
exclusively using the bosonic terms on the branes and the planes.
However if we use Eq. (144) (see Sec. IV) to define the pullbacks
of the type IIB fields on the branes and the planes, we can easily
see that the conclusions of Refs. [53–55] remain unchanged in the
presence of the fermionic terms.
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only over the indices on the brane-worldvolume, and as
mentioned above, we will take the brane to be oriented
along the (x0; x1;…x7) directions. In contrast to this, the
contractions appearing in Δ will sum over all indices19;
for example Δ contains the term ΓMNPHMNP where
M;N; P ¼ 0.9. We can further decompose HMNP into
pieces with 0, 1, and 2, indices along the transverse
two-dimensional space parametrized by (x8, x9)
coordinates.
In a general GKP background the worldvolume flux F

will be nonzero, and this cannot be gauged away. To make
our analysis simple, we will focus on a class of back-
grounds with the property that B2 is constant along the
brane worldvolume, i.e. B2 ¼ B2ðx8; x9Þ, and there is an
equal and opposite Dirac-Born-Infeld gauge F2, such that
F ¼ 0. This allows us to take theMab appearing in Eq. (68)
as simply gab, and ΓD7 to be−iσ2

1ffiffiffiffi−gp Γ01234567. Recall that a

GKP background also comes equipped with a self-dual
five-form flux ~F 5, given by

~F 5 ¼ ð1þ �Þðdα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3Þ; ð70Þ

where the function α depends on the coordinates of the
internal space, and is responsible for setting the profile
of the warp factor, i.e. α ¼ e4A. We will see that ~F 5

generically contributes to the fermion masses, unless
α ¼ αðx8; x9Þ, i.e. α is independent of the brane
coordinates.
Let us consider an explicit choice of background flux

which realizes this. We again define in the standard way
G3 ¼ F 3 − τH3. A choice of G3 which meets the above
criteria is

G3 ¼ NE1 ∧ E2 ∧ E3; ð71Þ
where N is a constant and we take the complex structure
J ¼ ði; i; iÞ, i.e. z1 ¼ x4 þ ix5 and so on. One can easily
check that this is ISD and primitive.20 The corresponding
B2 and C2 which generate this G3 are

C2 ¼ Nðx4dx6 ∧ dx8 − x4dx7 ∧ dx9 − x5dx6 ∧ dx9

− x5dx7 ∧ dx8Þ
B2 ¼ Neϕ0ðx9dx4 ∧ dx6 þ x8dx4 ∧ dx7 þ x8dx5 ∧ dx6

þ x9dx5 ∧ dx7Þ; ð72Þ

where we take the dilaton to be constant ϕ ¼ ϕ0. With the
above example in mind, we will proceed in our analysis

with a general G3, but with the assumption that F2 ¼
−P½B2� and hence F ¼ 0.
As mentioned above, the IIB spinor θ is actually a

doublet of 16-component left-handed (i.e. same chirality)
Majorana-Weyl spinors; this “doublet” is a 32-component
Majorana spinor (note that it is not Weyl). The gamma
matrices in the 64-component representation are related to
the 16-component representation by

Γdoublet
m ¼ Γm ⊗ I2; ð73Þ

[see e.g. below Eq. (85) in Ref. [43]].
We gauge fix κ symmetry by enforcing the κ-symmetry

projection to satisfy the following condition:

θð1þ ΓD7Þ ¼ 0: ð74Þ

This enforces a relation between θ1;2 components of the
doublet θ, given by

θ2 ¼ Γ012…7θ1: ð75Þ

This choice of gauge fixing was used in recent papers by
Kallosh et al. (for example Refs. [1,2]), as it is consistent
with an orientifold projection. Alternatively, one could use
a condition θ2 ¼ 0, as was used in papers by Martucci et al.
(e.g. Refs. [43] and [41,42]). Here, we will only use the
condition above, namely, θ2 ¼ Γ012:::7θ1.
Last, we note that the operators Wm and Δ appearing in

Eq. (65) are given by (see for example Ref. [2])

Δ ¼ −
1

2
ΓM∂Mϕ −

1

24
ðHMNPσ3 − eϕFMNPσ1ÞΓMNP;

Wm ¼ −
1

4
eϕðiσ2ÞFm þ 1

8
ðHmNPσ3 − eϕFmNPσ1ÞΓNP

−
1

8 · 4!
ðiσ2ÞeϕFNPQRSΓNPQRSΓm; ð76Þ

where m ¼ 4, 5, 6, 7, and M;N ¼ 0; 1;…; 9. Additionally
any quantity not appearing with a σi is implicitly a tensor
product with the 2 × 2 identity matrix.
We can now expand our action (65), using the operators

(76) and the κ-symmetry fixing condition (75). We use the
fact that the fluxes are only in the internal space, and that
the only nonvanishing bilinears for 10d Majorana-Weyl
spinors have three or seven gammamatrices. The action can
be written in terms of θ1 as

SD7f ¼ −
1

2
T7ð2πα0Þ2

Z
d8ξeϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detG

p
Lθ; ð77Þ

where G is the warped metric, and Lθ is given purely in
terms of θ1 as

19We take our 3-form fluxes to be only in the internal space.
20To avoid clutter we are using the same symbol Ei to denote

the vielbeins as before although now the definitions of the
vielbeins are very different. Furthermore since the background
is no longer a non-Kähler resolved conifold we are not restricted
to the basis (60) to express the 3-form G3.
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Lθ ¼ 2θ1

�
ΓmDm −

3

16
eϕΓmnaðFmnaΓ012…7 þ e−ϕHmnaÞ

−
5

16
eϕΓmnpF q

0123ϵmnpq

�
θ1; ð78Þ

with the indices running as m, n, p, q ¼ 4, 5, 6, 7 and
a ¼ 8, 9. Note the interesting feature that the only 3-form
fluxes which contribute to the action are those with two-
legs along the brane, and one leg transverse to the brane.
The other contributions—1) three legs along the brane, zero
transverse and 2) one leg along the brane, two transverse—
cancel out of the action. As we see, there is a possible
contribution from the 5-form flux when all legs of the flux
lie along the brane. This can be made to vanish if we
impose that α depends only on the transverse directions to
the brane. This is different from the D3 case, where the ~F 5

term simply did not contribute, regardless of the choice of
α. We will return to this point in Sec. III D; for the moment
we will take α ¼ αðx8; x9Þ and hence ~F 5 will not contribute
to the masses. There can generally also be a contribution
from the 1-form flux, but a GKP background does not have
these, due to the lack of 1-cycles on a CY manifold21.
The action (77) can be simplified further by using

Γ0…9θ1 ¼ θ1, which implies that FmnaΓ012…7θ1 ¼
ð�2F 3Þmnaθ1, where �2 is the Hodge duality in the (x8,
x9) directions. We can also write this in terms of the familiar
G3 ¼ F 3 − ie−ϕH3 along with the following nomencla-
tures: ISD2 is the “imaginary self-dual” along the transverse
two-cycle and IASD2 is the “imaginary anti-self-dual” again
along the transverse two-cycle pieces of G3 as

G3 ¼ GIASD2
3 þ GISD2

3 ; GISD2
3 ¼ 1

2
ðG3 − i �2 G3Þ;

GIASD2
3 ¼ 1

2
ðG3 þ i �2 G3Þ; ð79Þ

which is equivalent to the decomposition

H3 ¼
i
2
eϕðG3 − G3Þ; F 3 ¼

1

2
ðG3 þ G3Þ: ð80Þ

With these definitions the action becomes

Lθ ¼ 2θ1

�
ΓmDm −

3i
32

eϕΓmnaðGISD2
3 − GISD2

3 Þmna

�
θ1;

ðm; nÞ ¼ 4; 5; 6; 7; a ¼ 8; 9: ð81Þ

Thus the worldvolume fermions on the D7-brane will have
masses determined by the ISD2 G3 flux, where the “dual” in
ISD2 refers to the transverse to the brane (and not the full
internal space). For our example G3 given in Eq. (71), the
flux is purely ISD2 and thus will contribute to the masses.
These masses spontaneously break the background N ¼ 1
supersymmetry.
We could also include a flux which is ISD—and thus

solves the equations of motion for a GKP background—but
which is not ISD2, and hence will not contribute to the
fermion masses. An example of such a flux is

G3 ¼ MðE1 ∧ E1 − E2 ∧ E2Þ ∧ E3 ð82Þ

which is purely IASD2, and thus will not enter Eq. (81).
Such a flux would come from a B2 of the form

B2 ¼ −Meϕ0x9 · ðdx4 ∧ dx5 − dx6 ∧ dx7Þ; ð83Þ

and a similar form for C2.

