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We investigate a link between the energy-momentum dispersion relation and the spectral distance in the
context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski
spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-
commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded
in a five-dimensional Minkowski geometry. Considering fermions traveling within the light cone of the
ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

DOI: 10.1103/PhysRevD.95.025027

I. INTRODUCTION

The framework of noncommutative geometry (NCG)
offers a generalization to the notion of Riemannian geom-
etry, replacing manifolds with algebras of bounded oper-
ators on Hilbert spaces [1]. The formalism was first used for
commutative C� algebras, and then was extended to spaces
characterized by a noncommutative algebra of coordinates.
Extending all basic geometric notions from ordinary
manifolds to noncommutative spaces is a fundamental
aspect of noncommutative geometry. In such a framework,
all information about a physical system is encoded within
the algebra of operators in a Hilbert space, with the action
expressed in terms of a generalized Dirac operator.
Following this approach, all fundamental forces in physics
can be considered on an equal footing, namely as curvature
on a noncommutative manifold, leading to a purely geo-
metric explanation for the Standard Model of particle
physics [2]. In addition, this approach implies an equivalent
formulation for the distance on a manifold, defined as a set
of pure states of a commutativeC� algebra. For example, on
a manifold where points are identical to pure states of
commutative C� algebra, the geodesic distance between
points on the manifold is completely determined by spectral
data of a Dirac operator

dðx; yÞ ¼ supfjωxðfÞ − ωyðfÞj∶f ∈ A; ‖½−i∇; f�‖ ≤ 1g;
ð1Þ

where A is a commutative pre-C� algebra, ωx;y are pure
states of the algebra defined by ωxðfÞ ≔ fðxÞ, and −i∇ is
the Dirac operator associated with the spin connection,
playing the role of the inverse of the line element ds (where
ds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμνdxμdxν
p

). Equation (1) above is known as the

spectral distance formula or Connes’s distance formula.
As a distance function between pure states, the above
expression makes perfect sense when one generalizes the
commutative algebra to a noncommutative one; however,
the physical meaning of this quantity is not clear in the
noncommutative regime. It has been shown [3] that in an
almost-commutative manifold, the spectral distance resem-
bles the geodesic distance in a higher-dimension manifold,
but extracting the physical meaning of this result is
nontrivial.
An important issue of NCG is the lack of its Lorentzian

version, which is the geometry of our physical spacetime.
Strictly speaking, there is no particle physics model from
NCG, but a model inspired by NCG. To investigate the
energy-momentum dispersion relation, which is obtained in
the framework of a relativistic theory, one may have to
include the notion of causal structure into the geometry.
Thus, in what follows, we will incorporate generic features
about Lorentzian noncommutative geometry [4–8].
The rest of this paper is organized as follows: In Sec. II,

we discuss some general properties of the spectral triple and
the spectral distance formula. In Sec. III, we state the
definition of a Lorentzian spectral triple, which will be used
throughout this paper, and elaborate on the notion of causal
structure. In Sec. IV, we investigate the link between the
distance formula and the energy-momentum dispersion
relation. We conclude in Sec. V.

II. ALMOST-COMMUTATIVE GEOMETRY AND
DISTANCE FORMULA

A. Spectral triples

The spectral triple is a collection of data ðA;H; DÞ,
where A is a dense subalgebra of a C� algebra (pre-C�
algebra) acting as a subalgebra of bounded operators on a
Hilbert spaceH, andD is a Dirac operator (densely defined
self-adjoint operator with compact resolvent). It can be seen
as a generalized notion of geometry: if A is a unital
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commutative algebra—namely, if we have a commutative
spectral triple—then one can reconstruct the compact
Riemannian spin manifold M, such that A≃ C∞ðMÞ [9].
It is this duality between a commutative C� algebra and the
algebra of smooth functions on a Riemannian manifold that
inspired the notion of noncommutative geometry: given a
noncommutative algebra A, one may think of a non-
commutative geometry as a space X for which A is the
coordinate algebra.
In addition, one considers a real structure J and a grading

operator γ (we refer the reader to Ref. [10] for details),
which are crucial for the construction of spin manifold and
obtaining the Standard Model of high-energy physics from
noncommutative spectral geometry.
Let M × F, where M is a four-dimensional Riemannian

spin manifold and F an internal noncommutative space,
define an almost-commutative manifold. Its spectral triple
ðA;H; DÞ is given by the algebra

C∞ðMÞ ⊗ AF ≔ C∞ðMÞ ⊗
�
⨁
n

k¼1

Ak

�
; ð2Þ

with finite-dimensional algebra (not necessarily commuta-
tive) AF, Hilbert space L2ðM; SÞ ⊗ HF, and Dirac operator
−i∇ ⊗ IdF þ γ5 ⊗ DF, where HF is a finite-dimensional
Hilbert space andDF a self-adjoint matrix (Dirac operator).
Choosing appropriately the algebra of the internal

space F as

AF ¼ C ⊕ H ⊕ M4ðCÞ; ð3Þ

and applying the spectral action, which is basically the trace
of the heat kernel of the Dirac operator, one obtains an
effective description of the Standard Model [11].

