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Within the twistorial parametrization of loop quantum gravity, we investigate the consequences of
choosing a spacelike normal vector in the linear simplicity constraints. The amplitudes for the SU(2)
boundary states of loop quantum gravity, given by most of the current spin foam models, are constructed in
such a way that even in the bulk only spacelike building blocks occur. Using a spacelike normal vector in
the linear simplicity constraints allows us to distinguish spacelike from timelike 2-surfaces. We propose
in this paper a quantum theory that includes both spatial and temporal building blocks and hence a more
complete picture of quantum spacetime. At the classical level, we show how we can describe T�SUð1; 1Þ as
a symplectic quotient of 2-twistor space T 2 by area matching and simplicity constraints. This provides us
with the underlying classical phase space for SU(1,1) spin networks describing timelike boundaries and
their extension into the bulk. Applying a Dirac quantization, we show that the reduced Hilbert space is
spanned by SU(1,1) spin networks and hence is able to give a quantum description of both spacelike and
timelike faces. We discuss in particular the spectrum of the area operator and argue that for spacelike and
timelike 2-surfaces it is discrete.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a canonical quantization
of standardEinstein gravity in so-called connectionvariables
and provides interesting insights into the nonperturbative
structure of spatial quantum geometry [1,2]. Spin foam
models, on the other hand, aim at a covariant description
of the same theory, using similar techniques. See, for
example, Ref. [3] for a recent introduction or Ref. [4]. The
idea is thatonecanusea spin foammodel todefineaprojector
onto the physical Hilbert space of LQG by mapping kin-
ematical spin network states onto states that solve the
Hamiltonian constraint [5–7]. The current Engle-Pereira-
Rovelli-Livine–Freidel-Krasnov–Kaminski-Kisielowski-
Lewandowski (EPRL-FK-KKL) spin foam model, named
after the authors ofRefs. [8–12], solved several issues of its
predecessors [13–15], such as having the correct boundary
states to match the states of LQG and having a good
semiclassical limit [16–18]. There are, however, further
questions that are worth investigating. Possible improve-
ments of the current spin foam model are discussed, for
example, inRefs. [19]and [20]where theauthorsnegate the
question ofwhether themodel defines a proper projector or
rigging map onto the physical Hilbert space, and in
Refs. [21] and [22], the authors consider a modified vertex
amplitude that improves the semiclassical limit compared
to the original model. We would like to point out that it is
possible that thework presented in this paper allows for an
alternative approach to obtaining the results presented in
Refs. [21] and [22], not by restricting the vertex amplitude
as inRefs. [21] and [22] but by generalizing it such that one

sums over temporal building blocks aswell as spatial ones.
Further possible improvements of the current model are
discussed also in Refs. [23] and [24].
Themainmotivationof thiswork,however, is related to the

problem of timelike boundaries and the occurrence of non-
spacelike building blocks in the bulk of spin foam models,
which, in turn, relates to the study of timelike boundaries as
motivated by the so-called general boundary formulation
(GBF)[25–27].Theabsenceofsuchnonspatialcontributions
in the current spin foam models was also discussed in
Ref. [28]. Within the GBF, it is argued that, not only in
quantum gravity but also in quantum theory in general, it is
interesting, or even necessary, to consider amplitudes based
on boundaries of finite regions of spacetime and to abandon
the asymptotic states that are generally used in quantum field
theory. These ideas are tightly connected to the framework of
topological quantum field theory and constitute the basis for
many considerations on amplitudes that are calculated from
spin foammodels. If we follow these ideas, we are led to the
possibility of timelike boundaries and their corresponding
amplitudes in Lorentzian spin foam models. In fact, the
investigationof timelikecomponentshasa longhistoryin this
field [29–31].
Another motivation is to gain a better understanding of

covariant quantum spacetime itself. If we consider spin
foam models independently, a priori not connected with
LQG, can we use them to learn something about the
quantum geometry of spacetime in the bulk? Currently,
the new spin foam model is constructed in such a way that
all its building blocks, even in the bulk, are strictly
spacelike, which follows from the imposition of the linear
simplicity constraints using a timelike normal vector NI.*jrennert@uwaterloo.ca
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This is necessary for achieving the matching of the spin
foam boundary states with the kinematical SU(2) spin
network states of LQG. From a covariant standpoint,
however, it is not clear why we should make such a
restriction. Based on this reasoning, a generalization of
the new spin foam model that uses both timelike as well
as spacelike normal vectors NI for the linear simplicity
constraints was proposed in Refs. [32–34]. Their deri-
vation is based on the Freidel-Krasnov model [11] and
uses coherent states techniques to implement the sim-
plicity constraints in the quantum theory. In this model,
one obtains an extra sum over the normal vector NI in the
spin foam partition function, which can be understood in
terms of the measure of the bivector field in the path
integral as follows. In the standard case, where we only
consider the timelike normal vector, the bivector fields
are constrained to be spacelike and stay spacelike under
gauge transformations. If we allow for a spacelike normal
vector, we can have spacelike, null, and timelike bivec-
tors, and summing over timelike and spacelike NI can be
justified by stating that we should integrate over all
gauge-inequivalent contributions in the path integral.
Now, this is certainly a statement about which dynamics
is defined by the spin foam model. However, so far, there
has been no attempt at an asymptotic analysis of this
generalized spin foam model.
This leads to our main objective for this work: namely,

the question of whether we can give a twistorial description
of the Conrady-Hnybida model [32–34] with the hope that
this would eventually allow for an asymptotic analysis of
such generalized spin foam models with timelike compo-
nents. In this paper, we will first consider a phase space
analysis in twistorial variables and leave the construction of
a new spin foam model and its asymptotic analysis for
future work.
The use of the twistorial parametrization of LQG

[35–39] has in the past proven rather useful for the
investigation of the covariance properties of LQG
[40,41] and the underlying phase space geometry. It has
already been used in Ref. [42] to investigate the possibility
of a null normal vector NI in the simplicity constraints and
the subsequent quantization of null hypersurfaces with
spacelike 2-surfaces. It also has recently been used to
investigate conformal transformations in LQG [43]. Very
much in the same spirit of Ref. [42], we use these
techniques here to consider timelike hypersurfaces with
spacelike and timelike 2-surfaces. This can also be seen as a
mathematical exercise further testing the adaptability of the
twisted geometries formulation of LQG. We point out that,
even though interesting by itself, our main interest here is
not the (quantum) description of the spacelike but the
timelike 2-surfaces. We find, for example, similarly to the
results obtained in Refs. [44] and [45] in a slightly different
model, that the area spectrum of the timelike faces might be
independent from the Barbero-Immirzi parameter.

One crucial question that has often been discussed in the
literature on Lorentzian spin foam models is whether the
(kinematical) spectra of geometrical operators are (all)
discrete or continuous [46–48]. In 2þ 1 spacetime dimen-
sions, the situation is clear; see, for example, Ref. [49] or
the recent work [50–52]. There, one obtains continuous
spectra for timelike 2-surfaces because in that case the
representations are labeled by a continuous parameter,
which is a result of the noncompactness of the underlying
gauge group. In 3þ 1 dimensions, however, the simplicity
constraints can lead to relations between continuous and
discrete representation labels, which amounts to the pos-
sibility that continuous spectra can become discrete. We
will show that, indeed, also timelike faces can have discrete
spectra when the simplicity constraints are imposed. This,
however, requires a more detailed analysis than in the
standard case with timelike NI .
In the next section, we review the description of

T�SLð2;CÞ in terms of twistorial variables to fix our
notation and conventions which are similar to those used
in Ref. [42]. The difference with the original papers
[36–38] is merely a sign flip in the Poisson brackets for
the spinors. The Poisson structure we use here descends
from the canonical one on twistor space [53].
In Sec. III, we investigate the symplectic reduction of

2-twistor space T2 by the simplicity and area matching
constraints. As already mentioned, in the case of a space-
like normal vector NI, we can have spacelike, timelike, and
null 2-surfaces. We focus here on the spacelike and timelike
cases, which can be considered as being dual to each other.
The phase space structure and symplectic reduction, in both
cases, is very similar to the standard case with timelike
normal, except that we obtain eventually T�SUð1; 1Þ and
not T�SUð2Þ. In Sec. IV we discuss general graphs. This
requires us to impose the closure constraint in Sec. IVA at
the nodes, which is solved by SU(1,1) intertwiners at the
nodes in the quantum theory.
Finally, we turn to the quantization in Sec. V, which,

again, proceeds similarly to the standard case. The differ-
ence lies in the necessity to consider both half-links to
obtain the full reduced Hilbert space, which is spanned by
all the unitary irreducible representations of SU(1,1) that
occur in the Plancherel decomposition. In Sec. V F, we
consider the area spectra associated with spacelike and
timelike faces.

II. TWISTORS IN LQG AND SPIN FOAMS

In this section, we want to give a brief overview of
the utilization of spinors and twistors in loop gravity.
Since their introduction in LQG and spin foams, see
Refs. [35–39] and references therein, they have clarified
many questions concerning the covariance properties of
LQG as well as the relation between spin foams and the
canonical theory. They provide a compelling picture for the
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spin network states of LQG as the quantization of certain
(twisted) discrete geometries, and they have been used
to investigate the quantization of null hypersurfaces
in Ref. [42].
In the current spin foam models, the starting point is the

quantization of BF theory, on which one imposes the
simplicity constraints, which reduce BF theory to general
relativity, in the quantum theory. The BF action relates to
the BF action with a Holst term and the Barbero-Immirzi
parameter γ ∈ R� through the so-called Immirzi shift, and
is given by

SBF½B;A� ¼
Z
M
TrðB ∧ F½A�Þ

¼
Z
M
Tr
�
�Σ ∧ F½A� − 1

γ
Σ ∧ F½A�

�
: ð2:1Þ

The B- and Σ-bivector fields take values in slð2;CÞ, and
F½A� is the curvature of a slð2;CÞ-valued spacetime
connection A. The trace is taken with respect to the
slð2;CÞ Cartan metric. The Immirzi shift amounts to a
change of basis for slð2;CÞ in a way that leaves the
equations of motion unaltered but changes the symplectic
structure by introducing γ. BF theory is a topological theory
and hence has only global degrees of freedom. By requiring
that the Σ field should be simple, i.e., ΣIJ ¼ eI ∧ eJ, one
obtains gravity (in the Einstein-Cartan form and up to a
prefactor 1=16πG) with a Holst term [54], i.e.,

SHolst½e;A�¼
Z
M
Tr
�
�e∧e∧F½A�−1

γ
e∧e∧F½A�

�
: ð2:2Þ

In their linear form, those simplicity constraints are
given by

NIΣIJ ¼ 0; ð2:3Þ

for some auxiliary normal vector NI. Those constraints lead
to two solutions, namely, ΣIJ ¼ �eI ∧ eJ, where the sign
relates to the orientation of the underlying frame field. This
is relevant for the asymptotic analysis of the resulting spin
foam model and has been investigated in Refs. [21,22].
Using now a discretization of the spacetime manifold M

and a smearing of the continuous variables gives us a
2-complex decorated with T�SLð2;CÞ on each one-
dimensional edge e of the dual 2-complex. The group
element g corresponds to the holonomy of the connection A
along e and can be used to measure the curvature associated
with faces f bounded by the edges ei. The Lie algebra
element corresponds to the smeared B field over some
2-surface dual to f. We can now consider a three-
dimensional intersection between this discrete structure
and some hypersurface of spacetime. This leads us to some
abstract, oriented graph Γ with N nodes n and L links l.
Induced from the 2-complex, T�SLð2;CÞ is again

associated with the links l. One reason for the name
twisted geometries is the fact that T�SLð2;CÞ can be
embedded in 2-twistor space as a symplectic quotient
with respect to the so-called area matching constraint.
Hence, we consider on each link a set of two twistors
ðZ;WÞ ∈ T 2 ≅ C8, where the first twistor is associated
with the source node of the link and the second one is
associated with the target node. Each twistor by itself is
composed of two spinors Zα ¼ ðωA; iπ̄B̄Þ and Wα ¼
ðλA; iσ̄B̄Þ, where ω; λ ∈ C2 transforms under the ð1

2
; 0Þ

(left-handed) and π̄; σ̄ ∈ ðC̄2Þ� transforms under the ð0; 1
2
Þ

(right-handed) representation of SLð2;CÞ. The adjoint
twistors are given via Z̄α ¼ ð−iπA; ω̄B̄Þ such that the twistor
norm is given by 1

2
Z̄αZα ¼ ImðπωÞ. We use the convention

ϵ01 ¼ ϵ01 ¼ 1, ϵAB ¼ −ϵBA for the two-dimensional
ϵ tensor, which allows us to move spinor indices as

ωA ¼ ϵABωB; ωA ¼ ϵBAω
B ð2:4Þ

and analogously for the complex conjugate sector. The
2-twistor space T2 comes equipped with a natural
Poisson structure, which is SLð2;CÞ invariant and is given
by the 2-form [53,55,56].1

Ω ¼ idZα ∧ dZ̄α þ idWα ∧ dW̄α: ð2:5Þ

In terms of the spinors, Eq. (2.5) gives

idZα ∧ dZ̄α ¼ dωA ∧ dπA þ dω̄B̄ ∧ dπ̄B̄; ð2:6Þ

idWα ∧ dW̄α ¼ dλA ∧ dσA þ dλ̄B̄ ∧ dσ̄B̄; ð2:7Þ

which gives rise to the Poisson brackets

fπA;ωBg ¼ δBA ¼ fσA; λBg; ð2:8Þ

fπ̄Ā; ω̄B̄g ¼ δB̄Ā ¼ fσ̄Ā; λ̄B̄g ð2:9Þ

and all others vanishing. Thus, T2 together with the above
brackets constitutes a Poissonmanifold. For two functionsf,
g on T2, we calculate their Poisson bracket via

1Following the conventions of the original twisted geometries
literature [35–38,42], we remove the i appearing in the original
spinorial Poisson brackets by parametrizing the twistors Z andW
with an extra i in front of π̄B̄ and σ̄B̄. As in Ref. [42], we
furthermore use the Poisson structure as defined by Eq. (2.5) and
not with a relative minus sign. This leads to the symmetric
Poisson brackets as shown in Eqs. (2.8) and (2.9).
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ff; gg ¼ ∂f
∂πA

∂g
∂ωA −

∂f
∂ωA

∂g
∂πA þ ∂f

∂σA
∂g
∂λA −

∂f
∂λA

∂g
∂σA

þ ∂f
∂π̄Ā

∂g
∂ω̄Ā

−
∂f
∂ω̄Ā

∂g
∂π̄Ā þ ∂f

∂σ̄Ā
∂g
∂λ̄Ā −

∂f
∂λ̄Ā

∂g
∂σ̄Ā :
ð2:10Þ

The area matching constraint

C ¼ πω − λσ ¼ 0 ð2:11Þ

is a first-class constraint and defines the embedding
T2�⫽C ¼ T�SLð2;CÞ, [37,38]. We assume throughout that
πω ¼ ϵABπ