B. Fermions in 4d and spontaneous SUSY breaking
in a GKP background

We can already see that supersymmetry will be sponta-
neously broken by the D7 in the presence of 3-form fluxes.
What remains to be checked is if there remains a massless
fermion in the four-dimensional effective theory.
In the absence of the G3 flux, the massless fermions in

the 4d theory are those whose dependence on the coor-
dinates of the internal 4-cycle wrapped by the brane is
harmonic. The exact spectrum of effective 4d fermions is
therefore given by the cohomology classes of the wrapped
cycle. On the other hand the coupling of the G3 flux to the
fermions is governed by the structure of the spinors, so we
do not need to know the full details of the topology of the
wrapped cycle to know whether some of these fermions
remain massless. Indeed, most of our calculation proceeds
in the same fashion and certainly in the same spirit as the
D3 case.22

The 16-component spinor θ1 can decomposed into two
eight-component spinors θ1þ and θ1− where the � denotes
the chirality in the transverse space, i.e. under SOð2Þ. In
terms of Γ matrices, Γ3θ1þ ¼ θ1− and Γ3θ1− ¼ θ1þ. The
four-dimensional fermions can be obtained via dimensional
reduction of θ1þ and θ1−, according to the cohomology
classes of the cycle wrapped by the brane, as depicted
below:

21Note that we are putting a D7 in a GKP background with a
constant dilaton and zero axion. The backreacted axionic source
of the D7 is suppressed by gs and to this order we are not taking
this to backreact on the D7 worldvolume [the axion will only be
along the (x8, x9) directions]. This differs slightly in spirit from
the previous section where due to the nonsupersymmetric nature
of the D3-D5 system, it was essential to take the perturbative
backreactions into account, otherwise certain aspects of the
physics would not have been visible. 22Without the (1, 2) perturbations of course.
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θ1þ ¼
X
a

ψa
��þ ⊗ χa��þ;

θ1− ¼
X
a

ψa
��− ⊗ χa��−; ð84Þ

where the ψa are 4d spinors while the χa are internal
spinors; the index a simply counts the number of 4d
spinors. The unspecified �� indices correspond in their
chirality under SU(2), i.e. corresponding to their behavior
under the action of Γ1 and Γ2. This allows us to group all
the fields precisely as done in Refs. [1,2]. We define

λ0 ¼
X

ψa
−−−; λ0 ¼

X
ψaþþþ;

λ1 ¼
X

ψaþ−−; λ1 ¼
X

ψa
−þþ;

λ2 ¼
X

ψa
−þ−; λ2 ¼

X
ψaþ−þ;

λ3 ¼
X

ψa
−−þ; λ3 ¼

X
ψaþþ−: ð85Þ

We can now perform the fermion decomposition exactly as
in Refs. [1,2], except now the fermions λ actually refer to
the set of fermions which transform according the corre-
sponding chirality. We have

ffiffiffi
2

p

12
θ1ΓMNPĜMNPθ

1 ¼ λ0þλ0þĜ123 þ λ0−λ
0
−Ĝ1 2 3

þ ðλ0þλiþĜijj − λ0−λ
{
−Ĝ{jjÞδjj

þ 1

2
ðλiþλjþεjklĜikl

þ λ{−λ
j
−εj klĜ{klÞδkkδll; ð86Þ

where in our case ĜMNP ≡ ðGISD2
3 − GISD2

3 ÞMNP, and with an
abuse of notation, we now use M, N, P to refer to the
internal space, M ¼ 4; 5;…; 9.
The G3 flux must be (2, 1) and primitive, since we only

want supersymmetry to be broken by the presence of the
brane. This on its own immediately implies that λ0 remains
massless and that the mass cross terms with λi vanish as
well, as in the D3 case. The additional feature that the flux
which couples to the fermions is “ISD2” further reduces the
allowed components to only those that have a 3 index, and
hence the only nonvanishing mass terms are

m3 ¼ m3 ∝ ðGISD2
3 Þ123; ð87Þ

where λ3 gets its mass from GISD2
3 while λ3 gets its mass

from GISD2
3 . The other fermions remain massless, i.e.

m0 ¼ mi ¼ m0i ¼ mij ¼ 0; i; j ¼ 1; 2; ð88Þ

and similarly for barred indices.

Thus the resulting four-dimensional massless fermionic
field content consists of λ0, λ1 and λ2. We emphasize that
the λ’s refer to sets of 4d fermions, the precise details of
which can be found via dimensional reduction. Thus there
are many massless fermions in this case, in contrast to
the D3 in a GKP background, which has only one [2].
However, both examples illustrate how supersymmetry is
broken spontaneously by a probe antibrane. Finally, we
note that the bosonic field content on the brane can be taken
care of as in the D3 case, by placing the D7 on an O7 plane.

C. Inclusion of F

There is good reason to study nonzero F : worldvolume
fluxes on D7-branes generate D-terms and F-terms in the
4d theory [63], and may even allow for de Sitter solutions
along the lines of Ref. [64]. With this in mind, let us see
what happens on the antibrane side of this story, i.e. what
happens when we allow worldvolume fluxes on a D7.
Nonzero F modifies our previous analysis in two ways.
First, it modifies the kinetic term via the matrix Mab
defined earlier in Eq. (68) and second, it also modifies the
κ-symmetry projector, which in turn induces new
mass terms.
The equations of motion requireF to be anti-self-dual on

the cycle wrapped by the antibrane, which we take to be in
the (x4, x5, x6, x7) directions, with ϵ4567 ¼ −1 to be
consistent with our conventions in the previous section.
A judicious choice of vielbeins along the cycle can put the
flux into the simple form,

F ¼ fðe4 ∧ e5 þ e6 ∧ e7Þ: ð89Þ

Note that in this approach we first choose a worldvolume
flux, which then guides our choice of vielbeins and
complex structure. This of course also affects the spacetime
Γ matrices and the definitions of the fermions in the SU(3)
triplet. At the end of the day, this amounts to an SU(3)
transformation and does not affect the number of massless
fermions, which is what we are ultimately interested in, nor
does it affect the masses of the massive ones.
The modified kinetic term can be recast as a canonical

kinetic term plus a generalized electromagnetic coupling by
a (generally nonisotropic) rescaling of the vielbeins, as
described in Ref. [43]. For our above choice of F , the
rescaling of the vielbeins to obtain a canonical kinetic term
is simple. The matrix M ¼ gþ F now has off-diagonal
terms, and in the vielbein basis its inverse is given by,

M−1 ¼ 1

1þ f2

0
BBB@

1 −f 0 0

f 1 0 0

0 0 1 −f
0 0 f 1

1
CCCA: ð90Þ

By defining rescaled vielbeins,
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êm ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p ea m ¼ 4; 5; 6; 7; ð91Þ

the kinetic term becomes

θΓmDnMmnθ ¼ θðĝmn þ F̂mnÞΓmDnθ; ð92Þ

where the “hatted” quantities are expressed in terms of the
rescaled vielbeins, e.g. ĝmn ¼ ηjkêmj ê

n
k . We see that the

kinetic term splits into a canonical kinetic term and a
derivative coupling of the fermions to the worldvo-
lume flux.
This derivative coupling complicates the dimensional

reduction of θ1. The underlying SU(3) structure guaran-
tees that there are solutions to gmnΓmDnχ6 ¼ 0, i.e.
there exist zero modes of the Dirac operator on the
internal space; however it will generically not be true that
there are solutions to ðgmn þ FmnÞΓmDnχ6 ¼ 0, particu-
larly for nonsmall F . If no zero modes exist for this
“modified Dirac operator” then there will be no massless
degrees of freedom. Thus the effect of the modified
kinetic terms is to give mass to some, if not all, of the
fermions.
We still have yet to consider the modification of the

couplings to G3. Before doing so, we must incorporate the
rescaling of the vielbeins that we performed. This is simply
done by putting a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f2

p
for every lower index

along the brane directions in all the quantities. To avoid
notation clutter, we will assume for the remainder of this
section that the spacetime fluxes are implicitly “hatted” and
contractions are made using the rescaled metric. This
rescaling ultimately does not affect the tensor structure
of the fluxes, and therefore will not affect which fermions
acquire masses.
The inclusion of F also modifies the κ-symmetry

projector,

ΓD7 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþ F jp ½−iσ2Γ01234567 þ σ3iσ2ðΓ012345F 67

− Γ012367F 45Þ − iσ2Γ0123F 45F 67�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijgþ F jp ½−iσ2Γ01234567 þ f̂σ3iσ2ðΓ012345

− Γ012367Þ − iσ2Γ0123f̂
2�; ð93Þ

which in turn modifies the relation between θ1;2 imposed by
the gauge-fixing condition θð1þ ΓD7Þ ¼ 0, in the follow-
ing way:

θ2 ¼ ½Γ01234567 þ f̂ðΓ012345 − Γ012367Þ þ f̂2Γ0123�θ1: ð94Þ

The outcome of all these changes is that now new couplings
arise as

θ1e−ϕ½ΓmnaðFmnaΓ0…7 þ e−ϕHmnaÞ
þ f̂ΓmabðFmabðΓ012345 − Γ012367Þ þ e−ϕHmabÞ
þ f̂2ΓmnlðFmnlΓ0123 þ e−ϕHmnlÞ�θ1; ð95Þ

where the indices (m, n, l) now take values 4,5,6,7 and
(a, b) as before take values (8,9).
These new terms include fluxes that have one leg or

all three legs along the brane, which were not present for
F ¼ 0. In fact, the last term is the coupling we get for
an D3-brane. This is to be expected, since worldvolume
fluxes induce a lower-dimensional brane charge. The
term linear in f̂ is the coupling due to the induced 5-
brane charge and is similar to what we would obtain if
we studied a D5 in a GKP background. It produces
couplings to fluxes which obey a self-duality condition
in the directions transverse to the cycles threaded by the
flux. As in the pure D7 case, this simply restricts which
subset of fermions get masses and produces no new
unexpected couplings. The presence of the D3-like
coupling means that the SU(3) triplet fermions will
generically all acquire a mass (in addition to any mass
they receive from the modified kinetic term), though
some may remain massless due to the specific form of
the flux as we saw in the previous section. The singlet
fermions, however, receive no new G3 induced mass, for
the same reason as before: its mass term does not arise
from primitive (2, 1) fluxes, which we require by
construction. However, as mentioned already, the singlet
does in general receive a mass from the modified kinetic
term, and hence there will generically remain no mass-
less degrees of freedom.