B. Inner fluctuations

The symmetry in an almost-commutative manifold is the
automorphism group of the algebra

DiffðM × FÞ ≔ AutðC∞ðM;AFÞÞ; ð4Þ

since the diffeomorphism group, which is the symmetry
group on a manifold, is isomorphic to the automorphism of
the algebra of smooth functions, DiffðMÞ≃ AutðC∞ðMÞÞ.
Being interested in the automorphism that would lead to the
symmetries of the Standard Model, let us consider the inner
automorphism αu, characterized by a unitary element of the
algebra

αuðaÞ ↦ uau�; ð5Þ

where u ∈ UðAÞ. Since the unitary equivalence is an
important element for the physics of the Standard
Model, we need to incorporate it in the spectral action.
To do so, we define an algebra B ≔ αuðAÞ≃ A as a unitary

equivalent algebra, and find its corresponding spectral
triple ðB;H0; D0Þ, which involves the notion of Morita
equivalence. The Morita equivalence between two C�
algebras B and A implies the existence of a projective
right C� module E (we refer the reader to Ref. [10] for more
details on the C� module), such that

B ¼ EndAðEÞ: ð6Þ

Note that, in the case where the algebra has both left and
right action on the Hilbert space, the definition of Morita
equivalence requires a bimodule.
Since that algebra is the EndAðEÞ, the natural choice

for the Hilbert space of the new triple isH0 ≔ E ⊗A H, and
it remains to choose the Dirac operator. Suppose there
exists a Hermitian connection ∇∶E → E ⊗ Ω1

D satisfying
the conditions

∇ðξaÞ ¼ ð∇ξÞaþ ξ ⊗ da; ∀ ξ ∈ E; a ∈ A; ð7Þ

dhξ; ηiA ¼hξ;∇ηiA − h∇ξ; ηiA; ∀ ξ; η ∈ E; ð8Þ

where da ≔ ½D; a�, Ω1
D is the algebra of one-forms, and

h·; ·iA∶E × E → A denotes the Hermitian product. Then the
Dirac operator can be defined by

D0ðξ ⊗ ηÞ ¼ ξ ⊗ Dηþ ð∇ξÞη: ð9Þ

For B ≔ αuðAÞ≃ A, we have E ¼ A; hence the Dirac
operator is

D0ð1A ⊗ ηÞ ¼ 1A ⊗ Dηþ ðd1AÞη: ð10Þ

When d1A ¼ ½D; 1A� ≠ 0, the Dirac operator D0 is
D0 ¼ Dþ B, where B is a self-adjoint element of
Ω1

DðAÞ and plays the role of gauge potential. Given the
charge conjugation operator, the Dirac operator reads

D0 ¼ Dþ B þ ϵ0JBJ−1; ð11Þ

called the inner fluctuation, with J a real structure (an
antilinear isometry J∶H → H), and the number ϵ0 ∈
f−1; 1g a function of n mod 8.

C. Spectral distance formula

We have previously seen the spectral distance formula in
the case of a commutative spectral triple, where elements of
the algebra are just smooth functions. Since the formula is
defined purely from spectral data, it is still valid for a
noncommutative spectral triple. Hence,

dðω;ω0Þ ¼ supfjωðaÞ − ω0ðaÞj∶a ∈ A; ‖½D; a�‖ ≤ 1g;
ð12Þ
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where ω;ω0 ∈ PðAÞ are pure states of the algebra A,
having in mind a generalized notion of points. Note that,
although the distance formula exists, the notion of distance
between any two pure states is well defined only when
dðω;ω0Þ < ∞. Even though we consider a spectral triple in
which the formula (12) gives finite distance, the meaning
of the distance between pure states in an abstract non-
commutative space is still quite difficult to understand.
Nevertheless, in the case of an almost-commutative mani-
fold, its pure states are isomorphic to the points on the
product space, i.e. PðAÞ ≅ M × F [11]. In the case that F is
a finite space, the geodesic distance squared between ðx; eiÞ
and ðy; ejÞ for ei; ej ∈ F is given by [3]

