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We perform the covariant canonical quantization of the CPT- and Lorentz-symmetry-violating photon
sector of the minimal Standard-Model Extension, which contains a general (timelike, lightlike, or spacelike)
fixed background tensor kμAF. Well-known stability issues, arising from complex-valued energy states, are
solved by introducing a small photon mass, orders of magnitude below current experimental bounds. We
explicitly construct a covariant basis of polarization vectors, in which the photon field can be expanded. We
proceed to derive the Feynman propagator and show that the theory is microcausal. Despite the occurrence
of negative energies and vacuum-Cherenkov radiation, we do not find any runaway stability issues, because
the energy remains bounded from below. An important observation is that the ordering of the roots of the
dispersion relations is the same in any observer frame, which allows for a frame-independent condition that
selects the correct branch of the dispersion relation. This turns out to be critical for the consistency of the
quantization. To our knowledge, this is the first system for which quantization has consistently been
performed, in spite of the fact that the theory contains negative energies in some observer frames.
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I. INTRODUCTION

The covariance of physical laws under boosts and
rotations is at the basis of the standard model (SM) of
particle physics and general relativity [1]. This Lorentz
symmetry is closely related to the invariance under the
combined action of charge conjugation, parity inversion,
and time reversal, i.e. CPT symmetry [2,3]. Over the last
few decades the interest in the possibility of breaking
Lorentz and CPT symmetry has been growing. This rise
is motivated by theories that attempt to unify general
relativity with quantum mechanics and that exhibit mech-
anisms of Lorentz and CPT breaking [4–6]. The detection
of a corresponding experimental signal would provide
profound new physical insights and could point us to the
correct theory of quantum gravity.
In this context, the Standard-Model Extension (SME)

has proven to be a tool of great value. It is a framework that
incorporates Lorentz- and CPT-violating effects into the
SM [7], gravity [8], and for matter-gravity couplings [9], by
extending the Lagrangian to include all possible Lorentz-
and CPT-violating operators consisting of the conventional
fields. Because of its generality it allows for broad
experimental searches [10] as well as general theoretical
considerations of Lorentz- and CPT-violating effects.
Of particular interest is the pure-gauge matter sector

of the minimal SME, which includes only superficially
renormalizable operators. Here, Lorentz violation (LV)
can be introduced, either while preserving CPT, or while
violating it. In this paper we consider the Chern-Simons-
like operator of mass dimension three that causes both
CPT- and Lorentz-symmetry breaking, parametrized by a
fixed background vector kμAF [11]. Although bounded

observationally to minute levels [10,11], this term has
received intensive attention in the literature, as it arises as a
radiative correction from the fermion sector in the presence
of a LV axial-vector term [12]. It is thus important to
establish both in the fermion and the photon sector, whether
such effects impede a rigorous quantization, and if not,
in what way the standard procedures have to be modified.
While the quantization of the fermion sector was imple-
mented successfully in the past [13], the situation is
more ambiguous in the photon sector. Furthermore, while
CPT-violating effects are strongly bounded in the photon
sector, this is not at all the case in the gluon and weak
gauge-boson sector [10]. Although we only consider the
Abelian case here, our analysis may lead to important
implications for LV non-Abelian theories as well.
In this paper, we thus perform the covariant quantization

of Maxwell-Chern-Simons theory. Covariant quantization
is extremely useful in performing quantum-field-theoretic
calculations, as the formulas retain explicit covariance
throughout the computational procedure. In a previous
work, it was discussed how this can be implemented for the
CPT-preserving case [14,15]. In Ref. [16] the quantization
for purely timelike kμAF was discussed and applied to
calculate vacuum-Cherenkov-radiation rates, whereas in
Ref. [17,18], attention was restricted to the (massless) case
of purely spacelike kμAF in an axial gauge. Although some
of the present results were already presented in Ref. [16],
the approach we take here is more general and rigorous,
while we consider spacelike, lightlike, as well as timelike
values of kμAF in a general class of covariant gauges.
As in Ref. [14], the introduction of a mass regulator turns

out to be necessary for a consistent quantization. This is
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phenomenologically feasible, due to the fact that ultratight
observational bounds on kμAF [10] allow the choice of a
photon mass sufficiently large to fix quantization problems,
while simultaneously agreeing with current experimental
bounds. Furthermore, the introduction of a photon mass is
often used to regulate infrared divergences that turn up in
loop diagrams in both conventional calculations, and in the
context of LVeffects [19]. We note that the introduction of a
photon mass in the context of the SME has been studied in
the presence of both CPT-preserving and CPT-violating
terms at the level of the equations of motion and the
propagator in Ref. [20].
The outline of this paper is as follows. In Sec. II we

introduce the Lorentz- and CPT-violating model, including
a nonzero photon mass that is introduced through the
Stückelberg mechanism. Subsequently, we find a covariant
basis of normalized and orthogonal eigenvectors of the
equation-of-motion operator in Sec. III. These polarization
vectors satisfy modified orthogonality relations when fixed
to be on shell. In Sec. IV we analyze the equations of
motion in momentum space and show that for the case of
timelike kμAF the introduction of a nonzero mass parameter
avoids a region in three-momentum space that has no
corresponding real energy solutions. We also find a con-
dition on kμAF that guarantees energy positivity. Energy
positivity and its connection to stability is further discussed
in Sec. V, where we find a way to distinguish different
branches of the dispersion relation in any observer frame.
We derive a relation between the momentum-space propa-
gator and the polarization vectors in Sec. VI. The field
operator is then quantized in terms of creation and
annihilation operators in Sec. VII. Subsequently, the
commutator of fields at spacelike separation is worked
out in Sec. VIII, and it is shown that the theory satisfies
microcausality. In Sec. IX the Feynman propagator is
derived and in Sec. X we analyze the space of states in
the context of BRST quantization. Finally we present our
conclusions in Sec. XI. Some of the more detailed analyses
of the dispersion relation, the photon group velocity, and
the energy lower bound are relegated to the Appendixes.

II. CPT-VIOLATING PHOTON
SECTOR OF THE SME

CPT violation in the photon sector of the power-
counting renormalizable part of the SME is given by the
Lagrangian

LA;kAF ¼ −
1

4
FμνFμν þ 1

2
kκAFϵκλμνA

λFμν; ð1Þ

where kμAF is an arbitrary real-valued and fixed background
vector with the dimensions of mass. The CPT-violating
term in Eq. (1) is gauge invariant up to total derivative
terms, which, in the absence of topological obstructions, do
not influence the physics.