D. Effect of a more general F 5

Before we close this section we wish to comment on how
the scenario changes once we allow for a more general F 5.
The combination

~F 5 ¼ F 5 þ B2 ∧ F 3 þ C2 ∧ H3; ð96Þ

needs to be self-dual in the full 10d space. If we demand
that the 3-form fluxes have only one leg transverse to the
brane, which is necessary for them to give fermion
masses, then the 5-form flux must have a leg off the
brane as well and therefore will not generate a mass for
the fermions! Conversely, if F 5 is entirely along the brane
directions, the corresponding 3-forms will not be of the
appropriate form to generate masses. It is therefore
possible to consider embeddings of the D7 such that
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only one or the other type of mass contribution is present
or a combination of both.
Let us consider a nonzeroF 0123m component, wherem is

along the brane worldvolume. The fermion decomposition
analysis is very similar to before. The contribution to the
action is of the formffiffiffi

2
p

12
θ1ΓMNPεMNPQF 0123

Qθ1

¼ ðλ0þλiþεijj kF 0123
k − λ0−λ

{
−εijjkF 0123

kÞδjj

þ 1

2
ðλiþλaþεaklεiklmF 0123

m

þ λ{−λ
a
−εa klεiklmF 0123

mÞδkkδll; ð97Þ
where the i; j; k… indices are restricted to lie along the
brane (but a has no such restriction). This results in nonzero
m13, m23 and even more notably m01, m02. Note that m11,
m12, m22 remain vanishing, so even when both the 3-form
and the 5-form fluxes contribute mass terms, there is still a
massless degree of freedom remaining.
Finally, the modification of the κ projector in the

scenario with worldvolume fluxes does not introduce
new contributions from the 5-form flux. Indeed, the second
term in ΓD7, which gives the coupling to the induced 5-
brane charge, can only conspire to give three or seven
gamma matrices inside the resulting fermion bilinear if F 5

has two legs in the internal space, but it must have four legs
along the spacetime directions. Similarly, the third term
necessarily results in a single gamma matrix, yielding a
vanishing bilinear, exactly as in the D3 case. Note
however, that combining both worldvolume fluxes and
an F 5 without transverse legs results in all the fermions
acquiring a mass.
Let us also note that if we had taken the internal space to

be a non-Kähler resolved conifold with fractional branes,

and then inserted a D7-brane wrapping a four-cycle inside
the non-Kähler space, the background fluxes and also the
physics would have been quite different. We will however
not explore this further here, but instead go to another
interesting aspect of our analysis: the all-order fermionic
action on a D3-brane.

IV. TOWARDS THE κ-SYMMETRIC ALL-ORDER
FERMIONIC ACTION FOR A D3-BRANE

The previous two sections detailed the spontaneous
breaking of supersymmetry by probe antibranes in other-
wise supersymmetric compactifications. The starting point
of both of these analyses has been the fermionic brane
action at lowest order in θ, which takes a manifestly
κ-symmetric form.
We would now like to see if this result continues to hold

at higher orders in θ. As we will see, the answer to this
question is in the affirmative, and to show this we need only
minimal knowledge of brane actions.23 In particular, we can
use string dualities to deduce the structure of the all-order
fermionic action, without needing precise information as to
the form of the higher-order operators. To do so, we will
define a (completely general) fermionic completion of the
D3-brane action, as was done at lowest order in θ in
Refs. [41,42], and use certain duality tricks to generate the
higher-order fermionic counterparts of the bosonic fields.
Note that under renormalization group (RG) flow the
higher-order terms are generically irrelevant, but they are
nevertheless needed to realize the full κ symmetry.
The bosonic components of the NS and RR sectors are

connected by the type IIB equations of motion, and
therefore once a certain set of field components are known,
others can be generated from the corresponding EOMs. On
the other hand, for the fermionic components no additional
work is needed: knowing the fermionic fields (θ, θ) and the
bosonic fields, one should be able to predict the fermionic
completions of the bosonic fields to all orders in θ and θ.
This means the fermionic completions of higher p-form
fields should at least be related to the lower p-form field
(including the graviton, antisymmetric tensor and dilaton)
by certain U-duality transformations at the self-dual points
gs ¼ 1 and Ri ¼ 1 for i ¼ 1;…; 2k with Ri being the radii
of the compact directions. To see why this is the case, let us
study two corners of type IIB moduli space.
(1) We can go to the gs ¼ eϕ ¼ 1 point where we should

be able to exchange Bð1Þ
mn with Bð2Þ

mn, as shown by
point C in Fig. 1.

(2) We can go to self-dual radii of the compact target
space Ri ¼ 1 where we should be able to exchange

FIG. 1. The type IIB moduli space with the self-dual point
denoted by A. The point B is for all Ri ¼ 1 and the point C is for
gs ¼ 1. Our duality mappings are defined for the point A. Going
away from the point A in any direction in the moduli space will
imply switching on nontrivial values for the axio-dilaton.

23See Refs. [65], [66], and [67], for more recent related works
on the Volkov-Akulov actions.
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the p-form fields with (pþ 2k)-form fields, as
shown by point B in Fig. 1.

This is only possible if at least a subset of the fermionic
counterparts of the (pþ 2k)-form fields are the ones
obtained via U-duality transformations. This trick could
then be used to generate all the fermionic counterparts of
the higher form fields at least at the self-dual corner gs ¼
Ri ¼ 1 of type IIB moduli space, i.e. around the point A in
Fig. 1. Once we move away from the self-dual point, we
can study the fermionic counterparts of the bosonic fields at
generic points in the type IIB moduli space.
On the other hand the scenario is subtle in the presence

of branes. It is known that the D3- or the D3-branes are S-
duality neutral although the worldvolume degrees of free-
dom differ. However they are not T-duality neutral. The
other D-branes (or NS-branes) are neither S- nor T-duality
neutrals. So, to effectively use the duality trick, no branes
should be present. This is good because now we can
determine the fermionic completion of the background
without worrying about the backreactions from the branes,
and then insert D-branes to study the worldvolume theory.

A. Towards an all-order θ expansion from dualities

Let us now proceed with our analysis. We start by
redefining the all-order fermionic completion of type IIB
scalar fields in the following way:

ΦðiÞ ¼φðiÞ þθΔðiÞθ

≡φðiÞ þ
X
j

Yj
k¼1

θΔðiÞjkθ

¼φðiÞ þθΔð11iÞθþθΔð21iÞ
m…pθθΔð22iÞ

q…nθgpq…gmn

þθΔð31iÞ
m…pθθΔð32iÞ

q…l θθΔ
ð33iÞ
s…nθgpq…gls…gmnþ��� ð98Þ

where Φð1Þ ¼ ϕB and Φð2Þ ¼ Cð0Þ are the dilaton and the
axion respectively, and the dotted terms are of Oðθ8Þ. The
fermion products in Eq. (98) are defined in terms of
components in the following way:

θΔð21iÞ
m…pθθΔð22iÞ

q…nθ≡ θαΔð21iÞ
m…pαβθ

βθδΔð22iÞ
q…nδγθ

γ; ð99Þ

where the greek indices span the 32 (complex) compo-
nent24 fermions θ. The IIB spinor θ is a doublet of 16
(complex) component Majorana spinors of the same
chirality, i.e. this doublet is a 32-component Majorana
spinor but is not Weyl. We decompose θ into the two 16
(complex) component fermions θ1 and θ2 as

θ ¼
�
θ1

θ2

�
; ð100Þ

with θ2 generically nonvanishing. The ΔðabiÞ are all
operators that can be represented in the matrix form in
the following way:

ΔðiÞ ≡

0
BBB@

Δð11iÞ Δð12iÞ Δð13iÞ …

Δð21iÞ Δð22iÞ Δð23iÞ …

Δð31iÞ Δð32iÞ Δð33iÞ …

…

1
CCCA; ð101Þ

where every element of the matrix should be viewed as an
operator with its own matrix representation in some
appropriate Hilbert space. The complete form of the matrix
(101) is not known, but a few elements have been worked
out in the literature [35,41–43]. For example it is known
that

Δð111Þθ ¼ −
i
2
δλθ; Δð112Þθ ¼ 1

2
e−ϕσ2δλθ; ð102Þ

where δλ is the supersymmetric variation of the type IIB
spinor λ in the presence of a D3 and σ2 is the second Pauli
matrix that acts on the θ1;2 components of Eq. (100). It
should also be clear, from the way we constructed the
matrix, that

ΔðabiÞ ¼ ΔðbaiÞ: ð103Þ

Additionally, in the ensuing analysis we will resort to the
following simplification: instead of considering the ΔðabiÞ

operators to have an arbitrary rank q as ΔðabiÞ
m1m2…mq for

a ≥ 2, we will only take them to have a maximal rank 2. As
will be clear from the context, this simplification will not
change any of the physics, and one may easily switch to
arbitrary rank ΔðabiÞ operators without loss of generality.
On the other hand, this simplification will avoid unneces-
sary cluttering of indices. Henceforth unless mentioned
otherwise, we will take only this simplified version.
With this in mind, let us now consider the type IIB metric

gmn. We can expand the all-order fermionic completion in a
way analogous to the scalar field:

Gmn ¼ gmn þ θMðmnÞθ

¼ gmn þ θMð11Þ
ðmnÞθ þ gpqθMð21Þ

ðmjpθθM
ð22Þ
qjnÞθ

þ gpqglsθMð31Þ
ðmjpθθM

ð32Þ
ql θθMð33Þ

sjnÞθ þOðθ8Þ; ð104Þ

which is again a sum over products of contractions of the
fermions with matrix elements of the operator Mmn. The
four-component M operator can be written using two
bosonic and two fermionic components as

24Or 64 real components. Note that the series in Eq. (98) and in
the following, terminate at some finite number of terms because
of the finite number of fermionic components as well as because
of the Grassmannian nature of the fermions.
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MðmnÞαβ ¼ Mð11Þ
ðmnÞαβ þMð21Þp

ðmjαγθ
γθδMð22Þ

pjnÞδβ

þMð31Þp
ðmjαγθ

γθδMð32Þ
psδσθ

σθρMð33Þs
nÞρβ þ � � � ð105Þ

where the first term in the above expansion is well known in
terms of the supersymmetric variation of the Rarita-
Schwinger fermion ψm [35,41–43]:

Mð11Þ
αβðmnÞ ¼ −iΓαβðmDnÞ ≡ −iΓαβðmδψnÞ: ð106Þ

The antisymmetric rank two tensor can also be expanded in
terms of the fermionic components like the symmetric

tensor (104). We can define BðiÞ
mn as the generalized

antisymmetric tensors, where Bð1Þ
mn ¼ Bmn and Bð2Þ

mn ¼
Cð2Þ
mn are the NS and RR 2-forms respectively, using a

certain antisymmetric tensor NðiÞ
½mn� in the following way:

BðiÞ
mn ¼ BðiÞ

mn þ θNðiÞ
½mn�θ

¼ BðiÞ
mn þ θNð11iÞ

½mn� θ þ gpqθNð21iÞ
½mjp θθN

ð22iÞ
qjn� θ

þ gpqglsθNð31iÞ
½mjp θθN

ð32iÞ
ql θθNð33iÞ

sjn� θ þOðθ8Þ: ð107Þ

To see the connection between MðmnÞ and NðiÞ
½mn� operators

let us revisit the T-duality rules of Refs. [36,68]. The
powerful thing about the fermionic completion is that the
T-duality rules follow exactly the formula laid out for
the bosonic fields, except now all the fields are replaced by
their fermionic completions. This can be illustrated as25

~Φð1Þ ¼Φð1Þ−
1

2
lnGxx; ~Gxx¼

1

Gxx
;

~Gmn¼Gmn−
GmxGnx−Bð1Þ

mxB
ð1Þ
nx

Gxx
; ~Gmx¼

Bð1Þ
mx

Gxx
;

~Bð1Þ
mn¼Bð1Þ

mn−
Bð1Þ

mxGnx−GmxB
ð1Þ
nx

Gxx
; ~Bð1Þ

mx¼
Gmx

Gxx
ð108Þ

where x is the T-duality direction. From the T-duality rule
we see that, in the presence of cross terms of G in type IIA,
Bð1Þ could be generated in type IIB using Eq. (108). Since
both the IIA and IIB metrics use MðmnÞ, this is possible if

θNð1Þ
½mx�θ≡ θcσp3M½mx�θ; ð109Þ

where the operator M½mx� is now expressed with respect to
the T-dual fields, i.e. the IIB bosonic fields. We have also
inserted the third Pauli matrix σ3 into Eq. (109), with p ¼ 1
or 2, to take care of certain subtleties that will be explained
later,26and c is a constant matrix. The only constant
matrices for our case, that do not change the chirality,
are the identity and the chirality matrix Γ10, so we will
choose c ¼ Γ10. Since we can make T-duality along any
direction, x appearing in Eq. (109) could span all direc-
tions. This means we can generalize Eq. (109) to the
following:

θNð1Þ
½mn�θ≡ θσp3 ⊗ Γ10M½mn�θ; ð110Þ

implying that the symmetric matrix MðmnÞ determines the
generalized metric Gmn, whereas the antisymmetric matrix

M½mn� determines the generalized B-field Bð1Þ
mn. In terms of

components, we expect

Nð111Þ
αβ½mn� ¼ −iσ3 ⊗ Γ10Γαβ½mδψn�; ð111Þ

which is consistent with the results in Refs. [35,41–43].
However the relation (110) predicts the form of all the
operators appearing in Eq. (107) once all the corresponding
operators appearing in Eq. (104) are known, not just the
component given above.
To find the form ofBð2Þ

mn, or the operatorN
ð2Þ
½nm�, wewill use

the T-duality trick discussed above, assuming that the
T-duality rules go for the RR fields with fermionic com-
pletions exactly as their bosonic counterparts [41,42]. To

proceedwewill needΦð2Þ andBð1Þ
mn fromEqs. (98) and (107),

rewritten as

25There seems to be two ways of analyzing the T-duality
transformations in the literature. One, is to assume that Buscher’s
rules are exact to all orders in α0 and only the supergravity fields
receive α0 corrections. This way, Buscher’s rules could be used to
study supergravity field transformations order by order in α0. The
other is to assume that both the T-duality transformations and the
supergravity fields receive α0 corrections. There is some con-
fusion regarding which one should be considered, but in our
opinion the more conservative picture is the latter one where both,
the T-duality rules as well as the supergravity fields, receive α0
corrections. Since T-duality transformations preserve supersym-
metry, the α0 corrections to the T-duality transformations would
imply α0 corrections to the supersymmetry transformations—a
result consistent with the known facts. See for example
Refs. [37,69] for the lowest-order corrections, where somewhat
similar arguments have appeared, and Ref. [70] for more recent
discussions. However as we will see soon, our results will not be
very sensitive to this. 26See discussions after Eq. (126).
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Φð2Þ ¼ Cð0Þ þ θσ2 ~Δð2Þθ;

Bð1Þ
mn ¼ Bmn þ θσ3 ⊗ Γ10M½mn�θ; ð112Þ

where we have extracted a Pauli matrix σ2 in defining
Δð2Þ ¼ σ2 ~Δð2Þ. The other components appearing in
Eq. (112) are the corresponding bosonic backgrounds.
The T-duality rules for the RR fields are given as27

~CðnÞ
xm2…mn

¼ Cðn−1Þ
m2…mn − ðn − 1Þ ~Bð1Þ

x½m2
Cðn−1Þ

jxjm3…mn�;

~CðnÞ
m1…mn

¼ Cðnþ1Þ
xm1…mn − nBð1Þ

x½m1

~CðnÞ
jxjm2…mn�: ð113Þ

There are now two possibleways to get the fermionic part of

Bð2Þ
mn: we can T-dualize the scalar Φð2Þ twice using the

T-duality rule (113), and we can S-dualize Bð1Þ
mn. Let us start

by discussing the first possibility, namely the T-duality way

of getting part of Bð2Þ
mn. By T-dualizing once we get a vector

field in type IIA as

~Cð1Þ
x ¼ Φð2Þ; ð114Þ

and then another T-duality will give us the required RR
2-form field in the following way:

Ĉð2Þ
yx ¼ ~Cð1Þ

x − B̂ð1Þ
yx ~Cð1Þ

y ¼ Φð2Þ − B̂ð1Þ
yx ~Cð1Þ

y ¼ Φð2Þ ð115Þ

because ~Cð1Þ
y ¼ 0 according to Eq. (114), and therefore the

field Φð2Þ should determine the required 2-form. However
before proceeding we should determine how the 32-
component Majorana fermion (100) changes under the
two T-dualities. It is easy to show that

θ → Σ1θ; θ → θΣ2; ð116Þ

where Σi are two 32 × 32 component matrices, i.e. they act
on the doublet basis, given in terms of the 16-component
gamma matrices28 Γx and Γy by

Σ1¼
�
I16 0

0 ΓxΓy

�
; Σ2¼

�
I16 0

0 ΓyΓx

�
; ð117Þ

and leading to the following set of algebras that will be
useful soon:

Σ2ðσ2⊗I16ÞΣ1¼σ3σ2⊗ΓxΓy; Σ2 ·Σ1¼I32;

Σ2

�
0 ∓ iC

�iC 0

�
Σ1¼

��C 0

0 �C

�
ðσ3σ2⊗ΓxΓyÞ;

Σ2

��C 0

0 �C

�
Σ1¼

��C 0

0 �C

�
; ðσ3σ2Þ2¼−I2;�

1 0

0 ΓbΓa

�
ðσ3σ2⊗ΓxΓyÞ

�
1 0

0 ΓaΓb

�

¼σ2⊗ΓxΓyΓaΓb: ð118Þ

Therefore using Eqs. (115) and (116) with the algebras

(118), we can get one part of the 2-formBð2Þ
mn in the following

way:

Ĉð2Þ
mn ¼ θcσ3σ2 ⊗ Γmn

~Δð2Þθ; ð119Þ

where, as before, we can take c ¼ Γ10 i.e. the chirality
matrix, and ~Δð2Þ can either be expressed in terms of the
T-dual fields or the original fields.
In deriving Eq. (119) we have not actually looked at the

form of ~Δð2Þ. Depending on the representation of gamma
matrices in the definition of ~Δð2Þ, our simple expression
(119) could in principle change to a more involved one. The
scenario is subtle so let us tread carefully here. We start by
rewriting the RR scalar (98) field as