AωB ¼ −ωπ ≠ 0 or σλ ≠ 0. Hence, we consider
T2� where we remove the null configurations πω ¼ 0 or
σλ ¼ 0. One finds that the holonomy g and the fluxes Π
of the gauge-invariant phase space T�SLð2;CÞ are para-
metrized in terms of the spinors via

gAB ¼ λAπB þ σAωBffiffiffiffiffiffi
πω

p ffiffiffiffiffi
λσ

p ; ð2:12Þ

which satisfies det g ¼ 1 and fC; gABg ¼ 0, and

ΠAB ¼ 1

4
ðπAωB þ ωAπBÞ ¼ 1

2
πðAωBÞ; ð2:13Þ

Π̃AB ¼ 1

4
ðσAλB þ λAσBÞ ¼ 1

2
σðAλBÞ: ð2:14Þ

Furthermore, one can show that

fgAB; gCDg ¼ 2C
ðπωÞ2ðλσÞ2 ½ðλσÞϵ

ACΠBD − ðπωÞϵBDΠ̃AC�;

ð2:15Þ

and hence on the constraint surface C ¼ 0, we get

fgAB; gCDg ≈ 0: ð2:16Þ

The group element g defines a linear map from Z to W:

gABωB ¼
ffiffiffiffiffiffi
πω

λσ

r
λA ≈ λA; ð2:17Þ

gABπB ¼ −
ffiffiffiffiffiffi
πω

λσ

r
σA ≈ −σA: ð2:18Þ

Areal bivectorBIJ canbedecomposed into a self-dual and an
anti-self-dual part, which, in spinorial variables, takes the
following form:

BAB̄CD̄ ¼ ΠACϵ̄B̄ D̄ þ Π̄B̄ D̄ϵAC: ð2:19Þ

Using

fC;ωAg ¼ ωA; fC; πAg ¼ −πA; ð2:20Þ

fC; λAg ¼ λA; fC; σAg ¼ −σA; ð2:21Þ

we show that g, Π, Π̃ are invariant under the flow of C. The
fluxes transform like Π̃ ≈ −gΠg−1 on the constraint surface
C ¼ 0, and they furthermore satisfy two copies of the
slð2;CÞ algebra,

fΠAB;ΠCDg¼1

4
ðΠACϵBDþΠADϵBCþΠBCϵADþΠBDϵACÞ;

ð2:22Þ

and similarly for the tilded fluxes, and we have

fΠAB; Π̃CDg ¼ 0: ð2:23Þ

Thus, the variables g and Π suffice to fully parametrize
T�SLð2;CÞ, and Π̃ is obtained from g and Π via
Π̃ ≈ −gΠg−1. We can now employ the following isomor-
phism between slð2;CÞ andC3 to rewrite the fluxes in terms
of their rotation and boost generators according to

ΠA
B ¼ ΠiðτiÞAB ¼ ðLi þ iKiÞðτiÞAB; ð2:24Þ

with i ∈ f1; 2; 3g and where the τi are related to the Pauli
matrices via τi ¼ 1

2i σi. They satisfy ½τi; τj� ¼ εij
kτk, and we

use them to calculate the components Πi ∈ C via

Πi ¼ −2TrðΠτiÞ ¼ −2ΠA
BðτiÞBA; ð2:25Þ

which gives

Π1 ¼ iðΠ00 − Π11Þ; ð2:26Þ

Π2 ¼ −ðΠ00 þ Π11Þ; ð2:27Þ

Π3 ¼ −2iΠ01: ð2:28Þ

Together with Eq. (2.22), this leads to

fΠi;Πjg ¼ εijkΠk: ð2:29Þ

Hence, on C ¼ 0, we reproduce the Poisson structure of
T�SLð2;CÞ given by

fΠi; gABg ¼ gACðτiÞCB; ð2:30Þ

fΠ̃i; gABg ¼ −ðτiÞACgCB; ð2:31Þ

fgAB; gCDg ≈ 0: ð2:32Þ
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Furthermore, note the 2-to-1 symmetry of the parametriza-
tion of the holonomy flux variables in terms of spinors; i.e.,
g, Π, Π̃ are invariant under

ðω; π; λ; σÞ↦ðπ;ω; σ; λÞ: ð2:33Þ

III. TWISTORIAL DESCRIPTION OF
TIMELIKE HYPERSURFACES

We will use the twistorial parametrization reviewed
above to investigate the reduction of T2� by the linear
simplicity constraints and the area matching constraint.
But first, let us consider the bivector field B ∈ ⋀2R1;3 ⊗
slð2;CÞ. In SLð2;CÞ BF theory, the B field is valued in
slð2;CÞ and hence can be expanded in terms of a slð2;CÞ
basis. This means that we can express BIJ with the slð2;CÞ
generators Li and Ki as

B ¼ fBIJg ¼

0BBB@
0 K1 K2 K3

−K1 0 L3 −L2

−K2 −L3 0 L1

−K3 L2 −L1 0

1CCCA ð3:1Þ

or, equivalently,

Ki ¼ −Ki ¼ B0i; ð3:2Þ

Li ¼ Li ¼ ð�BÞ0i ¼ 1

2
ε0ijkBjk; ð3:3Þ

where we used the Hodge star operator �, which satisfies
�2 ¼ −1 in four dimensions with Lorentzian signature
ð−;þ;þ;þÞ. This gives furthermore

f�BIJg ¼

0BBB@
0 L1 L2 L3

−L1 0 −K3 K2

−L2 K3 0 −K1

−L3 −K2 K1 0

1CCCA: ð3:4Þ

The two slð2;CÞ-invariant Casimirs C1 ¼ ~L2 − ~K2 and

C2 ¼ −2~L · ~K are obtained from B2 ¼ 1
2
BIJBIJ ¼ − ~K2 þ

~L2 and C2 ¼ 1
2
ð�BÞIJBIJ ¼ −2ðL1K1 þ L2K2 þ L3K2Þ ¼

2KiLi ¼ −2LiKi. Note that for the Lorentzian signature we
have ð�BÞ2 ¼ −B2. Not surprisingly, this already shows the
possibility of nondefinite bivectors in the case of a space-
like normal vector in the linear simplicity constraints. For
the standard time gauge, where NI ¼ ð1; 0; 0; 0Þt, we have
B0i ¼ 0 and hence see that B is projected onto a Euclidean
subspace with ðþ;þ;þÞ signature where we are only left
with B2 > 0 (we exclude the degenerate case of null
bivectors in our considerations). If we choose the spacelike
vector NI ¼ ð0; 0; 0; 1Þt, we deal with a subspace of

signature ðþ;−;−Þ and hence have, even after using the
simplicity constraints, the possibility of bivectors with
positive or negative areas. Let us also point out that in
four spacetime dimensions every bivector can be written as
the sum of two simple bivectors [57].

A. Phase space structure and timelike
simplicity constraints

Using the Immirzi shift and identifying BIJ with the
slð2;CÞ generators as in Eqs. (3.1) and (3.4), the linear
simplicity constraints for spacelike normalNI ¼ ð0; 0; 0; 1Þt,
i.e., Σ3i ¼ 0, become

L3 ¼ −
1

γ
K3; K1 ¼ 1

γ
L1; K2 ¼ 1

γ
L2: ð3:5Þ

Using these constraints, we can already see that the slð2;CÞ
Casimirs C1 and C2 reduce to

C1 → ð1 − γ2ÞQsuð1;1Þ; C2 → 2γQsuð1;1Þ; ð3:6Þ

where the suð1; 1Þ Casimir is given by Qsuð1;1Þ ¼ ðL3Þ2 −
ðK1Þ2 − ðK2Þ2. Following the procedure laid out in
Refs. [38,39,42] we aim now for a decomposition of the
constraints Σ3i ¼ 0 in their spinorial parametrization into a
Lorentz-invariant part and a second part, specified by the little
group of NI . This has the advantage that the nature of those
constraints becomes more transparent, which simplifies the
phase space analysis as well as the quantization.We begin by
rewritingBIJ in spinorial variables. The simplicity constraints
become

nAB̄ΣAB̄CD̄ ¼ 0 ð3:7Þ

with

nAB̄ ¼ ϵCAϵD̄ B̄n
CD̄ ¼ iffiffiffi

2
p ðσIÞAB̄NI; ð3:8Þ

ΣAB̄CD̄ ¼ −
1

2
ðσIÞAB̄ðσJÞCD̄ΣIJ: ð3:9Þ

We use the following basis for the isomorphism between
4-vectors and anti-Hermitianmatrices [note the extra factor of
i in Eq. (3.8)]:

ðσ0ÞAB̄ ¼ ðσ0ÞAB̄ ¼
�
1 0

0 1

�
; ð3:10Þ

ðσ1ÞAB̄ ¼ −ðσ1ÞAB̄ ¼
�
0 1

1 0

�
; ð3:11Þ

ðσ2ÞAB̄ ¼ ðσ2ÞAB̄ ¼
�
0 −i
i 0

�
; ð3:12Þ
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ðσ3ÞAB̄ ¼ −ðσ3ÞAB̄ ¼
�
1 0

0 −1

�
: ð3:13Þ

Next, we decompose B in terms of its self-dual and anti-self-
dual components Π and Π̄ as

BAB̄CD̄ ¼ BAC
1 ϵB̄ D̄ þ B̄B̄ D̄

2 ϵAC; ð3:14Þ

where

BAC
1 ¼ −

1

2
BAB̄C

B̄ ¼ BCA
1 ; ð3:15Þ

B̄B̄ D̄
2 ¼ −

1

2
BAB̄ D̄

A ¼ B̄D̄ B̄
2 : ð3:16Þ

Note that for real bivectors we have B2 ¼ B̄1; otherwise, the
self-dual and anti-self-dual parts are not complex conjugates
of each other. Including the Immirzi shift, we have

B ¼ B1ϵ̄þ B̄1ϵ ¼ Πϵ̄þ Π̄ϵ

¼
�
iΣ1 −

1

γ
Σ1

�
ϵ̄þ

�
−iΣ̄1 −

1

γ
Σ̄1

�
ϵ ð3:17Þ

and hence

B1 ¼ Π ¼
�
i −

1

γ

�
Σ1; ð3:18Þ

Σ1 ¼ −
iγ

γ þ i
Π: ð3:19Þ

The difference in decomposing B or �B into self-dual and
anti-self-dual components is an extra i factor for the self-
dual part and a −i factor for the anti-self-dual part. This will
be relevant for the distinction of spacelike and timelike
2-surfaces. Hence, we get for the linear simplicity constraints
from Eq. (3.7)

nAB̄

�
−

iγ
γ þ i

ΠACϵB̄ D̄ þ iγ
γ − i

Π̄B̄ D̄ϵAC
�

¼ 0; ð3:20Þ

and the dual constraint NIð�ΣÞIJ ¼ 0 gives

nAB̄

�
γ

γ þ i
ΠACϵB̄ D̄ þ γ

γ − i
Π̄B̄ D̄ϵAC

�
¼ 0: ð3:21Þ

This distinction is important for the following reason. In order
to split Eq. (3.20) according to the decomposition used in
Refs. [38], [39], and [42] into a Lorentz-invariant part and the
part invariant under the little group, we use two linearly
independent null vectors (one real and one complex), which
are furthermore orthogonal to each other (there is nothing that
forces us to use the same procedure, except its success in the

timelike and null cases, and thus we prefer to stay as close as
possible). Now, even though we are using the spacelike
normal vector NI ¼ ð0; 0; 0; 1Þt, which projects onto a
pseudo-Riemannian subspace and hence allows for bivectors
with nondefinite norm, decomposing the simplicity constraint
with respect to those null vectors always leads to subspaces
where the bivectors have a definite norm. However, since we
have seen that under the Hodge dual the bivector norm
changes its sign, we can use this to distinguish the simplicity
constraints for spacelike from those for timelike 2-surfaces.
This essentially corresponds to the necessity of choosing
another auxiliary vector UI to distinguish those two cases in
the Conrady-Hnybida construction [32,33].
To be more explicit, we know that for a timelike normal

vector NI the solutions to the simplicity constraints lead to
positive definite bivectors because they lie in a subspace
with Euclidean signature. Hence, we can conclude from
NIΣIJ ¼ 0 that Σ ¼ �e1 ∧ e2 with Σ2 > 0 and hence
ð�ΣÞ2 < 0, and, vice versa, we can conclude from
NIð�ΣÞIJ ¼ 0 that �Σ ¼ �ẽ1 ∧ ẽ2 with ð�ΣÞ2 > 0 and
hence ðΣÞ2 < 0. Now, for a spacelike normal NI , we still
obtain from NIΣIJ ¼ 0 that Σ ¼ �e1 ∧ e2, but now this
does not imply Σ2 > 0 any longer (because we are in a
space with Lorentzian signature). The question arises as to
how we should distinguish whether Σ is spacelike or
timelike. Note that a priori it should be possible to obtain
spacelike as well as timelike solutions from one constraint,
i.e., either NIΣIJ ¼ 0 or NIð�ΣÞIJ ¼ 0. However, for now,
we will investigate the reduction of T�SLð2;CÞ by both
constraints Eqs. (3.20) and (3.21) and discuss the results
further in Sec. V F.
Following again Refs. [38,39], and [42], we decompose

Eqs. (3.20) and (3.21) by projecting them onto the two
null vectors iffiffi

2
p ωCω̄D̄ (real) and iffiffi

2
p nCĒω̄

Ēω̄D̄ (complex).

Contracting Eq. (3.20) with iffiffi
2

p ωCω̄D̄ gives us

πω

γ þ i
−

π̄ ω̄

γ − i
¼ 0 ð3:22Þ

or equivalently

F1 ≡ ReðπωÞ − γImðπωÞ ¼ 0; ð3:23Þ

where we exclude cases where ∥ω∥2 ¼ −ðσ3ÞAB̄ωAω̄B̄ ¼
jω0j2 − jω1j2 ¼ 0. This is the Lorentz-invariant constraint
that one obtains for the time gauge, and hence it makes
sense to associate it with spacelike bivectors. The con-
traction of Eq. (3.20) with iffiffi

2
p nCĒω̄

Ēω̄D̄ and assuming that

∥ω∥2 ≠ 0 gives similarly the following complex constraint,
which, due to the presence of the normal, is only invariant
under the little group, which is in this case SU(1,1):

F2 ¼ G2 ≡ nA _BπAω̄ _B ¼ 0: ð3:24Þ
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Applying the same procedure to Eq. (3.21) only changes
the Lorentz invariant constraint, and Eq. (3.24) is valid for
both cases. Hence, we have for the dual case the constraints
Eq. (3.24) together with

πω

γ þ i
þ π̄ ω̄

γ − i
¼ 0 ð3:25Þ

or

G1 ≡ ReðπωÞ þ 1

γ
ImðπωÞ ¼ 0; ð3:26Þ

as an equivalent set of constraints replacing Eq. (3.21).
Since they are dual to the first set, we interpret them
as the ones corresponding to the timelike case.2 A
more direct way to see that this is the correct way to
associate the ðF1; F2Þ with spacelike bivectors and
ðG1; G2Þ with timelike bivectors is to consider the area
form

A2 ¼ 1

2
ðΣ1ϵ̄þ Σ̄1ϵÞðΣ1ϵ̄þ Σ̄1ϵÞ

¼
�
−

iγ
γ þ i

�
2

ΠACΠAC þ
�

iγ
γ − i

�
2

Π̄B̄ D̄Π̄B̄ D̄

¼ γ2

8

� ðπωÞ2
ðγ þ iÞ2 þ

ðπ̄ ω̄Þ2
ðγ − iÞ2

�
¼ γ2

4
Re

� ðπωÞ2
ðγ þ iÞ2

�
:

ð3:27Þ

One finds that the solutions of the simplicity constraint
F1 ¼ 0, which are given by πω ¼ ðγ þ iÞJ , with
J ∈ R�, lead to a positive area,

A2jF1¼0 ¼
γ2

4
J 2 > 0; ð3:28Þ

whereas the solutions of G1 ¼ 0, which are given by
πω ¼ iðγ þ iÞK, with K ∈ R�, lead to a negative area,

A2jG1¼0 ¼ −
γ2

4
K2 < 0: ð3:29Þ

Note, that in both cases the area (squared) depends
quadratically on γ. Since we only used F1 in
Eq. (3.28) and G1 in Eq. (3.29), it is clear that this
statement is independent of the choice between the other

constraints, namely, whether we use G2, or the ones
suggested in footnote 2, where G2 is replaced by E and
F. Furthermore, this suggests that also in the quantum
theory the area spectra of spacelike and timelike areas
should depend on γ.