d2ðx × ei; y × ejÞ ¼ d2Mðx; yÞ þ d2Fðei; ejÞ; ð13Þ

where dMðx; yÞ is the geodesic distance on M and
dFðei; ejÞ stands for the shortest distance between internal
states ei and ej. This Pythagorean theorem allows one to
embed the almost-commutative manifold M × F in an
(nþ 1)-dimensional Riemannian manifold M ×R. The
metric of the almost-commutative manifold inherited from
the ambient (nþ 1)-dimensional manifold is

gab ¼
� gμν 0

0 1=d2ðei; ejÞ

�
; ð14Þ

where a; b ∈ f0; 1; 2; 3; 4g (namely, they refer to the
almost-commutative manifold), and Greek indices
μ; ν ∈ f0; 1; 2; 3g. The physical meaning of the Dirac
operator, as discussed earlier, implies

ds−2jM×F ¼ D2 ¼ −∇2 þD2
F; ð15Þ

and hence D satisfies the Pythagorean theorem.
For the simple model of a two-sheet space M × f0; 1g

with discrete spectral triple ðAF;HF;DFÞ, given by

AF ¼ C ⊕ C; HF ¼ C2; DF ¼
�

0 m

m� 0

�
; ð16Þ

where m ∈ C is a nonzero complex parameter, we have
dFð0; 1Þ ¼ 1=jmj. So in this case D2

F ¼ jmj212. Note that
although jmj is a constant in the two-sheet space, it can be a
function of x ∈ M if one considers an almost-commutative
space with inner fluctuations.
In what follows, we restrict our study to the two-sheet

space, since it was shown in Ref. [3] that if the internal space
of an almost-commutativemanifold is discrete, then one can
reduce the distance formula in an almost-commutative
manifold into that of a two-sheet geometry.

III. LORENTZIAN SPECTRAL TRIPLE

Although noncommutative geometry has been applied to
a relativistic theory like the Standard Model, the definition

of a Lorentzian spectral triple remains an open question, the
reason mainly being the lack of a manifold reconstruction
theorem analogous to Connes’s reconstruction theorem for
a commutative spectral triple [9]. Nevertheless, there are a
few similar definitions of Lorentzian spectral triples in the
literature [4–7]. In this paper we adopt the definition
proposed by Ref. [4], which will be sufficient to define
a causal structure. Moreover, for a commutative case that is
constructed from a globally hyperbolic manifold, one can
define a distance formula (which will be defined in the next
section) similar to the spectral distance formula. The
Lorentzian version of the spectral distance formula was
proposed in Ref. [12]; it was proved that the formula leads
to the geodesic distance in Minkowski space.
Definition 1.—Lorentzian spectral triple.—A Lorentzian

spectral triple is given by ðA; ~A;H; D;J Þ, where
(1) A is a nonunital dense � subalgebra of a C� algebra,

and ~A is its preferred unitalization.
(2) H is a Krein space with an indefinite product ð·; ·Þ.
(3) J is a bounded self-adjoint symmetry operator,

J ¼ J �;J 2 ¼ 1, commuting with A. The role of
J—dubbed fundamental symmetry or signature
operator—is to turn the Krein spaceH into a Hilbert
space. Note that HJ is the same space as H with a
positive definite inner product h·; ·i ≔ ð·;J ·Þ, hence
a Hilbert space.

(4) D is a densely defined operator on HJ , such that
(a) D ¼ −JD�J ≕ −Dþ; i.e. it is Krein anti-self-

adjoint on H.
(b) ∀ a ∈ ~A; ½D; a� extends to a bounded operator

on HJ .
(c) ∀ a ∈ A; að1þ hDiÞ−1=2 is compact on HJ ,

where hDi2 ≔ 1
2
ðDD� þD�DÞ.

(5) There exists a densely defined self-adjoint operator
T with DomD∩DomT dense in HJ , such that
(a) ð1þ T 2Þ−1=2 ∈ ~A.
(b) J ¼ −N½D; T � for some positive element

N ∈ ~A.
Let us consider the Lorentzian spectral triple [8]

ðC∞
0 ðMÞ; C∞

b ðMÞ; L2ðM; SÞ;−i∇Þ; ð17Þ

whereM is a globally hyperbolic Lorentzian manifold with
signature ð−;þ;þ;þÞ, C∞

0 ðMÞ is the algebra of smooth
functions vanishing at infinity, and C∞

b ðMÞ is for the space
of smooth bounded functions on the manifold. The Krein
L2ðM; SÞ is the space of the squared integrable smooth
sections of the spinor bundle. The Dirac operator is defined
by −i∇ ≔ −iγμ∇μ, where ∇μ is the spin connection on M.
Note that we choose the representation of the gamma
matrices such that