Φð2Þ ¼Cð0Þ þðθσ2Þα ~Δð2Þ
αβ θ

β

¼Cð0Þ þðθσ2Þα ~Δð112Þ
αβ θβþðθσ2Þα ~Δð212Þp

αχm θχθσ ~Δð222Þm
σβp θβ

þðθσ2Þα ~Δð312Þp
αγm θγθσ ~Δð322Þl

σχp θχθδ ~Δð332Þm
δβl θβþOðθ8Þ;

ð120Þ

where we have assumed that the generic operator ~Δðab2Þm
αβn is

constructed from the products of 16-dimensional gamma
matrices, the type IIB bosonic fields and covariant deriv-
atives A16×16 as

ðθσp2 Þα ~Δðab2Þ
mnαβθβ ≡ θσp2

 
AðabÞ

16×16 0

0 AðabÞ
16×16

!
mn

θ; ð121Þ

where p can be 0 or 1 depending on what fermion
combination we are looking at in Eq. (120). Using our
T-duality ideas, and using the gamma matrix algebras
(118), it is easy to see that the 2-form (119) appears
naturally with an overall ΓmΓn matrix provided we impose

½A;ΓxΓy� ¼ 0; ð122Þ

without loss of generalities as transformations with an even
number of gamma matrices will not change any results. The
puzzle however is if Eq. (121) takes the following form:

27As before, we expect the T-duality rules for the RR fields to
also receive α0 corrections. We will discuss the consequence of
this on our analysis soon.

28We are using the flat-space Γ matrices.
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ðθσp2 Þα ~Δðab2Þ
mnαβθ

β ≡ θðσp2 ⊗ I16ÞðI2 ⊗AðabÞ þ σ1 ⊗CðabÞÞmn

θ¼ θðσp2 ⊗ I16Þ
 
AðabÞ

16×16 CðabÞ
16×16

CðabÞ
16×16 AðabÞ

16×16

!
mn

θ;

ð123Þ

where (σ1, I2) are the first Pauli matrix and two-
dimensional identity matrix respectively, and C16×16 is
another 16-dimensional matrix constructed out of gamma
matrices, IIB fields and covariant derivatives.
To understand the consequence of the above-mentioned

representations of the operators, let us discuss a few
additional gamma matrix algebras under our T-duality
transformations:

Σ2ðσ2σ1 ⊗ CÞΣ1 ¼ −iσ3 ⊗ C;

Σ2ðσ1 ⊗ CÞΣ1 ¼ iðσ2 ⊗ CΓxΓyÞ;
Σ2ðσ2 ⊗ I16ÞðI2 ⊗ AÞΣ1 ¼ σ3σ2 ⊗ AΓxΓy: ð124Þ

Using these algebras, it is now easy to see that under
T-dualities the operators (121) and (123) transform in the
following way:

θðI2⊗Aþσ1⊗CÞθ→θðI2⊗Aþ iσ2⊗CΓxΓyÞθ;
θσ2ðI2⊗Aþσ1⊗CÞθ→θðσ3σ2⊗AΓxΓy− iσ3⊗CÞθ;

ð125Þ

from where we see that the first terms in Eq. (125) are
clearly consistent with the duality rules that lead us to the
result (119). However it is the second term in the two
expressions above in Eq. (125) which would not fit with the
generic result (119). Clearly whenC ¼ 0 this problem does
not arise.
A way out of this conundrum is in fact clear from the

transformations themselves. The existence of C16×16 in
Eq. (123) would imply that this piece is T-duality neutral,
and does not transform as a rank-2 tensor under T-duality.
Thus this piece cannot be part of a RR axionic scalar whose
T-duality transformations are well known. In fact its
neutrality to the T-duality transformation hints that
C16×16 could be a part of the NS scalar i.e. the dilaton,
unless of course we can use ψ ≡ θσ1 to transform

ψC ⊗ σ1θ → θCθ; ð126Þ

under two T-dualities. This way the issues raised in
Eq. (125) will not arise and the generic result (119) will
continue to hold to arbitrary orders in the θ expansion.
Let us now come to the second possibility of getting the

fermionic part of Bð2Þ
mn namely, S-dualizing Bð1Þ

mn i.e. the NS
part of the 2-form (with its fermionic completion). In light
of our earlier discussion, this would be like moving the

type IIB coupling up, at fixed self-dual radii of the compact
spaces, so as to reach the gs → 1− point. In other words, we
are moving from region B to region A in Fig. 1.
We will however start by first fulfilling the promise that

we made earlier, namely to discuss the appearance of σ3,

the third Pauli matrix, in Eq. (109) for the NS B-field Bð1Þ
mn.

Recall that our argument was to motivate the result from
T-dualizing the metric component with cross terms from
type IIA to type IIB theory. Under T-duality the 32-
component type IIA chiral fermion θA transforms as

θA ¼
�
θþ
θ−

�
→

�
1 0

0 −Γ10Γx

��
θ1

θ2

�
≡ ~Σ1θ;

θA ¼
�
θþ θ−

�
→

�
θ1 θ2

��
1 0

0 Γ10Γx

�
≡ θ ~Σ2;

ð127Þ

where the T-duality is performed along direction x to go
from IIA to IIB. The above transformations immediately
implies the following algebra, similar to the algebras that
we discussed earlier in Eq. (118):

~Σ2 ⊗
�
C16×16 0

0 C16×16

�
⊗ ~Σ1

¼
�
C16×16 0

0 −Γ10ΓxC16×16Γ10Γx

�
¼ σp3 ⊗ C16×16;

ð128Þ

where σ3 is the third Pauli matrix with p ¼ 1 or 2 depending
on the specific representation of the 16-dimensional C
matrix. To fix the value of p, we can go to our self-dual
point such that the transformation (127) becomes an
intermediate transformation at Rx ¼ R⊥ ¼ 1, where R⊥ is
the radius of an orthogonal circle. We can choose the C
matrix to be of the form Cxm ≡ ΓxOm, with Om being a
combination of type IIB fields and covariant derivatives with
even or odd numbers of gamma matrices. In that case p ¼ 1
in Eq. (128). Even when the intermediate matrix, in the θ

expansion, is of the formCþ σ1 ⊗ ~C, the result of the form
(128) will continue to hold because we can absorb σ1 in the
transformation matrices as in Eq. (126). Therefore, combin-
ing the results together, and assuming p ¼ 1, we can express

the fermionic part of the NS B-field Bð1fÞ
mn as

Bð1fÞ
mn ¼ θσ3 ⊗ Γ10M½mn�θ: ð129Þ

As discussed earlier, we can now go to a corner of type IIB
moduli space where the string coupling is strong i.e. gs → 1.

Here we expect the RR B-field Bð2Þ
mn to be given at least by

the S-dual of Bð1Þ
mn. The S-duality matrix that concerns us

here is
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�
0 −1
1 0

�
; ð130Þ

which squares to −I2. This is the perturbative piece of the
duality that keeps the string coupling unchanged, but
changes the signs of the 2-form fields. To incorporate

S-duality in our fermionic part of the NS B-field Bð1Þ
mn

one only needs to insert −iσ2 in Eq. (129) to get the
following fermionic piece29:

D̂ð2Þ
mn ¼ −iθσ3σ2 ⊗ Γ10M½mn�θ; ð131Þ

such that S-dualizing twice will yield ð−iσ2Þ2 ¼ −I2. This
way we will get back the same result as Eq. (130) after two
S-dualities that allow for a Z2 phase factor. Combining
Eqs. (119) and (131) together we get our final expression for
the RR 2-form field along with its fermionic completion as

Bð2Þ
mn ¼ Cð2Þ

mn − iθσ3σ2 ⊗ Γ10ðM½mn� þ iΓmn
~Δð2ÞÞθ: ð132Þ

From the above expression we expect the fermionic terms to
be suppressed by powers of the string coupling away from
the self-dual points, so that at the self-dual point (the region
A in Fig. 1) we can exchange Bð2Þ and Bð1Þ and simulta-
neously perform two T-dualities. To see whether this is
indeed true, we need to expand Eq. (132) to higher orders in
θ. This can be easily worked out using earlier expressions for
M½mn� and ~Δ in Eqs. (105) and (120) respectively, and the
result is given by

Bð2Þ
mn ¼ Cð2Þ

mn − iθe−ϕσ3σ2 ⊗ Γ10ðMð11Þ
½mn� þ iΓmn

~Δð112ÞÞθ
− iθe−ϕσ3σ2 ⊗ Γ10ðMð21Þ

½mjpθθM
ð22Þ
qjn�g

pq

þ iΓmn
~Δð212Þ
rp θθ ~Δð222Þ

qs gpqgrsÞθ þOðθ8Þ; ð133Þ

where to Oðθ2Þ the coefficients can be read off from
Eqs. (106) and (111) as (see also Refs. [41,42] for more
details)

Mð11Þ
½mn� ¼ −Γ½mδψn�; ~Δð112Þ ¼ 1

2
δλ: ð134Þ

We can see that the string coupling appears correctly in
Eq. (133) so as to allow for the right behavior of the form
fields in the full IIB moduli space. The fermion variations
(δψm; δλ) are with respect to either the original type IIB
variables or the T-dual type IIB variables in our trans-
formation scheme. Note that once we know the functional

form of Δ̂ðab2Þ
mn for generic values of (a, b), we will know the

θ expansion of Eq. (133) to arbitrary orders. This is of course
a challenging exercise which we will not perform here.