1. Spacelike faces

We consider in this subsection the classical analysis of
the constraints F1, F2 together with the area matching
constraint C from Eq. (2.11) and investigate the symplectic
reduction T �⫽F1⫽F2. We will also use the following
version of F1:

°F1 ≡ ðγ − iÞðπωÞ − ðγ þ iÞðπ̄ ω̄Þ ¼ 0: ð3:30Þ
We first look for the classical solutions to the constraints F1

and F2. From twistor theory and the solutions of the
simplicity constraints in the standard time-gauge case, we
know that the spinors are linearly dependent, and hence we
are working with simple twistors, which are determined by
a single spinor. This motivates to make the ansatz

πA ¼ −ξðσ3ÞAB̄ω̄B̄; ξ ∈ C�; ð3:31Þ

and one finds that this indeed solves G2 ¼ F2 ¼ 0 for all
ξ ∈ C�. Plugging our ansatz into F1 ¼ 0, we find with
ξ ¼ rξ expðiφξÞ

F1 ¼ ∥ω∥2rξ½cosðφξÞ − γ sinðφξÞ� ¼! 0; ð3:32Þ

where we have defined ∥ω∥2 ¼ −ðσ3ÞAB̄ωAω̄B̄ ¼ jω0j2−
jω1j2. Hence, we get

φξ ¼ φðγÞ ¼ arccotðγÞ ¼ arctan

�
1

γ

�
: ð3:33Þ

We see that we can solve F1 ¼ 0 ¼ F2 by choosing

πA ¼ −rξeiφðγÞðσ3ÞAB̄ω̄B̄; rξ ∈ R� ð3:34Þ

and that ðrξ;ωAÞ span our five-dimensional solution space
within T , which has eight real dimensions. We have the
system of constraints

f °F1; F2g ¼ −2γF2 ≈ 0; ð3:35Þ
f °F1; F̄2g ¼ 2γF̄2 ≈ 0; ð3:36Þ

fF2; F̄2g ¼ −iImðπωÞ; ð3:37Þ

and together with the area matching constraint,
we have

f °F1; Cg ¼ 0 ¼ f °F1; C̄g ð3:38Þ

2We mention that one can use a different decomposition of
NIΣIJ ¼ 0 to obtain a different set of constraints by allowing
that ∥ω∥2 can be zero. This might lead to the timelike sector
with fixed NIΣIJ ¼ 0 and without the need to investigate
NIð�ΣÞIJ ¼ 0. This new set of constraints includes G1 as well,
but the complex constraint G2 is replaced by two real second-
class constraints E ¼ ðσ3ÞAB̄πAπ̄B̄ and F ¼ ðσ3ÞAB̄ωAω̄B̄. We will
leave this for future investigation and thank Wolfgang Wieland
for this observation.
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and

fF2; Cg ¼ −fF2; C̄g ¼ F2 ≈ 0; ð3:39Þ

fF̄2; Cg ¼ −fF̄2; C̄g ¼ −F̄2 ≈ 0: ð3:40Þ

Hence, we see that F1 and C are of first class and F2 is of

second class. On the fundamental spinors, °F1 generates the
following transformations:

f °F1;ωAg ¼ ðγ − iÞωA; ð3:41Þ

f °F1; πAg ¼ −ðγ − iÞπA; ð3:42Þ

f °F1; ω̄Āg ¼ −ðγ þ iÞω̄Ā; ð3:43Þ

f °F1; π̄Āg ¼ ðγ þ iÞπ̄Ā: ð3:44Þ

Since F1 is a first-class constraint, it generates gauge
transformations, and we are interested in the gauge-
invariant four-dimensional solution space. Consider the
following bracket, with ∥ω∥2 ¼ −ðσ3ÞAB̄ωAω̄B̄, for which
we have

f °F1; ∥ω∥αg ¼ −iα∥ω∥α: ð3:45Þ

Can we find an expression of rξ in terms of ωA, in order to
parametrize the reduced phase space? Note that

f °F1; πωg ¼ 0: ð3:46Þ

If we use the solution Eq. (3.34) and assume that rξ is a
function of ωA, we find with

πω ¼ rξðωAÞeiφðγÞ∥ω∥2 ð3:47Þ

and Eq. (3.46) that rξðωAÞ must satisfy

f °F1; rξðωAÞg ¼! 2irξðωAÞ: ð3:48Þ

From this, we conclude that

rξðωAÞ ¼ N
∥ω∥2

ð3:49Þ

for some arbitrary numerical prefactor N ∈ R�. Hence, the
four-dimensional reduced phase space (the symplectic
quotient T⫽F1⫽F2) can be parametrized by a single spinor.
However, we know from Eq. (3.41) that ωA itself is not a
gauge-invariant variable and hence not a good coordinate
on the reduced phase space. Before we get to this point, let
us choose N such that

πω ¼ ðγ þ iÞJ ð3:50Þ

for some J ∈ R�. This is achieved for

N ¼ ðγ þ iÞJ e−iφðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
J ; ð3:51Þ

where we used that

eiφðγÞ ¼ cosðarccotðγÞÞ þ i sinðarccotðγÞÞ

¼
ffiffiffiffiffiffiffiffiffiffi
γ þ i
γ − i

s
ð3:52Þ

and hence we get

πA ¼ −ðγ þ iÞJ ðσ3ÞAB̄ω̄B̄

∥ω∥2
: ð3:53Þ

On the non-gauge-invariant solution space of F1 and F2,
the variable J is given by

J ¼ ∥ω∥2rξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ð3:54Þ

and hence

f °F1;J g ¼ 0: ð3:55Þ

Now, let us find the spinor that parametrizes the reduced
phase space. Making the ansatz

zAðωBÞ ¼
ffiffiffiffiffi
M

p ωA

∥ω∥τ
; ð3:56Þ

for some numberM, and requiring that f °F1; zAg ¼ 0, gives

f °F1; zAg ¼ zA½γ − iþ iτ� ¼! 0
⇔τ ¼ iγ þ 1: ð3:57Þ

Furthermore, we have

∥z∥2 ¼ −ðσ3ÞAB̄zAz̄B̄ ¼ M; ð3:58Þ

and we will choose M ¼ 2J . Note that J can be positive
or negative, and if we wish to emphasize this point, we
write εJ where we consider J > 0 and ε ∈ f�1g.

2. Timelike faces

We consider now the symplectic reduction of T � by the
dual simplicity constraints Eq. (3.21). We will use again the
following expression for G1:
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°G1 ≡ ðγ − iÞðπωÞ þ ðγ þ iÞðπ̄ ω̄Þ ¼ 0: ð3:59Þ

To obtain the classical solutions of G1 and G2, we use now
the ansatz

πA ¼ −iζðσ3ÞAB̄ω̄B̄; ζ ∈ C�; ð3:60Þ
where we use the extra i factor compared with the
spacelike case and find that this solves G2 ¼ 0 for all
ζ ∈ C�. To solve G1 ¼ 0, we find that ζ ¼ rζ expðiφζÞ has
to satisfy

G1 ¼
1

γ
∥ω∥2rζ½cosðφζÞ − γ sinðφζÞ� ¼! 0; ð3:61Þ

from which we get

φζ ¼ φξ ¼ φðγÞ ¼ arccotðγÞ ¼ arctan

�
1

γ

�
: ð3:62Þ

The fact that we obtain the same dependence of the
phase and the Barbero-Immirzi parameter in the stan-
dard case Eq. (3.33) as well as the dual case Eq. (3.62)
is a result of our i factor, which we used in Eq. (3.60).
Thus, we see that we can solve G1 ¼ 0 ¼ G2 by
choosing

πA ¼ −irζeiφðγÞðσ3ÞAB̄ω̄B̄; rζ ∈ R�; ð3:63Þ

and again ðrζ;ωAÞ can be seen to span our five-
dimensional solution space. The same procedure as
in the spacelike case leads us the gauge-invariant spinor
variables. We have the relations between the simplicity
constraints,

f °G1; G2g ¼ 2iG2 ≈ 0; ð3:64Þ
f °G1; Ḡ2g ¼ −2iḠ2 ≈ 0; ð3:65Þ

fG2; Ḡ2g ¼ fF2; F̄2g ¼ −iImðπωÞ; ð3:66Þ

and together with the area matching constraint we have

f °G1; Cg ¼ 0 ¼ f °G1; C̄g: ð3:67Þ

Because G2 ¼ F2, the brackets with C and C̄ are

equivalently given by Eqs. (3.39) and (3.40). °G1 acts
with an extra minus sign on the complex conjugated
spinors

f °G1;ωAg ¼ ðγ − iÞωA; ð3:68Þ

f °G1; πAg ¼ −ðγ − iÞπA; ð3:69Þ
f °G1; ω̄Āg ¼ ðγ þ iÞω̄Ā; ð3:70Þ

f °G1; π̄Āg ¼ −ðγ þ iÞπ̄Ā: ð3:71Þ

Hence, we find that the constraint structure is the same
as in the spacelike case with G1 and C being of first
class and F2 being a complex second-class constraint.
We consider again

f °G1; ∥ω∥αg ¼ αγ∥ω∥α ð3:72Þ

and ask whether we can find an expression of rζ in
terms of ωA. Now, we use again that

f °G1; πωg ¼ 0: ð3:73Þ

Using the solution Eq. (3.63) and the assumption
that we can express rζ as a function of ωA, we find
with

πω ¼ irζðωAÞeiφðγÞ∥ω∥2 ð3:74Þ

and Eq. (3.73) that rζðωAÞ must satisfy

f °G1; rζðωAÞg¼! − 2γrζðωAÞ: ð3:75Þ

From this, we conclude again that

rζðωAÞ ¼ κ

∥ω∥2
ð3:76Þ

for some arbitrary numerical prefactor κ ∈ R�. Now, we
want to choose κ such that

πω ¼ iðγ þ iÞK ð3:77Þ

for some K ∈ R� which is achieved for

κ ¼ ðγ þ iÞKe−iφðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

q
K; ð3:78Þ

and hence we get

πA ¼ −iðγ þ iÞK ðσ3ÞAB̄ω̄B̄

∥ω∥2
: ð3:79Þ

On the non-gauge-invariant solution space of G1 and
G2, the variable K is given by

K ¼ ∥ω∥2rζffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ¼ −
i∥ω∥2rξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p ¼ −iJ ð3:80Þ

and hence

f °G1;Kg ¼ 0: ð3:81Þ
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The spinor that parametrizes the reduced phase space is
again found by making the ansatz

yAðωBÞ ¼
ffiffiffiffiffi
M

p ωA

∥ω∥τ
; ð3:82Þ

for some complex number M, and further requiring that

f °G1; yAg ¼ 0 holds, which gives

f °G1; yAg ¼ yA½−γτ þ γ − i�¼! 0

⇔ τ ¼ 1 −
i
γ
: ð3:83Þ

Hence,

yAðωBÞ ¼
ffiffiffiffiffi
M

p ωA

∥ω∥1−i=γ
ð3:84Þ

with

∥y∥2 ¼ −ðσ3ÞAB̄yAȳB̄ ¼ M: ð3:85Þ

Note that we choose the normalization of yA such that
M ¼ 2γK, which is motivated by the simple form the
Dirac bracket attains on the reduced phase space.3 Note
furthermore that in the standard timelike case one
restricts J to be strictly positive, because in that case
∥z∥2 ¼ jz0j2 þ jz1j2 ≥ 0 and J ¼ 0 is ruled out since we
assumed throughout that πω ≠ 0. This restriction was
used to get rid of a Z2 symmetry of the reduction of T 2�
to T�SLð2;CÞ, i.e., Eq. (2.33), and we have the same
symmetry present. In our case, however, the norm of zA

and yA is not positive definite. Hence, if we want to
focus on this nondefiniteness, we can write εJ and εK,
where ε ∈ f�1g.
Now, we want to calculate the Dirac bracket of

the reduced spinor with its complex conjugate. We need
the Dirac bracket on the reduced space to take care of the
second-class constraints F2 ¼ G2 and F̄2 ¼ Ḡ2. We use

zA ¼ ffiffiffiffiffiffiffi
2J

p ωA

∥ω∥iγþ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πω

ðγ þ iÞ

s
ωA

∥ω∥iγþ1
ð3:86Þ

and

z
˜

A ¼
ffiffiffiffiffiffiffi
2J

˜

q λA

∥λ∥iγþ1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σλ

ðγ þ iÞ

s
λA

∥λ∥iγþ1
ð3:87Þ

as coordinates on the reduced space T2�⫽F ≅ C2 × C2,
where F ¼ fF1; F2; F

˜ 1
; F
˜ 2
g, and

yA ¼
ffiffiffiffiffiffiffiffiffi
2γK

p ωA

∥ω∥1−i=γ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γπω

ðiγ − 1Þ

s
ωA

∥ω∥1−i=γ
ð3:88Þ

and

y
˜

A ¼
ffiffiffiffiffiffiffiffiffi
2γK

˜

q λA

∥λ∥1−i=γ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γσλ

ðiγ − 1Þ

s
λA

∥λ∥1−i=γ
ð3:89Þ

as coordinates on the reduced space T 2�⫽G ≅ C2 × C2,
where G ¼ fG1; G2; G

˜ 1
; G
˜ 2
g. Let us already note that

the system of constraints F or G together with the area
matching constraint is reducible, which means that after
imposing F ¼ 0 or G ¼ 0 part of C is already satisfied.
Hence, the final step of the reduction is only with a reduced
area matching constraint. Now, we calculate the Dirac
bracket on C2 × C2 via

fzA; z̄B̄gD ¼ fzA; z̄B̄g − fzA; F2gM−1
12 fF̄2; z̄B̄g

− fzA; F̄2gM−1
21 fF2; z̄B̄g: ð3:90Þ

Together with

M ¼
� fF2; F2g fF2; F̄2g
fF̄2; F2g fF̄2; F̄2g

�
¼ iImðπωÞ

�
0 −1
1 0

�
⇒ M−1 ¼ i

ImðπωÞ
�
0 −1
1 0

�
; ð3:91Þ

we find

fzA; z̄B̄g ¼ i
2J

zAz̄B̄; ð3:92Þ

fzA; F2g ≈ −
nAB̄z̄B̄
∥ω∥2iγ

; ð3:93Þ

fF̄2; z̄B̄g ≈
n̄B̄CzC
∥ω∥−2iγ

; ð3:94Þ

where Eqs. (3.93) and (3.94) hold weakly on F2 and F̄2,
respectively. Furthermore, with

fzA; F̄2g ¼ fF2; z̄B̄g ¼ 0; ð3:95Þ

we finally obtain

fzA; z̄B̄gD ≈ iðσ3ÞAB̄ ≈ fz
˜

A; z̄
˜

BgD; ð3:96Þ

where we used

3This is a possible choice we can make. However, as we will
discuss in Sec. V F, it is worth keeping track of the fate of the
Barbero-Immirzi parameter γ. Also cf. footnote 4.

