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Within the twistorial parametrization of loop quantum gravity, we investigate the consequences of
choosing a spacelike normal vector in the linear simplicity constraints. The amplitudes for the SU(2)
boundary states of loop quantum gravity, given by most of the current spin foam models, are constructed in
such a way that even in the bulk only spacelike building blocks occur. Using a spacelike normal vector in
the linear simplicity constraints allows us to distinguish spacelike from timelike 2-surfaces. We propose
in this paper a quantum theory that includes both spatial and temporal building blocks and hence a more
complete picture of quantum spacetime. At the classical level, we show how we can describe T*SU(1, 1) as
a symplectic quotient of 2-twistor space T2 by area matching and simplicity constraints. This provides us
with the underlying classical phase space for SU(1,1) spin networks describing timelike boundaries and
their extension into the bulk. Applying a Dirac quantization, we show that the reduced Hilbert space is
spanned by SU(1,1) spin networks and hence is able to give a quantum description of both spacelike and
timelike faces. We discuss in particular the spectrum of the area operator and argue that for spacelike and

timelike 2-surfaces it is discrete.
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I. INTRODUCTION

Loop quantum gravity (LQG) is a canonical quantization
of standard Finstein gravity in so-called connection variables
and provides interesting insights into the nonperturbative
structure of spatial quantum geometry [1,2]. Spin foam
models, on the other hand, aim at a covariant description
of the same theory, using similar techniques. See, for
example, Ref. [3] for a recent introduction or Ref. [4]. The
ideais thatone can use a spin foam model to define a projector
onto the physical Hilbert space of LQG by mapping kin-
ematical spin network states onto states that solve the
Hamiltonian constraint [5-7]. The current Engle-Pereira-
Rovelli-Livine—Freidel-Krasnov—Kaminski-Kisielowski-
Lewandowski (EPRL-FK-KKL) spin foam model, named
after the authors of Refs. [8—12], solved several issues of its
predecessors [ 13—15], such as having the correct boundary
states to match the states of LQG and having a good
semiclassical limit [16—18]. There are, however, further
questions that are worth investigating. Possible improve-
ments of the current spin foam model are discussed, for
example,inRefs. [19]and [20] where the authors negate the
question of whether the model defines a proper projector or
rigging map onto the physical Hilbert space, and in
Refs. [21] and [22], the authors consider a modified vertex
amplitude that improves the semiclassical limit compared
to the original model. We would like to point out that it is
possible that the work presented in this paper allows for an
alternative approach to obtaining the results presented in
Refs. [21] and [22], not by restricting the vertex amplitude
asinRefs.[21]and [22] but by generalizing it such that one
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sums over temporal building blocks as well as spatial ones.
Further possible improvements of the current model are
discussed also in Refs. [23] and [24].

The main motivation of this work, however, isrelated to the
problem of timelike boundaries and the occurrence of non-
spacelike building blocks in the bulk of spin foam models,
which, in turn, relates to the study of timelike boundaries as
motivated by the so-called general boundary formulation
(GBF)[25-27]. The absence of such nonspatial contributions
in the current spin foam models was also discussed in
Ref. [28]. Within the GBF, it is argued that, not only in
quantum gravity but also in quantum theory in general, it is
interesting, or even necessary, to consider amplitudes based
on boundaries of finite regions of spacetime and to abandon
the asymptotic states that are generally used in quantum field
theory. These ideas are tightly connected to the framework of
topological quantum field theory and constitute the basis for
many considerations on amplitudes that are calculated from
spin foam models. If we follow these ideas, we are led to the
possibility of timelike boundaries and their corresponding
amplitudes in Lorentzian spin foam models. In fact, the
investigation of timelike components has along history in this
field [29-31].

Another motivation is to gain a better understanding of
covariant quantum spacetime itself. If we consider spin
foam models independently, a priori not connected with
LQG, can we use them to learn something about the
quantum geometry of spacetime in the bulk? Currently,
the new spin foam model is constructed in such a way that
all its building blocks, even in the bulk, are strictly
spacelike, which follows from the imposition of the linear
simplicity constraints using a timelike normal vector N'.
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This is necessary for achieving the matching of the spin
foam boundary states with the kinematical SU(2) spin
network states of LQG. From a covariant standpoint,
however, it is not clear why we should make such a
restriction. Based on this reasoning, a generalization of
the new spin foam model that uses both timelike as well
as spacelike normal vectors N’ for the linear simplicity
constraints was proposed in Refs. [32-34]. Their deri-
vation is based on the Freidel-Krasnov model [11] and
uses coherent states techniques to implement the sim-
plicity constraints in the quantum theory. In this model,
one obtains an extra sum over the normal vector N’ in the
spin foam partition function, which can be understood in
terms of the measure of the bivector field in the path
integral as follows. In the standard case, where we only
consider the timelike normal vector, the bivector fields
are constrained to be spacelike and stay spacelike under
gauge transformations. If we allow for a spacelike normal
vector, we can have spacelike, null, and timelike bivec-
tors, and summing over timelike and spacelike N! can be
justified by stating that we should integrate over all
gauge-inequivalent contributions in the path integral.
Now, this is certainly a statement about which dynamics
is defined by the spin foam model. However, so far, there
has been no attempt at an asymptotic analysis of this
generalized spin foam model.

This leads to our main objective for this work: namely,
the question of whether we can give a twistorial description
of the Conrady-Hnybida model [32—-34] with the hope that
this would eventually allow for an asymptotic analysis of
such generalized spin foam models with timelike compo-
nents. In this paper, we will first consider a phase space
analysis in twistorial variables and leave the construction of
a new spin foam model and its asymptotic analysis for
future work.

The use of the twistorial parametrization of LQG
[35-39] has in the past proven rather useful for the
investigation of the covariance properties of LQG
[40,41] and the underlying phase space geometry. It has
already been used in Ref. [42] to investigate the possibility
of a null normal vector N/ in the simplicity constraints and
the subsequent quantization of null hypersurfaces with
spacelike 2-surfaces. It also has recently been used to
investigate conformal transformations in LQG [43]. Very
much in the same spirit of Ref. [42], we use these
techniques here to consider timelike hypersurfaces with
spacelike and timelike 2-surfaces. This can also be seen as a
mathematical exercise further testing the adaptability of the
twisted geometries formulation of LQG. We point out that,
even though interesting by itself, our main interest here is
not the (quantum) description of the spacelike but the
timelike 2-surfaces. We find, for example, similarly to the
results obtained in Refs. [44] and [45] in a slightly different
model, that the area spectrum of the timelike faces might be
independent from the Barbero-Immirzi parameter.
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One crucial question that has often been discussed in the
literature on Lorentzian spin foam models is whether the
(kinematical) spectra of geometrical operators are (all)
discrete or continuous [46—48]. In 2 4 1 spacetime dimen-
sions, the situation is clear; see, for example, Ref. [49] or
the recent work [50-52]. There, one obtains continuous
spectra for timelike 2-surfaces because in that case the
representations are labeled by a continuous parameter,
which is a result of the noncompactness of the underlying
gauge group. In 3 4 1 dimensions, however, the simplicity
constraints can lead to relations between continuous and
discrete representation labels, which amounts to the pos-
sibility that continuous spectra can become discrete. We
will show that, indeed, also timelike faces can have discrete
spectra when the simplicity constraints are imposed. This,
however, requires a more detailed analysis than in the
standard case with timelike N'.

In the next section, we review the description of
T*SL(2,C) in terms of twistorial variables to fix our
notation and conventions which are similar to those used
in Ref. [42]. The difference with the original papers
[36-38] is merely a sign flip in the Poisson brackets for
the spinors. The Poisson structure we use here descends
from the canonical one on twistor space [53].

In Sec. III, we investigate the symplectic reduction of
2-twistor space T2 by the simplicity and area matching
constraints. As already mentioned, in the case of a space-
like normal vector N/, we can have spacelike, timelike, and
null 2-surfaces. We focus here on the spacelike and timelike
cases, which can be considered as being dual to each other.
The phase space structure and symplectic reduction, in both
cases, is very similar to the standard case with timelike
normal, except that we obtain eventually T*SU(1, 1) and
not T*SU(2). In Sec. IV we discuss general graphs. This
requires us to impose the closure constraint in Sec. IV A at
the nodes, which is solved by SU(1,1) intertwiners at the
nodes in the quantum theory.

Finally, we turn to the quantization in Sec. V, which,
again, proceeds similarly to the standard case. The differ-
ence lies in the necessity to consider both half-links to
obtain the full reduced Hilbert space, which is spanned by
all the unitary irreducible representations of SU(1,1) that
occur in the Plancherel decomposition. In Sec. VF, we
consider the area spectra associated with spacelike and
timelike faces.

II. TWISTORS IN LQG AND SPIN FOAMS

In this section, we want to give a brief overview of
the utilization of spinors and twistors in loop gravity.
Since their introduction in LQG and spin foams, see
Refs. [35-39] and references therein, they have clarified
many questions concerning the covariance properties of
LQG as well as the relation between spin foams and the
canonical theory. They provide a compelling picture for the
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spin network states of LQG as the quantization of certain
(twisted) discrete geometries, and they have been used
to investigate the quantization of null hypersurfaces
in Ref. [42].

In the current spin foam models, the starting point is the
quantization of BF theory, on which one imposes the
simplicity constraints, which reduce BF theory to general
relativity, in the quantum theory. The BF action relates to
the BF action with a Holst term and the Barbero-Immirzi
parameter y € R, through the so-called Immirzi shift, and
is given by

Spe|B.A] = / Te(B A FIA])

:A/ITr(*Z/\F[A]—%Z/\F[A])- (2.1)

The B- and X-bivector fields take values in 81(2,C), and
F[A] is the curvature of a 8[(2,C)-valued spacetime
connection A. The trace is taken with respect to the
8[(2,C) Cartan metric. The Immirzi shift amounts to a
change of basis for 8[(2,C) in a way that leaves the
equations of motion unaltered but changes the symplectic
structure by introducing y. BF theory is a topological theory
and hence has only global degrees of freedom. By requiring
that the X field should be simple, i.e., !/ = e/ A ¢/, one
obtains gravity (in the Einstein-Cartan form and up to a
prefactor 1/167G) with a Holst term [54], i.e.,

SuoaleA] = A Tr(*e/\e/\F[A]—%e/\e/\F[A}). (2.2)

In their linear form, those simplicity constraints are
given by
N,z =0, (2.3)
for some auxiliary normal vector N’. Those constraints lead
to two solutions, namely, X!/ = +e! A e/, where the sign
relates to the orientation of the underlying frame field. This
is relevant for the asymptotic analysis of the resulting spin
foam model and has been investigated in Refs. [21,22].
Using now a discretization of the spacetime manifold M
and a smearing of the continuous variables gives us a
2-complex decorated with T*SL(2,C) on each one-
dimensional edge e of the dual 2-complex. The group
element g corresponds to the holonomy of the connection A
along e and can be used to measure the curvature associated
with faces f bounded by the edges e;. The Lie algebra
element corresponds to the smeared B field over some
2-surface dual to f. We can now consider a three-
dimensional intersection between this discrete structure
and some hypersurface of spacetime. This leads us to some
abstract, oriented graph I" with N nodes n and L links /.
Induced from the 2-complex, T*SL(2,C) is again
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associated with the links /. One reason for the name
twisted geometries is the fact that T*SL(2,C) can be
embedded in 2-twistor space as a symplectic quotient
with respect to the so-called area matching constraint.
Hence, we consider on each link a set of two twistors
(Z,W) € T?> = C8, where the first twistor is associated
with the source node of the link and the second one is
associated with the target node. Each twistor by itself is
composed of two spinors Z% = (w”,izg) and W =
(A4,i5p), where w,A € C? transforms under the (3,0)
(left-handed) and 7,5 € (C?)* transforms under the (0, 1)
(right-handed) representation of SL(2,C). The adjoint
twistors are given via Z, = (—iz4, @?) such that the twistor
norm is given by 1 Z,Z* = Im(zw). We use the convention
' =¢y =1, € =—€eB4 for the two-dimensional
€ tensor, which allows us to move spinor indices as

o = By,

(2.4)

wy = GBACUB

and analogously for the complex conjugate sector. The
2-twistor space T2 comes equipped with a natural
Poisson structure, which is SL(2, C) invariant and is given
by the 2-form [53,55,56]."