The theory in Eq. (1) breaks so-called particle Lorentz
symmetry, while it is invariant under observer Lorentz
transformations [7]. Observer Lorentz transformations are
just transformations of the coordinates of the reference
frame of the observer and thus transform both kμAF and the
fields. Particle Lorentz transformations, on the other hand,
affect only the particle fields, but leave the tensor kμAF
unchanged. This corresponds to changing the orientation
and/or velocity of the experimental system in absolute
space.
In this paper, we will consider the cases of spacelike,

lightlike, and timelike kμAF. As is well known [11], for
timelike kμAF the dispersion relation following from (1) has
a tachyonic character: there are (small) momenta for which
there are no corresponding real solutions for the energy,
signaling an unstable theory that does not permit a
consistent quantization (although proposals have been
made for fermionic theories [21]).
As was noted first in [22], a way around this problem is

to introduce a small mass term for the photon through
the Stückelberg mechanism [23]. The gauge-fixed photon
Lagrangian becomes

LA ¼ −
1

4
FμνFμν þ 1

2
kκAFϵκλμνA

λFμν

þ 1

2
m2

γAμAμ −
1

2ξ
ð∂μAμÞ2; ð2Þ

where ξ > 0 is a gauge-fixing parameter andmγ is the small
photon mass. For spacelike, lightlike, as well as timelike
values of kμAF, a nonzero photon mass is useful. In addition
to its use as a regulator for infrared divergences [19],
it allows for the introduction of so-called concordant
frames [7].
Concordant frames are observer frames in which the LV

effects can be treated as small perturbations to the Lorentz-
symmetric physics. For nonzero values of kμAF, this cannot
be the case in all frames, because kμAF changes under the
action of observer Lorentz transformations. Therefore,
the size of its components is in principle unbounded, if
one allows for arbitrary observer frames. To be compatible
with experimental constraints, Earth’s restframe is then
presumed to be in a concordant frame. However, to say
anything meaningful about the size of the components of
kμAF, we need a nonzero photon mass, since it is the only
other dimensionful parameter in Eq. (2). As mentioned in
the introduction, the required size of photon mass lies many
orders of magnitude below its experimental bounds. We
will discuss this in more detail in Sec. IV.

III. POLARIZATION VECTORS

In momentum space, the classical equation of motion,
corresponding to the Lagrangian in Eq. (2), reads
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½ðp2 −m2
γÞημν − ð1 − ξ−1Þpμpν − 2iϵαβμνðkAFÞαpβ�eðλÞνð~pÞ

≡ SμνeðλÞνð~pÞ ¼ 0; ð3Þ

where eðλÞνð~pÞ are the eigenvectors of the equation-of-
motion operator Sμν. The index λ runs over 0, 3, þ, −,
labeling the gauge mode, and three physical modes,
respectively. Contraction of Eq. (3) with pμ yields

ðξ−1p2 −m2
γÞðp · eðλÞÞ ¼ 0; ð4Þ

demonstrating that there is a gauge mode satisfying
p2 − ξm2

γ ¼ 0. This expression also establishes that the
physical polarization vectors, corresponding to the remain-
ing modes, satisfy p · eðλÞ ¼ 0. The contraction of Eq. (3)
with ðkAFÞμ gives a similar expression that demonstrates
the fact that the physical polarization modes either obey the
conventional dispersion relation p2 ¼ m2

γ , or the corre-
sponding polarization vectors satisfy kAF · eðλÞ ¼ 0. These
facts are confirmed by the explicit expressions for the
polarization vectors in Eq. (9) and by the functions defining
the dispersion relations in Eq. (10).
When the eigenvectors eðλÞνð~pÞ satisfy Eq. (3), they are

functions of the three-momentum ~p, since p0 ¼ p0ð~pÞ is
fixed by the dispersion relation. As shown in Refs. [14,16],
quantization can be carried out referring only to these on
shell polarization vectors. However, it turns out to be useful
to consider eðλÞνðpÞ as functions of both p0 and ~p that
satisfy

SμνeðλÞνðpÞ ¼ ΛλðpÞeðλÞμðpÞ; ð5Þ

where ΛλðpÞ is the eigenvalue of Sμν belonging to the
polarization mode λ. The relation

ΛλðpÞ ¼ 0; ð6Þ

can then be imposed to enforce the equation of motion.
Each of the resulting dispersion relations has two solutions,
corresponding to the conventional positive and negative
energies. Usually, one then uses the positive root of ΛλðpÞ
to define the energy of the on-shell polarization vectors.
However, in Sec. IV we show that in the present LV
case, the sign of the roots of ΛþðpÞ is invariant only in
concordant frames [13], i.e. frames where the components
of kμAF are small compared to the photon mass. In non-
concordant frames this sign can depend on the size and
direction of ~p. We will discuss this issue in more detail in
Sec. IV. For now, we let Eλð~pÞ denote the root ofΛλðpÞ that
is positive in a concordant frame. Substituting the solution
p0 ¼ Eλð~pÞ in the expression for eðλÞνðpÞ then gives the
relevant on-shell polarization vector that satisfies the
equation of motion in Eq. (3).

We determine the explicit solutions for the polarization
vectors eðλÞμðpÞ of Eq. (5) by expanding in the four basis
vectors

uμ0 ¼
pμ

N0

; uμ1 ¼
ϵμνρσpνnρðkAFÞσ

N1

;

uμ2 ¼
ϵμνρσpνðu1ÞρðkAFÞσ

N2

; uμ3 ¼
p2kμAF − ðp · kAFÞpμ

N3

:

ð7Þ

Here, the four-vector nμ is an arbitrary, observer-covariant,
four-vector with at least one component perpendicular to
the subspace formed by pμ and kμAF. Note that it is generally
not possible to use only a single nμ vector to cover all of
momentum space due ultimately to the theorem that “the
hair on a sphere cannot be combed”, i.e. it is not possible
to find a single, smooth, nonvanishing vector field on a
sphere. This problem exists even in the conventional case in
which one tries to construct a set of polarization vectors for
the transverse, massless photons. There is always at least
one direction in momentum space for which the polariza-
tion vectors must be nonsmooth. This geometrical impedi-
ment to constructing a single, global frame field forces one
to choose another external vectormμ in a different direction
than nμ to define the polarization vectors in a small cone.
The Ni in Eq. (7) are normalization factors that we

choose to be real. The basis vectors are orthogonal in the
sense that ui · uj ¼ 0 if i ≠ j. However, u0 and u3 become
lightlike if p2 ¼ 0 while u2, and u3 become lightlike if
ðp · kAFÞ2 ¼ p2k2AF. Note that this construction completely
fails when pμ ∝ kμAF. This is related to the existence of
singular points on the on-shell energy surfaces there.
We will discuss these singular points in more detail below
Eq. (11).
Using the basis in Eq. (7) and noticing that

ϵαβμνðkAFÞαpβðu1Þν ¼ N2u
μ
2; ð8aÞ

ϵαβμνðkAFÞαpβðu2Þν ¼ N−1
2 ðp2k2AF − ðp · kAFÞ2Þuμ1; ð8bÞ

it becomes straightforward to determine the polarization
vectors. They are given by

eð0ÞμðpÞ ¼ uμ0; ð9aÞ

eð3ÞμðpÞ ¼ uμ3; ð9bÞ

eð�ÞμðpÞ ¼ 1ffiffiffi
2

p ðuμ2 � iN−1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kAFÞ2 − p2k2AF

q
uμ1Þ; ð9cÞ

where the square roots in the expressions for eð�ÞμðpÞ are
defined by the conventional principal value. The eigenval-
ues corresponding to the eigenvectors, as defined in Eq. (5),
are
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Λ0ðpÞ ¼
1