JULIAN RENNERT PHYSICAL REVIEW D 95, 026002 (2017)

026002-10



nAB̄ ¼ iffiffiffi
2

p ðσ3ÞAB̄: ð3:97Þ

Similarly, we find for the dual case using Eqs. (3.88)
and (3.89)

fyA; ȳB̄g ¼ i
2γK

yAȳB̄; ð3:98Þ

fyA;G2g ≈ −
nAB̄ȳB̄
∥ω∥−

2i
γ

; ð3:99Þ

fḠ2; ȳB̄g ≈
n̄B̄CyC
∥ω∥

2i
γ

; ð3:100Þ

where again Eqs. (3.99) and (3.100) hold weakly onG2 and
Ḡ2, respectively. And with

fyA; Ḡ2g ¼ fG2; ȳB̄g ¼ 0; ð3:101Þ

we get4

fyA; ȳB̄gD ≈ iðσ3ÞAB̄ ≈ fy
˜

A; ȳ
˜

BgD: ð3:102Þ

In the standard case, using the time gauge, one obtains
for the Dirac brackets of the reduced spinors the harmonic
oscillator brackets where ðσ3ÞAB̄ is replaced by
ðσ0ÞAB̄ ¼ δAB̄. In our case, instead, we find that we have
an additional relative minus sign between brackets for the
spinor components, which reflects the Lorentzian structure
underlying our reduction. Furthermore, let us point out that
those reduced brackets can be obtained equivalently as the
Kirillov-Kostant-Souriau brackets [58] on the coadjoint
orbits of SU(1,1) for a timelike representative. We will
further discuss this point in Sec. III B. Before that, however,
we will consider again the second-class constraints F2 ¼
G2 and show that it can be exchanged for an equivalent real
first-class constraint, the so-called master constraint, which
will be important for the quantum theory, where it is easier
to impose the first-class constraints strongly than properly
taking care of the second-class constraints. We follow
again the procedure known from the standard time-gauge
case, where the first-class master constraint is defined via
(equivalently for G2)

M≡ F̄2F2 ¼ 0: ð3:103Þ

We can now rewrite M in terms of quantities that simplify
the identification of the solution space to M ¼ 0 in the

quantum theory. This is achieved by the fact that we can
rewrite it in terms of one of the slð2;CÞ Casimirs and the
suð1; 1Þ Casimir plus an extra term, and for all of those, we
know the spectrum on the noncanoncial basis of SLð2;CÞ,
which diagonalizes not SU(2) but SU(1,1). We follow
Ref. [39] closely and adapt it to the timelike case. We have

M ¼ F̄2F2 ¼ n̄ _ABnC _Dπ̄ _AωBπCω̄ _D

¼ n̄ _ABnC _DðωðBπCÞ þ ω½BπC�Þðπ̄ð _Aω̄ _DÞ þ π̄½ _Aω̄ _D�Þ;
ð3:104Þ

where we used that ωBπC ¼ ðωðBπCÞ þ ω½BπC�Þ. We obtain

M ¼ n̄ _ABnC _Dð2ΠBC þ ðωπÞϵBCÞð2Π̄ _A _D þ ðπ̄ ω̄Þϵ _A _DÞ
¼ n̄ _ABnC _Dð4ΠBCΠ̄ _A _D þ 2ðπ̄ ω̄ÞΠBCϵ _A _D

þ 2ðωπÞΠ̄ _A _DϵBC − jπωj2ϵBCϵ _A _DÞ: ð3:105Þ

Together with NI ¼ ð0; 0; 0; 1Þ and nA _B ¼ iffiffi
2

p ðσIÞA _BNI ¼
iffiffi
2

p diagð1;−1Þ, one can now show explicitly that

M ¼ 4n̄ _ABnC _DΠBCΠ̄ _A _D − jπωj2n̄ _ABnC _DϵBCϵ _A _D

¼ 4n̄ _ABnC _DΠBCΠ̄ _A _D þ jπωj2: ð3:106Þ

For the first term in Eq. (3.106), we get

4n̄ _ABnC _DΠBCΠ̄ _A _D ¼ 2jΠ00j2 − 4jΠ01j2 þ 2jΠ11j2:
ð3:107Þ

Let us now rewrite the fluxes in terms of their rotation
and boost generators using Eqs. (2.24) and (2.25), which
gives us

jΠ00j2 ¼ jΠ11j2 ¼
1

4
ðjΠ1j2 þ jΠ2j2Þ

¼ 1

4
ððL1Þ2 þ ðL2Þ2 þ ðK1Þ2 þ ðK2Þ2Þ ð3:108Þ

and

jΠ01j2 ¼
1

4
jΠ3j2 ¼ 1

4
ððL3Þ2 þ ðK3Þ2Þ: ð3:109Þ

Hence, we finally get for Eq. (3.107)

4n̄ _ABnC _DΠBCΠ̄ _A _D

¼ ½ð~LÞ2 − ð ~KÞ2 − 2ððL3Þ2 − ðK1Þ2 − ðK2Þ2Þ�: ð3:110Þ

Now, we note that ð~LÞ2 − ð ~KÞ2 is the quadratic slð2;CÞ
Casimir and furthermoreQsuð1;1Þ ¼ ðL3Þ2 − ðK1Þ2 − ðK2Þ2
is the Casimir of suð1; 1Þ, and we get for the master
constraint for a spacelike normal NI

4If we would have not put the extra γ in the normalization of
the reduced spinor in Eqs. (3.88) and (3.89), these two Dirac
brackets would be given by fyA; ȳB̄gD ≈ i

γ ðσ3ÞAB̄ ≈ fy
˜

A; ȳ
˜

BgD.
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M ¼ ðCSLð2;CÞ − 2Qsuð1;1ÞÞ þ jπωj2: ð3:111Þ

Recall that for the case of timelike normal vector we obtain
the suð2Þ2 Casimir instead of Qsuð1;1Þ, but otherwise it
looks exactly the same. Finding the complete solution
space in the quantum theory, however, is more involved
than in the standard case.

B. Reduction by the area matching constraint

As we have mentioned before, the system of all con-
straints is reducible. On T 2�⫽F or T 2�⫽G, part of the area
matching constraint C is already satisfied. One finds that
the reduced area matching constraint is given by

Cred ¼ ∥z∥2 þ ∥z
˜
∥2 ¼ 0 ð3:112Þ

or in the dual case by

Dred ¼ ∥y∥2 þ ∥y
˜
∥2 ¼ 0: ð3:113Þ

Note that this constraint has nontrivial solutions, since the
“norm” of the spinors ∥z∥2, etc., is not positive definite in
our case. We will see that these constraints will be solved
by J ¼ −J

˜
and K ¼ −K

˜
. We will use J , K, J

˜
, K

˜
> 0

and solve the constraints by using opposite ε’s.
Equivalently, we could have chosen the normalization
of the tilded sector to be M ¼ −2J

˜
to obtain a reduced

area matching with a minus sign, which was used in
Refs. [35–37]. However, the important point is the gauge
transformations that are generated by Cred and Dred, and
those are not affected by this sign. The origin of this minus
sign can be traced back to our choice to have the standard
Poisson structure on T 2 and not the sign-flipped one used,
for example, in Refs. [35–38,59].
We are now interested in the reductions ðC2 × C2Þ⫽Cred

and ðC2 × C2Þ⫽Dred and whether we end up with
T�SUð1; 1Þ in both cases. Remember that from now on
we are using the Dirac bracket on the reduced phase space.
We have

fCred; zAg ¼ −izA; fCred; z
˜

Ag ¼ −iz
˜

A; ð3:114Þ

fCred; z̄Āg ¼ iz̄Ā; fCred; z̄
˜

Āg ¼ iz̄
˜

Ā ð3:115Þ

and similarly

fDred; yAg ¼ −iyA; fDred; y
˜

Ag ¼ −iy
˜

A; ð3:116Þ

fDred; ȳĀg ¼ iȳĀ; fDred; ȳ
˜

Āg ¼ iȳ
˜

Ā: ð3:117Þ

Inspired by the holonomy and the fluxes constructed in
Sec. II, we find that we can analogously parametrize the
gauge-invariant reduced phase space ðC2 × C2Þ⫽Cred with
the holonomy

hAB ¼
z
˜

Aðσ3ÞBC̄z̄C̄ þ ðσ3ÞAC̄z̄
˜ C̄
zB

∥z∥∥z
˜
∥

ð3:118Þ

and similarly for ðC2 × C2Þ⫽Dred,

hAB ¼
y
˜

Aðσ3ÞBC̄ȳC̄ þ ðσ3ÞAC̄ȳ
˜ C̄
yB

∥y∥∥y
˜
∥

: ð3:119Þ

They are both of the form

h ¼
�
a b

b̄ ā

�
: ð3:120Þ

For Eq. (3.118) we have

a ¼
ðz1z̄

˜

1̄ − z̄0̄z
˜

0Þ
∥z∥∥z

˜
∥

; b ¼
ðz
˜

0z̄1̄ − z̄
˜

1̄z0Þ
∥z∥∥z

˜
∥

ð3:121Þ

and similarly for Eq. (3.119) and thus both satisfy
det h ¼ 1. Hence, we see that, indeed, we obtain
SU(1,1) on the reduced phase space. Furthermore, on
Cred, we have

z
˜

A ≈ hABzB; y
˜

A ≈ hAByB; ð3:122Þ

and one shows explicitly that, using the Dirac bracket, we
have

fCred; hABg ¼ 0 ð3:123Þ

and

fhAB; hCDg ≈ 0: ð3:124Þ

The fluxes ΠBD from Eq. (2.13) become

πBD ¼ ðγ þ iÞ
8

½ðσ3ÞBC̄z̄C̄zD þ ðσ3ÞDC̄z̄C̄z
B�; ð3:125Þ

which gives

π¼−
ðγþiÞ
8

�
2z0z̄1̄ ðjz0j2þjz1j2Þ

ðjz0j2þjz1j2Þ 2z̄0̄z1

�
: ð3:126Þ

They satisfy, of course,
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fCred; πBDg ¼ 0: ð3:127Þ

We can now expand π in terms of a suð1; 1Þ basis, i.e.,
π ¼ πiτi. With

ðτ1ÞAB ¼ 1

2i

�
1 0

0 −1

�
;

ðτ2ÞAB ¼ 1

2

�
0 1

1 0

�
;

ðτ3ÞAB ¼ 1

2

�
0 −i
i 0

�
ð3:128Þ

and by a rescaling with a factor −2i=ðγ þ iÞ, we get

π1 ¼ 1

2
ðjz0j2 þ jz1j2Þ ð3:129Þ

π2 ¼ Imðz̄0̄z1Þ ð3:130Þ

π3 ¼ −Reðz̄0̄z1Þ: ð3:131Þ

They satisfy

fπ1; π3g ¼ π2; ð3:132Þ

fπ1; π2g ¼ −π3; ð3:133Þ

fπ3; π2g ¼ −π1; ð3:134Þ

and hence we see that we get indeed a suð1; 1Þ algebra
where ðπ1; π2; π3Þ ≅ ðJ3; K2; K1Þ. Thus, we see that we
finally obtain T�SUð1; 1Þ via a symplectic reduction of T 2�
by the simplicity constraints and the area-matching con-
straint. This holds in both cases of constraints ðF;CÞ and
ðG;CÞ. In terms of the reduced spinors, one finds that
with Eqs. (3.129)–(3.131) the suð1; 1Þ Casimir operator is
given by

Qsuð1;1Þ ¼ ðπ1Þ2 − ðπ2Þ2 − ðπ3Þ2 ð3:135Þ

¼ 1

4
ðjz0j2 − jz1j2Þ ¼ 1

4
∥z∥2: ð3:136Þ

Now, as we have mentioned before, let us show that the
Poisson structure we have obtained via reduction from T 2�
by the simplicity and area matching constraint is exactly
the canonical symplectic structure (Kirillov-Kostant-
Souriau symplectic structure [58]) on the coadjoint orbits
of SU(1,1). If we take an element g ∈ SUð1; 1Þ with

g ¼
�
z0 z1

z̄1̄ z̄0̄

�
; jz0j2 − jz1j2 ¼ 1 ð3:137Þ

(note that the components of g are not to be confused
with our reduced spinor components), we can consider the
right invariant 1-forms θ ¼ dg · g−1, and together with
detðgÞ ¼ 1, we have

θ ¼
�
z̄0̄dz0 − z̄1̄dz1 z0dz1 − z1dz0

z̄0̄dz̄1̄ − z̄1̄dz̄0̄ z̄1̄dz1 − z̄0̄dz0

�
: ð3:138Þ

Using the basis Eq. (3.128), we can expand θ ¼ aτ1 þ
bτ2 þ cτ3 with

a ¼ 2iðz̄0̄dz0 − z̄1̄dz1Þ; ð3:139Þ

b ¼ 2Reðz0dz1 − z1dz0Þ; ð3:140Þ

c ¼ −2Imðz0dz1 − z1dz0Þ: ð3:141Þ

The coefficients b and c are obviously real. To show that
a is real as well, use again detðgÞ ¼ 1. To obtain the
symplectic structure on the different coadjoint orbits, we
have to consider certain representatives of those orbits, for
example, f1 ¼ ðs; 0; 0Þ, f2 ¼ ð0; s; 0Þ, or f3 ¼ ð0; 0; sÞ.
We get, for example,

θf1 ¼ 2isðz̄0̄dz0 − z̄1̄dz1Þ; ð3:142Þ

which leads to

ω1 ¼ −dθf1 ¼ 2isðdz0 ∧ dz̄0̄ − dz1 ∧ dz̄1̄Þ: ð3:143Þ

This symplectic 2-forms induces the following Poisson
bracket for functions f, g on the coadjoint orbit of f1,

ff; gg1 ¼ 2is

�∂f
∂z0

∂g
∂z̄0̄ −

∂f
∂z̄0̄

∂g
∂z0 −

∂f
∂z1

∂g
∂z̄1̄ þ

∂f
∂z̄1̄

∂g
∂z1

�
:

ð3:144Þ

Hence, for s ¼ 1
2
, we get the Poisson structure

fzA; z̄B̄g1 ¼ iðσ3ÞAB̄; ð3:145Þ

which is exactly Eq. (3.96). Note, that we can choose
different values for s, even negative ones. Using the
coadjoint representation of a g ∈ SUð1; 1Þ, we can build
a representation of suð1; 1Þ using those spinors and the
Poisson brackets. Consider, for example,

J3 ≡ jz0j2 þ jz1j2;
K1 ≡ 2Imðz̄0̄z1Þ;
K2 ≡ 2Reðz̄0̄z1Þ: ð3:146Þ
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Together with the Poisson bracket Eq. (3.145), one shows
that this gives indeed a (vector) representation of suð1; 1Þ
with

fJ3; K1g1 ¼ 2K2; ð3:147Þ

fJ3; K2g1 ¼ −2K1; ð3:148Þ

fK1; K2g1 ¼ −2J3: ð3:149Þ

Using the other coadjoint orbits f2 or f3, one can similarly
construct different representations of suð1; 1Þ.