ðγ0Þ� ¼ −γ0; ðγkÞ� ¼ γk; ð18Þ
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where k ¼ 1, 2, 3, and satisfy the relation

fγμ; γνg ¼ 2gμν14: ð19Þ

The fundamental symmetry J can be derived from the
lapse functionN and the global time function T , as follows:
For a globally hyperbolic Lorentzian manifold M, there
exists a global smooth time function T on M such that the
line element of the manifold M splits as

ds2 ¼ −NdT 2 þ ds2T ; ð20Þ

where ds2T is the line element on the Cauchy hypersurface
ΣT at constant time T and N is the lapse function.
The fundamental symmetry in terms of N and T is
J ¼ −N½D; T � ¼ iNγ0, a condition that guarantees the
Lorentzian signature.
To include a causal structure in the algebra, one defines a

set of real-valued functions which are nondecreasing along
a future-directed causal curve:

C ¼ ff ∈ C∞
b ðMÞ∶ fðxÞ ≤ fðyÞ iff x≼ y; ∀ x; y ∈Mg:

ð21Þ

The set C is called the causal cone, and its elements are
smooth bounded causal functions. In a globally hyperbolic
spacetime ðM; gÞ, the geodesic distance coincides with the
Lorentzian distance function [13]

dðx; yÞ ¼ infffðyÞ − fðxÞjf ∈ C;

ess supgð∇f;∇fÞ ≤ −1; ∀ x; y ∈ M with x ≼ yg:
ð22Þ

In the following, we highlight the definition of the causal
cone expressed in terms of the spectral triple [8,12].
Proposition 1.—Let ðA; ~A;H; D;J Þ be a commutative

Lorentzian spectral triple constructed from a globally
hyperbolic manifold. Then f ∈ ~A is a causal function iff

ðψ ; ½D; f�ψÞ ≤ 0; ∀ ψ ∈ H: ð23Þ

This can be generalized to a noncommutative spectral triple
by replacing A with a noncommutative algebra [8].
For simplicity, let us consider a Minkowski spacetime,

denoted by M, as the globally hyperbolic spacetime. In a
four-dimensional Minkowski spacetime, any two points
x; y ∈ M can be connected by a spacelike curve, i.e. a
curve γ∶½0; 1� → M such that gð_γ; _γÞ > 0 along the curve.
However, some of these points can also be connected by a
causal curve, i.e. gð_γ; _γÞ ≤ 0 everywhere along the curve;
these points are called causally related and are denoted
by x ≼ y.
Consider two points x, y in the Minkowski four-

dimensional spacetime M, with signature ð−;þ;þ;þÞ,
connecting through a curve γ. We define the extremal
length squared as

L2ðx; yÞ ≔
�− supflðγÞ2 ≔ ðRγ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gð_γ; _γÞp
dτÞ2jgð_γ; _γÞ ≤ 0g; x ≼ y

supflðγÞ2 ≔ ðRγ ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð_γ; _γÞp

dτÞ2jgð_γ; _γÞ > 0g; x ⋠ y:
ð24Þ

Since Minkowski spacetime is flat, L2ðx; yÞ ¼
−ðx0 − y0Þ2 þ ‖x − y‖2, which is zero or negative for
two causally related points and strictly positive otherwise.
Notice that, using L2ðx; yÞ above, we can differentiate
between points which are connected by a null curve and
those which are not causally related. However, the distance
defined by

dðx; yÞ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−L2ðx; yÞ
p

; x ≼ y

0; x ⋠ y
ð25Þ

vanishes for both spacelike and lightlike separation.

IV. ENERGY-MOMENTUM DISPERSION
RELATION FOR ALMOST-COMMUTATIVE

SPECTRAL GEOMETRY

In the previous section, we have seen that the commu-
tative Lorentzian spectral triple ðC∞

0 ðMÞ; C∞
b ðMÞ;

L2ðS;MÞ; ∂Þ yields a spectral distance equivalent to the

geodesic distance for Minkowski spacetime. Next, we shall
define a distance function for an almost-commutative
geometry—namely, the product of this Lorentzian spectral
triple with a finite spectral triple—and examine the impli-
cations of the proposed distance function definition for
relativistic particles.