ξ
ðp2 − ξm2

γÞ; ð10aÞ

Λ3ðpÞ ¼ p2 −m2
γ ; ð10bÞ

Λ�ðpÞ ¼ p2 −m2
γ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kAFÞ2 − p2k2AF

q
: ð10cÞ

These observer-scalar functions of pμ and kμAF define the
dispersion relations for each of the polarization modes
by fixing ΛλðpÞ ¼ 0. Substituting the resulting solutions
p0 ¼ Eλð~pÞ into the expressions in Eq. (9) thus gives the
polarization vectors that solve Eq. (3). Note that the basis
set in Eq. (9) is valid in a larger part of momentum space, in
the sense that the four-vectors solve the off-shell condition
in Eq. (5). This fact will be convenient for the analyses of
microcausality and the Feynman propagator.
Excluding the hypersurfaces in momentum space where

p2 ¼ 0 or ðp · kAFÞ2 − p2k2AF ¼ 0, it is always possible to
choose the normalization factors in Eq. (7) such that the
polarization vectors in Eq. (9) are normalized to þ1 or −1.
The resulting values for Ni, which we choose to be real,
are determined by

jN0j2 ¼ jp2j;
jN1j2 ¼ jp2ððn · kAFÞ2 − n2k2AFÞ þ n2ðp · kAFÞ2

þ k2AFðn · pÞ2 − 2ðp · kAFÞðn · pÞðn · kAFÞj;
jN2j2 ¼ jðp · kAFÞ2 − p2k2AFj;
jN3j2 ¼ jp2ðp2k2AF − ðp · kAFÞ2Þj: ð11Þ

As mentioned previously, there are hypersurfaces in
momentum space where the definitions in Eqs. (7), (9),
and (11) are invalid. First, momenta that satisfy p2 ¼ 0

yield polarization vectors eð0ÞμðpÞ ∝ eð3ÞμðpÞ that are light-
like. This is not a serious problem since p2 ¼ 0 does not
intersect the mass-shell of modes λ ¼ 0, 3, because of the
nonzero photon mass. Ultimately we only need to be able to
define the on-shell polarization vectors, while the off-shell
polarization vectors are very convenient, but not necessary.
The more interesting, perturbed physical λ ¼ � states are
not problematic at p2 ¼ 0.
More serious singular points occur when ðp · kAFÞ2 ¼

p2k2AF, which happens, for example, when pμ ∝ kμAF. This
only becomes an issue if the mass shell of a physical
polarization mode intersects the momentum-space hyper-
surface on which the singular points lie. When k2AF ≤ 0,
the singular hypersurface never intersects the mass shell. In
the case k2AF > 0, an intersection occurs for all transverse
polarization modes if

pμ ¼ ςKμ ≡ ς
mγk

μ
AFffiffiffiffiffiffiffi

k2AF
p ð12Þ

with ς either 1 or −1. At these two momenta, the dispersion
relations of the modes λ ¼ 3, þ, − are solved simulta-
neously, while pμ ¼ ςKμ also satisfies ðp · kAFÞ2 ¼ p2k2AF.
Furthermore, at pμ ¼ ςKμ, the physical polarization vectors
in Eq. (9) all vanish. In fact, the LV term in Eq. (3) also
vanishes in these cases, so any polarization vector orthogo-
nal to pμ will satisfy the equation of motion there. We will
choose to define the polarization vectors at pμ ¼ ςKμ by
taking some limit p0 → ςK0 of the off-shell polarization

vectors evaluated at ~p ¼ ς ~K. At this value of the spatial
momentum, the polarization vectors are given by

eð3Þμðp0;ς ~KÞ¼ εðp0−ςK0Þ
~N3

�
ςημ0j~kAFjþημi k̂

i
AF

ffiffiffiffiffiffiffi
k2AF

p
p0

mγ

�
;

ð13aÞ

eð�Þμðp0; ς ~KÞ ¼ 1ffiffiffi
2

p j~kAFj ~N1

ðϵμ0ρσð ~u1ÞρðkAFÞσ

� iεðp0 − ςK0Þj~kAFj ~uμ1Þ; ð13bÞ

where εðxÞ ¼ x=
ffiffiffiffiffi
x2

p
, ~uμ1 ¼ ϵμ0ρσnρðkAFÞσ, and ~N3 and ~N1

are normalization factors that satisfy

j ~N1j2 ¼ ð~kAF × ~nÞ2; ð14aÞ

j ~N3j2 ¼
����~k2AF −

ðp0Þ2k2AF
m2

γ

����: ð14bÞ

Note that these definitions fail for ~kAF ¼ ~0. If this is the
case, it is always possible to make a small observer Lorentz

transformation to a frame in which ~kAF ≠ ~0 and define the
theory there. This choice breaks manifest observer covari-
ance at the singular point, but this seems unavoidable.
We cannot just put the polarization vectors in Eqs. (13)

on the mass shell defined by p0 ¼ ςK0, since the factor
εðp0 − ςK0Þ becomes undefined; however, we are free to
pick the positive sign that results from approaching the
singular point from the direction p0 > ςK0 and use it to
make a choice at the singular point. The price we pay for
doing this, is that we lose manifest observer Lorentz
covariance along a singular line (on shell this corresponds
to the two singular points). This does not cause any issues
in the current paper as a complete basis of polarization
vectors at each momentum is all that is required for a
covariant field expansion, they need not be continuous
through the singular point. In fact, it is not possible even in
the conventional massless photon case to find a smooth set
of transverse polarization vectors that globally covers
momentum space due to the topological obstruction
involved in “combing the hair on a sphere”. This means
that manifest observer invariance is never possible as
certain choices have to be made as to how the necessary
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discontinuities are placed in momentum space. An example
of the physical effect of this obstruction can be observed in
Berry’s phase [24] in which a helicity state, adiabatically
transported through a closed loop in momentum space,
picks up a nontrivial phase proportional to the solid angle
of the loop. This would not happen if a globally defined
frame field of helicity states was possible.

We can now summarize the orthogonality of the polari-
zation vectors (evaluated at the same four-momentum) by

eðλÞ�ðpÞ · eðλ0ÞðpÞ ¼ gλλ
0
; ð15Þ

with

g ¼

8>>>>><
>>>>>:

diagð1;−1;−1;−1Þ for p2 > 0

diagð−1; 1;−1;−1Þ for p2 < 0 and ðp · kAFÞ2 − p2k2AF > 0�
12 0

0 −sgnðu21Þσ1

�
for p2 < 0 and ðp · kAFÞ2 − p2k2AF < 0

: ð16Þ

In Eq. (16), 12 is the 2 × 2 unit matrix and σ1 is the usual
Pauli matrix

σ1 ¼
�
0 1

1 0

�
: ð17Þ

The indices λ and λ0 in Eq. (15) label the rows and columns
of g and run over 0, 3, þ, − in that order. At the on-shell
singular points in Eq. (12), where ðp · kAFÞ2 − p2k2AF ¼ 0,
the lower-right 2 × 2 matrix becomes the negative unit
matrix, if we use the definitions in Eqs. (13).
Equation (15) establishes the orthogonality of polariza-

tion vectors that are evaluated at the same four-momentum.
Since on shell the polarization vectors of different modes
are evaluated at different values of p0 ¼ Eλð~pÞ, Eq. (15)
does not represent an orthogonality relation for on-shell
eigenvectors. In Ref. [16], such a relation was derived. With
a slight change in normalization relative to this reference, it
is given by

e�ðλ
0Þ

μ ð~pÞ½ðEλð~pÞ þ Eλ0 ð~pÞÞðημν − ð1 − ξ−1Þδμ0δν0Þ
− ð1 − ξ−1Þpiðδμi δν0 þ δμ0δ

ν
i Þ − 2ikκAFϵκ0

μν�eðλÞν ð~pÞ
¼ gλλ

0Λ0
λðpÞjp0¼Eλ

; ð18Þ

where Λ0
λðpÞ is the derivative of ΛλðpÞ with respect to p0.