Instead we will use our results for Bð1Þ
mn and Bð2Þ

mn etc. to
determine the fermionic structure of the 4-form Cmnpq

around the self-dual point.
The fermionic structure of the 4-form can be determined

using a similar trick as before by scanning the IIB moduli
space. There are two different points in the moduli space
that would give us the 4-form. First, at weak string
coupling, we can go to the small compactification radii
(or more appropriately the self-dual radii) where the 4-form
can get contributions from the T-dual of Bð2Þ

mn. Second, at
strong string coupling i.e. gs → 1, we can again go to self-
dual radii where the 4-form can now get contributions from

the U-dual of Bð1Þ
mn. For the first case, we can T-dualize the

RR field Bð2Þ
mn twice along directions (a, b); and for the

second case, we can S-dualize the Bð1Þ
mn field and then

T-dualize twice along directions (a, b). The gamma matrix
algebras useful for us are now the following:

�
1 0

0 ΓbΓa

�
ðσ3σ2 ⊗ Γ10Þ

�
1 0

0 ΓaΓb

�

¼ σ2 ⊗ Γ10ΓaΓb;�
1 0

0 ΓbΓa

�
ðσ3σ2 ⊗ Γ10ΓxΓyÞ

�
1 0

0 ΓaΓb

�

¼ σ2 ⊗ Γ10ΓaΓbΓxΓy: ð135Þ

Using these algebras, which are basically the T-duality
rules, for both strong and weak string couplings will
immediately provide us with the contributions to the
4-form from the two sources mentioned above around
gs ¼ Ra ¼ Rb ¼ 1. The result is 7

Cmnpq ¼ Cð4Þ
mnpq − iθσ2 ⊗ Γ10ð2Γ½mnMpq� þ iΓmnpq

~Δð2ÞÞθ
¼ Cð4Þ

mnpq − iθσ2 ⊗ Γ10ð2Γ½mnM
ð11Þ
pq�

þ iΓmnpq
~Δð112ÞÞθ þOðθ4Þ

¼ Cð4Þ
mnpq −

1

2
θσ2 ⊗ Γ10ð4Γ½mnpδψq�

− ΓmnpqδλÞθ þOðθ4Þ; ð136Þ

where the factor of 2 signifies the contributions from the U-
dual of the two B-fields, and we have determined the results
up to Oðθ2Þ. One may verify with Refs. [3,35,41,42] that
the result quoted above matches well with the literature
at the self-dual point. It is interesting that to this order
the match is exact, and therefore other possible corners of
the type IIB moduli space do not contribute anything else
to the fermionic parts of the bosonic RR and NS fields. At
higher orders in θ there could be contributions that we
cannot determine using our U-duality trick. Nevertheless,
the U-duality transformations are powerful enough to29The sign is chosen for later convenience.
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extract out the fermionic contributions from various corners
of the moduli space.
So far however we have not discussed the connection

between Δð1Þ appearing in the dilaton and ~Δð2Þ appearing in
the axion, as in Eq. (144). The fact that they are related can
be seen from M-theory on a torus T2 in the limit when the
torus size is shrunk to zero. Of course the scenario that we
have envisioned here at the self-dual point cannot be
uplifted to M-theory because we are not allowed to shrink
the M-theory torus to zero size (as gs ¼ 1). However away
from the self-dual point we can lift our configuration to
M-theory, so let us discuss this point briefly. In M-theory
we expect the metric to take a form similar to Eq. (104) or
Eq. (144), i.e.

Ĝmn ¼ Gð11Þ
mn þ θM̂mnθ; ð137Þ

where the superscript denotes the bosonic part of the metric,
and θ is the corresponding fermionic variable. If we
parametrize the torus direction by (x3; xa) where xa denotes
the eleventh direction, then it is easy to see that in the limit
of vanishing size of the torus, the type IIB axion and
dilaton, with their fermionic completions, are related via

exp ½−2Φð1Þ� þ ½Φð2Þ�2 ¼ Ĝ33

Ĝaa

; ð138Þ

implying the connection between Δð1Þ and ~Δð2Þ away from
the self-dual point. Using this one should be able to derive
theOðθ2Þ result similar to Eq. (145) but away from the self-
dual point, as also given in Refs. [41,42].
What happens at the self-dual point? The self-dual point

is defined for Cð0Þ ¼ ϕ ¼ 0, and therefore we should at
least assume that this continues to be the case for the
fermionic completions of the dilaton and axion too. In other
words we should expect

τ≡ Φð2Þ þ ie−Φ
ð1Þ ¼ i ðat the self-dual pointÞ; ð139Þ

to all orders in (θ, θ). Interestingly the condition jτj2 ¼ 1 is
similar to the M-theory condition (138) in the limit
Ĝ33 ¼ Ĝaa. To lowest order in θ; θ it is easy to see that
Eq. (139) reduces to the following condition:

θαΔð111Þ
αβ θβ ¼ −iθαðσ2Þγα ~Δð112Þ

γβ θβ ðat the self-dual pointÞ:
ð140Þ

In general, to all orders in (θ, θ), the relation between Δð1Þ

and ~Δð2Þ at the self-dual point can be directly seen from
Eq. (139) as

θΔð1Þθ ¼ − log ð1þ iθσ2 ~Δð2ÞθÞðat the self-dual pointÞ:
ð141Þ

We expect Eqs. (140) and (141) to reproduce the condition
(102) or (145) discussed in Refs. [35,41–43] at the self-dual
point also. To this effect we will start by defining

Δð1Þ ¼ −i ~Δð2Þ þ Δ̂; ð142Þ

generically, both at and away from the self-dual point.
Plugging Eq. (142) into Eq. (141), and taking into account
the lowest-order results in Refs. [35,41–43], we expect Δ̂ to
vanish to lowest order in (θ; θ) and use the following
constraint on the fermionic coordinate:

θð1 − σ2Þ ¼ 0 ðat the self-dual pointÞ; ð143Þ

which would naturally explain the invariance under
U-dualities in region A in Fig. 1. Of course away from
the self-dual point we do not expect Eqs. (141) and (143) to
hold, although Eq. (138) should continue to hold.
We now conclude this section by collecting together all

of our results. The fermionic completions of the type IIB
fields, away from the self-dual point, can be expressed in
the following compact notations:

Φð1Þ ¼ϕþθΔð1Þθ; Φð2Þ ¼Cð0Þ þθe−ϕσ2 ~Δð2Þθ;

Bð1Þ
mn¼Bmnþθσ3⊗Γ10M½mn�θ; Gmn¼gmnþθMðmnÞθ;

Bð2Þ
mn¼Cð2Þ

mn− iθe−ϕσ3σ2⊗Γ10ðM½mn� þ iΓmn
~Δð2ÞÞθ;

Cmnpq¼Cð4Þ
mnpq− iθe−ϕσ2⊗Γ10ð2Γ½mnMpq� þ iΓmnpq

~Δð2ÞÞθ;
ð144Þ

where the θ expansion for Δð1Þ is given by Eq. (98), that for
~Δð2Þ is given by Eq. (120) and those forMðmnÞ andM½mn� are
given by Eq. (104). We will take (Cð0Þ, ϕ) → 0, such that
gs ¼ eϕ → 1 at the self-dual point. Knowing these series
expansions we can in principle determine the type IIB fields
to arbitrary orders in θ (provided of course there are no
additional terms other than the ones obtained via U-duality
transformations). In the presence of a D3, the functional
forms forΔð1Þ, ~Δð2Þ andMmn become fixed. Henceforth this
is the choice that we will consider, unless mentioned
otherwise.30 For example, to Oðθ2Þ, Δð1Þ; ~Δð2Þ and Mmn
are known to be

30For simplicity we will only concentrate on the integer D3-
brane (including the D3-brane), and not discuss the fractional
branes as we did for the resolved conifold case. Although with
our formalism it is easy to extend to any D-brane, integer or
fractional, one needs to be careful when fractional branes are
present along with integer D3- or D3-branes. However in the
presence of only fractional branes, but no integer branes, the story
proceeds in exactly the same way as discussed here as long as we
are below the energy scale proportional to the inverse size of the
two-sphere on which we have our wrapped branes.
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Δð1Þ ¼−
i
2
δψ ; ~Δð2Þ ¼1

2
δψ ; Mmn¼−iΓmδψn; ð145Þ

and therefore plugging them into Eq. (144) will determine
the type IIB fields to Oðθ2Þ in the presence of a D3-brane.
The above values should be understood as operators acting
on θ, and therefore to higher orders in θ one would need to
express them in terms of components:

ðΔð111Þ
αβ ;Δðab1Þ

mnαβÞ; ð ~Δð112Þ
αβ ; ~Δðab2Þ

mnαβÞ; MðabÞ
mnαβ; ð146Þ

as elucidated in Eqs. (98), (120) and (104) to properly write
the higher-order terms. Also, in Eq. (146) (m, n) are
Lorentz indices, and (α, β) are spinor indices. One may
easily check that these results match with the ones known in
the literature [35,39–43] for eϕ ¼ 1. The interesting thing
about Eq. (146) is that, knowing these coefficients, one
might be able to go to higher orders in θ as discussed above.