A. Causal structure and distance

Consider a two-sheet space, defined by the tensor
product of a commutative Lorentzian spectral triple and
a discrete spectral triple ðAF;HF;DFÞ, as in Eq. (16).
Following Ref. [4], one can define a causal structure on the
space of states Sð ~AÞ of the two-sheet space, using only the
spectral data of the almost-commutative manifold; we
highlight the procedure below.
Definition 2.—Let C¼fa∈ ~Aja¼a�;ðψ ;×½D;a�ψÞ≤ 0;

∀ ψ ∈Hg, such that spanCðCÞ ¼ ~A. Two states ω;ω0 ∈
Sð ~AÞ are causally related; i.e. ω ≼ ω0 iff for any a ∈ C, one
has
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ωðaÞ ≤ ω0ðaÞ: ð26Þ

Let us denote by PðAÞ the set of pure states of the
algebra A, defined as the union of M0 ≔ M × f0g and
M1 ≔ M × f1g, hence the name of two-sheet spacetime.
Thus, one may think of having two sheets of four-
dimensional Minkowski spacetimes embedded in a five-
dimensional one. Since we are interested in the causal
relation between points on M0 and M1, we consider
a particular type of mixed states ωx;ξ ∈ N ðAÞ ≔
M × ½0; 1� ⊂ SðAÞ defined by

ωx;ξða ⊕ bÞ ¼ ξaðxÞ þ ð1 − ξÞbðxÞ ð27Þ

for a; b ∈ C∞
0 ðMÞ. Such states ωx;ξ can be considered as

covering the area between the two sheets. The pure states in
MðAÞ can be recovered with the choice ξ ¼ 0 or ξ ¼ 1.
Theorem 1.—The two states ωx;ξ;ωy;η ∈ N ðAÞ are

causally related if and only if x ≼ y on M and

lðγÞ ≥ j arcsin ffiffiffi
η

p − arcsin
ffiffiffi
ξ

p j
jmj ; ð28Þ

where lðγÞ represents the length of a causal curve γ going
from x to y on the manifold M.
The above theorem [4] implies that if the discrete Dirac

operator is trivial, i.e. m ¼ 0, the causal relation holds only
when ξ ¼ η. Hence, the extremal length squared between
two points ðx; 0Þ; ðy; 0Þ ∈ M0 is

L2ðx; yÞ ¼ −sup
γ
l2ðγÞ ¼ −ðx0 − y0Þ2 þ ‖x − y‖2; ð29Þ

where γ denotes a causal curve.
If m ≠ 0, any two points ðx; 0Þ ∈ M0 and ðy; 1Þ ∈ M1

are causally related iff there is a causal curve γ connecting x
and y such that

lðγÞ ≥ π

2jmj ; ð30Þ

implying

−sup
γ
l2ðγÞ þ π2

4jmj2 ≤ 0: ð31Þ

For any ðx; iÞ; ðy; jÞ ∈ M × f0; 1g with i; j ∈ f0; 1g, we
define

L2
m½ðx; iÞ; ðy; jÞ� ¼

(
4
π2
L2ðx; yÞ þ 1

jmj2 ; i ≠ j

4
π2
L2ðx; yÞ; i ¼ j:

ð32Þ

One notices that Eq. (32) is the Lorentzian version of the
Pythagorean theorem [Eq. (13)].
From Eq. (24), we see that the above defined function,

which we also call extremal length squared onM × f0; 1g,

is negative semidefinite when the points ðx; iÞ and ðy; jÞ are
causally related, and positive otherwise. Combining the
definition (32) and Theorem 1, one obtains a criterion for
any two points (pure states) to be causally related.
Proposition 2.—The pure states ðx; iÞ and ðy; jÞ, defined

on an almost-commutative manifold, are said to be causally
related if and only if x ≼ y on M and

L2
m½ðx; iÞ; ðy; jÞ� ≤ 0: ð33Þ

Wewill refer to the above condition as the causal structure.
One notices that the causal structure of the two-sheet

space is exactly the same as that of a pair of four-
dimensional Minkowski spacetimes embedded in a five-
dimensional one ðM5 ≔ M × ½0; 1�Þ, with 1=jmj denoting
the separation between the two 4-dimensional manifolds.
The metric of the five-dimensional Minkowski spacetime
M5 reads

gab ¼
�
ημν 0

0 1=jmj2
�
; ð34Þ

where μ, ν are the spacetime indices in Minkowski
spacetime, which, being flat, is denoted by ημν. The metric
(34) can be seen as a Wick-rotated version of (14).
Using metric (34), any two points in the two-sheet

spacetime are causally related, provided they are causally
related in ðM5; gÞ. The line element in M5 is

ds2 ¼ gabdxadxb ¼ ημνdxμdxν þ
1

jmj2 dx
2
F

¼ ds2M þ ds2F; ð35Þ
where dxF is the infinitesimal of the interval [0, 1].
Making the appropriate choice for the Dirac operator D

in M5, such that

D2 ¼ −∇2 − jmj2 ∂2

∂x2F ; ð36Þ

the spectral distance expression (22) for a globally hyper-
bolic manifold, implies the geodesic expression as the one
derived from the metric (34). To specify our notation, let us
remark that D is defined by Eq. (36), whereas D will refer
to the Dirac operator as defined for an almost-commutative
manifold.
The Lorentzian version of the spectral distance formula

is still applicable on the two-sheet space, since it is a
submanifold of M5. Note that, to recover the D2 operator
as defined for an almost-commutative Lorentzian manifold,
one chooses the boundary condition for a spinor in a
five-dimensional Minkowski space such that for any
ϕ ∈ L2ðM5; SÞ,