IV. TIMELIKE TWISTED GEOMETRIES

In this section, we show that the twisted geometries
parametrization of the phase space variables ðg;ΠÞ ∈
T�SLð2;CÞ in terms of normal vectors and angles is still
valid in our case. We define for ∥ω∥=∥λ∥ ≠ 0

Ξ≡ 2 ln

�
∥ω∥
∥λ∥

�
; ð4:1Þ

where we have as usual ∥ω∥2 ¼ −ðσ3ÞAB̄ωAω̄B̄. Using the
original Poisson bracket on twistor space (and not the
reduced Dirac bracket), this new variable satisfies

fπω;Ξg ¼ 1; fπ̄ ω̄;Ξg ¼ 1; ð4:2Þ

which, in turn, gives fReðπωÞ;Ξg ¼ 1. If we consider
furthermore the two normals that are associated with the
source and target node of some link, respectively, we want
to calculate the scalar product between those two normals.
If we take the normal on the source node to be given by

nAB̄s ¼ iffiffiffi
2

p ðσ3ÞAB̄ ð4:3Þ

and the one on the target node to be parallel transported
with the SLð2;CÞ holonomy from Eq. (2.12), i.e.,

nAB̄t ¼ gACḡB̄D̄n
CD̄
s ; ð4:4Þ

one finds that on the simplicity constraint F1 ¼ 0 and the
area matching constraint C ¼ 0 we have

hntjnsi ¼ −
1

2

�
∥λ∥2

∥ω∥2
þ ∥ω∥2

∥λ∥2

�
¼ − coshðΞÞ: ð4:5Þ

Hence, the angle Ξ, as in the standard time-gauge case [38],
corresponds to the extrinsic curvature of the embedding
of our 2þ 1 hypersurface in spacetime. The difference,
however, is that it corresponds now to a boost angle on
the one-sheeted hyperboloid and not the two-sheeted

hyperboloid as in the standard time-gauge case. This makes
sense because in both cases F1 generates noncompact
gauge orbits for a real Barbero-Immirzi parameter, as can
be seen from Eqs. (3.41)–(3.44). This result holds fur-
thermore for G1 ¼ 0 as well. Now, is this angle still the
conjugate variable to the area? We can use the Plebanski
2-form to define our area (squared) as A2 ≡ 1

2
Σ2 and as

defined in Eq. (3.27):

A2 ¼ γ2

4
Re

� ðπωÞ2
ðγ þ iÞ2

�
: ð4:6Þ

Now, we can consider the Poisson bracket between the area
A and the angle Ξ to obtain

fA;Ξg ¼ γ2

2ð1þ γ2Þ : ð4:7Þ

Thus, we see that, indeed, Ξ and the area A are conjugate
variables. Now, consider again the holonomy Eq. (2.12):

gAB ¼ λAπB þ σAωBffiffiffiffiffiffi
πω

p ffiffiffiffiffi
λσ

p : ð4:8Þ

Following Ref. [38], we can write it as a product of two
matrices,

g ¼ mðσ; λÞ mð−π;ωÞ−1 ð4:9Þ

with

mðσ; λÞ ¼ iffiffiffiffiffi
λσ

p
�
σ0 λ0

σ1 λ1

�
; detðmÞ ¼ 1 ð4:10Þ

and

mð−π;ωÞ ¼ iffiffiffiffiffiffiffiffiffiffi
−ωπ

p
�
−π0 ω0

−π1 ω1

�
; detðmÞ ¼ 1;

¼ iffiffiffiffiffiffi
πω

p
�−π1 ω1

π0 −ω0

�
; ð4:11Þ

and we have

mð−π;ωÞ−1 ¼ −iffiffiffiffiffiffi
πω

p
�
ω0 ω1

π0 π1

�
: ð4:12Þ

In comparison with Ref. [38], we have introduced the extra
i factor in order to have detðmÞ ¼ 1 and not detðmÞ ¼ −1.
This has the advantage that these matrices m are elements
of SLð2;CÞ and not just of the general linear group (which
is not semisimple). Since g;m ∈ SLð2;CÞ, we can use the
Iwasawa decomposition (for semisimple Lie groups) for
both m and express the holonomy g in terms of a SU(2)
matrix, an upper-triangular matrix, and a diagonal boost.

JULIAN RENNERT PHYSICAL REVIEW D 95, 026002 (2017)

026002-14



However, since we are interested in a reduction of SLð2;CÞ
down to SU(1,1), we propose an Iwasawa-like decom-
position of the holonomy that includes SU(1,1) as follows.
We write for an arbitrary element g ∈ SLð2;CÞ

g ¼
�
α β

γ δ

�
¼

�
e f

f̄ ē

��
1 n

0 1

��
i 0

0 −i

�
ϵ
�
t 0

0 t−1

�
; ð4:13Þ

where the first factor is a matrix in SU(1,1), because
jej2 − jfj2 ¼ 1, which follows from detðgÞ ¼ 1. We find
(t ∈ R>0)

t≡
8<:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jαj2 − jγj2

p
; for jαj2 > jγj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jγj2 − jαj2
p

; for jαj2 < jγj2
; ð4:14Þ

where in the first case we have ϵ ¼ 0 and in the second case
we have ϵ ¼ 1. Without this discrete variable ϵ, we would
not be able to cover the whole SLð2;CÞ manifold away
from the identity in the above manner. With this definition
for t, we find further (e; f ∈ C)

e ¼ α

t
; f ¼ γ̄

t
ð4:15Þ

and

n ¼ −
γ̄

α
þ β

α
t2 ¼ −

ᾱ

γ
þ δ

γ
t2 ∈ C: ð4:16Þ

If we express now mðσ; λÞ and mð−π;ωÞ in this para-
metrization, we see that g ∈ SUð1; 1Þ iff

t ¼ t
˜

and n ¼ −n
˜
; ð4:17Þ

which is one real and one complex constraint. Note that the
decomposition in Eq. (4.13) is different from the one used
in Ref. [38], not only because we consider an SU(1,1)
element in the first factor but also because we consider a
pure boost for the last matrix. In Ref. [38], the authors use a
combination of boost and rotation. If we chose a different
expression for our SU(1,1) element, we could try to obtain
a similar decomposition, which, of course, would also give
a different expression for the simplicity constraints again.
It would be interesting to see how the angle Ξ, defined
in Eq. (4.1), would enter such a decomposition, and one
should furthermore obtain a reparametrization for the
fluxes as well, but we will leave this for future inves-
tigations. Before we consider the quantization of this model
in Sec. V, we will first investigate a general graph, instead
of a single link, and consider the reduction by the closure
constraint.

A. Closure constraint

We consider now a general graph Γ with L links and N
nodes. At each of these nodes, we aim to impose local gauge
invariance under SU(1,1) transformations via the so-called
closure or Gauss constraint. We have shown that the
symplectic reduction for a single link phase space by area
matching and simplicity constraints gives T2�⫽C⫽F1;2≃
T�SUð1; 1Þ. Hence, for a graphwithL links andN nodes, we
have

T2L� ⫽Cl⫽Fl;1;2 ≃ T�SUð1; 1ÞL: ð4:18Þ
Now, wewant to further investigate what happens if we take
the Gauss constraint into account. This constraint (in its
covariant form) is given by

GIJ
n ≡X

li∈n
BIJ
li
¼ 0 ð4:19Þ

for each node n of the graph and imposes local
SLð2;CÞ gauge invariance. On the unconstrained level
we can express GIJ

n in terms of the self-dual components
ΠAC

l ϵB̄ D̄ as

G̃AC
n ≡X

li∈n
ΠAC

li
¼ 0; ð4:20Þ

which is enough to guaranteeGIJ
n ¼ 0. It should be clear that

this constraint interacts with each link always with just one
term. Hence, it is easy to show that

fG̃AC
n ; Cljg ¼ 0 ¼ fG̃AC

n ; °F1;ljg: ð4:21Þ
However, not surprisingly, with the second-class constraints
F2;l, we find that

fG̃AC
n ; F2;ljg ¼

X
li∈n

fΠAC
li
; F2;ljg

¼ −
1

4
ðπAj nCB̄ω̄j;B̄ þ πCj n

AB̄ω̄j;B̄Þ ≠ 0; ð4:22Þ

which should be obvious because the F2;l are just invariant
under the little group SU(1,1). On the other hand, if we
consider again the master constraint, we obtain

fG̃AC
n ;Mlg ¼ fG̃AC

n ; F̄2;ljF2;ljg
¼ F̄2;ljfG̃AC

n ; F2;ljg þ fG̃AC
n ; F̄2;ljgF2;lj

≈ 0: ð4:23Þ

This means that when we consider the master constraints
Ml, (together with theCl andF1;l) we have a system of only
first-class constraints. Furthermore, if we impose first area
matching and covariant closure constraints, which leads to
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SLð2;CÞ BF theory, we can in principle consider SLð2;CÞ
intertwiners, which are then further reduced to intertwiners
of the little group, i.e., SU(2) or SU(1,1), upon the
imposition of the remaining simplicity constraints. Now,
if we consider the reduced phase space C2 × C2, where we
solved the simplicity constraints already, then we are left
with the reduced areamatching constraintCred and a reduced
version of the closure constraint that generates local gauge
transformations of the little group. In particular, we canwrite
for the reduced closure constraint

°Gi
n ¼

X
li∈n

πili ¼ 0: ð4:24Þ

Since the πi are gauge invariant with respect to the reduced
area matching constraint, we have

f °Gi
n; Cred;ljg ¼ 0; ð4:25Þ

and hence on ðC2 × C2ÞL, we can consider L reduced area
matching constraints andN reduced closure constraints. All
are first class, and hence we get that the dimension of the
graph Hilbert space is 8L − 2L − 3 × 2 × N ¼ 6ðL − NÞ,
exactly as in the timelike case. (Note that there are three
closure constraints per node, one for each component i.)
In the quantum theory, the solution space of the

(reduced) closure constraint leads to SU(1,1) spin networks
where the nodes are decorated with SU(1,1) intertwiners.
We refer the reader to Refs. [50–52] for details on those
intertwiners, which require more care than their SU(2)
analogs.

V. QUANTIZATION AND TIMELIKE
SPIN NETWORKS

Our starting point for the quantization, following
Refs. [38,39], and [42], are quantum twistor networks,
which are graphs labeled with 2-twistor space T2� on each
link. This space T�, one for each half-link, can easily be
quantized by promoting the spinorial components of the
twistors to operators and their Poisson brackets to the
corresponding commutators in a Schrödinger representa-
tion. This will provide us with our unconstrained Hilbert
space on which we then impose the quantized simplicity
constraints, (reduced) area matching constraint, and closure
constraints (in this order). For each link, we consider the
auxiliary Hilbert space of homogeneous functions of
degree ða; bÞ. Hence, we consider f∶ C2 → C such that
∀ λ ∈ C�,

fðλωAÞ ¼ λaλ̄bfðωAÞ: ð5:1Þ

These functions are essentially functions on CP1. To deal
with single valued functions, we have to require that a − b
must be an integer. Note, furthermore, that these functions

are not assumed to be holomorphic or antiholomorphic,
since they are general polynomials in the spinor compo-
nents as well as their complex conjugates. In certain cases,
however, they can be reduced to give holomorphic repre-
sentations. Together with

ðg ⊳ fÞðωAÞ ¼ fðg−1 ⊳ ωAÞ; ð5:2Þ

this provides, for certain values of the numbers ða; bÞ, a
unitary and irreducible representation for SLð2;CÞ [60].
The SLð2;CÞ-invariant measure on this space of functions
is given by

dΩðωAÞ¼ i
2
ðω0dω1−ω1dω0Þ∧ ðω̄0̄dω̄1̄− ω̄1̄dω̄0̄Þ: ð5:3Þ

Under rescaling, it transforms as dΩðλωAÞ ¼ jλj4dΩðωAÞ
so that the SLð2;CÞ and scaling-invariant scalar product is
given by

hf1jf2i ¼
i
2

Z
CP1

dΩðωAÞf̄1ðωAÞf2ðωAÞ: ð5:4Þ

This representation belongs to the principal series of
SLð2;CÞ. With n ∈ Z=2 and p ∈ R, it is unitary, and
we denote the corresponding Hilbert space of those
functions by Hðn;pÞ. The numbers ða; bÞ and ðn; pÞ are
related by

a ¼ −n − 1þ ip and b ¼ n − 1þ ip: ð5:5Þ

Since the representations ðn; pÞ and ð−n;−pÞ are
unitarily equivalent, we restrict those labels to be
n ∈ N0=2 and p ∈ R. The labels ðn; pÞ are related to
the eigenvalues of the slð2;CÞ Casimirs C1 ¼ ~L2 − ~K2 and
C2 ¼ −2~L · ~K as follows:

Ĉ1 ⊳ fðn;pÞ ¼ ðn2 − p2 − 1Þfðn;pÞ; ð5:6Þ

Ĉ2 ⊳ fðn;pÞ ¼ −2npfðn;pÞ: ð5:7Þ

Note that under the change ðn; pÞ↦ð−n;−pÞ the Casimir
C1 stays the same, whereas C2 changes its sign. If we
consider the half-link phase space T � with Zα ¼ ðωA; iπ̄B̄Þ
and πω ¼ ϵABπ

AωB ≠ 0, the Poisson structure of which is
given by

fπA;ωBg ¼ δBA; fπ̄Ā; ω̄B̄g ¼ δB̄Ā; ð5:8Þ

and similarly for Wα ¼ ðλA; iσ̄B̄Þ with σλ ≠ 0, we use for
the commutators

½π̂A; ω̂B� ¼ −iℏδBA; ½ ˆ̄πĀ; ˆ̄ωB̄� ¼ −iℏδB̄Ā ð5:9Þ

the following Schrödinger representation:
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ω̂BfðωAÞ ¼ ωBfðωAÞ; ð5:10Þ

π̂BfðωAÞ ¼ −iℏ
∂

∂ωB fðωAÞ: ð5:11Þ

The homogeneous functions are furthermore interesting
because they diagonalize the Euler dilatation operator
ωA∂A,

ωA ∂
∂ωA f

ða;bÞðωAÞ ¼ afða;bÞðωAÞ; ð5:12Þ

ω̄Ā ∂
∂ω̄Ā

fða;bÞðωAÞ ¼ bfða;bÞðωAÞ; ð5:13Þ

which holds for all homogeneous functions. The Hilbert
space for each single link is now given by the homogeneous
functions of the form

fða;bÞðωA; λBÞ≡ fðas;bsÞðωAÞ ⊗ fðat;btÞðλAÞ; ð5:14Þ

where the subscripts s and t stand for the source and target
half-links. It is easy to see that these are now homogeneous
functions of degree ða; bÞ ¼ ðas þ at; bs þ btÞ. Recall that
the complex area matching constraint Eq. (2.11) was
given by C ¼ πω − λσ ¼ 0. We can use Eq. (5.12) to
impose Ĉ ¼ 0 as follows. We can write πω ¼ πAω