B. κ symmetry at all orders in θ

In the previous section we managed to get the full
fermionic action for the D3-branes using certain U-duality
transformations at the self-dual point in the type IIB moduli
space. The result is extendable to the D3-brane also,
modulo certain subtleties that we want to elaborate here.
Our answer is given in Eq. (156) which is derived for the
special case of Fmn ¼ 0. The most generic case, given as
Eq. (147), could also be worked out using the representa-
tions (144) for the type IIB fields, but we will not do
so here.
Another issue that we briefly talked about earlier is the

behavior of these higher-order terms under renormalization
group flow. Under RG flow we expect these terms to be
irrelevant. However as we will discuss momentarily, to
argue for the full κ symmetry, all the higher-order terms are
essential. Therefore for our purpose it may be useful to
work with the exact renormalization group equations [71]
to keep track of the irrelevant operators. In the following
however we will not discuss the quantum behavior and
concentrate only on the classical action (156) with all the
higher-order terms.
The question that we want to answer here is the

following: under what condition will the action (156) take
the κ-symmetric form, i.e. a form like L ∼ θð1 − Γ�

D3Þ½…�θ,
where Γ�

D3 is the κ-symmetry operator?31 The condition, as
we shall see, turns out to be rather subtle so we will have to
tread carefully. Therefore as a start we will take the
worldvolume action, for a single D3 or D3, in the presence
of the fermionic terms, to be given by

S ¼ −T3

Z
d4ζe−Φ

ð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðGab þ Bð1Þ

ab þ α0FabÞ
q

� T3

Z
C ∧ eBþα0F; ð147Þ

where the first term is the Born-Infeld (BI) piece and the
second one is the Chern-Simons (CS) piece. The only
difference now is that they both include the fermionic
completions that we developed earlier which are in general
different for D3- and D3-branes.32 We can choose the gauge
field Fab in such a way as to cancel the fermionic

contributions of the NS B-field Bð1Þ
ab . This way we can

write a bosonic combination F ab ≡ Bð1Þ
ab þ α0Fab to re-

present the gauge field. We can also define a matrix A in the
following way:

Amn ≡ ½ðgþ F Þ−1�pmθαMpnαβθ
β; ð148Þ

where the matrix Mmn was defined earlier in Eq. (144) to
study the fermionic parts of the metric and the NS B-field.
With this definition, the BI part of the antibrane action takes
the following form:

SBI ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgþ F Þ

p
× exp

�
1

2
tr log ðIþ AÞ − θΔð1Þθ

�
; ð149Þ

where I is the identity matrix in four dimensions, and A is
the same matrix defined earlier in Eq. (148). As usual, at the
self-dual point we put ϕ ¼ 0 to be consistent with our
U-dualities. Moving away from the self-dual points, as
exemplified in Eqs. (133), (134) and (144), the action has
the necessary dilaton piece.
We now come to the Chern-Simons part of the brane

action for both the D3 and D3 using the fermionic
completions developed above. The action can be written as

SCS ¼ T3

Z
d4ζϵmnpq

�
C�

mnpq þ Bð2�Þ
mn Fpq

þ 1

2
Φð2�ÞFmnFpq

�
; ð150Þ

where the superscripts represent D3 and D3 respectively,

and C−
mnpq ≡Cmnpq, B

ð2−Þ
mn ≡Bð2Þ

mn and Φð2−Þ ≡ Φð2Þ for a

31See Eq. (152) for the definition of Γ�
D3.

32We have used three kinds of matrices, namelyMmn, Δð1Þ and
~Δð2Þ to express the fermionic pieces in the presence of a D3-
brane. One may choose similar matrices to express the fermionic
pieces in the presence of a D3-brane. For example we will use
Mþ

mn, Δð1þÞ and ~Δð2þÞ as the corresponding matrices for a D3-
brane to represent the fermionic parts, whereas M−

mn ¼ Mmn,
Δð1−Þ ¼ Δð1Þ and ~Δð2−Þ ¼ ~Δð2Þ will be reserved for the D3-brane
to avoid clutter.
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D3 as we developed here. We have assumed that the
background is flat along spacetime directions so that the
curvature terms do not appear above. In general, for a
curved background, the curvature terms with their fer-
mionic completions (from the metric) should also appear.
For our case this should only change the last term in the
above action (150).
We can simplify the action (150) further by assuming

Fmn ¼ 0. This would also imply that Amn in Eq. (148)
simplifies. This is the case we will consider here. A more
generic scenario with Fmn, or even with the fermionic
pieces of Fmn (that we canceled here) can be studied. This
will make the system more involved but will not change the
physics. Therefore, for this special case we have

SCS¼T3

Z
d4ζϵmnpqCð4Þ

mnpq

þT3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
θΓ�

D3

�
1

2
ΓbaM�

abþ i ~Δð2�Þ
�
θ;

ð151Þ

where, as before, M−
ab ≡Mab and ~Δð2−Þ ≡ ~Δð2Þ represent

the corresponding matrices for a D3, and Γ�
D3 is defined as

Γ�
D3 ¼ � iσ2 ⊗ Γ10Γmnpqϵ

mnpq

4!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p : ð152Þ

Let us now come back to the BI piece of the action (149).
To analyze this we will use the well-known expansion for
log as

tr log ðIþ AÞ ¼ trA −
1

2
trA2 þ 1

3
trA3 þ � � �

¼
Xkmax

k¼1

ð−1Þkþ1trAk

k
; ð153Þ

where kmax is determined by the rank of the matrix.
Plugging this into the BI action (149) and rearranging
the action appropriately, we get for a D3

SBI ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
1þ

Xkmax

k¼1

�
1

2
trA − θΔð1Þθ −

1

2

Xlmax

l¼1

trð−AÞlþ1

l

�k

·
1

k!

�

¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p �
1þ

Xkmax

k¼1

ð1
2
trAþ iθ ~Δð2Þθ þ SðA; Δ̂ÞÞk

k!

�
ð154Þ

where the first term is the standard BI term for the bosonic piece and the second term is the fermionic extension. We have
also used Eq. (142) to replace Δð1Þ by ~Δð2Þ and defined the other variable appearing above in the following way:

SðA; Δ̂Þ ¼ −
1

2

Xlmax

l¼1

trð−AÞlþ1

l
− θ Δ̂ θ: ð155Þ

Combining the Chern-Simons and the Born-Infeld parts, i.e. Eqs. (151) and (154) respectively, we can extract the fermionic
completions of the brane and antibrane actions. The result is given by

Sf� ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
L�

L� ≡
�Xkmax

k¼1

ð1
2
trA� þ iθ̄ ~Δð2�Þθ þ S�ðA; Δ̂ÞÞk

k!
− θ̄Γ�

D3

�
1

2
ΓbaM�

ab þ i ~Δð2�Þ
�
θ

�
; ð156Þ

where the � subscripts denote the D3-brane and D3 respectively and A−
mn ≡ Amn as in Eq. (148). The bosonic parts of the

action for the brane and the antibrane remain the same as the standard ones, as one can easily verify. It is also easy to see that

1

2
trA� ¼ 1

2
θΓbaM�

abθ≡ θðN� − i ~Δð2�ÞÞθ; ð157Þ

where N� is defined in such a way that the fermionic action (156) takes the following form:

Sf� ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðeθN�θþOðN2

�Þ − 1 − θΓ�
D3N�θÞ: ð158Þ
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In the absence of any other information about the seriesN�, the above action for the fermionic terms for the D3 or the D3 is
probably the best we can say at this stage. Simplification can occurwhenN� remains small to all orders in (θ, θ), which in turn
would guarantee the smallness of theOðN2

�Þ terms in the exponential, as well as the exponential itself. If this is the case then

Sf� ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
θð1þ Γ�

D3ÞN�θ

¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
θð1þ Γ�

D3Þ
�
1

2
ΓbaM�

ab þ i ~Δð2�Þ
�
θ; ð159Þ

which would provide a strong confirmation of the recent work of Ref. [1], which was originally done toOðθ2Þ. For our case
we can use the θ expansions for M−

ab ¼ Mab and ~Δð2−Þ ¼ ~Δð2Þ for a D3 to express

θ

�
1

2
ΓbaMab þ i ~Δð2Þ

�
θ ¼ θα

�
1

2
Γbaγ
α Mð11Þ

abγβ þ i ~Δð112Þ
αβ

�
θβ

þ θα
�
1

2
Γbaγ
α Mð21Þ

acγδθ
δθσMð22Þc

bσβ þ i ~Δð212Þ
αδm θδθσ ~Δð222Þm

σβ

�
θβ þOðθ6Þ

¼ −
1

2
iθðΓaδψa − δλÞθ þOðθ4Þ; ð160Þ

which is consistent with what we know to Oðθ2Þ from the
literature [3,35,41,42]. Now if we define Γ−

D3 ¼ ΓD3 and
Γþ
D3 ¼ −ΓD3 from Eq. (152) and δþ ¼ δ and δ− ¼ δ from

Ref. [1], and use the fermionic actions (156) or (159) for the
D3- and D3-branes, then to Oðθ2Þ we can easily reproduce
the expected result in a κ-symmetric form:

S� ¼ 1

2
T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
iθð1∓ ΓD3ÞðΓaδ�ψa− δ�λÞθ

þOðθ4Þ: ð161Þ

At the orientifold point, if we assume that the action is
given by Eq. (159), then to all orders in θ the fermionic
coordinate satisfies θð1 − ΓD3Þ ¼ 0. This way Sþ vanishes
identically and S− remains nonzero. This result seems to be
valid only if the fermionic action takes the form (159), but
is not obvious from the fermionic action (156) that this will
continue to be the case. In fact the action (156) has many
terms, coming from the log and from the exponential
pieces, that do not in any obvious way give us Sþ ¼ 0 at the
orientifold point. In the following we will try to see how we
can adjust the background, for example Eq. (144), to get the
required form of the action.
Clearly adjusting the background should affect the

definition of the type IIB fields (144). From the way we
derived Eq. (144), we cannot arbitrarily change the field
definitions since they are related by certain U-duality
transformations at a self-dual point. Thus for example,
knowing Bð1Þ

mn, Φð1Þ and Φð2Þ, we pretty much derived the
rest of the RR fields using U-dualities. All the fields and
their corresponding fermionic completions depend on three
sets of functional forms: Mmn, Δð1Þ and ~Δð2Þ. In fact the

antisymmetric part of the operator Mmn, namely M½mn�, is
essential to describe the fermionic completions of the p-
form fields in type IIB. The symmetric part, MðmnÞ, on the
other hand is reserved for the fermionic completion of the
metric. At the self-dual radii, MðmnÞ and M½mn�, could be
related by T-dualities along one parallel and one orthogonal
spatial direction. The temporal directions however are not
connected via simple T-dualities. This distinction may help
us to construct the κ-symmetric form of the action from
Eq. (156). To this end, we start by redefining the temporal
components of the metric G0μ in the following way:

G00 ≡ ðg00 þ θM00θÞ exp ð2θΩθÞ;

G0i ≡ ðg0i þ θM0iθÞ exp
�
1

5
θΩθ

�
; ð162Þ

keeping Gij and all other type IIB fields exactly as in
Eq. (144). The Ωðθ; θÞ appearing above is again a series
defined by powers of (θ; θ) as

θΩθ ¼ θαΩð11Þ
αβ θβ þ θαΩð21Þ

m…qαγθγθδΩð22Þ
p…nδβθ

βgqp…gmn

þOðθ6Þ ð163Þ

where the coefficients can be defined in a similar way as the
variables appearing in Eq. (144). As before, we could resort
to rank-2 tensor representations for Ωð21Þ and Ωð22Þ etc.,
without losing much of the physics here.
Let us now revisit the Born-Infeld part of the action

(147). Taking Eqs. (162) and (144) into account, it is easy
to see that the BI action now takes the following form:
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SBI ¼ −T3

Z
d4ζe−Φ

ð1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðGab þ Bð1Þ

ab þ α0FabÞ
q

j
Bð1Þ

abþα0Fab≡0

¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
exp

�
1

2
tr log ðIþ AÞ þ iθ ~Δð2Þθ − θ Δ̂ θ þ θΩθ

�

¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
exp

�
1

2
trAþ iθ ~Δð2Þθ −

�
1

2

Xkmax

k¼2

ð−1ÞktrAk

k
þ θ Δ̂ θ

�
þ θΩθ

�

≡ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
exp

�Xkmax

k¼1

ð−1Þkþ1

k

�
1

2
trAþ iθ ~Δð2Þθ

�
k
þ θðΘþ ΩÞθ

�
ð164Þ

where going from the second-to-last to the last line of Eq. (164), we have used the mathematical identity

1

2

Xkmax

k¼2

ð−1ÞktrAk

k
þ θ Δ̂ θ≡Xkmax

k¼2

ð−1Þk
k

�
1

2
trAþ iθ ~Δð2Þθ

�
k
þ θΘθ; ð165Þ

implying that the functional forms of Θ and Δ̂ can be used to express all trAk in terms of ðtrAÞk to allow for Eq. (165).
Additionally, since Ω in Eq. (162) is arbitrary, we can also absorb Θ in the definition of Ω to give us

θðΘþ ΩÞθ ¼ 0: ð166Þ

The above two conditions (165) and (166) are essential for expressing the D3-brane action in the κ-symmetric form. Putting
Eqs. (165) and (166) into Eq. (164), we get

SBI ¼ −T3

Z
d4ζe−Φ

ð1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detGab

p
¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
− T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
θ

�
1

2
ΓbaM�

ab þ i ~Δð2Þ
�
θ; ð167Þ

which is precisely the condition that is required for the BI action to take the κ-symmetric form when combined with the
Chern-Simons part of the action (151). Thus putting Eqs. (167) and (151) together, we get our final expression for the D3-
brane action

SD3 ¼ −T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
− T3

Z
d4ζϵmnpqCð4Þ

mnpq

− T3

Z
d4ζe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
θð1 − Γ−

D3Þ
�
1

2
ΓbaM−

ab þ i ~Δð2Þ
�
θ; ð168Þ

in a manifestly κ-symmetric form. Equivalently, the above
action indicates that the D3 κ-symmetry projector

ð1 − Γ−
D3Þ; ð169Þ

continues to be the κ-symmetry projector at all orders in θ.
Recall that the κ-symmetry variation of θ is given by

δκθ ¼ κð1þ Γ−
D3Þ: ð170Þ

It follows from this that the D3 action is manifestly κ
symmetric at all orders in θ.
In deriving our result we have relied on the fact that at the

self-dual point we do not have extra fermionic operators

other than the ones given by our U-duality transformations.
This seems to be the case in any given background;
otherwise we will end up with extra fermionic condensates
which would appear to violate equations of motion. On the
other hand, the U-duality rules that we used here also have
α0 corrections [37,69,70] so one might worry that this could
change our result. A careful thought will tell us that this is
not the case, as in deriving our results we have only used
generic properties of T-duality. To see this in more detail,
let us investigate the two key relations where some aspects
of the T-duality rules have been used, namely Eqs. (109)

and (115). The first relation i.e. Eq. (109) relates Nð1Þ
½mx� with

M½mx� under one T-duality along direction x. This is one of
Buscher’s rules derived for the limit α0 → 0, so one would
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ask what happens under α0 corrections. Before we go about
discussing α0 corrections to this, let us ask what it means to
have a relation like Eq. (109). Since the piece Mmn comes
from the metric and the piece Nmn comes from the NS
B-field, the relation, or at least the bosonic part of it, implies
the connection between the momentum and the winding
modes under one T-duality. Thus, this is in the spirit of
charge conservation: momentum charges are exchanged
with winding charges or vice versa and we can take this to
be the defining property of T-duality. Since Eq. (109)
implies the fermionic version of this, we will assume that
Eq. (109) does not have any additional α0 pieces.
A similar argument unfortunately cannot be given for

Eq. (115), where the RR 2-form appears from the axion
under two T-dualities, because unlike the previous
argument—where momentum and winding modes appear
automatically—we do not have the advantage of invoking
charge conservation a priori. We do however notice that
there is a possible alternative way of expressing the
fermionic parts of the background fields, namely that the
background fields are functions of (θ, θ) with the tensorial
parts being specified by certain functions of the spacetime
coordinates. In this language the T-duality rules are simply
given by the way (θ, θ) change, i.e. the transformation rules
given in Eq. (116). This way we do not have to worry about
the explicit α0 dependences appearing from the T-duality
transformations, and the all-order result (144) should be
exact with the α0 dependences now appearing from the
order-by-order expansions of the (θ, θ) terms for every
component of the type IIB fields in Eq. (144).

V. CONCLUSION AND DISCUSSION

In this work we have studied the interplay of N ¼ 1
supersymmetric backgrounds and antibranes. We found
two new examples where supersymmetry is spontaneously
broken by a probe antibrane: a D3 in a resolved conifold,
and a D7 in a GKP background. In the first case, the low-
energy spectrum in the probe approximation has two
massless fermions. However, once backreaction of the
D3 on bulk fluxes is taken into account (perturbatively),
the would-be massless fermions in fact become massive;
this is a consequence of having a wrapped 5-brane in the
background (an issue which does not arise when studying
GKP-type backgrounds). In the second case, we found
there can in fact bemanymassless fermions, and the precise
number depends on the Hodge numbers of the 4-cycle

wrapped by the D7, although we did not extend the analysis
to include backreaction. We also studied the effect of
worldvolume fluxes, which provide extra mass terms. It is
possible that for the most general worldvolume fluxes
background there are no D7 fermions which remain
massless.
As a step towards a more complete understanding of

antibranes and supersymmetry breaking, we studied the
brane fermionic action at all orders in the fermionic
expansion. In other words, we studied the all-order α0
expansion of the fermionic action, while working at leading
order in the bosonic α0 expansion. This allowed us to
neglect curvature corrections to the action, as well as purely
bosonic α0 corrections to the string duality transformations.
Our result is that the all-order fermionic action can be
written in a manifestly κ-symmetric form, which implies
that our previous two analyses (and the results of
Refs. [1,2]) are not simply a leading-order effect. In this
analysis we neglected the effect of worldvolume flux, and
while we do not expect this to qualitatively change the
result (see, for example, Ref. [43]), it would be interesting
to see the precise details of how this changes the all-order
fermionic calculation.
There are many directions for future work. It would be

interesting to see what types of inflationary scenarios can
be built from the two examples we have studied, and if the
interaction of the fermions with worldvolume fluxes can
lead to a modification of the inflationary dynamics. In a
totally different direction, we would like to see how the all-
order fermionic action can be expressed in a Volkov-
Akulov form, which should in principle be possible given
the recent results of Ref. [66]. We plan to study all these
effects in future works.
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