Q = idZ* A dZ, + idW* A dW,. (2.5)
In terms of the spinors, Eq. (2.5) gives
idZ* A dZ, = do? A dry +d@P A dig,  (2.6)
idWe A AW, = di* A doy +dAB A dGp,  (2.7)
which gives rise to the Poisson brackets
{ma. 0"} =67 = {04.2°}. (2.8)
{73, 0"} = 68 = {5;,2%} (2.9)

and all others vanishing. Thus, T? together with the above
brackets constitutes a Poisson manifold. For two functions f,
g on T2, we calculate their Poisson bracket via

lFollowing the conventions of the original twisted geometries
literature [35-38,42], we remove the i appearing in the original
spinorial Poisson brackets by parametrizing the twistors Z and W
with an extra i in front of 73 and 65. As in Ref. [42], we
furthermore use the Poisson structure as defined by Eq. (2.5) and
not with a relative minus sign. This leads to the symmetric
Poisson brackets as shown in Egs. (2.8) and (2.9).
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(2.10)
The area matching constraint
C=r0—-6=0 (2.11)

is a first-class constraint and defines the embedding
T2//C = T*SL(2,C), [37,38]. We assume throughout that
a0 = e pmw® = —wrn # 0 or 64 # 0. Hence, we consider
T? where we remove the null configurations 7w = 0 or
ol = 0. One finds that the holonomy ¢ and the fluxes I1
of the gauge-invariant phase space T*SL(2,C) are para-
metrized in terms of the spinors via

Mg+ c'wp

= s 2.12
which satisfies detg = 1 and {C, ¢} = 0, and
A _ L, 4 p A my_ L4 p
IT :Z(ﬂw —I—a)ﬂ)zizﬁw . (2.13)
=ap | B A By _ L (aym
IT :Z(O-A,l + Mo ):56 B (2.14)

Furthermore, one can show that

(4'0.6D) = [ [00)6* Tl = (e 1.
(2.15)
and hence on the constraint surface C = 0, we get
{9"5.9p} = 0. (2.16)

The group element g defines a linear map from Z to W:

7 pf = ,/%AA ~ A, (2.17)
g pr® = — %GA ~ o™, (2.18)

A real bivector B/ can be decomposed into a self-dual and an
anti-self-dual part, which, in spinorial variables, takes the
following form:

BABCD — HACE‘BD + f[BDeAC. (219)

Using
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{C, 0} = o, {C,n"}y = -, (2.20)

{C, A} =24, {C,6"} = —6", (2.21)
we show that g, I1, I1 are invariant under the flow of C. The
fluxes transform like IT ~ —gITg~" on the constraint surface
C =0, and they furthermore satisfy two copies of the

3[(2,C) algebra,

{HAB’HCD}:%O-IACEBD +HAD€BC+HBC€AD +HBD€AC)’
(2.22)

and similarly for the tilded fluxes, and we have

{148 1P} = 0. (2.23)
Thus, the variables g and IT suffice to fully parametrize
T*SL(2,C), and II is obtained from g and TI via
[~ —gIlg~'. We can now employ the following isomor-
phism between 81(2, C) and C? to rewrite the fluxes in terms
of their rotation and boost generators according to

My =0 (7,)" = (L' + iK")(7,)"p. (2.24)
with i € {1,2,3} and where the 7; are related to the Pauli
matrices via 7; = 5, ;. They satisfy [r;, 7;] = ¢;/*7;, and we
use them to calculate the components IT" € C via

Il = —2Tr(Iz;) = —21145(7;)8,, (2.25)
which gives
' = (% — 11, (2.26)
? = — (% + 11'), (2.27)
I1° = —2iI°". (2.28)
Together with Eq. (2.22), this leads to
{IT, TV} = &V, I1%. (2.29)

Hence, on C = 0, we reproduce the Poisson structure of
T*SL(2,C) given by

{Hi’gAB} = QAC(Ti)CB’ (2.30)
{ﬁi79AB} = _(Ti)ACgCBv (2.31)
{gAngCD} ~ 0. (2.32)
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Furthermore, note the 2-to-1 symmetry of the parametriza-
tion of the holonomy flux variables in terms of spinors; i.e.,
g, 11, IT are invariant under

(0,7, 4, 0)>(7,0,0,1). (2.33)

III. TWISTORIAL DESCRIPTION OF
TIMELIKE HYPERSURFACES

We will use the twistorial parametrization reviewed
above to investigate the reduction of T2 by the linear
simplicity constraints and the area matching constraint.
But first, let us consider the bivector field B € A’R!? ®
8[(2,C). In SL(2,C) BF theory, the B field is valued in
8[(2, C) and hence can be expanded in terms of a 8[(2, C)
basis. This means that we can express B/ with the 8((2, C)
generators L’ and K' as

0 K' K* K°

B={B"} = 3.1
L e I (3.1)
-K3 L> -L' 0
or, equivalently,
K'=-K; = B", (3.2)
Li= L = (+B)Y = Lo, pit 3.3
=L; = (xB) = E P (3.3)

where we used the Hodge star operator *, which satisfies
%> = —1 in four dimensions with Lorentzian signature
(=, +,+,+). This gives furthermore

0 L1 L

-L' 0 -K* K?
*BY} = 3.4
1 e I (3.4)
-L* -K*> K! 0
The two 8[(2,C)-invariant Casimirs C; = L*-K* and

C, = —2L - K are obtained from B? = 1B B = -K*+
L? and C, = 1(+B),,BY = <2(L'K' + L*K> + L’K?) =
2K;L" = —2L;K'. Note that for the Lorentzian signature we
have (*B)? = —B?. Not surprisingly, this already shows the
possibility of nondefinite bivectors in the case of a space-
like normal vector in the linear simplicity constraints. For
the standard time gauge, where N’ = (1,0, 0, 0)’, we have
B = 0 and hence see that B is projected onto a Euclidean
subspace with (4, +, +) signature where we are only left
with B?> > 0 (we exclude the degenerate case of null
bivectors in our considerations). If we choose the spacelike
vector N/ =(0,0,0,1)’, we deal with a subspace of
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signature (4, —,—) and hence have, even after using the
simplicity constraints, the possibility of bivectors with
positive or negative areas. Let us also point out that in
four spacetime dimensions every bivector can be written as
the sum of two simple bivectors [57].

A. Phase space structure and timelike
simplicity constraints

Using the Immirzi shift and identifying B/ with the
8[(2,C) generators as in Egs. (3.1) and (3.4), the linear
simplicity constraints for spacelike normal N’ = (0, 0,0, 1)7,
ie., X3 =0, become

= k="lr2, (3.5)
14 4 14
Using these constraints, we can already see that the 3[(2, C)
Casimirs Cy and C, reduce to
Cy = (1=7%)Qsu11)» Cy = 2yQsu11),  (3.6)
where the 81(1, 1) Casimir is given by Qg1 1) = (L?)* —
(K')? — (K?)?. Following the procedure laid out in
Refs. [38,39,42] we aim now for a decomposition of the
constraints X3 = 0 in their spinorial parametrization into a
Lorentz-invariant part and a second part, specified by the little
group of N’. This has the advantage that the nature of those
constraints becomes more transparent, which simplifies the
phase space analysis as well as the quantization. We begin by
rewriting B in spinorial variables. The simplicity constraints
become

napZABCD — 0 (3.7)
with
Nin =€ e--nCD:LG =N, 3.8
AB CA€D B \/5( 1)AB (3.8)
o 1 _ 3
ZABCD — _E(GI)AB(GJ)CDZ”- (39)

We use the following basis for the isomorphism between
4-vectors and anti-Hermitian matrices [note the extra factor of
i in Eq. (3.8)]:

=@ =(y 1) @0
@ === (] o) G
@ ==, o) G
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00 ===y ) )

0 (3.13)

Next, we decompose B in terms of its self-dual and anti-self-
dual components IT and IT as

BABCD — BAC(BD | BBDAC, (3.14)
where
1 ..
BIC = _EBABCB = B, (3.15)
o 1 .2 5 =55
B§D=—§BABA b= Bbs (3.16)

Note that for real bivectors we have B, = B ; otherwise, the
self-dual and anti-self-dual parts are not complex conjugates
of each other. Including the Immirzi shift, we have

B = B\e+ Bje =1le +Ile

1 _ 1_
= <lZ| ——Z]>é+ <—l21 ——21>€ (317)
I4 14
and hence
1
Bl =II= (l—-)zl, (318)
Y
iy
X =- 3.19
= (3.19)

The difference in decomposing B or *B into self-dual and
anti-self-dual components is an extra i factor for the self-
dual part and a —i factor for the anti-self-dual part. This will
be relevant for the distinction of spacelike and timelike
2-surfaces. Hence, we get for the linear simplicity constraints
from Eq. (3.7)

This distinction is important for the following reason. In order
to split Eq. (3.20) according to the decomposition used in
Refs. [38], [39], and [42] into a Lorentz-invariant part and the
part invariant under the little group, we use two linearly
independent null vectors (one real and one complex), which
are furthermore orthogonal to each other (there is nothing that
forces us to use the same procedure, except its success in the
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timelike and null cases, and thus we prefer to stay as close as
possible). Now, even though we are using the spacelike
normal vector N’ = (0,0,0, 1), which projects onto a
pseudo-Riemannian subspace and hence allows for bivectors
with nondefinite norm, decomposing the simplicity constraint
with respect to those null vectors always leads to subspaces
where the bivectors have a definite norm. However, since we
have seen that under the Hodge dual the bivector norm
changes its sign, we can use this to distinguish the simplicity
constraints for spacelike from those for timelike 2-surfaces.
This essentially corresponds to the necessity of choosing
another auxiliary vector U’ to distinguish those two cases in
the Conrady-Hnybida construction [32,33].