A ¼
1
2
ðπωþ πωÞ ¼ 1

2
ðπω − ωπÞ. This gives us a normal order-

ing for cπω,
cπω ¼ ℏ

2i

� ∂
∂ωA ω

A − ωA
∂

∂ωA

�
¼ ℏ

2i

�
ωA ∂

∂ωA þ ∂
∂ωA ω

A

�
; ð5:15Þ

where we have used that switching the position of spinorial
indices gives a minus sign in the second equality.
Analogously, one obtains for the complex conjugate con-
tribution

ˆπ̄ ω̄ ¼ ℏ
2i

�
ω̄Ā ∂

∂ω̄Ā
þ ∂
∂ω̄Ā

ω̄Ā

�
ð5:16Þ

and the corresponding expressions in terms of ðσ; λÞ
variables. Using now the commutation relations and
Eq. (5.12), we can show that for a homogeneous function
with degree ða; bÞ we have

cπωfða;bÞ ¼ ℏ
2i

�
ωA ∂

∂ωA þ ∂
∂ωA ω

A

�
fða;bÞ

¼ ℏ
2i

�
ωA ∂

∂ωA þ 2þ ωA ∂
∂ωA

�
fða;bÞ

¼ ℏ
i
½aþ 1�fða;bÞ ð5:17Þ

and similarly

c̄π ω̄fða;bÞ ¼ ℏ
i
½bþ 1�fða;bÞ: ð5:18Þ

The action of the area-matching constraint becomes

Ĉ ⊳ fða;bÞðωA; λBÞ
¼ Ĉ ⊳ ðfðas;bsÞðωAÞ ⊗ fðat;btÞðλAÞÞ
¼ ðĈ ⊗ 1þ 1 ⊗ ĈÞðfðas;bsÞðωAÞ ⊗ fðat;btÞðλAÞÞ
¼ ðcπω ⊳ fðas;bsÞðωAÞÞ ⊗ fðat;btÞðλAÞ
− fðas;bsÞðωAÞ ⊗ ðλ̂σ ⊳ fðat;btÞðλAÞÞ

¼ ℏ
i
½as þ at þ 2�ðfðas;bsÞðωAÞ ⊗ fðat;btÞðλAÞÞ; ð5:19Þ

and analogously the complex conjugate area-matching
constraint gives

ˆ̄C⊳fða;bÞðωA;λBÞ¼ℏ
i
½bsþbtþ2�fða;bÞðωA;λBÞ: ð5:20Þ

Using Eq. (5.5), one finds that as þ at þ 2 ¼ −ðns þ ntÞþ
iðps þ ptÞ, and hence both constraints are solved by nt ¼
−ns and pt ¼ −ps. Since we want to work with ni ∈

N0

2
, we

have to consider on the source link states with ðns; psÞ and
on the target link states with ð−ns;−psÞ, which are states
from two different (but unitarily equivalent) Hilbert spaces.
Before we investigate the imposition of the simplicity

constraints in the next sections, we recall that the so-called
canonical basis for Hðn;pÞ, which stems from an induced
representation using the SU(2) subgroup of SLð2;CÞ, is
used in the quantization of the EPRL model using the time
gauge. This is possible because we can further diagonalize
~L2 and L3 besides the two slð2;CÞ Casimirs, which gives
the states jðn; pÞ; j; mi, where j ∈ N0=2 denotes the spin
and m ∈ f−j;−jþ 1;…; jg denotes its magnetic number.
In particular, this leads to a decomposition of Hðn;pÞ as

Hðn;pÞ ≃ ⊕
n≤j

HðjÞ; ð5:21Þ

where HðjÞ denotes the standard (2jþ 1)-dimensional
unitary and irreducible representation space of SU(2).
Since the stabilizing subgroup for our spacelike normal
vector NI ¼ ð0; 0; 0; 1Þt is given by SU(1,1), it is more
suitable to employ a decomposition in terms of a SU(1,1)
basis. This was also used in Refs. [32] and [33]. For that
reason, we briefly review some representation theory of
SU(1,1) in the following section.

A. Representations of SU(1, 1)

The SLð2;CÞ representations from above provide, of
course, representations for the subgroup SU(1,1) as well.
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They are, however, not irreducible. But similarly to
Eq. (5.21), they can be decomposed into SU(1,1) irreduc-
ible representations. To fix our conventions, we consider
here the unitary and irreducible representations of SU(1,1)
belonging to the principal series. The early works on the
representation theory of the three-dimensional Lorentz
group are Ref. [61] or the book listed in Ref. [62]. The
Plancherel decomposition was investigated, for example,
in Ref. [63], and for a newer account, see Ref. [60]. The
Clebsch-Gordan problem for SU(1,1) was investigated in
Refs. [64–67]. Note, that in this work we have so far used
the mathematical convention for the rotation and boost
generators, i.e., L†

i ¼ −Li and K†
i ¼ Ki. In Refs. [32] and

[33] or [50–52], for example, the authors use the physical
convention where the Hermiticity property is reversed. This
will not be an obstacle in what follows, since the simplicity
constraints are invariant under this choice. This can easily
be seen from Eq. (2.24), where one can simply define the
Πi with an additional factor of �i and this would not
change the form of the master constraint, as can be seen
from Eqs. (3.108)–(3.110). For the covariant simplicity
constraints F1 and G1, this convention is irrelevant as well,
since for them we do not use the generators Li and Ki
explicitly. Now, with this in mind, we can consider the
physical convention, where L3 is Hermitian and hence
can be diagonalized with a real eigenvalue. Furthermore,
we look for states that diagonalize the suð1; 1Þ Casimir
Qsuð1;1Þ ¼ ðL3Þ2 − ðK1Þ2 − ðK2Þ2. We denote those eigen-
states of the two slð2;CÞ Casimirs C1 and C2 as well as

Qsuð1;1Þ and L3 by fðn;pÞj;m ¼ jðn; pÞ; j; mi ∈ Hðn;pÞ. The
eigenvalues of the slð2;CÞ Casimirs are given by
Eqs. (5.6) and (5.7), and we have furthermore

Qsuð1;1Þ ⊳ fðn;pÞj;m ¼ �jðjþ 1Þfðn;pÞj;m ; ð5:22Þ

L3 ⊳ fðn;pÞj;m ¼ mfðn;pÞj;m : ð5:23Þ

The action ofQsuð1;1Þ with a plus is the convention as used,
for example, in Refs. [32] and [33], whereas in Ref. [52],
the authors use the additional minus sign in front of
jðjþ 1Þ. We will see that this sign plays a role for our
final result. We will find that the solutions to the master
constraint with the discrete states on both half-links do
not give us the full reduced Hilbert space necessary to
decompose all functions on SU(1,1) in a spin network
basis.5 Hence, we are eventually forced to work with the
convention from Ref. [52], i.e., with eigenvalues−jðjþ 1Þ.
Furthermore, let us point out that if we compare our
approach with the coherent state approach used in
Refs. [32] and [33], where it was stated that it is necessary
to diagonalize a noncompact generator K1 or K2 instead of

L3, in order to be able to describe timelike faces, we do not
find this to be necessary, which makes our considerations
more comprehensible.
For SU(1,1), we have the following unitary irreducible

representations (that appear in the Plancherel decomposi-
tion), which are all infinite dimensional, since SU(1,1) is
noncompact. First, we have the discrete series D�

k where
j ¼ −k with k ∈ N

2
. For Dþ

k , we have m ∈ fk; kþ 1;
kþ 2;…g, and for D−

k , we have m ∈ f−k;−k − 1;
−k − 2;…g. The state with j ¼ −1=2 is somewhat special
in that it is not normalizable and hence does not appear in
the Plancherel decomposition. We see that using the plus
convention in Eq. (5.22) and if we do not consider the state
with j ¼ −1=2 then we have for all other possible values of
j in the discrete series

Qd
SUð1;1Þ ∈

	
0;
3

4
; 2;

15

4
;…



≥ 0: ð5:24Þ

Second, we have the continuous series Cεs with j ¼ − 1
2
þ is

and ε ∈ f0; 1
2
g. For ε ¼ 0 (even functions), we have s ≥ 0

and m ∈ f0;�1;�2;…g, and for ε ¼ 1
2
(odd functions),

we have s > 0 and m ∈ f� 1
2
;� 3

2
;� 5

2
;…g. Hence, using

again the plus convention in Eq. (5.22), we have for all
states from Cεs

Qc
SUð1;1Þ ¼ jðjþ 1Þ ¼ −s2 −

1

4
< 0: ð5:25Þ

In what follows, we will first use this convention and only
later change to the opposite case. We explicitly include the
full analysis in order to pinpoint exactly where the problem
with this convention lies. We just mention that the analog of
Eq. (5.21) reads in this noncanonical basis [34,60]

Hðn;pÞ ≃
�

⊕
n

k>1=2
Dþ

k ⊕
Z

∞⊕

0

dsCεs

�
⊕

�
⊕
n

k>1=2
D−

k ⊕
Z

∞⊕

0

dsCεs

�
; ð5:26Þ

where the sum over the discrete states ranges over values
for which k − n is an integer and similarly ε is determined
by the condition that ε − n is an integer. The Clebsch-
Gordan decomposition for the coupling of those represen-
tations is given by [64–67]

D�
k1
⊗ D�

k2
¼ ⊕

∞

K¼k1þk2
D�

K; ð5:27Þ

and
5Rather, one would obtain only the discrete states with integer

spin and the continuous states with even parity.
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D�
k1
⊗ D∓

k2
¼ ⊕

k1−k2

K¼Kmin

D�
K ⊕ ⊕

k2−k1

K¼Kmin

D∓
K ⊕

Z
∞⊕

0

Cεsds;

ð5:28Þ

where Kmin ¼ 1 and ε ¼ 0 if k1 þ k2 is an integer and
Kmin ¼ 3

2
and ε ¼ 1

2
otherwise. Furthermore, note that the

discrete contributions vanish when the upper limits k1 − k2
or k2 − k1, respectively, are smaller than 1; i.e., we must
have k1 − k2 ≥ 1 for the first sum and k2 − k1 ≥ 1 for the
second. The coupling of two continuous states gives

Cε1s1 ⊗ Cε2s2 ¼ ⊕
∞

K¼Kmin

Dþ
K ⊕ ⊕

∞

K¼Kmin

D−
K ⊕ 2

Z
∞⊕

0

Cεsds;

ð5:29Þ

whereKmin ¼ 1 and ε ¼ 0 if ε1 þ ε2 ∈ Z andKmin ¼ 3
2
and

ε ¼ 1
2
otherwise. The coupling of discrete states k ∈ N

2
with

continuous states ε ∈ f0; 1
2
g and 0 < s < ∞ gives

D�
k ⊗ Cεs ¼ ⊕

∞

K¼Kmin

D�
K ⊕

Z
∞⊕

0

Cε
0
s0ds

0; ð5:30Þ

where Kmin ¼ 1 and ε0 ¼ 0 if kþ ε is an integer and
Kmin ¼ 3

2
and ε0 ¼ 1

2
otherwise. The Clebsch-Gordan coef-

ficients for SU(1,1) can be defined, and explicit formulas
for their calculation can be found in Ref. [68]. However,
due to the noncompactness of SU(1,1) and the different
representation series, their explicit calculation is more
complicated than in the SU(2) case.

B. Spacelike faces

We consider now the imposition of the quantized
simplicity constraints in the quantum theory. For the
Lorentz-invariant part Eq. (3.30), we use Eqs. (5.17)
and (5.18) to obtain

°̂F1fða;bÞ ¼ ½ðγ − iÞcπω − ðγ þ iÞ c̄π ω̄�fða;bÞ
¼ ℏ

i
½ðγ − iÞ½aþ 1� − ðγ þ iÞ½bþ 1��fða;bÞ

¼ ℏ
i
½γ½a − b� − i½aþ bþ 2��fða;bÞ: ð5:31Þ

In terms of the labels ðn; pÞ, we have a − b ¼ −2n and
aþ bþ 2 ¼ 2ip, and thus we get

°̂F1fða;bÞ ¼
ℏ
i
½−2γnþ 2p�fða;bÞ ¼! 0

⇔p ¼ γn; ð5:32Þ

which is the well-known result from the EPRL model. Note
that this provides a new way of describing spacelike faces
in a nonstandard gauge and hence is interesting by itself.

However, it is important to remember that our solution

states fðn;γnÞj;m (the master constraint not yet imposed) are not
to be confused with the states one obtains with the standard
time gauge. Those states are also denoted in the same way
[or as jðn; γnÞ; j; mi] but are very different states because

they diagonalize ~L2 and not Qsuð1;1Þ. How to connect those
states (when j ¼ −k for the discrete series) can be found in
Refs. [32] and [33] or [60].

C. Timelike faces

For the dual constraint °G1, one obtains now similarly

°̂G1fða;bÞ ¼ ½ðγ − iÞcπωþ ðγ þ iÞ c̄π ω̄�fða;bÞ
¼ ℏ

i
½ðγ − iÞ½aþ 1� þ ðγ þ iÞ½bþ 1��fða;bÞ

¼ ℏ
i
½γ½aþ bþ 2� − i½a − b��fða;bÞ; ð5:33Þ

and again in terms of the labels ðn; pÞ, we have aþ bþ
2 ¼ 2ip and a − b ¼ −2n, and thus we get

°̂G1fða;bÞ ¼ 2ℏ½γpþ n�fða;bÞ ¼! 0
⇔p ¼ −

n
γ
: ð5:34Þ

This result was also found in Refs. [32] and [33], and
we will see in Sec. V F that those states indeed can be
associated to timelike faces.6 This is one of the main results
of this paper. It not only confirms the solution found in
Refs. [32] and [33] but, in fact, provides a more rigorous
derivation, since it does not resort to some sort of large spin
argument, which is typical for the coherent state approach
to the imposition of the simplicity constraints. However, we
will also see that we do not necessarily need those dual
solutions in order to obtain timelike area spectra on the
reduced Hilbert space. We will see that we can stay within
solutions with n ¼ γp and still obtain faces with negative
area eigenvalues on the reduced Hilbert space.