ðD2ϕÞjM×f0;1g ¼ D2ϕjM×f0;1g ¼ ð−∇2 þ jmj2ÞϕjM×f0;1g:

ð37Þ
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B. Dirac operator and dispersion relation

Let us investigate the relation between distance for a
two-sheet space and Dirac operator. To proceed, one needs
to define the notion of parallel transport for such a
manifold.
Definition 3.—Let M × f0; 1g be a two-sheet space.

A spinor field ψ ∈ L2ðMÞ ⊗ C2 is parallel transporting
betweenMi andMj (which form the two-sheet spacetime)
if there exists a spinor field ϕ ∈ L2ðM5; SÞ, such that
ϕðy; jÞ is the parallel transport of ϕðx; iÞ, for
ðx; iÞ; ðy; jÞ ∈ M5, and

ðD2ϕÞjM×f0;1g ¼ D2ϕjM×f0;1g ¼ D2ψ : ð38Þ

Note that, if the spinor ϕ exists, then its uniqueness is
guaranteed by the uniqueness of the solution of the
differential equation (geodesic equation in this case).
Definition 4.—A parallel transporting spinor field

ψ ∈ L2ðMÞ ⊗ C2, with ðψ ;ψÞ ≠ 0, is called causal if

ðDψ ; DψÞ
ðψ ;ψÞ ≥ 0; ð39Þ

and is harmonic if the equality holds. Otherwise, the spinor
is noncausal.
In the following, we will relate the definition for a causal

spinor to the causal structure, Eq. (33), in the case of an
almost-commutative geometry.
Proposition 3.—Let ψ ∈ L2ðMÞ ⊗ C2; ðψ ;ψÞ ≠ 0 be a

parallel transporting spinor field betweenMi andMj. The
geodesic of the spinor connecting any two points ðx; iÞ and
ðy; jÞ is null iff the spinor field is harmonic.
Proof:—To prove this proposition, one has in principle

to consider different cases. In the following, we will draw
the proof for i ¼ 0, j ¼ 1. The other cases can be shown
trivially.
First, suppose ψ is a parallel transporting spinor field

betweenM0 andM1. For any ðx; 0Þ; ðy; 1Þ ∈ M5, there is
a spinor ϕ ∈ L2ðM5; SÞ such that ϕðy; jÞ is the parallel
transport of ϕðx; iÞ.
(a) If the geodesic for ϕðt;x; xFÞ is null, then its line

element is also null, i.e.

dt2 ¼ jdxj2 þ 1

jmj2 dx
2
F: ð40Þ

Since dt2 and jdxj2 þ 1
jmj2 dx

2
F are infinitesimal in Euclid-

ean space, one can write

∂2ϕ

∂t2 ¼
�X3

i¼1

∂2

∂x2i þ jmj2 ∂2

∂x2F
�
ϕ: ð41Þ

The restriction of Eq. (41) onto the two-sheet space reads

∂2ψ

∂t2 ¼ ∂2ϕ

∂t2
����
M×f0;1g

¼
�X3

i¼1

∂2

∂x2i þ jmj2 ∂2

∂x2F
�
ϕ

����
M×f0;1g

¼
�X3

i¼1

∂2

∂x2i þ jmj2
�
ψ ; ð42Þ

using Eq. (38). Therefore,

ðDψ ; DψÞ ¼ ðψ ; DþDψÞ ¼ −ðϕjM×f0;1g;D2ϕjM×f0;1gÞ
¼ −ðϕjM×f0;1g; f−∇2 þD2

FgϕjM×f0;1gÞ ¼ 0;

ð43Þ

where we have used that Dirac operator is Krein anti-self-
adjoint. (b) Conversely, assuming that the spinor on the
two-sheet space is harmonic,

0 ¼ ðDψ ; DψÞ ¼ ðDϕjM×f0;1g;DϕjM×f0;1gÞ

¼ −
�
ϕjM×f0;1g;

�
−∇2 − jmj2 ∂2

∂x2F
	
ϕjM×f0;1g

�
: ð44Þ

Consider an inner product ð; Þ5 on L2ðM5; SÞ as

ðDϕ;DϕÞ5
¼ −

�
ϕ;