To be more explicit, we know that for a timelike normal
vector N’ the solutions to the simplicity constraints lead to
positive definite bivectors because they lie in a subspace
with Euclidean signature. Hence, we can conclude from
N;Z¥ =0 that ¥ = 4e; A e, with > >0 and hence
(¥X)? <0, and, vice versa, we can conclude from
N;(*Z)Y =0 that X = +&; A &, with (*X)> >0 and
hence (2)? < 0. Now, for a spacelike normal N', we still
obtain from N;Z/ =0 that £ = 4e; A e,, but now this
does not imply > > 0 any longer (because we are in a
space with Lorentzian signature). The question arises as to
how we should distinguish whether X is spacelike or
timelike. Note that a priori it should be possible to obtain
spacelike as well as timelike solutions from one constraint,
i.e., either N,V = 0 or N;(xZ)" = 0. However, for now,
we will investigate the reduction of T*SL(2,C) by both
constraints Eqs. (3.20) and (3.21) and discuss the results
further in Sec. VFE

Following again Refs. [38,39], and [42], we decompose
Egs. (3.20) and (3.21) by projecting them onto the two
null vectors %wc&)b (real) and \Lﬁncg&)EcI)D (complex).
Contracting Eq. (3.20) with ﬁwc@b gives us

W o

— =0 (3.22)
y+ioy—i

or equivalently

F| =Re(nw) — yIm(zw) = 0, (3.23)
where we exclude cases where ||w||? = —(03),z0@® =
|0°|? — |@'|? = 0. This is the Lorentz-invariant constraint

that one obtains for the time gauge, and hence it makes
sense to associate it with spacelike bivectors. The con-
traction of Eq. (3.20) with ﬁ”cE@E@D and assuming that
lw]|* # O gives similarly the following complex constraint,
which, due to the presence of the normal, is only invariant
under the little group, which is in this case SU(1,1):

Fy =G, =n*tr,; = 0. (3.24)
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Applying the same procedure to Eq. (3.21) only changes
the Lorentz invariant constraint, and Eq. (3.24) is valid for
both cases. Hence, we have for the dual case the constraints
Eq. (3.24) together with

Tw T
y+i

(3.25)
or

1
G| =Re(nw) + —Im(zw) = 0,

. (3.26)

as an equivalent set of constraints replacing Eq. (3.21).
Since they are dual to the first set, we interpret them
as the ones corresponding to the timelike case.” A
more direct way to see that this is the correct way to
associate the (F,F,) with spacelike bivectors and
(G, G,) with timelike bivectors is to consider the area
form

1
A= 2

_r
8

(T +Z€) (T8 +Zpe)

>2HACHAC + (L) Ty 1P
((i n )> o= )>> - %zRe((iﬂf )>>

(3.27)
One finds that the solutions of the simplicity constraint
F; =0, which are given by 7w = (y+1i)J, with
J €R,, lead to a positive area,

2
Ay o= %ﬁ >0, (3.28)

whereas the solutions of G; =0, which are given by
zw = i(y + i)K, with £ € R,, lead to a negative area,

2
Ay = —%ICZ <0. (3.29)

Note, that in both cases the area (squared) depends
quadratically on y. Since we only used F; in
Eq. (3.28) and G; in Eq. (3.29), it is clear that this
statement is independent of the choice between the other

’We mention that one can use a different decomposition of
N,Z¥ =0 to obtain a different set of constraints by allowing
that ||@||> can be zero. This might lead to the timelike sector
with fixed N,;Z/ =0 and without the need to investigate
N;(*Z)” = 0. This new set of constraints includes G, as well,
but the complex constraint G, is replaced by two real second-
class constraints E = (03)*8n,75 and F = (03) .y’ @®. We will
leave this for future investigation and thank Wolfgang Wieland
for this observation.
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constraints, namely, whether we use G,, or the ones
suggested in footnote 2, where G, is replaced by E and
F. Furthermore, this suggests that also in the quantum
theory the area spectra of spacelike and timelike areas
should depend on y

1. Spacelike faces

We consider in this subsection the classical analysis of
the constraints F;, F, together with the area matching
constraint C from Eq. (2.11) and investigate the symplectic
reduction T,/ F,//F,. We will also use the following
version of F:

Fi=(y—-i)(nw)—(y+i)(zw) =0. (3.30)

We first look for the classical solutions to the constraints F';
and F,. From twistor theory and the solutions of the
simplicity constraints in the standard time-gauge case, we
know that the spinors are linearly dependent, and hence we
are working with simple twistors, which are determined by
a single spinor. This motivates to make the ansatz

7wy = —£(03) 50", sedC,, (3.31)

and one finds that this indeed solves G, = F, = 0 for all
£ e C,. Plugging our ansatz into F'; =0, we find with

& = reexp(ioe)
Fy = llol?refcos(ps) — ysin(p:)] =0, (3.32)

where we have defined ||w|?> = —(o3) 0" @? = |0°>—

|w'|?. Hence, we get

@z = @(y) = arccot(y) = arctan (%) (3.33)

We see that we can solve F'; =0 = F, by choosing

my = -1V (03) 508,  r:€R,  (3.34)
and that (r¢, ™) span our five-dimensional solution space
within T, which has eight real dimensions. We have the
system of constraints

{F\.Fy} = —2yF, ~0, (3.35)

{F|.F,} = 2yF, ~0, (3.36)

{F,, F,} = —ilm(zw), (3.37)
and together with the area matching constraint,
we have

{F,.C}=0={F,,C} (3.38)
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and

{F,,C} = —{F,,C} = F,~0, (3.39)

(Fy.C} = —{F,.C} = -F, 0. (3.40)

Hence, we see that F; and C are of first class and F), is of

o
second class. On the fundamental spinors, F'; generates the
following transformations:

{Fr.ot} = (r =)o, (3.41)
{F), 7"} = —(y — )2, (3.42)
(F.a} = =(y + D, (3.43)
(7%} = (v + )7 (3.44)

Since F, is a first-class constraint, it generates gauge
transformations, and we are interested in the gauge-
invariant four-dimensional solution space. Consider the
following bracket, with ||w||> = —(o3) 50" @, for which
we have
o]
{Fi.llwl*} = —iallo]|”. (3.45)
Can we find an expression of r; in terms of @*, in order to
parametrize the reduced phase space? Note that
[e]
{F|,n0} = 0. (3.46)
If we use the solution Eq. (3.34) and assume that r; is a
function of w?, we find with

7w = re(a?) eV o||? (3.47)
and Eq. (3.46) that r¢(o*) must satisfy
{F1, re(0*)} = 2irs(0?). (3.48)
From this, we conclude that
N
re(@?) = 3.49)
: llool? (

for some arbitrary numerical prefactor N € R,. Hence, the
four-dimensional reduced phase space (the symplectic
quotient T/ F J/F,) can be parametrized by a single spinor.
However, we know from Eq. (3.41) that @” itself is not a
gauge-invariant variable and hence not a good coordinate
on the reduced phase space. Before we get to this point, let
us choose N such that

PHYSICAL REVIEW D 95, 026002 (2017)

o= (y+1i)J (3.50)
for some J € R,. This is achieved for
N=(y+i)Je ) =\/1+y27,  (3.51)
where we used that
e'?r) = cos(arccot(y)) + i sin(arccot(y))
y+i
= 3.52
Vy=i (3:52)
and hence we get
~B
O 2100
72 = =(r + D7 T (353)

On the non-gauge-invariant solution space of F; and F,,
the variable [ is given by

2
g = Mol (3.54)

\/1—1—72

and hence

{F\.J} =0. (3.55)

Now, let us find the spinor that parametrizes the reduced
phase space. Making the ansatz

o) = \/Mi

ol

(3.56)

for some number M, and requiring that {1‘% 1,724} =0, gives

{Igl,zA} :zA[y—i—i—ir}:!O

st=1iy+ 1. (3.57)
Furthermore, we have
Izl = =(03) 4522 = M, (3.58)

and we will choose M = 2.7. Note that 7 can be positive
or negative, and if we wish to emphasize this point, we
write €7 where we consider J > 0 and ¢ € {+1}.

2. Timelike faces

We consider now the symplectic reduction of T, by the
dual simplicity constraints Eq. (3.21). We will use again the
following expression for G;:
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Gi=@—-i)ro)+(y+i) (7o) =0. (3.59)
To obtain the classical solutions of G| and G,, we use now
the ansatz

VL y— —16(63)143(2) s C S C*, (360)

where we use the extra i factor compared with the
spacelike case and find that this solves G, = 0 for all
¢ € C,. Tosolve G; = 0, we find that { = r, exp(ig,) has
to satisfy

1 . !
G, = S llwl*r¢[cos(py) — 7 sin(p¢)] =0, (3.61)

from which we get

@ = @ = @(y) = arccot(y) = arctan <%> (3.62)

The fact that we obtain the same dependence of the
phase and the Barbero-Immirzi parameter in the stan-
dard case Eq. (3.33) as well as the dual case Eq. (3.62)
is a result of our i factor, which we used in Eq. (3.60).
Thus, we see that we can solve G; =0= G, by
choosing

7wy = —irge?") (c3) .5 @P, re € R,, (3.63)
and again (ry,w®) can be seen to span our five-
dimensional solution space. The same procedure as
in the spacelike case leads us the gauge-invariant spinor
variables. We have the relations between the simplicity
constraints,

(G, Gy} = 2iG, ~0, (3.64)
(G, Gy} = —2iG, ~ 0, (3.65)
{Gz,Gz} = {Fz,Fz} = —iIm(ﬂa)), (366)

and together with the area matching constraint we have

{G,.C}=0={G,.C}. (3.67)

Because G, = F,, the brackets with C and C are

equivalently given by Eqgs. (3.39) and (3.40). (%1 acts
with an extra minus sign on the complex conjugated
spinors

(G} = (y — i), (3.68)
(G2} = —(y — i), (3.69)
(Gr.a'} = (y + D, (3.70)

PHYSICAL REVIEW D 95, 026002 (2017)

(G 7%} = —(y + i)77. (3.71)

Hence, we find that the constraint structure is the same

as in the spacelike case with G; and C being of first

class and F, being a complex second-class constraint.
We consider again

{Gr lloll”} = arlloll (3.72)

and ask whether we can find an expression of r, in

terms of w*. Now, we use again that

(G, 10} = 0. (3.73)

Using the solution Eq. (3.63) and the assumption

that we can express r. as a function of o?, we find
with

7w = ir(0*)e??] o] (3.74)
and Eq. (3.73) that ry(o*) must satisfy
(G, re(0")}= = 277 (a). (3.75)
From this, we conclude again that
K
re(ot) = ol (3.76)

for some arbitrary numerical prefactor k € R,. Now, we
want to choose k such that

mow =i(y +i)K (3.77)
for some IC € R, which is achieved for
k= (y+i)Ke ) = /1 +y°K, (3.78)
and hence we get
_~B
7y = —ily + i)IC% (3.79)
1)

On the non-gauge-invariant solution space of G; and
G,, the variable K is given by

Melire illolPre
= \/1 — = — \/1 +y2 =—iJ (3.80)
and hence
{G.K} =0. (3.81)
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The spinor that parametrizes the reduced phase space is
again found by making the ansatz

wA

A( B
Y (@®) = VM ——,
(@) |l

(3.82)

for some complex number M, and further requiring that
{Gol,yA} = 0 holds, which gives

° !
{G1.y*} =y =yt +7—-i]=0

sr=1-". (3.83)
Y
Hence,
w?
YA(@P) = VM —— (3.84)
llool|' =/
with
1112 = —=(03) 455" = M. (3.85)

Note that we choose the normalization of y* such that
M =2yK, which is motivated by the simple form the
Dirac bracket attains on the reduced phase space.3 Note
furthermore that in the standard timelike case one
restricts J to be strictly positive, because in that case
llzII> = |2°* + |z'|*> > 0 and J = O is ruled out since we
assumed throughout that zw # 0. This restriction was
used to get rid of a Z, symmetry of the reduction of T2
to T*SL(2,C), i.e., Eq. (2.33), and we have the same
symmetry present. In our case, however, the norm of z4
and y* is not positive definite. Hence, if we want to
focus on this nondefiniteness, we can write €7 and &/C,
where ¢ € {£1}.