The reason for choosing an alternate normalization will
become clear when we perform the quantization. Note that
the only relevant gλλ

0
for the on-shell states is the diagonal

one, provided mγ ≠ 0.
The fact that Λ0

λðpÞjp0¼Eλ
indeed corresponds to the

normalization in Eq. (15) can easily be seen by considering
the p0-derivative of Eq. (5), which reads

S0μνeðλÞνðpÞþSμνe0ðλÞνðpÞ¼Λ0
λðpÞeðλÞμðpÞþΛλðpÞe0ðλÞμðpÞ;

ð19Þ

where the primes denote derivatives with respect to p0.

After contracting this equation with ϵ�ðλÞμ ðpÞ and substitut-
ing p0 ¼ Eλð~pÞ everywhere, the second term on both the
left-hand side and the right-hand side vanishes. Inspection
of the explicit expression for S0μν then reveals that we have
obtained Eq. (18) for the case λ ¼ λ0, confirming the factor
Λ0
λðpÞjp0¼Eλ

in that equation. The derivation of Eq. (18) in
Ref. [16] was done for Eλð~pÞ ≠ Eλ0 ð~pÞ. However, using
the fact that Eq. (15) holds for on-shell eigenvectors with
degenerate energies, we can use Eq. (19) to show that
Eq. (18) also holds if Eλð~pÞ ¼ Eλ0 ð~pÞ.
In a similar way an orthogonality relation for polariza-

tion vectors with opposite three-momenta can be derived
[16]. As long as Eλð~pÞ ≠ −Eλ0 ð−~pÞ it holds that
eðλ

0Þ
μ ð−~pÞ½ðEλð~pÞ − Eλ0 ð−~pÞÞðημν − ð1 − ξ−1Þδμ0δν0Þ
− ð1 − ξ−1Þpiðδμi δν0 þ δμ0δ

ν
i Þ − 2ikκAFϵκ0

μν�eðλÞν ð~pÞ ¼ 0:

ð20Þ
Note that there is no complex conjugate on the left-side
polarization vector in this relation.

IV. ANALYSIS OF THE DISPERSION RELATION

In the previous section we found explicit expressions
for the eigenvectors of Sμν in Eq. (9). These become the
on-shell photon polarization vectors if we substitute for p0

the concordant-frame positive root Eλð~pÞ of ΛλðpÞ, with
ΛλðpÞ defined in Eq. (10). In this section we investigate the
dispersion relations, given by ΛλðpÞ ¼ 0, and in particular
the reality, degeneracy, and positivity of their roots [25].
The full dispersion relation of the CPT-odd photons is

given by detðSÞ ¼QλΛλðpÞ ¼ 0, and thus by

1

ξ
ðp2 − ξm2

γÞðp2 −m2
γÞ

× ððp2 −m2
γÞ2 − 4ðp · kAFÞ2 þ 4p2k2AFÞ ¼ 0: ð21Þ
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The left-hand side is an eighth order polynomial in p0

and as such has eight (possibly complex and/or
degenerate) roots, which we label by ω1;…;ω8. Because
there is no term proportional to the seventh power of p0 in
Eq. (21), Vieta’s formulas tell us that the sum of all roots
vanishes, i.e.

X8
i¼1

ωi ¼ 0: ð22Þ

The polynomial in Eq. (21) can be factorized in three
separate polynomials, two of which are Λ0ðpÞ and Λ3ðpÞ,
while the third one is given by

ΛTðpÞ ¼ ΛþðpÞΛ−ðpÞ
¼ ðp2 −m2

γÞ2 − 4ðp · kAFÞ2 þ 4p2k2AF: ð23Þ

Since Eq. (21) is invariant under p → −p, all roots come
in pairs such as ω1ð~pÞ ¼ −ω2ð−~pÞ. In concordant frames,
one root of each pair is positive, while the other is negative,
e.g. if ω1ð~pÞ > 0, then ω2ð~pÞ < 0. We apply the usual
redefinition to the concordant-frame negative-energy sol-
utions, i.e.

E0ð~pÞ ¼ ω1ð~pÞ ¼ −ω2ð−~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ ξm2

γ

q
; ð24aÞ

E3ð~pÞ ¼ ω3ð~pÞ ¼ −ω4ð−~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
; ð24bÞ

Eþð~pÞ ¼ ω5ð~pÞ ¼ −ω6ð−~pÞ; ð24cÞ

E−ð~pÞ ¼ ω7ð~pÞ ¼ −ω8ð−~pÞ: ð24dÞ

This also defines our labeling of the roots of the different
ΛλðpÞ functions. Although it is not evident at this point,
two of the roots (ω5 and ω6) correspond to the polarization
mode λ ¼ þ, while the other two (ω7 and ω8) belong to
λ ¼ −. Together they are the roots of the fourth-order
polynomial ΛTðpÞ in Eq. (23) and obey

X8
i¼5

ωi ¼ 0: ð25Þ

Since the roots of Λ0ðpÞ and Λ3ðpÞ are trivial and need no
further discussion, we will commit the rest of this section to
ΛþðpÞ and Λ−ðpÞ.
When not restricting to an observer frame where kμAF

has a convenient form, the explicit expressions for the roots
of Λ�ðpÞ are unwieldy and provide little insight about
the issues we want to discuss (except for lightlike kμAF).
However, even without such explicit expressions, it is
possible to show that if k2AF < m2

γ , then ΛþðpÞ and
Λ−ðpÞ have two real and nondegenerate roots each.

Moreover, these four roots are all different, except at
two points in momentum space for timelike kμAF.
Similarly, we can show that the energy is bounded from
below and that no negative energies occur if ðk0AFÞ2 < m2

γ .
To prove the statements in the previous paragraph, we

define the following functions of p0:

f0ðp0Þ ¼ 1

2
ðΛþðp0Þ þ Λ−ðp0ÞÞ; ð26aÞ

fδðp0Þ ¼ 1

2
ðΛþðp0Þ − Λ−ðp0ÞÞ; ð26bÞ

where we now view Λ�ðpÞ as functions of p0 by
considering them at fixed ~p. It follows that Λ�ðp0Þ ¼
f0ðp0Þ � fδðp0Þ and that for a root, ω, of Λ�ðp0Þ,
f0ðωÞ ¼∓ fδðωÞ, i.e. in a plot the intersections of
f0ðp0Þ with ∓ fδðp0Þ correspond to the roots of Λ�ðpÞ,
while intersections of ðf0ðp0ÞÞ2 and ðfδðp0ÞÞ2 correspond
to the roots of the polynomial ΛTðpÞ. Examples of such
plots are given in Figs. 1 and 2.
The derivatives with respect to p0 of the functions in