D. Master constraint

Compared with the solutions to the covariant simplicity
constraints F1 and G1, the more interesting part follows
now when we study the master constraint Eq. (3.111) and
how to solve it in the quantum theory,

M ¼ ðCSLð2;CÞ − 2Qsuð1;1ÞÞ þ jπωj2: ð5:35Þ

Since we have already expressed this constraint in terms of
the Casimirs, we only have to find a proper quantization of

6Note, furthermore, that this solution is also obtained from the
first-class constraint mentioned in footnote 2.
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the last term. One finds [38] that the quantization of jπωj2
should be given by

ω̂Aπ̂A ˆ̄π _B
ˆ̄ω _B ¼ −ωA ∂

∂ωA

∂
∂ω̄ _B

ω̄ _B: ð5:36Þ

Acting with Eq. (5.36) on a state, we get

−ωA ∂
∂ωA

∂
∂ω̄ _B

ω̄ _Bfða;bÞ ¼ −ωA ∂
∂ωA

�
ω̄ _B ∂

∂ω̄ _B
þ 2

�
fða;bÞ

¼ −aðbþ 2Þfða;bÞ; ð5:37Þ

where −aðbþ 2Þ gives ðn2 þ 2nþ 1þ p2Þ when we use
states in ðn; pÞ with non-negative n. If we use states from
ð−n;−pÞ, with n ∈ N0

2
, then this gives −aðbþ 2Þ ¼

ðn2 − 2nþ 1þ p2Þ. This distinction is important given
our knowledge about the solutions of the area matching
constraint Eq. (5.19). Now, what is the action of those two
Casimirs on a general state fðn;pÞ? The slð2;CÞ Casmir
CSLð2;CÞ ¼ C2 was given in Eq. (5.6) and gives

ð~L2 − ~K2Þfðn;pÞ ¼ ðn2 − 1 − p2Þfðn;pÞ; ð5:38Þ

which, as we have already pointed out, is not sensitive to
the change between ðn; pÞ and ð−n;−pÞ, and the suð1; 1Þ
Casimir Qsuð1;1Þ gives with the plus convention

ððL3Þ2 − ðK1Þ2 − ðK2Þ2Þfðn;pÞj;m ¼ jðjþ 1Þfðn;pÞj;m : ð5:39Þ

One can show that this operator is also invariant with
respect to the change between ðn; pÞ and ð−n;−pÞ. Hence,
we finally obtain

M̂fðn;pÞj;m ¼ ½2nðnþ 1Þ − 2jðjþ 1Þ�fðn;pÞj;m ¼! 0 ð5:40Þ

and

M̂fð−n;−pÞj;m ¼ ½2nðn − 1Þ − 2jðjþ 1Þ�fð−n;−pÞj;m ¼! 0: ð5:41Þ

In the standard time gauge, where the states fðn;pÞj;m diag-

onalize the suð2Þ Casimir ~L2, the master constraint is
solved by n ¼ j. The solution with n ¼ −ðjþ 1Þ does not
occur in the decomposition Eq. (5.21). Even if we use that
the representations ðn; pÞ and ð−n;−pÞ are unitarily
equivalent, one finds that with n ¼ −n ¼ jþ 1 we have
j ¼ n − 1 < n, which again does not occur in the decom-
position Eq. (5.21), and hence n ¼ j is the only available
solution. Now, in contrast to the SU(2) case, the spectrum
of Qsuð1;1Þ is determined by the four series D�

k and Cεs.
Can the master constraint Eqs. (5.40) and (5.41) be solved
with any of these states? Recall that for the principal series
of the unitary irreducible representations of SLð2;CÞ the
parameter n is an integer or half-integer. A priori we can

assume positive and negative values alike. But for
nðn� 1Þ, there is a minimum value given by −1=4 for
n ¼ −1=2 or n ¼ 1=2. Otherwise, we have nðn� 1Þ ≥ 0
for all other n. Now, if we consider first the states of the
two continuous series Cεs (with ε ∈ f0; 1

2
g), we see that

Eqs. (5.40) and (5.41) with the plus convention for the
suð1; 1Þ Casimir Qsuð1;1Þ lead to�

nðn� 1Þ þ 1

4
þ s2

�
¼! 0 ð5:42Þ

for both ε. It is clear that for most n there is no solution to
this condition. The only possible singular solution occurs
for n ¼ � 1

2
and ε ¼ 0, which is, however, of no relevance

to us, since we consider n ≥ 0 [even though we can solve
Eq. (5.41) with n ¼ 1

2
, this state will later be ruled out when

solving the reduced area matching constraint]. Hence, for
real s ∈ R≥0, we see that the master constraint cannot be
solved by the states of the continuous series and the plus
convention for Qsuð1;1Þ. Note that this analysis transfers
exactly to the other half-link in the ðλ; σÞ variables.
Now, for the states of the discrete series D�

k , we obtain
for Eq. (5.40) with j ¼ −k

½nðnþ 1Þ − kðk − 1Þ� ¼! 0 ð5:43Þ

and see that the master constraint can be satisfied by the
solutions

k ¼ nþ 1; k ¼ −n: ð5:44Þ

However, since we have k ∈ N
2
and n ∈ N0

2
, the second

solution is not admissible. The first solution restricts
furthermore the occurrence of the non-normalizable state
k ¼ 1

2
. For state with ð−n;−pÞ, Eq. (5.41) gives with

j ¼ −k

½nðn − 1Þ − kðk − 1Þ� ¼! 0; ð5:45Þ

and we see that this is satisfied by the solutions

k ¼ n; k ¼ −nþ 1: ð5:46Þ

Again, the second solution is not compatible with our range
of parameter values. Using then the first solution in
Eq. (5.44), we see that all the discrete states in D�

k with
k ∈ f1; 3

2
; 2;…g and n ∈ N0

2
solve the master constraint

Eq. (5.40). For the first solution of Eq. (5.46), we see
that k; n ∈ f1

2
; 1; 3

2
; 2;…g solves the master constraint

Eq. (5.41). However, we will see in the next section
why it is preferable to change from the plus convention
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forQsuð1;1Þ to the minus convention and to solve the master
constraint using the continuous states instead.

E. Reduced area matching constraint

Now, we will consider the full reduced Hilbert space by
imposing the reduced area matching constraint on the states
that solve the simplicity constraints on the two half-links.
From Eqs. (5.19) and (5.20), we learned that the area
matching constraint imposes the conditions nt ¼ −ns and
pt ¼ −ps on the tensor product states

fðns;psÞ
left ⊗ fðnt;ptÞ

right : ð5:47Þ

However, since we prefer to work with non-negative
values for the ni labels, we choose from the beginning
states of the form

fðns;psÞ
left ⊗ fð−nt;−ptÞ

right ; ð5:48Þ

which leads to the area matching condition nt ¼ ns ∈
N0

2

and pt ¼ ps. Since we already know from the simplicity
constraints that ps ¼ γns or ps ¼ − ns

γ and similarly for the
target half-link [which are not sensitive to a change
between ðn; pÞ and ð−n;−pÞ], we see that the area
matching constraint reduces to only one condition, namely,
nt ¼ ns.
After imposing the master constraint on both half-links,

we are left with the following possibilities on which we
can impose the reduced area matching. First, we consider
the case with −js ¼ ks ¼ ns þ 1 and −jt ¼ kt ¼ nt.
Solving the reduced area matching

Ĉred ⊳
�
fðns;psðnsÞÞ;�
nsþ1;ms

⊗ fð−nt;−ptðntÞÞ;�
nt;mt

�
¼! 0 ð5:49Þ

leads to nt ¼ ns, and hence both ni must be ni ∈ N
2
. It

furthermore implies ks¼ktþ1 and hence ks∈f3
2
;2;5

2
;…g

and kt ∈ f1
2
; 1; 3

2
;…g. From this, we obtain K ¼ ks þ kt ¼

2ns þ 1. Using now the decomposition Eq. (5.27), we find
that we can obtain all the (integer) discrete states D�

K with
K ≥ 2 as solutions to Eq. (5.49) from states satisfying the
simplicity constraints. Explicitly, we have

fðns;psðnsÞÞ;�
nsþ1;ms

⊗ fð−ns;−ptð−nsÞÞ;�
ns;mt ¼ ⊕

∞

K¼2nsþ1
D�

K: ð5:50Þ

Changing the order of the two states in the tensor product
gives the same result. Now, let us consider the action of the
reduced area matching operator on discrete states with
opposite signs. Hence,

Ĉred ⊳
�
fðns;psðnsÞÞ;�
nsþ1;ms

⊗ fð−nt;−ptðntÞÞ;∓
nt;mt

�
¼! 0: ð5:51Þ

Using again the solution nt ¼ ns, we find that
ks þ kt ¼ 2ns þ 1 ∈ Z, and hence for the decomposition
Eq. (5.28), we get Kmin ¼ 1 and ε ¼ 0. Furthermore, we
have ks − kt ¼ 1 and kt − ks ¼ −1, and hence one finds
that those states that satisfy the simplicity constraints and
the reduced area matching are given by

fðns;psðnsÞÞ;�
nsþ1;ms

⊗ fð−ns;−ptðnsÞÞ;∓
ns;mt ¼ D�

1 ⊕
Z

∞⊕

0

C0sds:

ð5:52Þ

Hence, we see that we do not obtain all the states we need
to span SU(1,1) spin networks, i.e., all the states that
appear in the harmonic analysis of functions on SU(1,1).
We only obtain the discrete states D�

K with K ∈ N and are
missing all the half-integral values K ∈ N

2
. Similarly, we

only obtain the even continuous states C0s , but we are
missing the odd states with ε ¼ 1

2
. This is a result of the

reduced area matching constraint, which does not allow
for tensor-product states that have integer labels on the
left factor and half-integer labels on the right factor (or
vice versa). Hence, in the decomposition, only states with
integer labels and/or states with ε ¼ 0 appear. However,
this problem can be solved as follows. The requirement
that we need all unitary irreducible Plancherel represen-
tations of SU(1,1) forces us to choose the minus con-
vention in Eq. (5.22). This gives for the master constraint
now the conditions

M̂fð�n;�pÞ
j;m ¼ ½2nðn� 1Þ þ 2jðjþ 1Þ�fð�n;�pÞ

j;m ¼! 0; ð5:53Þ

which can now not be satisfied by the states of the
discrete series anymore but by the states of the continuous

series. For the states fð�n;�pÞ
s;m , one obtains the solution

s�ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n� 1Þ2 − 2

p
2

: ð5:54Þ

For the states fðn;pÞs;m , this is strictly positive for n ∈ N
2
,

hence n ¼ 0 is ruled out, and for the states fð−n;−pÞs;m , we
have to restrict n such that n ∈ f3

2
; 2; 5

2
;…g. The reason

why we can now use those states to obtain the full
reduced Hilbert space is that neither the simplicity
constraints nor the reduced area matching constraint
restricts the labels εs and εt, which, according to
Eq. (5.29), determine which states appear in the decom-
position, i.e., Kmin and ε are now determined by εs þ εt,
which can now be freely chosen to be integral or half-
integral. Explicitly, we find that the simplicity and
reduced area matching constraints are now solved by
the states

Ψns;εs;εt
ms;mt ≡ fðns;psðnsÞÞ;εs

sþ
1
ðnsÞ;ms

⊗ fð−ns;−ptðnsÞÞ;εt
s−
2
ðnsÞ;mt

; ð5:55Þ
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where now ns ≥ 3
2
. Again, we can now freely choose

whether εs þ εt is integral, which gives from Eq. (5.29)
the states

⊕
∞

K¼1
Dþ

K ⊕ ⊕
∞

K¼1
D−

K ⊕ 2

Z
∞⊕

0

C0sds; ð5:56Þ

or whether εs þ εt is half-integral, which gives the states

⊕
∞

K¼3
2

Dþ
K ⊕ ⊕

∞

K¼3
2

D−
K ⊕ 2

Z
∞⊕

0

C
1
2
sds; ð5:57Þ

and thus we see that we obtain all the discrete states with
K ∈ f1; 3

2
; 2; 5

2
;…g as well as all the continuous states

spanning our reduced Hilbert space. Note that, due to the
integral over the continuous parameter s in both decom-
positions Eqs. (5.56) and (5.57), we obtain all continuous
states for arbitrary s ∈ R≥0 in the coupled basis and not
just those that satisfy the discreteness constraint
Eq. (5.54). This can be seen explicitly by considering
the Clebsch-Gordan coefficients of the above decompo-
sitions. Even when both states in the decoupled basis
satisfy the condition Eq. (5.54), one obtains nonzero
Clebsch-Gordan coefficients for general s ∈ R≥0 in the
coupled basis. This means in particular that the reduced
Hilbert space includes indeed all the necessary SU(1,1)
Plancherel representations that are necessary to expand
states in the holonomy representation, i.e., certain C-
valued functions on SU(1,1), in terms of a spin network
basis. Thus, this gives perfect agreement of our reduced
Hilbert space and the quantization of 3D Lorentzian
gravity [49,52]. Note, that for such spin network states
we can obtain links that are labeled by arbitrary continu-
ous states with s ∈ R≥0. On the level of the coupled basis
of the reduced Hilbert space, one then finds that the area
associated with such links can be continuous, again in
agreement with the 3D Lorentzian case. However, those
states are not physical, in the sense that they do not satisfy
simplicity constraints and area matching; i.e., they are not
of the form Eq. (5.55). If we consider a general SU(1,1)
spin network state, which is labeled by continuous s
values, we know from the inverse decompositions of
Eqs. (5.56) and (5.57) how to embed those states into
our solution space of simplicity and area matching
constraints via Eqs. (5.78) and (5.79). This is basically
the Lorentzian version of the Livine-Dupuis map known
from the standard EPRL model and shows nicely how to
embed the three-dimensional Lorentzian Ponzano-Regge
model into our four-dimensional setting. This gives,
furthermore, an explicit mechanism that shows how we
can have continuous eigenvalues on the 3D level, but
when we embed those states into the solution space of
simplicity and area matching constraint, those eigenval-
ues become strictly discrete. Note that one does not need
this decomposition explicitly to calculate, for example,

the area operator eigenvalues of the state Eq. (5.55) as we
will see in the next section. We consider it another important
result of our work that we obtain a reduced Hilbert space
with enough states such that one obtains a valid SU(1,1) spin
network decomposition. Compared with the standard time-
gauge case, where one solves both simplicity constraints on
each half-link and obtains already all the necessary SU(2)
states on each half link (which are then glued using the area
matching), it was necessary in our case to understand that,
even though we just obtain a subclass of representations per
half-link as solutions to the simplicity constraints, all the
required SU(1,1) states arise after the decomposition of the
tensor product states and imposition of the reduced area
matching.

F. Area spectra

In Lorentzian spin foam models [29–33] and LQG, there
are two major issues concerning the spectra of geometrical
operators and the area operator in particular. The first is
about the question of whether those operators have discrete
or continuous spectra [46–48], and the second concerns the
appearance of the Barbero-Immirzi parameter [45]. The
first problem can, at least in four dimensions, be further
separated into whether we are talking about spectra on the
kinematical level or at the level of the physical Hilbert
space; see, for example, Refs. [69,70].
In LQG, the area operator is essentially given by (the

square root of) the suð2ÞCasimir since the (densitized) flux
operators satisfy a suð2Þ algebra and thus the quantization
of the classical expression for the area (squared) leads
explicitly to ~L2 (with a γ-dependent prefactor), [1,2]. This
leads then to the discrete spectra for the area (on the
kinematical Hilbert space). However, there have been other
proposals for the area operator within covariant formula-
tions of LQG [31,47] that potentially lead to continuous
and γ-independent area spectra. That there are cases when
the Barbero-Immirzi parameter disappears from the area
spectra was also observed in Ref. [45] and is a result wewill
discuss in this section using our twistorial description. Our
definition of the area operator was given in Eq. (4.6) by the
Plebanski 2-form Σ, and we consider

Â2 ≡ 1

2
Σ̂IJΣ̂IJ: ð5:58Þ

Using the vector representation in terms of rotation and
boost generators allows us to understand its reduction
classically as follows. Recall that we have associated the
slð2;CÞ generators with BIJ as in Eq. (3.1). Furthermore,
we have

Σ ¼ −
γ2

1þ γ2

�
� þ 1

γ

�
B; ð5:59Þ

which, together with Eq. (5.58), gives
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A2 ¼ γ4

2ð1þ γ2Þ2
�
ð�BÞ þ B

γ

�
IJ

�
ð�BÞ þ B

γ

�
IJ

¼ γ4

ð1þ γ2Þ2
��

1

γ2
− 1

�
ð~L2 − ~K2Þ þ 1

γ
ð�BÞIJBIJ

�
:

ð5:60Þ

Using that

ð�BÞIJBIJ ¼ −4ðL1K1 þ L2K2 þ L3K3Þ; ð5:61Þ

we get with the simplicity constraints Σ3i ¼ 0, i.e.,

K3 ¼ −γL3; L1 ¼ γK1; L2 ¼ γK2; ð5:62Þ

that

~L2 − ~K2 ¼ ð1 − γ2ÞQsuð1;1Þ; ð5:63Þ

ð�BÞIJBIJ ¼ 4γQsuð1;1Þ; ð5:64Þ

which finally leads to

A2 ¼ γ2Qsuð1;1Þ: ð5:65Þ

Now, if we use the dual simplicity constraints ð�ΣÞ3i ¼ 0,
or

K3 ¼ 1

γ
L3; L1 ¼ −

1

γ
K1; L2 ¼ −

1

γ
K2; ð5:66Þ

we obtain instead

~L2 − ~K2 ¼
�
1 −

1

γ2

�
Qsuð1;1Þ; ð5:67Þ

ð�BÞIJBIJ ¼ −
4

γ
Qsuð1;1Þ ð5:68Þ

and hence

A2 ¼ −Qsuð1;1Þ: ð5:69Þ

This already indicates that the Barbero-Immirzi parameter γ
seems to disappear in the spectrum for states that solve
the dual simplicity constraints ð�ΣÞ3i ¼ 0, similarly to the
results found in Ref. [45]7 Now, let us consider the
quantized area operator in the twistorial parametrization.