Now, we want to calculate the Dirac bracket of
the reduced spinor with its complex conjugate. We need
the Dirac bracket on the reduced space to take care of the

second-class constraints F, = G, and F, = G,. We use
A 2r0  @?
AR pi—— . 3.86
=V =G e %)
and
260 M
= 2J 4 3.87
IMII’Y+1 (r + 1) 17! (3.87)

This is a possible choice we can make. However, as we will
discuss in Sec. VF, it is worth keeping track of the fate of the
Barbero-Immirzi parameter y. Also cf. footnote 4.
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as coordinates on the reduced space T2/F = C? x C2,

where F = {F|,F,,F,,F,}, and
A 2yrw wt
Ak —2 | . 3.88
Y Ko™~ \ == 5
and
[ 2y6h 24
/2y - 3.89
||/1||1 i (iy = 1) |||t/ (3.89)

as coordinates on the reduced space T2//G =~ C? x C?,
where G = {G,,G,.G,.G,}. Let us already note that

the system of constraints ' or G together with the area
matching constraint is reducible, which means that after
imposing F =0 or G = 0 part of C is already satisfied.
Hence, the final step of the reduction is only with a reduced
area matching constraint. Now, we calculate the Dirac
bracket on C? x C? via

{228}y = {A. 28} — (A Fo} M} {F,, 28}

— {2 P} My [ {F,. 2"} (3.90)

Together with

(r) )= (1)

e (0! (3.91)

CIm(zw) \1 0 )’ '

we find
{4,7} = %TZAZB, (3.92)
nABZ-

{A F)) ~ i Hzfy, (3.93)
(Fpfyn 2 (3.94)

ST =2 '

where Egs. (3.93) and (3.94) hold weakly on F, and F,
respectively. Furthermore, with

{4 Fy} = {F,,72%} =0, (3.95)
we finally obtain
Br {z. ZE}D7

{2228} ~ i(03)" (3.96)

where we used
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i

7

Similarly, we find for the dual case using Egs. (3.88)
and (3.89)

nAB —

JAB, (3.97)

AP = TyA)_’B’ (3.98)
B
{}’ vGZ}N_” ”_g’ (3-99)
wll ™
By
o (3.100)
wll7

where again Egs. (3.99) and (3.100) hold weakly on G, and
G,, respectively. And with

.G} = {G.. 3% =0, (3.101)

4
we get

DA mile) 2 (Y )p. (3.102)
In the standard case, using the time gauge, one obtains
for the Dirac brackets of the reduced spinors the harmonic

oscillator brackets where (03)*? is replaced by
(60)*8 = 8. In our case, instead, we find that we have
an additional relative minus sign between brackets for the
spinor components, which reflects the Lorentzian structure
underlying our reduction. Furthermore, let us point out that
those reduced brackets can be obtained equivalently as the
Kirillov-Kostant-Souriau brackets [58] on the coadjoint
orbits of SU(1,1) for a timelike representative. We will
further discuss this point in Sec. III B. Before that, however,
we will consider again the second-class constraints F, =
G, and show that it can be exchanged for an equivalent real
first-class constraint, the so-called master constraint, which
will be important for the quantum theory, where it is easier
to impose the first-class constraints strongly than properly
taking care of the second-class constraints. We follow
again the procedure known from the standard time-gauge
case, where the first-class master constraint is defined via
(equivalently for G,)

M=F,F, =0. (3.103)
We can now rewrite M in terms of quantities that simplify
the identification of the solution space to M = 0 in the

“If we would have not put the extra y in the normalization of
the reduced spinor in Egs. (3.88) and (3.89), these two Dirac
brackets would be given by {y4, 5%}, ~ ; (63)48 ~ {y4, 5% }p.
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quantum theory. This is achieved by the fact that we can
rewrite it in terms of one of the 81(2, C) Casimirs and the
81(1, 1) Casimir plus an extra term, and for all of those, we
know the spectrum on the noncanoncial basis of SL(2, C),
which diagonalizes not SU(2) but SU(1,1). We follow
Ref. [39] closely and adapt it to the timelike case. We have

M = F2F2 = ﬁABnCDﬁACUBﬂ'Ca_)D

_ ﬁABnCD(a)

(B7c) + CU[B”C])(ﬁ(A@D) + ﬁ[A@D])’
(3.104)

where we used that w7z = (0 p7c) + w7¢)). We obtain
M = i BnD (2lc + (0r)epc) (204 + (R d)es )

= ﬁABnCD (4HBC1=IAD + 2(7_1' @)HBCQ'\D

+ 20m)Tl; pese - [1oPesces ). (3.105)

Together with N” = (0,0,0,1) and n*# = - (5,)" PN =

%diag(l, —1), one can now show explicitly that

M = 4ﬁABnCDHBCnAD - |ﬂa)|2ﬁABnCD€BCeAD

= 4B nC P10, 4 |mof?. (3.106)
For the first term in Eq. (3.106), we get
4’_1AB”CDHBC1=IAD = 2|go|* — 4|y |* + 2[ITy, .

(3.107)

Let us now rewrite the fluxes in terms of their rotation
and boost generators using Egs. (2.24) and (2.25), which
gives us

1
Mool = I}, [* = Z(|H1|2 + |12 [?)

= (L R+ (K24 (K (3.108)
and
ol = PR = L((L2F +(KP). (3.109)
Hence, we finally get for Eq. (3.107)
4B PTlycM 5,
= (L - (kP -2((L3) = (K = (K2R)]. (3.110)

Now, we note that (L)? — (K)? is the quadratic 8[(2,C)
Casimir and furthermore Qs,,(1 1) = (L?)* — (K')* — (K*)?
is the Casimir of 3u(1,1), and we get for the master
constraint for a spacelike normal N/
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M= (CSL(2,C) - 2Q.a.u(1,1)) + [zl (3.111)
Recall that for the case of timelike normal vector we obtain
the 8u(2)2 Casimir instead of Qg 11y, but otherwise it
looks exactly the same. Finding the complete solution
space in the quantum theory, however, is more involved
than in the standard case.

B. Reduction by the area matching constraint

As we have mentioned before, the system of all con-
straints is reducible. On T2 //F or T2//G, part of the area
matching constraint C is already satisfied. One finds that
the reduced area matching constraint is given by

Crea = llzlI> + lIzlI> =0 (3.112)
or in the dual case by
Dy = IYI2 + IyI2 = 0. (3.113)

Note that this constraint has nontrivial solutions, since the
“norm” of the spinors ||z||?, etc., is not positive definite in
our case. We will see that these constraints will be solved
by J =—-J and K = -K. We will use J, K, J, K> 0
and solve the constraints by using opposite &’s.
Equivalently, we could have chosen the normalization
of the tilded sector to be M = —2.7 to obtain a reduced
area matching with a minus sign, which was used in
Refs. [35-37]. However, the important point is the gauge
transformations that are generated by C,q and D4, and
those are not affected by this sign. The origin of this minus
sign can be traced back to our choice to have the standard
Poisson structure on T2 and not the sign-flipped one used,
for example, in Refs. [35-38,59].

We are now interested in the reductions (C? x C?)//Cyeq
and (C?xC?)//D,q and whether we end up with
T*SU(1, 1) in both cases. Remember that from now on
we are using the Dirac bracket on the reduced phase space.
We have

{Cred7 ZA} = _iZA’ {Cred’ ;A} = _igA, (3114)
(Ceas P} =i7',  {CuaZ} =i (3.115)

and similarly
{DredayA} = _iyA’ {Dreda ;}‘)A} - _i_YA, (3116)
{Dwg. 7'} =5, {Dea.3'}=03".  (3.117)
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Inspired by the holonomy and the fluxes constructed in
Sec. II, we find that we can analogously parametrize the
gauge-invariant reduced phase space (C? x C?)//Cyq With
the holonomy

| §A(‘73>BCZC + (0'3)ACZCZB
htp = 3.118
5 I (3.118)

and similarly for (C? x C?) /Dy,

XA(03)BC)_’C + (‘%)AC)?C}’B
WAy = . 3.119
g Iy Iyl (3.119)

They are both of the form

a b
h = (- _>. (3.120)
b a
For Eq. (3.118) we have
(2'7 - 2%) (%2 - 2'2)
= b=———— 3.121
[lzIHl=Il [lzIHl=Il ( )

and similarly for Eq. (3.119) and thus both satisfy
deth = 1. Hence, we see that, indeed, we obtain
SU(1,1) on the reduced phase space. Furthermore, on
C.o4» We have

gA ~ hA g8, )~1A ~hApyB, (3.122)

and one shows explicitly that, using the Dirac bracket, we
have

{Credv hAB} =0 (3123)
and
(15, hC ) 0. (3.124)
The fluxes IT2P from Eq. (2.13) become
y+i Fe o
w0 = S )[(03)3Czcz0 +(03)P 22", (3.125)
which gives
(i) 22°20 (1P +[P)
==L R N BRNEREY
(I°F+12' 1) 2272

They satisfy, of course,
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{Crear 7P} = 0. (3.127)

We can now expand 7 in terms of a 8u(l, 1) basis, i.e.,
n = n't;. With

)
rat(l D)
(13)45 = % <(3 ;l) (3.128)

and by a rescaling with a factor —2i/(y + i), we get

! :%(|z°|2 +[2']%) (3.129)
72 = Im(z%2") (3.130)
73 = —Re(2071). (3.131)
They satisfy
{z", 73} = 72, (3.132)
{z', n*} = =1, (3.133)
{3, n*} = -1, (3.134)

and hence we see that we get indeed a 8u(1, 1) algebra
where (7', 7, %) = (J5,K,,K,). Thus, we see that we
finally obtain T*SU(1, 1) via a symplectic reduction of T2
by the simplicity constraints and the area-matching con-
straint. This holds in both cases of constraints (F, C) and
(G,C). In terms of the reduced spinors, one finds that
with Egs. (3.129)—(3.131) the 3u(1, 1) Casimir operator is
given by

1)2 2)2 _ (7[3)2 (3135)

OQsui,) = (') = (z

(3.136)

1
(1P = |2 P) = 7 el

=

Now, as we have mentioned before, let us show that the
Poisson structure we have obtained via reduction from T2
by the simplicity and area matching constraint is exactly
the canonical symplectic structure (Kirillov-Kostant-
Souriau symplectic structure [58]) on the coadjoint orbits
of SU(L,1). If we take an element g € SU(1, 1) with

0 1
Z Z

9= <-1 _0), 1P =2 =1 (3.137)
Z Z
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(note that the components of g are not to be confused
with our reduced spinor components), we can consider the
right invariant 1-forms @ = dg-¢g~', and together with
det(g) = 1, we have

dz' - 7'd7°
Zdz! — 20d7°

<Z°dz° —zld7!
Ddz' —z7'dz°

). (3.138)

Using the basis Eq. (3.128), we can expand 0 = ar| +
b7.'2 + CT3 Wlth

a = 2i(29dz°0 - 7'dz"), (3.139)
b = 2Re(7%dz' — 7'd7"), (3.140)
¢ = =2Im(z%dz' — 7'd?°). (3.141)

The coefficients b and ¢ are obviously real. To show that
a is real as well, use again det(g) = 1. To obtain the
symplectic structure on the different coadjoint orbits, we
have to consider certain representatives of those orbits, for
example, f| = (s5,0,0), f, = (0,5,0), or f3=(0,0,s).
We get, for example,

0;, = 2is(0dz’ - 7'dz"), (3.142)

which leads to
W, =—df; =2is(d® A dZ° —dz' AdZ').  (3.143)

This symplectic 2-forms induces the following Poisson
bracket for functions f, g on the coadjoint orbit of f,

(f.g} _2l.s(g8_g__8_f_@_ga_g_+8_f_@>
el 922070 97992° 97 97" 971 97')
(3.144)

Hence, for s = %, we get the Poisson structure

{4,728}, = i(03)8, (3.145)
which is exactly Eq. (3.96). Note, that we can choose
different values for s, even negative ones. Using the
coadjoint representation of a g € SU(1, 1), we can build
a representation of 81t(1,1) using those spinors and the
Poisson brackets. Consider, for example,

J3 =27 + '
K, = 2Im(2%2)),

K, = 2Re(z07"). (3.146)
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Together with the Poisson bracket Eq. (3.145), one shows
that this gives indeed a (vector) representation of 81t(1, 1)
with

{J3,K1}] - 2K2, (3147)
{J3,K2}1 - —2K1, (3148)
{K],K2}1 - —2.]3 (3149)

Using the other coadjoint orbits f, or f3, one can similarly
construct different representations of 8u(1,1).