Eq. (26) are given by

f00ðp0Þ ¼ 2p0 ⟶
p0→∞

∞; ð27aÞ

f0δðp0Þ ¼ 4~k2AFp0 − 4k0AFð~p · ~kAFÞ
fδðp0Þ ⟶

p0→∞
2j~kAFj; ð27bÞ

where the limiting values are for p0 to positive infinity.
Taking p0 to negative infinity will give the same result
with opposite sign. The derivative f0δðp0Þ shows that if
fδðp0Þ ∈ R, then fδðp0Þ is an increasing (decreasing)

function for p0 larger (smaller) than k0AFð~p · ~kAFÞ=~k2AF.
To analyze the functions further, we will make a distinction
between k2AF ≤ 0 and k2AF > 0. In the following, we
will discuss these timelike and spacelike/lightlike cases
separately.
Timelike case— If k2AF > 0, a typical plot of the

functions f0ðp0Þ and �fδðp0Þ looks like the plot in
Fig. 1(a). The corresponding plots of ðf0ðp0ÞÞ2 and
ðfδðp0ÞÞ2 are shown in the figure Fig. 1(b). From the
limiting values of the derivatives in Eqs. (27), together with
the fact that fδðp0Þ is real and non-negative if k2AF > 0, it is
easily seen that fδðp0Þ always intersects f0ðp0Þ at two
different points. These points correspond to the two roots of
Λ−ðpÞ: ω7 and ω8. This thus establishes that Λ−ðpÞ always
has two nondegenerate roots if k2AF > 0. One of these roots
is positive, while the other one is negative, and these signs
are the same in any observer frame. Moreover, E−ð~pÞ is
bounded from below, as shown in Eq. (C5a).
In Fig. 1(a), −fδðp0Þ also intersects f0ðp0Þ twice, once

for positive p0 and once for negative p0. However, there are
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two other possible scenarios. The intersections can be on
the same side of the vertical p0 ¼ 0 axis, or the curve of
−fδðp0Þ might lie entirely below the one of f0ðp0Þ. In the

former case, the roots of ΛþðpÞ have the same sign, while
in the latter case they both have a nonvanishing imaginary
part. These three scenarios are summarized by

(i) − fδð0Þ > f0ð0Þ → ω5; ω6 ∈ R; sgnðω5Þ ¼ −sgnðω6Þ;

(ii) − fδð0Þ < f0ð0Þ and ∃p0∶ − fδðp0Þ > f0ðp0Þ → ω5; ω6 ∈ R; sgnðω5Þ ¼ sgnðω6Þ;

(iii) ∀p0∶ − fδðp0Þ < f0ðp0Þ → ω5; ω6 ∈ C:

It turns out that a sufficient observer noninvariant condition
for scenario (i) is

ðk0AFÞ2 < m2
γ : ð28Þ

The fact that −fδð0Þ > f0ð0Þ if this condition holds is
shown in Appendix A. We also find there that, if
ðk0AFÞ2 > m2

γ , then there exist a range of (generally small)

three-momenta for which −fδð0Þ < f0ð0Þ, so either sce-
nario (ii) or (iii) applies.
In Appendix A we show that if the observer Lorentz

invariant condition

k2AF < m2
γ ð29Þ

FIG. 1. (a) Typical plot of f0ðp0Þ and�fδðp0Þ for timelike kAF. The plots are exaggerated in the sense that for physically viable values
of kμAF in concordant frames and for experimentally attainable values of ~p, both fδðp0Þ and −fδðp0Þ are nearly horizontal and very close
to the p0-axis. Black arrows indicate p0 values, colored arrows indicate values of the corresponding function. (b) Corresponding plot for
ðf0ðp0ÞÞ2 and ðfδðp0ÞÞ2. The latter stays above the p0 axis, which corresponds to the square root being always real.

FIG. 2. (a) Typical plot of f0ðp0Þ and�fδðp0Þ for spacelike or lightlike kμAF. The plots are exaggerated in the sense that for physically
viable values of kμAF in concordant frames and for experimentally attainable values of ~p, the two branches of both fδðp0Þ and −fδðp0Þ
are nearly horizontal and very close to the p0 axis, while their starting points are also very close together. Black arrows indicate p0

values, colored arrows indicate values of the corresponding function. (b) Corresponding plot for ðf0ðp0ÞÞ2 and ðfδðp0ÞÞ2. The latter
goes below the p0 axis, which corresponds to the square root becoming imaginary.
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holds, we can always find ap0 for which−fδðp0Þ > f0ðp0Þ.
This shows that both roots of ΛþðpÞ are real and non-
degenerate if Eq. (29) is satisfied, while their sign is
guaranteed to differ if Eq. (28) applies. Equation (29) can
be enforced on the theory in any observer frame. However,
the size ofk0AF changeswhenperforming anobserverLorentz
boost. Therefore it can only be satisfied in a subset of frames,
which we can call concordant frames. In other words,
Eq. (28) provides a quantitative definition of a concordant
frame in the case where kμAF is the only Lorentz-violating
coefficient. The fact that such a definition is possible hinges
on the introduction of a nonzero photon mass.
In nonconcordant frames, the signs of the two roots of

ΛþðpÞ can thus be equal. If they are both negative, the energy
[given in Eq. (24)] is also negative. However, since this only
happens for a limited range of j~pj values [see Eq. (A4)],
Eþð~pÞmust be bounded frombelow. In fact, inEq. (C5b),we

determine that Eþð~pÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ − k2AF

q
− j~kAFj.

If Eq. (29) is satisfied, the only degeneracy in the
dispersion relation for the λ ¼ � modes can come from a
root of Λ−ðpÞ being equal to a root of ΛþðpÞ. This requires
fδðp0Þ ¼ 0whilep0 simultaneously has to solvep2 ¼ m2

γ . It
follows that the roots of Λ−ðpÞ and ΛþðpÞ become equal if

pμ ¼ ς
mγk

μ
AFffiffiffiffiffi
k2

p ≡ ςKμ; ð30Þ

which are points in momentum space where the LV term
disappears from the equation ofmotion, as already discussed
in Sec. III.
Spacelike/lightlike case— If k2AF ≤ 0, a typical plot of

the functions in Eqs. (26) looks like the one in Fig. 2(a).
One clearly sees that the square root in fδðp0Þ becomes
imaginary for values of p0 between x−1 and xþ1, with

xα ¼
k0AFð~p · ~kAFÞ

~k2AF
þ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2AFðð~p · ~kAFÞ2 − ~p2~k2AFÞ

q
~k2AF

: ð31Þ

However, we show in Appendix A that jxαj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
for all values of ~p and kμAF. This means that ΛþðpÞ and
Λ−ðpÞ always have two real roots each, if kμAF is spacelike
or lightlike. As in the case of timelike kμAF, we find, by
investigating when −fδð0Þ < f0ð0Þ (see Appendix A), that
the condition in Eq. (28) is sufficient to make sure that the
roots of ΛþðpÞ have opposite signs. On the other hand, if
ðk0AFÞ2 > m2

γ then there exist observer frames in which both
roots have the same sign. As in the timelike case, Eþð~pÞ
can thus become negative, however in Appendix B we

show that E�ð~pÞ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ − k2AF

q
∓ j~kAFj for spacelike/

lightlike kμAF.
We summarize our findings regarding the signs and the

domain of the roots in Table I. It is clear that k2AF < m2
γ is a

necessary condition for a consistent physical theory in all
observer frames. This shows that introducing a nonzero
photon mass is unavoidable if kμAF is timelike. This was
already found in Ref. [22]. In addition, for spacelike,
lightlike, and timelike kμAF, a nonzero photon mass allows
for a quantitative definition of concordant frames, in the
sense that in frames where Eq. (28) is satisfied, energy
positivity is guaranteed (some additional issues related to
energy positivity are discussed in Sec. V).
It is interesting, therefore, to compare the current

experimental bounds on kμAF and mγ . For the photon mass,
the particle data group (PDG) quotes as the best possible
bound [26]

mγ < 1 × 10−27 GeV: ð32Þ

This limit is inferred from the absence of a perturbed
structure of large-scale magnetic fields that would result
from a significant nonzero photon mass (see Refs. [27,28]).
The verification of certain properties of galactic magnetic
fields might allow for an improvement of Eq. (32) by 9
orders of magnitude [28,29]. Nevertheless, this result is

TABLE I. The different conditions on kμAF in the leftmost three columns give different possibilities for the sign and
domain of the roots of the λ ¼ � dispersion relations. The latter are summarized in the two rightmost columns.