�
−∇2 − jmj2 ∂2

∂x2F
	
ϕ

�
5

¼ −
Z

0

1

dxF

�
ϕðxFÞ;

�
−∇2 − jmj2 ∂2

∂x2F
	
ϕðxFÞ

�
: ð45Þ

Then, using Eq. (44) and the fact that the norm of a spinor is
preserved along a geodesic, the inner product (45) vanishes,
implying

∂2ϕðxÞ
∂t2 ¼

�X3
i¼1

∂2

∂x2i þ jmj2 ∂2

∂x2F
�
ϕðxÞ ð46Þ

at every point on the geodesic. The inverse of ∂2
∂t2 and ofP

3
i¼1

∂2
∂x2i þ jmj2 ∂2

∂x2F give a line element, which is null;

therefore, the geodesic is itself null.
Let us note that in this study we restrict ourselves to the

case of harmomic spinors, the reason being that we want to
investigate their implications for the dispersion relation.
The next proposition will show that harmonic spinors yield
the energy-momentum dispersion relation, meaning that
they can be interpreted as physical matter fields.
Proposition 4.—Let X be a compact subset ofM, and let

ðA; ~A;H; DÞ be the product of the Lorentzian spectral triple
ðC∞ðXÞ; L2ðX; SÞ;−i∂Þ and the finite spectral triple
ðAF;HF;DFÞ. The eigenspinors Ψn of the Dirac operator,
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with ðΨn;ΨnÞ ≠ 0, are harmonic iff their eigenvalues
satisfy the energy-momentum dispersion relation.
Proof:—Let Ψn ≔ ψp ⊗ ei ∈ DomD be a normalized

eigenspinor ofD, where ψp and ei are eigenstates of ∂2 and

D2
F, respectively. Note that we choose the compact set X ⊂

M so that ψp ¼ ξpeið−Etþp·xÞ for ξp, a constant spinor, is
square integrable. We will distinguish two cases—namely,
whether D2

Fei ¼ 0 vanishes or not. (a) D2
Fei ¼ 0:

ðDΨn; DΨnÞ ¼ ðψp ⊗ ei; DþDψp ⊗ eiÞ ¼ ðψp; ∂2ψpÞðei; eiÞ ¼ ðE2 − p2Þðψp;ψpÞ

⇒
ðDΨn; DΨnÞ
ðΨn;ΨnÞ

¼ E2 − p2; ð47Þ

where −E2 denotes the eigenvalue of the ∂2=∂t2 operator, and −p2
i stands for the eigenvalue of ∂2=∂x2i . (p denotes a

three-vector.)
The rhs of Eq. (47) is the energy-momentum dispersion relation for a massless fermion iff ðDΨn;DΨnÞ ¼ 0; i.e. Ψn is

harmonic. (b) D2
Fei ≠ 0:

ðDΨn; DΨnÞ ¼ ðψp ⊗ ei; DþDψp ⊗ eiÞ ¼ ðE2 − p2Þðψp;ψpÞðei; eiÞ −m2
i ðψp;ψpÞðei; eiÞ

⇒
ðDΨn; DΨnÞ
ðΨn;ΨnÞ

¼ E2 − p2 −m2
i : ð48Þ

Correspondingly, the rhs of Eq. (48) is the energy-
momentum dispersion relation for a massive fermion iff
Ψn is harmonic.
Combining Propositions 2, 3, and 4 with Eq. (32), one

may argue that the energy-momentum dispersion relation
has its origin in the geometric construction of the almost-
commutative manifold. Due to the causal relation between
the two sheets, one may interpret this statement as the
interaction between a fermion on one sheet and an anti-
fermion on the other one.
To highlight the validity of Proposition 4 in the case of

inner fluctuations of the Dirac operator, we will consider
below a simple toy model—namely, electroweak theory
with massless neutrinos.

C. A toy model: Electroweak theory
with massless neutrinos

Consider the electroweak theory and assume neutrinos to
be massless. To explain this theory in the context of almost-
commutative spectral geometry, let us take the product of a
Lorentzian spectral triple ðC∞

0 ðMÞ; L2ðM; SÞ;−i∂Þ with a
finite spectral triple for the electroweak theory [11]. The
spectral triple for the discrete (internal) space F is given by
the algebra AF, the Hilbert space HF, and the Dirac
operator DF:

AF ¼ C ⊕ H; ð49Þ
HF ¼ Hl ⊕ Hl̄; ð50Þ

DF ¼

0
BBB@

0 Y� 0 0

Y 0 0 0

0 0 0 Ȳ�

0 0 Ȳ 0

1
CCCA; ð51Þ

where Y is a 2 × 2 mass matrix

Y ¼
�
0 0

0 me

�
; ð52Þ

with me a complex parameter.
Assuming all inner fluctuations to vanish, apart from

those of the scalar field Φ, the fluctuated Dirac operator for
the almost-commutative manifold is

DΦ ¼ −i∂ ⊗ IF þ γ5 ⊗ Φ; ð53Þ

with

Φ ¼ DF þ a½DF; b� þ JFa½DF; b�J�F
¼

�
ϕ 0

0 ϕ̄

�
; ð54Þ

for a; b ∈ C∞
0 ðM; AFÞ and

ϕ ¼

0
BBB@

0 0 0 0

0 0 −m̄eh2 m̄eðh1 þ 1Þ
0 −meh̄2 0 0

0 meðh̄1 þ 1Þ 0 0

1
CCCA; ð55Þ

where h1, h2 are complex functions. The trace of Φ2 is
given by

TrΦ2 ¼ 2jmej2jφj2; ð56Þ

where φ ≔ ðh1 þ 1; h2Þ is a doublet. Assuming φ under-
goes symmetry breaking and denoting by v the new VEV,
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we can choose φ ¼ ðvþ h; 0Þ, where h is a small fluc-
tuation around the vacuum.
To derive the dispersion relation, we will need D2

Φ,
given by

D2
Φ ¼ −∂2 ⊗ IF þ γμγ5 ⊗ ∂μΦþ γ5γμ ⊗ ∂μΦþ I4 ⊗ Φ2

¼ −∂2 ⊗ IF þ I4 ⊗ Φ2; ð57Þ

where we have used fγ5; γμg ¼ 0. We denote the basis
of Hl and Hl̄ by fνR; eR; νL; eLg and fν̄R; ēR; ν̄L; ēLg,
respectively.
The dispersion relation associated with harmonic eigens-

pinors ψp ⊗ eL and ψp ⊗ νL (the same result can be
obtained for right-handed particles and antiparticles) can be
found as follows:

ðψp ⊗ eL;D2
Φψp ⊗ eLÞ ¼ 0: ð58Þ

However,

ðψp ⊗ eL;D2
Φψp ⊗ eLÞ

¼ ðψp;−∂2ψpÞðeL; eLÞ þ ðψp;ψpÞðeL;Φ2eLÞ
¼ ð−E2 þ p2Þðψp;ψpÞðeL; eLÞ
þ ‖me‖2ðv2 þ 2vhþ h2Þðψp;ψpÞðeL; eLÞ

¼ −E2 þ p2 þ ‖me‖2ðv2 þ 2vhþ h2Þ: ð59Þ

Hence,

E2 ¼ p2 þ ‖me‖2ðv2 þ 2vhþ h2Þ: ð60Þ

Since the fluctuation is small, we have E2 ∼ p2 þ ‖me‖2v2,
which corresponds to the case (b) in the proof of Propo-
sition 4. Similarly, the harmonic spinor ψp ⊗ νL yields

E2 ¼ p2; ð61Þ

corresponding to case (a) of the proof in Proposition 4.

V. CONCLUSIONS

In the context of almost-commutative spectral geometry,
spectral distance between a pair of pure states inM × F was

shown to be related to the infinitesimal distance ds2

between two points in M and the distance between
internal states in F, via the Pythagorean theorem [3].
Such a relation was shown [14] also to be valid for
1=ds2. For the latter case, one may observe a similarity
between the Pythagorean theorem and the energy-
momentum dispersion relation, implying a geometric
origin of the dispersion relation.
To confirm the above observation, one has to reformulate

the inverse distance, given by the inverse of the Dirac
operator, in the context of Lorentzian almost-commutative
spectral geometry. Following Ref. [4], one can write down
the spectral triple for a Lorentzian almost-commutative
manifold, and get the corresponding Dirac operator.
Having the Lorentzian Dirac operator, we are able to

calculate the distance for a two-sheet manifold and define
the notion of a causal structure for such a geometry. We
were then able to show that the causal structure on a
flat almost-commutative space can be identified with the
causal structure on the five-dimensional Minkowski space
with the metric

gab ¼
�
ημν 0

0 1=jmj2
�
:

We have then suggested that spinors may be classified as
causal, harmonic, or noncausal. The condition satisfied by
harmonic spinors propagating in an almost-commutative
manifold is equivalent to the causal relation, as suggested in
Ref. [4]. We have further shown that a spinor is harmonic if
and only if it satisfies the energy-momentum dispersion
relation.
We have hence shown the geometric origin of the

dispersion relation in the context of almost-commutative
spectral geometry.
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