IV. TIMELIKE TWISTED GEOMETRIES

In this section, we show that the twisted geometries
parametrization of the phase space variables (g,II) €
T*SL(2,C) in terms of normal vectors and angles is still
valid in our case. We define for ||w]||/||A]] # O

- ||60||>
==2In|l-—-],
<||/1||
where we have as usual ||o||? = —(03) 30" @®. Using the

original Poisson bracket on twistor space (and not the
reduced Dirac bracket), this new variable satisfies

(4.1)

{n0,Z} =1, {z®,Z} =1, (4.2)
which, in turn, gives {Re(zw),=} = 1. If we consider
furthermore the two normals that are associated with the
source and target node of some link, respectively, we want
to calculate the scalar product between those two normals.
If we take the normal on the source node to be given by

AB:L((%)AB

nY
V2

and the one on the target node to be parallel transported
with the SL(2, C) holonomy from Eq. (2.12), i.e.,

n? = g g (P,

one finds that on the simplicity constraint /| = 0 and the
area matching constraint C = 0 we have

LA el
<nt|ns> - 2( + ”/1”2

lloll”

= —cosh(Z).
Hence, the angle =, as in the standard time-gauge case [38],
corresponds to the extrinsic curvature of the embedding
of our 2+ 1 hypersurface in spacetime. The difference,
however, is that it corresponds now to a boost angle on
the one-sheeted hyperboloid and not the two-sheeted

(4.3)

(4.4)

(4.5)
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hyperboloid as in the standard time-gauge case. This makes
sense because in both cases F; generates noncompact
gauge orbits for a real Barbero-Immirzi parameter, as can
be seen from Eqgs. (3.41)—(3.44). This result holds fur-
thermore for G; = 0 as well. Now, is this angle still the
conjugate variable to the area? We can use the Plebanski
2-form to define our area (squared) as A% = %22 and as
defined in Eq. (3.27):

)

(4.6)

Now, we can consider the Poisson bracket between the area
A and the angle = to obtain

2
o7
{'A"_'}iz

T (4.7)

Thus, we see that, indeed, = and the area A are conjugate
variables. Now, consider again the holonomy Eq. (2.12):

_ﬂAﬂB‘i‘GAa)B

e = Jran/io

Following Ref. [38], we can write it as a product of two
matrices,

(4.8)

g=m(c,2) m(-z, )" (4.9)
with
i 0 /10
m(o, ) = ﬁ( L ), detim) =1 (4.10)
and

i -0 &
m(—fr,w):\/__m ) det(m) =1,
7 )
VAo \ my —wy)’
and we have

m(-z, )™ = L (0 @
7 VAo \=zy @)

In comparison with Ref. [38], we have introduced the extra
i factor in order to have det(m) = 1 and not det(m) = —1.
This has the advantage that these matrices m are elements
of SL(2, C) and not just of the general linear group (which
is not semisimple). Since g, m € SL(2, C), we can use the
Iwasawa decomposition (for semisimple Lie groups) for
both m and express the holonomy g in terms of a SU(2)
matrix, an upper-triangular matrix, and a diagonal boost.

(4.12)
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However, since we are interested in a reduction of SL(2, C)
down to SU(1,1), we propose an Iwasawa-like decom-
position of the holonomy that includes SU(1,1) as follows.
We write for an arbitrary element g € SL(2,C)

"y
DG DG LG S) e

where the first factor is a matrix in SU(1,1), because
le|> = |f|> = 1, which follows from det(g) = 1. We find
(l € R>O)

Via? =1y|?. for |a? > |y[?
VPP =lal?. for |a|* < [y?

where in the first case we have ¢ = 0 and in the second case
we have ¢ = 1. Without this discrete variable €, we would
not be able to cover the whole SL(2,C) manifold away
from the identity in the above manner. With this definition
for ¢, we find further (e, f € C)

N
Il

(4.14)

a Y
=, == 4.15
e=". f=' (4.15)
and
y a &
n:—z+éz2:—9+—z2ec (4.16)
a a Y Y

If we express now m(c,4) and m(—z, ) in this para-
metrization, we see that g € SU(1, 1) iff

t=t and n=-n,

fn (4.17)
which is one real and one complex constraint. Note that the
decomposition in Eq. (4.13) is different from the one used
in Ref. [38], not only because we consider an SU(1,1)
element in the first factor but also because we consider a
pure boost for the last matrix. In Ref. [38], the authors use a
combination of boost and rotation. If we chose a different
expression for our SU(1,1) element, we could try to obtain
a similar decomposition, which, of course, would also give
a different expression for the simplicity constraints again.
It would be interesting to see how the angle =, defined
in Eq. (4.1), would enter such a decomposition, and one
should furthermore obtain a reparametrization for the
fluxes as well, but we will leave this for future inves-
tigations. Before we consider the quantization of this model
in Sec. V, we will first investigate a general graph, instead
of a single link, and consider the reduction by the closure
constraint.
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A. Closure constraint

We consider now a general graph I" with L links and N
nodes. At each of these nodes, we aim to impose local gauge
invariance under SU(1,1) transformations via the so-called
closure or Gauss constraint. We have shown that the
symplectic reduction for a single link phase space by area
matching and simplicity constraints gives T2/ C//F;,=
T*SU(1, 1). Hence, for a graph with L links and N nodes, we
have

T2E)CiJF11, =T*SU(1, 1)E. (4.18)

Now, we want to further investigate what happens if we take
the Gauss constraint into account. This constraint (in its
covariant form) is given by

Gy => Bl =0 (4.19)

l,en

for each node n of the graph and imposes local
SL(2,C) gauge invariance. On the unconstrained level
we can express G/ in terms of the self-dual components
MI1CeBD ag

G = Imic =o, (4.20)

l;en

which is enough to guarantee G/ = 0. It should be clear that
this constraint interacts with each link always with just one
term. Hence, it is easy to show that

{Gﬁc’ Cl/-} =0= {gﬁc’ﬁl,l,}‘

However, not surprisingly, with the second-class constraints
F,;, we find that

{GiC Fay} = > AT Fyy )
l;en
1 B~ B~
which should be obvious because the F', ; are just invariant
under the little group SU(1,1). On the other hand, if we
consider again the master constraint, we obtain

(4.21)

{Gr°. M} = {G), FpyFay}
= Fu {G0C Fou} +{G0C Fay Y Fay,
~ 0. (4.23)

This means that when we consider the master constraints
M,, (together with the C; and F'| ;) we have a system of only
first-class constraints. Furthermore, if we impose first area
matching and covariant closure constraints, which leads to
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SL(2, C) BF theory, we can in principle consider SL(2, C)
intertwiners, which are then further reduced to intertwiners
of the little group, i.e., SU(2) or SU(1,1), upon the
imposition of the remaining simplicity constraints. Now,
if we consider the reduced phase space C> x C2, where we
solved the simplicity constraints already, then we are left
with the reduced area matching constraint C,.4 and areduced
version of the closure constraint that generates local gauge
transformations of the little group. In particular, we can write
for the reduced closure constraint

(O;; = Zﬂ'éi =0.

l;en

(4.24)

Since the 7' are gauge invariant with respect to the reduced
area matching constraint, we have
{G:l’ Cred,lj} =0, (425)

and hence on (C? x C?)£, we can consider L reduced area
matching constraints and N reduced closure constraints. All
are first class, and hence we get that the dimension of the
graph Hilbert space is 8L —2L —3 x2x N =6(L — N),
exactly as in the timelike case. (Note that there are three
closure constraints per node, one for each component i.)

In the quantum theory, the solution space of the
(reduced) closure constraint leads to SU(1,1) spin networks
where the nodes are decorated with SU(1,1) intertwiners.
We refer the reader to Refs. [50-52] for details on those
intertwiners, which require more care than their SU(2)
analogs.

V. QUANTIZATION AND TIMELIKE
SPIN NETWORKS

Our starting point for the quantization, following
Refs. [38,39], and [42], are quantum twistor networks,
which are graphs labeled with 2-twistor space T2 on each
link. This space T,, one for each half-link, can easily be
quantized by promoting the spinorial components of the
twistors to operators and their Poisson brackets to the
corresponding commutators in a Schrodinger representa-
tion. This will provide us with our unconstrained Hilbert
space on which we then impose the quantized simplicity
constraints, (reduced) area matching constraint, and closure
constraints (in this order). For each link, we consider the
auxiliary Hilbert space of homogeneous functions of
degree (a,b). Hence, we consider f: C?> — C such that
vV ieC,,

FAa™) = 2920 f (™). (5.1)
These functions are essentially functions on CP!. To deal
with single valued functions, we have to require that a — b
must be an integer. Note, furthermore, that these functions
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are not assumed to be holomorphic or antiholomorphic,
since they are general polynomials in the spinor compo-
nents as well as their complex conjugates. In certain cases,
however, they can be reduced to give holomorphic repre-
sentations. Together with

(9> ") =flg™ > o),

this provides, for certain values of the numbers (a,b), a
unitary and irreducible representation for SL(2,C) [60].
The SL(2, C)-invariant measure on this space of functions
is given by

(5.2)

dQ(a)A):%(dea)'—a)'dwo)/\(d)()d&)T—&)Td‘()). (5.3)
Under rescaling, it transforms as dQ(1o?) = |A[*dQ(w?)
so that the SL(2, C) and scaling-invariant scalar product is
given by

Filf) =5 [ dRN T ). (54

This representation belongs to the principal series of
SL(2,C). With n € Z/2 and p €R, it is unitary, and
we denote the corresponding Hilbert space of those
functions by (7). The numbers (a,b) and (n, p) are
related by
a=-n—1+ip and b=n—-1+ip. (5.5)
Since the representations (n,p) and (—n,—p) are
unitarily equivalent, we restrict those labels to be
n€Ny/2 and p € R. The labels (n, p) are related to

the eigenvalues of the 81(2, C) Casimirs C; = L* — K% and
G = —2L - K as follows:

Cy > firr) = (n? = p* = 1) fir), (5.6)

Cy > fr) = 2ppfinr), (5.7)
Note that under the change (n, p)—(—n, —p) the Casimir
C, stays the same, whereas C, changes its sign. If we
consider the half-link phase space T, with Z% = (&?, izp)
and 7w = e,z w® # 0, the Poisson structure of which is
given by

fra 0P} = 3L, (5.8)
and similarly for W* = (A4, i55) with ¢ # 0, we use for
the commutators

(73, &%) = —insB

(74, &F] = —iRdh, i

(5.9)

the following Schrédinger representation:
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OB (o) = 0P f(a?), (5.10)

0
Zpf(w?) = —ih— f(o™). (5.11)
Ow
The homogeneous functions are furthermore interesting
because they diagonalize the Euler dilatation operator

(I)AaA,

Aa;j)Af(a b)(wA) _ af(”*b)(a)A), (5'12)
& % Fa) (@A) = bFaD (@h),  (5.13)
[0}

which holds for all homogeneous functions. The Hilbert
space for each single link is now given by the homogeneous
functions of the form

FER @A) = @) @) @ flat) (), (5.14)
where the subscripts s and ¢ stand for the source and target
half-links. It is easy to see that these are now homogeneous
functions of degree (a,b) = (a; + a,, by + b,). Recall that
the complex area matching constraint Eq. (2.11) was
given by C =zw — Ao =0. We can use Eq. (5.12) to

impose C =0 as follows. We can write 7w = 7 0" =

(7w + nw) = (mw — wr). This gives us a normal order-

ing for 7w,

o P[0 a0
g 2i |0 4 0w,
nf , 0 9
Z|: w"—ﬂw :|, (515)

where we have used that switching the position of spinorial
indices gives a minus sign in the second equality.
Analogously, one obtains for the complex conjugate con-
tribution

o

7 :E[ i+i'*‘] (5.16)

2i o O’

and the corresponding expressions in terms of (o,4)
variables. Using now the commutation relations and
Eq. (5.12), we can show that for a homogeneous function
with degree (a, b) we have

mafan = It [ A%Jrai } flab)
_ h 9 a,b)
[ Tl +2—|—a)A ]f
= ﬁ [a + 1]f(@b) (5.17)
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and similarly

h

zaflb) :7[b+ 1]f(ab), (5.18)

The action of the area-matching constraint becomes

C > f(a,b)(wA ﬂB)
=C > (fer) (@) @ f) (2))
=(C®1+1®C)(f") (o) ® flt)
= (7o > [P (@) @ [l (A1)
= @) 0t) ® (Jo B [l (1)

= Ry + 20 ) @ F ),

(A1)

(5.19)

and analogously the complex conjugate area-matching
constraint gives

QO

> ) @ J7) = b, b 4270 (04, 27). (520)
Using Eq. (5.5), one finds that a; + a, + 2 = —(n, + n,)+
i(ps + p.), and hence both constraints are solved by n, =
—ng and p, = —p,. Since we want to work with n; e we
have to consider on the source link states with (ns, px) and
on the target link states with (—n,, —p,), which are states
from two different (but unitarily equivalent) Hilbert spaces.