Which of the options in the rightmost column is realized, is determined by j~pj and the angle between ~p and ~kAF. If
j~pj is in the interval in Eq. (A4) and the angle satisfies Eq. (A5), then three of the four roots will have the same sign
[provided ðk0AFÞ2 > m2

γ ].

k2AF ðk0AFÞ2 sgnðk0AFð~p · ~kAFÞÞ Domain roots sgnðω5;ω6;ω7;ω8Þ
k2AF < 0 <m2

γ þ or − R ðþ;−;þ;−Þ
k2AF < 0 >m2

γ þ R ðþ;−;þ;−Þ or ðþ;þ;þ;−Þ
k2AF < 0 >m2

γ − R ðþ;−;þ;−Þ or ð−;−;þ;−Þ
0 < k2AF < m2

γ <m2
γ þ or − R ðþ;−;þ;−Þ

0 < k2AF < m2
γ >m2

γ þ R ðþ;−;þ;−Þ or ðþ;þ;þ;−Þ
0 < k2AF < m2

γ >m2
γ − R ðþ;−;þ;−Þ or ð−;−;þ;−Þ

k2AF > m2
γ >m2

γ þ or − C n.a.
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still many orders of magnitude from the best bounds
on kμAF, which follow from cosmological searches for
birefringence [10],

k0AF < 10−43 GeV; ð33Þ

where k0AF is defined in the Sun-centered inertial reference
frame [10]. It follows that the assumption of a nonzero
photon mass, that permits the construction of a phenom-
enologically viable model for photons with CPT-violation
[with k2AF < ðk0AFÞ2 < m2

γ ], is entirely consistent with
experimental observations. Moreover, the Stückelberg
mechanism can be used to introduce the mass in a
gauge-invarant manner, at least at the level of pure QED.
This does not mean, however, that we can always ignore

the negative energies in the theory, even for practical
purposes. This is illustrated for example by assuming that
the sizes of the photon mass and kμAF are comparable with
the best achievable bounds, such that mγ ∼ 10−36 GeV, as
mentioned below Eq. (32). Frames moving with respect to
Earth with a relativistic γ-factor up to γ ∼mγ=k0AF ∼ 107

can then be considered to be concordant frames (i.e. there
are no negative energies in these frames). Inversely, this
means that the rest frame of ultra-high-energy cosmic-ray
protons could easily be a nonconcordant frame, since these
protons have energies up to 108 TeV, corresponding to
γ ¼ 1011. Note that the bound mγ < 10−36 GeV is quite
speculative [28], since it depends on several assumptions
about galactic magnetic fields. Taking the PDG value in
Eq. (32) for the photon mass avoids any potential problems
with nonconcordant frames. These values are discussed
further in the context of Cherenkov radiation in Ref. [16].

V. ENERGY POSITIVITY AND STABILITY

In the previous section we found that there exist
(strongly boosted, but possibly physically relevant)
observer frames in which the λ ¼ þ polarization mode
of the LV photon has negative energies for a certain range
of three momenta [see Eq. (A4) in Appendix A].
Nevertheless, the energy remains bounded from below.
It lies outside the scope of this paper to rigorously

address if such a theory can be fully consistent; however,
the point of view one often takes in this respect is to regard
the theory as an effective theory. The effective theory is
only valid up to a certain energy scale, or, equivalently,
describes particles restricted to have concordant rest
frames. Above this energy scale, unknown higher-
dimensional nonrenormalizable operators become relevant.
These are conjectured to prevent negative energies in all
observer frames. This is discussed in detail in Ref. [13].
It was also noticed in Ref. [13] that negative-energy

issues are closely related to the stability of the theory.
Photons with the λ ¼ þ polarization mode can have
spacelike momenta and can thus be emitted by an electron

or positron traveling fast enough in vacuum. Since an
appropriate Lorentz boost of a spacelike momentum can
change the sign of its zeroth component, this corresponds
to the existence of negative energies in some frame.
Although already discussed in Ref. [13], we emphasize
once again that allowing for vacuum-Cherenkov radiation
in an observer Lorentz invariant theory is thus equivalent
to accepting that the theory has negative energies in some
frame. The alternative of assuming the existence of
nonrenormalizable, higher-order operators that prevent
negative energies in all observer frames, also prevents
vacuum-Cherenkov radiation in nature.
A common problem in generic theories with negative

energies seems to be that there is no simple separation
between the positive- and negative-energy branches of the
dispersion relation. This impedes the canonical quantiza-
tion of the theory. In a Lorentz-symmetric theory, one can
easily select one of the branches by using the sign of the
roots, which is invariant under Lorentz transformations if
all on-shell momenta are timelike. Since the model with
kμAF that we consider here allows for spacelike momenta
and negative energies, the sign of the root can no longer be
used to select a particular branch of the dispersion relation.
It turns out, however, that a function still exists whose sign,
when evaluated at a root of ΛλðpÞ, is the same in any
observer frame. It is given by

Λ0
λðpÞ ¼

∂ΛλðpÞ
∂p0

: ð34Þ

This function can therefore be used to separate the branches
in an observer-covariant way even when a single branch
dips into the negative energy region. The key fact that
makes this work is that the ordering of the roots of the
dispersion relation is observer Lorentz invariant.
To prove that this function indeed has the correct

properties, we first label the roots of ΛTðpÞ ¼
ΛþðpÞΛ−ðpÞ as before, such that ω5 and ω7 are the roots
on the right-hand side in Figs. 1 and 2 (these are positive in
concordant frames), while ω6 and ω8 are the roots on the
left-hand side in the same figures (these are negative in
concordant frames). We observe that we can write

Λ0
Tðωj; ~pÞ ¼

� ∂
∂p0

Y8
i¼5

ðp0 − ωiÞ
�
p0¼ωj

¼
Y
i≠j

ðωj − ωiÞ: ð35Þ

By inspection of Figs. 1 and 2, together with the consid-
erations in Appendix A, it is not hard to establish that

Λ0
Tðω6; ~pÞ;Λ0

Tðω7; ~pÞ > 0; ð36aÞ

Λ0
Tðω5; ~pÞ;Λ0

Tðω8; ~pÞ < 0: ð36bÞ
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For example,