Using the action of cπω and c̄π ω̄ on the homogeneous
functions fða;bÞ ∈ Hða;bÞ,

cπω ⊳ fða;bÞ ¼ −iℏ½aþ 1�fða;bÞ ð5:70Þ

and

c̄π ω̄ ⊳ fða;bÞ ¼ −iℏ½bþ 1�fða;bÞ; ð5:71Þ

we obtain with Eqs. (4.6) and (5.5) that

Â2 ⊳ fða;bÞ

¼ γ2

8

� cπω cπω
ðγ þ iÞ2 þ

c̄π ω̄ c̄π ω̄
ðγ − iÞ2

�
⊳ fða;bÞ

¼ −
ℏ2

8

γ2

ðγ2 þ 1Þ2 ½ðγ
2 − 1Þða2 þ b2 þ 2aþ 2bþ 2Þ

− 2iγða2 − b2 þ 2a − 2bÞ�fða;bÞ

¼ −
ℏ2

4

γ2

ðγ2 þ 1Þ2 ½ðγ
2 − 1Þðn2 − p2Þ − 4γnp�fða;bÞ:

ð5:72Þ

Now, if we consider the solutions to the simplicity con-
straints, p ¼ γn for F1 ¼ 0 and p ¼ −n=γ for G1 ¼ 0, we
obtain

Â2 ⊳ fðn;γnÞ ¼ ℏ2

4
γ2n2fðn;γnÞ ð5:73Þ

and

Â2 ⊳ fðn;−n=γÞ ¼ −
ℏ2

4
n2fðn;−n=γÞ; ð5:74Þ

respectively. First, note that we find that, indeed, the area
eigenvalues switch sign between the two branches with
p ¼ γn and p ¼ −n=γ, respectively. Hence, our identifi-
cation of the constraints ðF1; F2Þ with the spacelike case
and the constraints ðG1; G2Þ with the timelike case seems
justified. Furthermore, we again confirm that the area
spectrum for timelike faces seems to not depend on γ.
Second, note the different nature between Eqs. (5.73) and
(5.74) on the one hand and Eqs. (5.65) and (5.69) on the
other. For the calculation in Eqs. (5.73) and (5.74), we have
used the covariant version of the area operator Eq. (5.58)
and then imposed the solutions of the simplicity constraints
on the area eigenvalues, which leads us, in the spacelike
case as well as in the timelike case, to discrete area
eigenvalues, which is in contrast to the statement often
made in the literature, e.g., Refs. [41,45,49,69], that in
Lorentzian models we have necessarily continuous spectra,
due to the noncompactness of the gauge group. In the
formulas leading to Eqs. (5.65) and (5.69), on the other

7However, note that the same reasoning works for the SU(2)
case, where we can equally consider Σ0i ¼ 0 or the dual ð�ΣÞ0i ¼
0 but with a timelike normal vector NI, and we still obtain that in
the first case we have a γ dependence, i.e., A2

SUð2Þ ¼ γ2 ~L2, and in
the other case, we have a sign flip, and γ disappears, i.e.,
A2

SUð2Þ ¼ −~L2.
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hand, we have first reduced the operator by the simplicity
constraints. If we use now for the (reduced) area operators
Eqs. (5.65) and (5.69) instead, we first would notice that
this operator does not act on the covariant labels ða; bÞ but
on the SU(1,1) labels jðkÞ and jðsÞ. In this situation, one
might wonder whether we actually recover continuous
spectra for the continuous states with jðsÞ and Qc

SUð1;1Þ ¼
−jðjþ 1Þ ¼ 1

4
þ s2, which is related to our discussion

about whether we have all the continuous states available
in the reduced Hilbert space or just a discrete subset. We
will see now that both ways, reducing the eigenvalues of the
covariant area operator or first reducing the area operator,
are consistent and lead in both cases to a discrete area
eigenvalue spectrum for those states that solve the area
matching and simplicity constraints. Consider first a state
of the form Eq. (5.55) with ps ¼ γns ¼ pt. Then, Qsuð1;1Þ
acts as

Qsuð1;1Þ⊳ðfðns;γnsÞ;εssþ
1
ðnsÞ;ms

⊗fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

Þ

¼ðQsuð1;1Þ⊳fðns;γnsÞ;εssþ
1
ðnsÞ;ms

Þ⊗fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

þfðns;γnsÞ;εssþ
1
ðnsÞ;ms

⊗ðQsuð1;1Þ⊳fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

Þ

¼
�
1

4
þðsþ1 ðnsÞÞ2þ

1

4
þðs−2 ðnsÞÞ2

�
fðns;γnsÞ;εssþ

1
ðnsÞ;ms

⊗fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

¼2n2sf
ðns;γnsÞ;εs
sþ
1
ðnsÞ;ms

⊗fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

; ð5:75Þ

and hence with Â2 ¼ γ2Qsuð1;1Þ, we get

Â2 ⊳ ðfðns;γnsÞ;εssþ
1
ðnsÞ;ms

⊗ fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

Þ

¼ 2γ2n2sðfðns;γnsÞ;εssþ
1
ðnsÞ;ms

⊗ fð−ns;−γnsÞ;εts−
2
ðnsÞ;mt

Þ: ð5:76Þ

Comparing this with Eq. (5.73), where the missing factor
of ℏ2 is included in Qsuð1;1Þ and up to an irrelevant factor
of 1

8
, we showed the consistency between the two ways of

obtaining the area eigenvalues. If we consider now sim-
ilarly the dual case with ps ¼ − ns

γ ¼ pt, we have

Â2 ¼ −Qsuð1;1Þ, cf. Eq. (5.69), and we obtain instead

Â2 ⊳
�
f
ðns;−ns

γ Þ;εs
sþ
1
ðnsÞ;ms

⊗ f
ð−ns;nsγ Þ;εt
s−
2
ðnsÞ;mt

�
¼ −2n2s

�
f
ðns;−ns

γ Þ;εs
sþ
1
ðnsÞ;ms

⊗ f
ð−ns;nsγ Þ;εt
s−
2
ðnsÞ;mt

�
: ð5:77Þ

This matches the result of Eq. (5.74), and γ seems to not
appear. Note that, due to the area matching constraint, we
must have pt ¼ ps. Hence, if we were to consider the
coupling of states with ps ¼ γns and pt ¼ − ns

γ , or vice
versa, the condition pt ¼ ps leads to the requirement that γ
must be imaginary, i.e., γ ¼ �i, which might be related to

the self-dual Ashtekar variables that have recently been
investigated in Refs. [71–73]. It is tempting to interpret this
in some way as a coupling of a spacelike state on one side
of the link with a timelike state on the other side. However,
throughout this work, we have assumed real γ, and hence
considering complex γ is merely a speculation at this level.
Furthermore, it is important to note that in the theory as
presented in this paper taking γ to be complex would take
us out of the unitary representations of SLð2;CÞ.
If we want to avoid using the dual constraints p ¼ − n

γ,
because spacelike states as well as timelike states should be
included already in just the case with p ¼ γn, we can
consider the explicit decomposition of the solution state
Eq. (5.55) into its irreducible components following
Eqs. (5.56) and (5.57). Acting with Qsuð1;1Þ on those
irreducible states will give positive as well as negative
eigenvalues of the continuous series and the discrete series,
respectively. Hence, in this picture, the timelike states are
associated with the discrete series states, which are
composed as the tensor product of two continuous states.
In the reversed direction, imagine we have a spin network
decorated with SU(1,1) representations jðkÞ or jðsÞ;
then, we can think of a generalized Livine-Dupuis map,8

which maps the states of the SU(1,1) spin network into
the solution states of the area matching and simplicity
constraint as

jjðkÞ; mi↦
X
ms;mt

CðnsÞfðns;psðnsÞÞ;εs
sþ
1
ðnsÞ;ms

⊗ fð−ns;−ptðnsÞÞ;εt
s−
2
ðnsÞ;mt

;

ð5:78Þ

or for the continuous states with jðsÞ as

jjðsÞ; mi↦
X
ms;mt

C̃ðnsÞfðns;psðnsÞÞ;εs
sþ
1
ðnsÞ;ms

⊗ fð−ns;−ptðnsÞÞ;εt
s−
2
ðnsÞ;mt

;

ð5:79Þ

where CðnsÞ and C̃ðnsÞ depend besides ns on k or s and
on ms, mt and denote the Clebsch-Gordan coefficients
corresponding to the inverse of the decompositions in
Eqs. (5.56) and (5.57). The details of this embedding will
be relevant for the construction of a generalized spin
foam model, and thus we will leave them for future
investigations.
Finally, let us comment again on the fate of the Barbero-

Immirzi parameter. We point out that we discuss here only
the appearance of γ in the eigenvalues of the area operator
for timelike faces and not whether the physical Hilbert
space will be γ dependent or not. From Eqs. (5.69) and
(5.74), with the solution of the dual simplicity constraints

8In the SU(2) case, the Livine-Dupuis map embeds the SU(2)
representations into the subspace of the canonical basis that
satisfies the simplicity constraints as jj; mi↪ jðj; γjÞ; j; mi.
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ð�ΣÞ3i ¼ 0, i.e., p ¼ −n=γ, we confirmed the statement
that was made in Refs. [44,45] that the spectrum of timelike
faces does not depend on γ. However, there is a possibility
that γ might actually reappear as follows. Note that when
we introduce dimensionful constants the area operatorffiffiffiffiffiffi
Â2

p
has eigenvalues proportional to the Planck length

[1]; i.e., for the standard SU(2) case, we have

Â ⊳ jji ¼ 8πγl2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
jji; ð5:80Þ

with l2P ¼ ℏG=c3, and hence we see that it depends on the
gravitational constant G. This certainly holds true for the
spacelike faces and the space-gauge simplicity constraints
ðF1; F2Þ. If we consider now the area spectrum of timelike
faces, we would assume that it is proportional to either tPlP
or t2P, where tP is the Planck time with t2P ¼ l2P=c

2. In either
case, we again find that the spectrum is proportional to G.
However, if we go back to the original Holst action we
started with in Eq. (2.2) and note that there is a prefactor of
1=ð16πGÞ, then we notice that the dual simplicity con-
straints ð�ΣÞ3i ¼ 0, i.e., ðG1; G2Þ, lead to Einstein-Cartan
gravity with the dual Barbero-Immirzi parameter γ̃ ¼ −1=γ
and a scaled gravitational constant G̃ ¼ Gγ. Now, in this
situation, it appears as if γ does not appear in the area
operator, but, in fact, if we consider the proportionality with
G̃ ¼ Gγ, we see that it still appears via the rescaling of G.
Following this reasoning would imply that all our area
spectra are linearly dependent on γ as in the standard
SU(2) case.

VI. DISCUSSION

We introduced and investigated in this paper the notion
of timelike twisted geometries. Together with the standard
time-gauge case [37,38], which leads to SU(2) spin net-
works, and the more recently introduced null twisted
geometries [42], this completes the application of the
twistorial variables to all types of Lorentzian geometries.
We showed in the classical setting explicitly how the
simplicity constraints with a spacelike normal vector
reduce T�SLð2;CÞ to T�SUð1; 1Þ on each link and similarly
how in the quantum theory the reduced Hilbert space is
spanned by SU(1,1) spin networks. Our results fit nicely
with the recent spinorial investigations of 3D Lorentzian
gravity in Ref. [52] and can be seen as giving an
independent derivation of (some of) those results from a
four-dimensional perspective.
We furthermore confirmed results from Refs. [45] and

[44] concerning the fate of the Barbero-Immirzi parameter
but provide a different interpretation, namely, that γ still
enters the spectrum of the area operator when we take a
rescaling of the gravitational constant G into account. We

further discussed the nature of the eigenvalues of the area
operator and why they turn out to be discrete for spacelike
faces and timelike faces alike, despite the underlying
noncompact gauge group. This is a result of the simplicity
constraints that provide relations between continuous and
discrete representation labels, and hence no continuous
spectra appear for the states in Eq. (5.55), which satisfy the
simplicity constraints and area matching. This might be
interpreted as saying that in LQG and spin foams not only
lengths and areas but also time intervals are discrete with a
minimal nonzero value. An open question concerns the
problem of imposing the constraints in a different order
than the one chosen by us. It seems to us not obvious at the
moment how to obtain the full reduced Hilbert space of
SU(1,1) Plancherel representations when one first imposes
the full area matching constraint and then tries to impose
the simplicity constraints, since in this order the master
constraint always rules out either the discrete states or the
continuous states.
The main result of this paper, however, is the derivation

of the quantum states that correspond to quantum timelike
2-surfaces in terms of spinorial variables. The spinor
variables have proven very useful in the past for the
asymptotic analysis of the standard EPRL model. This
opens the door for further investigations of such general-
ized spin foam models as proposed in Refs. [32] and [33].
The most pressing question is certainly whether such
generalized models that include timelike components at
least share or maybe even improve the semiclassical limit of
the EPRL model. One should also investigate possible
connections with the proper EPRL vertex amplitude of
Refs. [21] and [22]. Furthermore, it seems now possible to
use our variables to consider the model proposed in
Ref. [74] in the Lorentzian setting. Further possible
research directions concern a more detailed investigation
of the alternative set of constraints mentioned in footnote 2
as well as the question of a more in depth study of
Lorentzian intertwiner spaces that arise from the coupling
of several SU(1,1) representations. In that regard, it is
interesting to consider, for example, the Lorentzian gen-
eralization of the Livine-Speziale coherent states and how
they relate explicitly to the classical Lorentzian phase space
of shapes underlying the SU(1,1) intertwiner spaces. This
work will appear elsewhere.
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