Before we investigate the imposition of the simplicity
constraints in the next sections, we recall that the so-called
canonical basis for H"?), which stems from an induced
representation using the SU(2) subgroup of SL(2,C), is
used in the quantization of the EPRL model using the time
gauge. This is possible because we can further diagonalize

L* and L3 besides the two 8(2, C) Casimirs, which gives
the states |(n, p); j, m), where j € Ny/2 denotes the spin
and m € {—j,—j + 1,..., j} denotes its magnetic number.
In particular, this leads to a decomposition of HP) ag

HnP) = @ HU,

(5.21)
n<j
where H) denotes the standard (2 j + 1)-dimensional
unitary and irreducible representation space of SU(2).
Since the stabilizing subgroup for our spacelike normal
vector N/ = (0,0,0,1)" is given by SU(1,1), it is more
suitable to employ a decomposition in terms of a SU(1,1)
basis. This was also used in Refs. [32] and [33]. For that
reason, we briefly review some representation theory of
SuU(1,1) in the following section.

A. Representations of SU(1, 1)

The SL(2,C) representations from above provide, of
course, representations for the subgroup SU(1,1) as well.
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They are, however, not irreducible. But similarly to
Eq. (5.21), they can be decomposed into SU(1,1) irreduc-
ible representations. To fix our conventions, we consider
here the unitary and irreducible representations of SU(1,1)
belonging to the principal series. The early works on the
representation theory of the three-dimensional Lorentz
group are Ref. [61] or the book listed in Ref. [62]. The
Plancherel decomposition was investigated, for example,
in Ref. [63], and for a newer account, see Ref. [60]. The
Clebsch-Gordan problem for SU(1,1) was investigated in
Refs. [64—67]. Note, that in this work we have so far used
the mathematical convention for the rotation and boost
generators, i.e., L,T = —L; and KlT = K;. In Refs. [32] and
[33] or [50-52], for example, the authors use the physical
convention where the Hermiticity property is reversed. This
will not be an obstacle in what follows, since the simplicity
constraints are invariant under this choice. This can easily
be seen from Eq. (2.24), where one can simply define the
IT' with an additional factor of 4i and this would not
change the form of the master constraint, as can be seen
from Egs. (3.108)—(3.110). For the covariant simplicity
constraints F'; and Gy, this convention is irrelevant as well,
since for them we do not use the generators L; and K;
explicitly. Now, with this in mind, we can consider the
physical convention, where L3 is Hermitian and hence
can be diagonalized with a real eigenvalue. Furthermore,
we look for states that diagonalize the 8u(1,1) Casimir
Oau(1.1) = (L?)? = (K")? = (K*)*. We denote those eigen-
states of the two 81(2,C) Casimirs C, and C, as well as
Quuiry and L* by f5) = |(n. p): j.m) € H"). The
eigenvalues of the 8[(2,C) Casimirs are given by
Egs. (5.6) and (5.7), and we have furthermore

Osuiiyy & f17) = £j(j+ 1)WY, (5.22)
3 (np) _ (n.p)
L3> f = mfr. (5.23)

The action of Qg,,(;,1) with a plus is the convention as used,
for example, in Refs. [32] and [33], whereas in Ref. [52],
the authors use the additional minus sign in front of
J(j+1). We will see that this sign plays a role for our
final result. We will find that the solutions to the master
constraint with the discrete states on both half-links do
not give us the full reduced Hilbert space necessary to
decompose all functions on SU(1,1) in a spin network
basis. Hence, we are eventually forced to work with the
convention from Ref. [52], i.e., with eigenvalues —j(j + 1).
Furthermore, let us point out that if we compare our
approach with the coherent state approach used in
Refs. [32] and [33], where it was stated that it is necessary
to diagonalize a noncompact generator K' or K? instead of

SRather, one would obtain only the discrete states with integer
spin and the continuous states with even parity.
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L3, in order to be able to describe timelike faces, we do not
find this to be necessary, which makes our considerations
more comprehensible.

For SU(1,1), we have the following unitary irreducible
representations (that appear in the Plancherel decomposi-
tion), which are all infinite dimensional, since SU(1,1) is
noncompact. First, we have the discrete series Dif where
j=—k with k€’. For D}, we have m € {k.k+1,
k+2,...}, and for D;, we have me {—k —k—1,
—k —2,...}. The state with j = —1/2 is somewhat special
in that it is not normalizable and hence does not appear in
the Plancherel decomposition. We see that using the plus
convention in Eq. (5.22) and if we do not consider the state
with j = —1/2 then we have for all other possible values of
J in the discrete series

3 15
gU(l,l) € {0’1’2’7’“'} >0.

Second, we have the continuous series C§ with j = — % +is
and ¢ € {0,1}. For £ = 0 (even functions), we have s > 0
and m € {0,+1,+2, ...}, and for ¢ :% (odd functions),
we have s > 0and m € {£1,+3,+3 ...}, Hence, using
again the plus convention in Eq. (5.22), we have for all
states from C§

(5.24)

. 1
Q§U(1,1) =jj+1)= -5’ ~a < 0. (5.25)

In what follows, we will first use this convention and only
later change to the opposite case. We explicitly include the
full analysis in order to pinpoint exactly where the problem
with this convention lies. We just mention that the analog of
Eq. (5.21) reads in this noncanonical basis [34,60]

n co®
Hmp) = ( ® D d / dSC§>
0

k>1/2

@(éD;@

k>1/2 0

co®
dsC§>, (5.26)

where the sum over the discrete states ranges over values
for which k — n is an integer and similarly ¢ is determined
by the condition that e —n is an integer. The Clebsch-
Gordan decomposition for the coupling of those represen-
tations is given by [64-67]

(S
D ®Dy= & Dx,
K=k, +k,

(5.27)

and
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—BRmin m

ky—k, ky—k; co®
D, ®Di= & Diy® @ D?Eea/ Cids,
=K min 0
(5.28)

where K, =1 and € =0 if k; + k, is an integer and
Kopin = % and ¢ :% otherwise. Furthermore, note that the
discrete contributions vanish when the upper limits k; — k,
or k, — ky, respectively, are smaller than 1; i.e., we must
have k; — k, > 1 for the first sum and k, — k; > 1 for the
second. The coupling of two continuous states gives

Cieci= & Dio &

cob
Dy &2 / Ceds,
K min min 0
(5.29)

where K i, = 1ande = 0if ¢) + &, € Z and Ky, = 3 and
& = 5 otherwise. The coupling of discrete states k € 5 with
continuous states ¢ € {0,1} and 0 < s < co gives

00 P ,
® Do / ceds’,  (5.30)
0

D ®C =
K=K yin

where K, =1 and ¢ =0 if k+ ¢ is an integer and
Knin =3 and ¢ = § otherwise. The Clebsch-Gordan coef-
ficients for SU(1,1) can be defined, and explicit formulas
for their calculation can be found in Ref. [68]. However,
due to the noncompactness of SU(1,1) and the different
representation series, their explicit calculation is more
complicated than in the SU(2) case.

B. Spacelike faces

We consider now the imposition of the quantized
simplicity constraints in the quantum theory. For the
Lorentz-invariant part Eq. (3.30), we use Egs. (5.17)
and (5.18) to obtain

Fif? = [y = )aw — (v + )zal S«
h . .
=<l =dla+1] - (r+i)b+1]lF
n
=—[yla—b] —i[a+ b+ 2]|fb). (5.31)
i
In terms of the labels (n, p), we have a — b = —2n and
a+ b+ 2 =2ip, and thus we get
popan) B (ah)
Fupeh) =2 [=2pm + 2p]fe L0
&p =yn, (5.32)

which is the well-known result from the EPRL model. Note
that this provides a new way of describing spacelike faces
in a nonstandard gauge and hence is interesting by itself.
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However, it is important to remember that our solution
states f}”n‘f") (the master constraint not yet imposed) are not
to be confused with the states one obtains with the standard

time gauge. Those states are also denoted in the same way
[or as |(n,yn); j, m)] but are very different states because

they diagonalize L* and not Qsu(1,1)- How to connect those

states (when j = —k for the discrete series) can be found in
Refs. [32] and [33] or [60].

C. Timelike faces

o]
For the dual constraint G, one obtains now similarly

Gif0) = [y =)o + ( + 7@l

=l =la+ 1)+ (r -+ )b + 1)

=Mlav b —ila-plren,  (533)
and again in terms of the labels (n, p), we have a + b +
2 =2ip and a — b = —2n, and thus we get

Gif@) = 2hlyp + n]fl@?) 20

n
Sp=-——.
14

This result was also found in Refs. [32] and [33], and
we will see in Sec. VF that those states indeed can be
associated to timelike faces.® This is one of the main results
of this paper. It not only confirms the solution found in
Refs. [32] and [33] but, in fact, provides a more rigorous
derivation, since it does not resort to some sort of large spin
argument, which is typical for the coherent state approach
to the imposition of the simplicity constraints. However, we
will also see that we do not necessarily need those dual
solutions in order to obtain timelike area spectra on the
reduced Hilbert space. We will see that we can stay within
solutions with n = yp and still obtain faces with negative
area eigenvalues on the reduced Hilbert space.

(5.34)

D. Master constraint

Compared with the solutions to the covariant simplicity
constraints F; and Gy, the more interesting part follows
now when we study the master constraint Eq. (3.111) and
how to solve it in the quantum theory,

M = (CsLoc) = 2Qsu(n) + 70>, (5.35)
Since we have already expressed this constraint in terms of
the Casimirs, we only have to find a proper quantization of

6Note, furthermore, that this solution is also obtained from the
first-class constraint mentioned in footnote 2.
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the last term. One finds [38] that the quantization of |zw|?
should be given by

Acting with Eq. (5.36) on a state, we get

o 90 _; b) 0 ; O
o 7 = ab) — _pA_— | @B —_ 4 2| flab)
D™ HapP 7 8a)A(w 06)B+ )f
= —a(b+2)fh), (5.37)
where —a(b + 2) gives (n* +2n + 1 + p*) when we use
states in (n, p) with non negative n. If we use states from
(=n,—p), with n e ¢ then this gives —a(b+2) =
(n? —2n + 1+ p?). ThlS distinction is important given
our knowledge about the solutions of the area matching
constraint Eq. (5.19). Now, what is the action of those two
Casimirs on a general state f?)? The 8[(2,C) Casmir
Csii2c) = €, was given in Eq. (5.6) and gives
(L* = K*)fr) = (n =1 -

P, (5.38)

which, as we have already pointed out, is not sensitive to
the change between (n, p) and (—n, —p), and the 8u(1, 1)
Casimir Qg,(;,1) gives with the plus convention

(L3 = (K2 = (R2)f0 = G+ DF70-
One can show that this operator is also invariant with
respect to the change between (n, p) and (—n, —p). Hence,
we finally obtain

(K')? - (5.39)

Y ik L. n, !