Λ0
Tðω5; ~pÞ ¼ ðω5 − ω6Þðω5 − ω7Þðω5 − ω8Þ: ð37Þ

From Figs. 1 and 2 it is easy to see that jω7j > jω5j,
jω8j > jω5j, ω7 > 0, and ω8 < 0, except at pμ ¼ ςKμ for
timelike kμAF [see Eq. (12)], where ω5 ¼ ω7 ¼ −ω8. If the
roots are not degenerate, the product of the last two factors
in Eq. (37) is smaller than zero. Moreover, ω5 − ω6 is also
always larger than zero, because the ordering of these roots
is the same in any observer frame. This follows directly
from considerations in Appendix A. We conclude that
Λ0
Tðω5; ~pÞ < 0. The sign of Λ0

Tðωj; ~pÞ evaluated at the
other three roots is determined similarly and the result
corresponds to Eq. (36).
Subsequently, we note that

Λ0
Tðω5;6; ~pÞ ¼ Λ−ðω5;6; ~pÞΛ0þðω5;6; ~pÞ; ð38aÞ

Λ0
Tðω7;8; ~pÞ ¼ Λþðω7;8; ~pÞΛ0

−ðω7;8; ~pÞ: ð38bÞ

Examination of Figs. 1 and 2 reveals that Λ−ðω5;6; ~pÞ < 0

and Λþðω7;8; ~pÞ > 0. Combining this with Eq. (36), we
conclude that

Λ0þðω5; ~pÞ;Λ0
−ðω7; ~pÞ > 0; ð39aÞ

Λ0þðω6; ~pÞ;Λ0
−ðω8; ~pÞ < 0: ð39bÞ

At pμ ¼ ςKμ, the expression in Eq. (37) vanishes, and the
derivation of Eqs. (39) fails. As discussed before, the LV
term disappears from the equation of motion in that case

and at ~p ¼ ς ~K we have

Λ0
�ðp0; ς ~KÞ ¼ 2p0 � 2εðp0 − ςK0Þj~kAFj; ð40Þ

with εðxÞ ¼ x=
ffiffiffiffiffi
x2

p
. At p0 ¼ ςK0, εðp0 − ςK0Þ is

undefined. However, it can be defined using the same
limiting procedure that was used for the polarization
vectors in Eq. (13) with εðp0 − ςK0Þ ¼ 1 and thus

sgnðΛ0
�ðp0;ς ~KÞÞjp0→ςK0 ¼ sgnðςK0Þ, because jK0j> j~kAFj

for timelike kμAF. Therefore, also in the degenerate case, the
sign of Λ0

�ðpÞ is an observer Lorentz invariant quantity.
In fact, it corresponds to the sign of p0.
From this and from Eqs. (39) we thus conclude that the

sign of Λ0
�ðpÞ, evaluated at one of the roots, corresponds

to the sign of that root in a concordant frame and is an
observer Lorentz invariant quantity. This obviously holds
for all functions ΛλðpÞ, since for the other polarization
modes Λ0

0;3ðpÞ ∝ p0. The fact that it also holds for the
polarization modes λ ¼ � is directly related to the fact that
the ordering of the roots stays the same in any observer

frame (provided k2AF < m2
γ ), as becomes clear from the

considerations below Eq. (37).
More insight as to why the sign of Λ0

λðpÞ is an observer
Lorentz invariant quantity can be gained from considering
the group velocity, defined by

~vðλÞg ¼ ∂Eλð~pÞ
∂ ~p : ð41Þ

The size of ~vð�Þ
g is related to the sign of Λ0

�ðpÞ. To show
this, we perform an observer-Lorentz-transformation on
Λ0
λðpÞ and obtain

∂ΛλðpÞ
∂p0

����
p0¼Eλð~pÞ

→ γ

�∂ΛλðpÞ
∂p0

− ~β ·
∂ΛλðpÞ
∂ ~p

�
p0¼Eλð~pÞ

¼ γð1þ ~β · ~vðλÞg Þ
�∂ΛλðpÞ

∂p0

�
p0¼Eλð~pÞ

; ð42Þ

where γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~β2

q
is the relativistic boost factor.

We used the fact, clarified in Appendix B, that ~vðλÞg ¼
−½∂ΛλðpÞ

∂ ~p = ∂ΛλðpÞ
∂p0 �

p0¼Eλð~pÞ
. It is clear that if j~vðλÞg j < 1, then

Λ0
λðpÞ has the same sign in any observer frame. In

Appendix B we show explicitly that j~vðλÞg j < 1 for the
present LV model.
The considerations above allow us to use the sign of the

function Λ0
�ðpÞ as an observer-Lorentz-invariant way

of selecting a particular branch of the dispersion relation.
For example,Z

d3p
Z

dp0hðp0ÞsgnðΛ0þðpÞÞθðΛ0þðpÞÞδðΛþðpÞÞ

¼
Z

d3p
Λ0þðω5Þ

hðω5Þ; ð43Þ

where hðp0Þ is an arbitrary function of p0. Incidentally, this

shows that d3p
Λ0
λðpÞ is an observer Lorentz invariant phase-

space factor, that can be used to replace the usual d
3p

2p0, which

is used in the Lorentz-symmetric case.

VI. PROPAGATOR AND POLARIZATION
VECTORS

In this section we derive a relation between a sum over
bilinears of polarization vectors and the propagator in
momentum space. Since a propagator in coordinate space
is a Green’s function of the equation-of-motion operator,
the momentum-space propagator PμνðpÞ satisfies

SμνðpÞPνρðpÞ ¼ −iδρμ; ð44Þ

with SμνðpÞ defined in Eq. (3). Therefore,
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PμνðpÞ ¼ −iðS−1Þμν ¼ −i
�
AdjðSÞ
detðSÞ

�
μν

: ð45Þ

The determinant of S is given on the left-hand side of
Eq. (21), while the adjugate matrix can be determined
explicitly in terms of traces of powers of S [20]. The
result is

iPμνðpÞ

¼ 1

ΛTðpÞ
�
ðp2 −m2

γÞημν

þ 4ðpμpνk2AF þ kμAFk
ν
AFp

2 − ðpμkνAF þ pνkμAFÞðp · kAFÞÞ
p2 −m2

γ

þ 2iϵμναβðkAFÞαpβ

�
− ð1− ξÞ pμpν

ðp2 − ξm2
γÞðp2 −m2

γÞ
;

ð46Þ

with ΛTðpÞ given in Eq. (23).
If there are four orthogonal polarization vectors, we can

derive a relation between the expression in Eq. (46) and the
polarization vectors as defined in Eq. (9). To show this, we
define a matrix U that has the polarization vectors as its
columns, i.e. its entries are defined by

Uab ¼ eðbÞa a; b ∈ 0; 1; 2; 3; ð47Þ

where we identify eðbÞ with eð0Þ, eð3Þ, eðþÞ, eð−Þ for b ¼ 0, 1,
2, 3 respectively. It is clear that ðSUÞab ¼ ΛbðpÞeðbÞa (the
matrix S here corresponds to Sμν, with its first index up

and its second index down). Assuming that the polarization
vectors are normalized according to Eq. (11), we conclude
that

ðU†ηSUÞab ¼ ΛbðpÞgab; ð48Þ

with η the Minkowski metric and g given in Eq. (16). If
all the polarization vectors are orthogonal then U has an
inverse,