NIF = 2n(n +1) = 2j(j + DS =0 (5.40)
and
NFE T = 2n(n - 1) = 2j(j + DI 20, (5.41)
In the standard time gauge, where the states f dlag

onalize the 8u(2) Casimir L?, the master constraint is
solved by n = j. The solution with n = —(j 4 1) does not
occur in the decomposition Eq. (5.21). Even if we use that
the representations (n, p) and (—n,—p) are unitarily
equivalent, one finds that with n = —n = j + 1 we have
j =n—1 < n, which again does not occur in the decom-
position Eq. (5.21), and hence n = j is the only available
solution. Now, in contrast to the SU(2) case, the spectrum
of Qgy(1,1) 1s determined by the four series D and Ct.
Can the master constraint Egs. (5.40) and (5.41) be solved
with any of these states? Recall that for the principal series
of the unitary irreducible representations of SL(2,C) the
parameter n is an integer or half-integer. A priori we can
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assume positive and negative values alike. But for
n(n £ 1), there is a minimum value given by —1/4 for
n=—1/2 or n = 1/2. Otherwise, we have n(n £1) >0
for all other n. Now, if we consider first the states of the
two continuous series C¢ (with & € {0,3}), we see that
Egs. (5.40) and (5.41) with the plus convention for the
su(1,1) Casimir Qg,(; ) lead to

1
n(n£ 1)+ +5° =0 (5.42)

for both e. It is clear that for most » there is no solution to
this condition. The only possible singular solution occurs
for n = :l:% and e = 0, which is, however, of no relevance
to us, since we consider n > 0 [even though we can solve
Eq. (5.41)withn = %, this state will later be ruled out when
solving the reduced area matching constraint]. Hence, for
real s € R, we see that the master constraint cannot be
solved by the states of the continuous series and the plus
convention for Qg ;). Note that this analysis transfers
exactly to the other half-link in the (4, 0) variables.
Now, for the states of the discrete series Dki, we obtain

for Eq. (5.40) with j = —k

[n(n+1)—k(k—1)] =0 (5.43)
and see that the master constraint can be satisfied by the
solutions

k=n+1, k= —n. (5.44)
However, since we have k e Nand n e, the second
solution is not admissible. The first solutlon restricts
furthermore the occurrence of the non-normalizable state
k =1. For state with (—n,—p), Eq. (5.41) gives with

j=—k

[n(n—1) = k(k—1)] =0, (5.45)
and we see that this is satisfied by the solutions

k=n, k=-n+1. (5.46)

Again, the second solution is not compatible with our range
of parameter values. Using then the first solution in
Eq. (5.44), we see that all the discrete states in Dki with

ke {1,2, ,...} and n € % solve the master constraint
Eq. (5.40). For the first solution of Eq. (5.46), we see
that k,n € {}.,1,3.2,...} solves the master constraint
Eq. (5.41). However, we will see in the next section
why it is preferable to change from the plus convention
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for Qgy(1,1) to the minus convention and to solve the master
constraint using the continuous states instead.

E. Reduced area matching constraint

Now, we will consider the full reduced Hilbert space by
imposing the reduced area matching constraint on the states
that solve the simplicity constraints on the two half-links.
From Egs. (5.19) and (5.20), we learned that the area

matching constraint imposes the conditions n, = —n, and
p: = —p, on the tensor product states

nl pl n p

left ® fngthtt : (547)

However, since we prefer to work with non-negative
values for the n; labels, we choose from the beginning
states of the form

lef} ) ® frlght ’ (548)

which leads to the area matching condition n, = ng € %
and p, = p,. Since we already know from the simplicity
constraints that p, = yn, or p, = —% and similarly for the

target half-link [which are not sensitive to a change
between (n,p) and (—n,—p)], we see that the area
matching constraint reduces to only one condition, namely,
n; = n.

After imposing the master constraint on both half-links,
we are left with the following possibilities on which we
can impose the reduced area matching. First, we consider
the case with —j, =k, =n,+1 and —j, =k, =n,.
Solving the reduced area matching

Coa & (505 @ fi D) L0 (5.49)

leads to n, = ng, and hence both n; must be n; € 5 N It
furthermore implies k, =k, + 1 and hence k, € {3,2 ,2,...}

and k, € {1 1,%,. .}. From this, we obtain K = k, + k, =
2n, + 1. Using now the decomposition Eq. (5.27), we find
that we can obtain all the (integer) discrete states D,i( with
K > 2 as solutions to Eq. (5.49) from states satisfying the

simplicity constraints. Explicitly, we have

®fn577%, )t g D,

K=2ns+1

(5.50)

f(ns ps A
ng+1,myg

Changing the order of the two states in the tensor product
gives the same result. Now, let us consider the action of the
reduced area matching operator on discrete states with
opposite signs. Hence,
¢ (ns.ps(ny
Cred > (f ng+1,my

= il '”*) L0, (551)
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Using again the solution n, =ng,, we find that
ks +k, =2n,+ 1 € Z, and hence for the decomposition
Eq. (5.28), we get K;, = 1 and ¢ = 0. Furthermore, we
have k;, —k, =1 and k, — k;, = —1, and hence one finds
that those states that satisfy the simplicity constraints and
the reduced area matching are given by

f(nx Px nx —P: nx))

ng+1,myg

coh
g fimpn)F _pt g / CVds.
0

(5.52)

Hence, we see that we do not obtain all the states we need
to span SU(1,1) spin networks, i.e., all the states that
appear in the harmonic analysis of functions on SU(1,1).
We only obtain the discrete states Dx with K € N and are
missing all the half-integral values K € %. Similarly, we

only obtain the even continuous states C?, but we are
missing the odd states with ¢ = % This is a result of the
reduced area matching constraint, which does not allow
for tensor-product states that have integer labels on the
left factor and half-integer labels on the right factor (or
vice versa). Hence, in the decomposition, only states with
integer labels and/or states with € = 0 appear. However,
this problem can be solved as follows. The requirement
that we need all unitary irreducible Plancherel represen-
tations of SU(1,1) forces us to choose the minus con-
vention in Eq. (5.22). This gives for the master constraint
now the conditions

NIFP) = 2n(n £ 1) + 2j(j + D] 20, (5.53)

which can now not be satisfied by the states of the

discrete series anymore but by the states of the continuous

P ), one obtains the solution

series. For the states f(ﬁ,f
(2n+£1)>-2

stm) = VS

(5.54)

For the states £\, this is strictly positive for n € 5

hence n = 0 is ruled out, and for the states f T >, we

have to restrict n such that n € {3,2 ,5, ...}. The reason
why we can now use those states to obtain the full
reduced Hilbert space is that neither the simplicity
constraints nor the reduced area matching constraint
restricts the labels e and ¢,, which, according to
Eq. (5.29), determine which states appear in the decom-
position, i.e., K;;, and ¢ are now determined by &, + ¢,
which can now be freely chosen to be integral or half-
integral. Explicitly, we find that the simplicity and
reduced area matching constraints are now solved by
the states

neese _ p(neps(ng)).e -n P n)).e
\I]ml‘,m,t = +x s s ® f s t /,

s, (ng )’": s7 ng),m;

(5.55)
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where now n; 2%. Again, we can now freely choose
whether €, + ¢, is integral, which gives from Eq. (5.29)

the states

Ds

Dy &
1 K

(5.56)

Tds

oD
Dy &2 / CVds,
1 0

or whether ¢, + ¢, is half-integral, which gives the states

o (5.57)
K—

3

oo cod 1
Dy & @Dg@z/ Cids,
3 K=3 0

2 2

and thus we see that we obtain all the discrete states with
K€{1,3.2.3,...} as well as all the continuous states
spanning our reduced Hilbert space. Note that, due to the
integral over the continuous parameter s in both decom-
positions Eqs. (5.56) and (5.57), we obtain all continuous
states for arbitrary s € Ry in the coupled basis and not
just those that satisfy the discreteness constraint
Eq. (5.54). This can be seen explicitly by considering
the Clebsch-Gordan coefficients of the above decompo-
sitions. Even when both states in the decoupled basis
satisfy the condition Eq. (5.54), one obtains nonzero
Clebsch-Gordan coefficients for general s € Ry in the
coupled basis. This means in particular that the reduced
Hilbert space includes indeed all the necessary SU(1,1)
Plancherel representations that are necessary to expand
states in the holonomy representation, i.e., certain C-
valued functions on SU(1,1), in terms of a spin network
basis. Thus, this gives perfect agreement of our reduced
Hilbert space and the quantization of 3D Lorentzian
gravity [49,52]. Note, that for such spin network states
we can obtain links that are labeled by arbitrary continu-
ous states with s € R(. On the level of the coupled basis
of the reduced Hilbert space, one then finds that the area
associated with such links can be continuous, again in
agreement with the 3D Lorentzian case. However, those
states are not physical, in the sense that they do not satisfy
simplicity constraints and area matching; i.e., they are not
of the form Eq. (5.55). If we consider a general SU(1,1)
spin network state, which is labeled by continuous s
values, we know from the inverse decompositions of
Egs. (5.56) and (5.57) how to embed those states into
our solution space of simplicity and area matching
constraints via Egs. (5.78) and (5.79). This is basically
the Lorentzian version of the Livine-Dupuis map known
from the standard EPRL model and shows nicely how to
embed the three-dimensional Lorentzian Ponzano-Regge
model into our four-dimensional setting. This gives,
furthermore, an explicit mechanism that shows how we
can have continuous eigenvalues on the 3D level, but
when we embed those states into the solution space of
simplicity and area matching constraint, those eigenval-
ues become strictly discrete. Note that one does not need
this decomposition explicitly to calculate, for example,
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the area operator eigenvalues of the state Eq. (5.55) as we
will see in the next section. We consider it another important
result of our work that we obtain a reduced Hilbert space
with enough states such that one obtains a valid SU(1,1) spin
network decomposition. Compared with the standard time-
gauge case, where one solves both simplicity constraints on
each half-link and obtains already all the necessary SU(2)
states on each half link (which are then glued using the area
matching), it was necessary in our case to understand that,
even though we just obtain a subclass of representations per
half-link as solutions to the simplicity constraints, all the
required SU(1,1) states arise after the decomposition of the
tensor product states and imposition of the reduced area
matching.

F. Area spectra

In Lorentzian spin foam models [29-33] and LQG, there
are two major issues concerning the spectra of geometrical
operators and the area operator in particular. The first is
about the question of whether those operators have discrete
or continuous spectra [46—48], and the second concerns the
appearance of the Barbero-Immirzi parameter [45]. The
first problem can, at least in four dimensions, be further
separated into whether we are talking about spectra on the
kinematical level or at the level of the physical Hilbert
space; see, for example, Refs. [69,70].

In LQG, the area operator is essentially given by (the
square root of) the 81 (2) Casimir since the (densitized) flux
operators satisfy a 81(2) algebra and thus the quantization
of the classical expression for the area (squared) leads
explicitly to L’ (with a y-dependent prefactor), [1,2]. This
leads then to the discrete spectra for the area (on the
kinematical Hilbert space). However, there have been other
proposals for the area operator within covariant formula-
tions of LQG [31,47] that potentially lead to continuous
and y-independent area spectra. That there are cases when
the Barbero-Immirzi parameter disappears from the area
spectra was also observed in Ref. [45] and is a result we will
discuss in this section using our twistorial description. Our
definition of the area operator was given in Eq. (4.6) by the
Plebanski 2-form X, and we consider

A

AP=_%, 3V (5.58)

1
2
Using the vector representation in terms of rotation and
boost generators allows us to understand its reduction

classically as follows. Recall that we have associated the
81(2,C) generators with B as in Eq. (3.1). Furthermore,

we have
2 1
2=— s ()
14y 14

which, together with Eq. (5.58), gives

(5.59)

026002-22



TIMELIKE TWISTED GEOMETRIES

#=griar (09+3), (09+3)
- ((12 - 1) (L*-K%) + % (*B)”B”>.

(147> \\r
(5.60)
Using that
(xB);;BY = —4(L'K' + L?K? + L’K?), (5.61)
we get with the simplicity constraints ¥ = 0, i.e.,
K3 = —yL3, L' =yK!, L? =yK?  (5.62)
that
72 22 2
L"-K =(-y )Qéu(l,l)v (5.63)
(*B)IJBH =4y Qsu(1,1) (5.64)
which finally leads to
A? =705 (11)- (5.65)

Now, if we use the dual simplicity constraints (*2)3i =0,
or

1 1 1
K3:—L3, le__KI, LZZ__KZ’ (566)
v v r
we obtain instead
BU 1
L"—-K = 1_7_2 Qéu(l,l)v (567)
1J 4
(+B),,B"” = —;Qéu(hl) (5.68)
and hence
A? = —=0gy11)- (5.69)

This already indicates that the Barbero-Immirzi parameter y
seems to disappear in the spectrum for states that solve
the dual simplicity constraints (*X)* = 0, similarly to the
results found in Ref. [45]7 Now, let us consider the
quantized area operator in the twistorial parametrization.

"However, note that the same reasoning works for the SU(2)
case, where we can equally consider £ = 0 or the dual (xX)% =
0 but with a timelike normal vector N, and we still obtain that in
the first case we have a y dependence, i.e., AgU = y?L~, and in
the other cage, we have a sign flip, and y disappears, i.e.,
Agu(z) =-L".
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Using the action of 7@ and 7 on the homogeneous

functions f(@?) g H(@b),

7o > @b = —inja + 1] (@) (5.70)

and

o~

7o > fl@b) = —in[b + 1]f@h), (5.71)

we obtain with Egs. (4.6) and (5.5) that
A > flab)

2

P (Fom> | FOEDY
= | > f
8 ((er)z (r—l)2> f

__rr (7> = 1)(a® + b* +2a +2b +2)
8 (* +1)°
— 2iy(a* = b* + 2a — 2b)]f*P)
h2 7/2 5
- - r -1 2 _ 2 —4 (u,b)‘
L0y [(y* = 1)(n* = p°) —dynplf

(5.72)

Now, if we consider the solutions to the simplicity con-
straints, p = yn for F; = 0 and p = —n/y for G, = 0, we
obtain

N h?
AZ > f(n,yn) — Zyznzf(”’yn) (573)

and

2

A% > flnmn/r) = _hzn2f(",—n/r), (5.74)

respectively. First, note that we find that, indeed, the area
eigenvalues switch sign between the two branches with
p =yn and p = —n/y, respectively. Hence, our identifi-
cation of the constraints (F, F,) with the spacelike case
and the constraints (G, G,) with the timelike case seems
justified. Furthermore, we again confirm that the area
spectrum for timelike faces seems to not depend on y.
Second, note the different nature between Eqgs. (5.73) and
(5.74) on the one hand and Egs. (5.65) and (5.69) on the
other. For the calculation in Egs. (5.73) and (5.74), we have
used the covariant version of the area operator Eq. (5.58)
and then imposed the solutions of the simplicity constraints
on the area eigenvalues, which leads us, in the spacelike
case as well as in the timelike case, to discrete area
eigenvalues, which is in contrast to the statement often
made in the literature, e.g., Refs. [41,45,49,69], that in
Lorentzian models we have necessarily continuous spectra,
due to the noncompactness of the gauge group. In the
formulas leading to Egs. (5.65) and (5.69), on the other
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hand, we have first reduced the operator by the simplicity
constraints. If we use now for the (reduced) area operators
Egs. (5.65) and (5.69) instead, we first would notice that
this operator does not act on the covariant labels (a, b) but
on the SU(1,1) labels j(k) and j(s). In this situation, one
might wonder whether we actually recover continuous
spectra for the continuous states with j(s) and Qs =

—j(j+1)=1+s% which is related to our discussion
about whether we have all the continuous states available
in the reduced Hilbert space or just a discrete subset. We
will see now that both ways, reducing the eigenvalues of the
covariant area operator or first reducing the area operator,
are consistent and lead in both cases to a discrete area
eigenvalue spectrum for those states that solve the area
matching and simplicity constraints. Consider first a state
of the form Eq. (5.55) with p; = yng = p,. Then, Qg,1.1)
acts as

Osu(1.1)> (f, (n ‘(zn) zng‘ ® fi;?’;y)—;n;)e/)
= (Qau) > LT @ F
+f ?nyn mgv ®(Q§1l(1 1 |>f n: _}’n5 & )

1 1 —n—
J— + 2 (nS"},nS)’SS ( nS’ ynS>'8f
- (ﬁ(sl( Dt 3 (n) )fs.-@,.).m,‘. ofin

=2n2f! o nf‘ Q" o) f: “ (5.75)
and hence with A% = 7*Qau1.1), We get
_212 > (fArlzsr}:n \Es ® f n,i —th e,)
J— 2 (nb yn SS —ny, —yn & 5 76
rPi(f @ f ). (5.76)

(ng),m,

Comparing this with Eq. (5.73), where the missing factor
of #? is included in Qsu(1,1) and up to an irrelevant factor
of é we showed the consistency between the two ways of
obtaining the area eigenvalues. If we consider now sim-
ilarly the dual case with p, = ”S = p,, we have

A = —Q3su(1.1)> cf. Eq. (5.69), and we obtaln instead

)-Es (=ns, ,)’%
(ernYm fsz(n)m,)
= —on? <f_(”} '® f > (5.77)

This matches the result of Eq. (5.74), and y seems to not
appear. Note that, due to the area matching constraint, we
must have p, = p,. Hence, if we were to consider the
coupling of states with p; =yn; and p, = —"7 or vice
versa, the condition p, = p, leads to the requirement that y
must be imaginary, i.e., y = 4i, which might be related to
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the self-dual Ashtekar variables that have recently been
investigated in Refs. [71-73]. It is tempting to interpret this
in some way as a coupling of a spacelike state on one side
of the link with a timelike state on the other side. However,
throughout this work, we have assumed real y, and hence
considering complex y is merely a speculation at this level.
Furthermore, it is important to note that in the theory as
presented in this paper taking y to be complex would take
us out of the unitary representations of SL(2, C).

If we want to avoid using the dual constraints p = — f,

because spacelike states as well as timelike states should be
included already in just the case with p = yn, we can
consider the explicit decomposition of the solution state
Eq. (5.55) into its irreducible components following
Egs. (5.56) and (5.57). Acting with Qg,(;;) on those
irreducible states will give positive as well as negative
eigenvalues of the continuous series and the discrete series,
respectively. Hence, in this picture, the timelike states are
associated with the discrete series states, which are
composed as the tensor product of two continuous states.
In the reversed direction, imagine we have a spin network
decorated with SU(1,1) representations j(k) or j(s);
then, we can think of a generalized Livine-Dupuis map,
which maps the states of the SU(1,1) spin network into
the solution states of the area matching and simplicity
constraint as

'_)ZC sl’s s))

s ® fi;élr;;;f;:r(ns))bt’

(5.78)
or for the continuous states with j(s) as
HZ x ]7 Ny ®f ng, pr ny)).&
(5.79)

where C(n,) and C(n,) depend besides n; on k or s and
on mg, m, and denote the Clebsch-Gordan coefficients
corresponding to the inverse of the decompositions in
Egs. (5.56) and (5.57). The details of this embedding will
be relevant for the construction of a generalized spin
foam model, and thus we will leave them for future
investigations.

Finally, let us comment again on the fate of the Barbero-
Immirzi parameter. We point out that we discuss here only
the appearance of y in the eigenvalues of the area operator
for timelike faces and not whether the physical Hilbert
space will be y dependent or not. From Egs. (5.69) and
(5.74), with the solution of the dual simplicity constraints

%In the SU(2) case, the Livine-Dupuis map embeds the SU(2)
representations into the subspace of the canonical basis that
satisfies the simplicity constraints as |j, m) < |(j,7j), j, m).
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(xX)% =0, i.e., p=—n/y, we confirmed the statement
that was made in Refs. [44,45] that the spectrum of timelike
faces does not depend on y. However, there is a possibility
that y might actually reappear as follows. Note that when
we introduce dimensionful constants the area operator

VA% has eigenvalues proportional to the Planck length
[1]; i.e., for the standard SU(2) case, we have

A |j) = 8aye/i(G + 1)]j),

with I3 = hG/c?, and hence we see that it depends on the
gravitational constant G. This certainly holds true for the
spacelike faces and the space-gauge simplicity constraints
(F1, F5). If we consider now the area spectrum of timelike
faces, we would assume that it is proportional to either 7plp
or tP, where p is the Planck time with 73 P = e b/ c?. In either
case, we again find that the spectrum is proportional to G.
However, if we go back to the original Holst action we
started with in Eq. (2.2) and note that there is a prefactor of
1/(16zG), then we notice that the dual simplicity con-
straints (xX)% = 0, i.e., (G, G,), lead to Einstein-Cartan
gravity with the dual Barbero-Immirzi parameter y = —1/y
and a scaled gravitational constant G = Gy. Now, in this
situation, it appears as if y does not appear in the area
operator, but, in fact, if we consider the proportionality with
G = Gy, we see that it still appears via the rescaling of G.
Following this reasoning would imply that all our area
spectra are linearly dependent on y as in the standard
SU(2) case.

(5.80)

VI. DISCUSSION

We introduced and investigated in this paper the notion
of timelike twisted geometries. Together with the standard
time-gauge case [37,38], which leads to SU(2) spin net-
works, and the more recently introduced null twisted
geometries [42], this completes the application of the
twistorial variables to all types of Lorentzian geometries.
We showed in the classical setting explicitly how the
simplicity constraints with a spacelike normal vector
reduce T*SL(2, C) to T*SU(1, 1) on each link and similarly
how in the quantum theory the reduced Hilbert space is
spanned by SU(1,1) spin networks. Our results fit nicely
with the recent spinorial investigations of 3D Lorentzian
gravity in Ref. [52] and can be seen as giving an
independent derivation of (some of) those results from a
four-dimensional perspective.

We furthermore confirmed results from Refs. [45] and
[44] concerning the fate of the Barbero-Immirzi parameter
but provide a different interpretation, namely, that y still
enters the spectrum of the area operator when we take a
rescaling of the gravitational constant G into account. We
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further discussed the nature of the eigenvalues of the area
operator and why they turn out to be discrete for spacelike
faces and timelike faces alike, despite the underlying
noncompact gauge group. This is a result of the simplicity
constraints that provide relations between continuous and
discrete representation labels, and hence no continuous
spectra appear for the states in Eq. (5.55), which satisfy the
simplicity constraints and area matching. This might be
interpreted as saying that in LQG and spin foams not only
lengths and areas but also time intervals are discrete with a
minimal nonzero value. An open question concerns the
problem of imposing the constraints in a different order
than the one chosen by us. It seems to us not obvious at the
moment how to obtain the full reduced Hilbert space of
SU(1,1) Plancherel representations when one first imposes
the full area matching constraint and then tries to impose
the simplicity constraints, since in this order the master
constraint always rules out either the discrete states or the
continuous states.

The main result of this paper, however, is the derivation
of the quantum states that correspond to quantum timelike
2-surfaces in terms of spinorial variables. The spinor
variables have proven very useful in the past for the
asymptotic analysis of the standard EPRL model. This
opens the door for further investigations of such general-
ized spin foam models as proposed in Refs. [32] and [33].
The most pressing question is certainly whether such
generalized models that include timelike components at
least share or maybe even improve the semiclassical limit of
the EPRL model. One should also investigate possible
connections with the proper EPRL vertex amplitude of
Refs. [21] and [22]. Furthermore, it seems now possible to
use our variables to consider the model proposed in
Ref. [74] in the Lorentzian setting. Further possible
research directions concern a more detailed investigation
of the alternative set of constraints mentioned in footnote 2
as well as the question of a more in depth study of
Lorentzian intertwiner spaces that arise from the coupling
of several SU(1,1) representations. In that regard, it is
interesting to consider, for example, the Lorentzian gen-
eralization of the Livine-Speziale coherent states and how
they relate explicitly to the classical Lorentzian phase space
of shapes underlying the SU(1,1) intertwiner spaces. This
work will appear elsewhere.
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