ðg−1U†ηUÞab ¼ δab; ð49Þ

and we can write

ðS−1Þab ¼ ðUD−1U†ηÞab; ð50Þ

where Dab ¼ ΛbðpÞgab. Writing with Lorentz indices and
once again labeling polarizations by λ ¼ 0, 3, þ, −, this
becomes

iPμ
νðpÞ ¼ ðS−1Þμν ¼

X
λλ0

gλλ
0 eðλÞμeðλ

0Þ�
ν

ΛλðpÞ
: ð51Þ

This sum, containing bilinears of the polarization vectors, is
thus equal to the expression in Eq. (46).
Off shell, the form of two of the four terms in Eq. (51)

depends on the sign of ðp · kAFÞ2 − p2k2AF. This follows
from the dependence of gλλ

0
on this same sign [see

Eq. (16)]. We write the relevant terms as

Pμν
T ðpÞ ¼

8<
:

gþþ eðþÞμeðþÞν�
ΛþðpÞ þ g−− eð−Þμeð−Þν�

Λ−ðpÞ for ðp · kAFÞ2 − p2k2AF > 0

gþ− eðþÞμeð−Þν�
ΛþðpÞ þ g−þ eð−ÞμeðþÞν�

Λ−ðpÞ for ðp · kAFÞ2 − p2k2AF < 0
: ð52Þ

Notice that each of the terms in Eq. (52) has a branch cut in the complex p0 plane, due to the square root in the expression
for Λ�ðpÞ. This seems to hamper the definition of an appropriate contour integral to implement the boundary conditions of
for example the Feynman propagator. However, the expression in Eq. (46), and therefore the entire sum in Eq. (51), has no
such branch cuts. In fact, if we put in the explicit expressions for the polarization vectors, Λ�ðpÞ, and components of g, we
find that

Pμν
T ðpÞ ¼ 1

ΛTðpÞ
½ðp2 −m2

γÞημν þ 2iϵμναβðkAFÞαpβ� þ
ðp2 −m2

γÞðpμpνk2AF þ kμAFk
ν
AFp

2 − ðpμkνAF þ pνkμAFÞðp · kAFÞÞ
ððp · kAFÞ2 − p2k2AFÞΛTðpÞ

;

ð53Þ

for both positive and negative ðp · kAFÞ2 − p2k2AF. This
expression has no branch cuts in the complex p0 plane.
Note that the dependence on nμ introduced to define
the polarization vectors has dropped out of the above
expression.

VII. QUANTIZATION

Using the polarization vectors that follow from the
equation of motion, given in Eq. (9), we can give the
explicit mode expansion of the photon field,
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AμðxÞ ¼
Z

d3 ~p
ð2πÞ3

X
λ

1

Λ0
λðpÞ

h
aλ~pe

ðλÞ
μ ð~pÞe−ip·x

þaλ†~p e
ðλÞ�
μ ð~pÞeip·x

i
p0¼Eλð~pÞ

; ð54Þ

where Λ0
λðpÞ is the derivative with respect to p0 of ΛλðpÞ,

defined in Eq. (10). This normalization differs from the
conventional one and corresponds to the one chosen in
Eq. (18). As mentioned below Eq. (43), in this way the
phase space factor in this expression for AμðxÞ is observer
Lorentz invariant. The complex weights aλ~p and a

λ†
~p become

annihilation and creation operators on a Fock space, when
we quantize the theory.
To perform the quantization, we compute the canonical

conjugate of AμðxÞ in the usual way by taking derivatives
of the Lagrangian with respect to the time derivative of
the photon field. This results in a canonical momentum,
given by

πμðxÞ ¼ Fμ0ðxÞ þ ϵ0μαβðkAFÞαAβðxÞ − ημ0
1

ξ
∂νAνðxÞ:

ð55Þ

We then impose the following equal-time commutation
relations on the fields,

½Aμðt; ~xÞ; πνðt; ~yÞ� ¼ iδνμδ3ð~x − ~yÞ; ð56aÞ

½Aμðt; ~xÞ; Aνðt; ~yÞ� ¼ 0: ð56bÞ

This implements the standard canonical quantization in a
covariant manner, as is done in the conventional Gupta-
Bleuler method. From the imposed commutation relations
and the expression for the canonical momentum, we find
the following commutation relations [16]:

½ _Aμðt; ~xÞ; Aνðt; ~yÞ� ¼ −½Aμðt; ~xÞ; _Aνðt; ~yÞ�
¼ iðημν − δμ0δ

ν
0ð1 − ξÞÞδ3ð~x − ~yÞ; ð57aÞ

½ _Aμðt; ~xÞ; _Aνðt; ~yÞ� ¼ i½2ϵ0μνλðkAFÞλ þ ð1 − ξÞ
× ðδμ0δνj þ δμjδ

ν
0Þ∂j

x�δ3ð~x − ~yÞ: ð57bÞ

In order to see what the commutation relations in Eqs. (57)
imply for the oscillators aλ~p and aλ†~p in the mode expansion

in Eq. (54), note that the latter can be inverted using the
orthogonality relations (18) and (20) as [16]

gλλ
0
aλ

0
~q ¼ i

Z
d3xeiq·x½∂0

↔
ðημν − ð1 − ξ−1Þδμ0δν0Þ

− ð1 − ξ−1Þqjðδμjδν0 þ δμ0δ
ν
jÞ

þ 2kAFκϵκ0μν�e�ðλÞν ð~qÞAμðxÞ; ð58aÞ

gλλ
0
aλ

0†
~q ¼ −i

Z
d3xe−iq·x½∂0

↔
ðημν − ð1 − ξ−1Þδμ0δν0Þ

− ð1 − ξ−1Þqjðδμjδν0 þ δμ0δ
ν
jÞ

þ 2kAFκϵκ0μν�eðλÞν ð~qÞAμðxÞ; ð58bÞ

where q0 ¼ Eλð~qÞ in both expressions. Using Eq. (58),
together with the commutation relations in Eqs. (57), it
can be shown that the oscillators satisfy the commutation
relations

½aλ~p; aλ
0†
~q � ¼ −ð2πÞ3gλλ0Λ0

λðpÞδ3ð~p − ~qÞjp0¼Eλð~pÞ; ð59aÞ

½aλ~p; aλ
0
~q � ¼ ½aλ†~p ; aλ

0†
~q � ¼ 0: ð59bÞ

The normalization of the polarization vectors in Eqs. (11),
together with the normalization factor 1=Λ0

λðpÞ in the
definition of the photon field, makes sure that the right-
hand side of Eq. (59a) is always positive if λ¼ λ0 ¼ 3,þ, −,
while it is negative if λ ¼ λ0 ¼ 0. This holds in all observer
frames, and follows from the fact, discussed in Sec. V, that
Λ0
λðpÞjp0¼Eλð~pÞ is always positive.
We define the one-particle state by

j~p; λi ¼ aλ†~p j0i; ð60Þ

where j0i is the vacuum state that is annihilated by aλ~p. As in

the usual case, the one-particle states with λ ¼ 0 have
negative norm, while the other polarizations have a positive
norm. This holds in any observer frame, due to the
normalization in Eq. (59) and the on-shell form of gλλ

0
,

given in Eq. (16). The consistency of the quantization in
arbitrary observer frames thus crucially depends on the fact
that the sign of Λ0

λðpÞ is an observer Lorentz invariant
quantity. One might think that a different choice for the
normalization of the polarization vectors or the photon field
could invalidate this statement. However, to keep covariant
transformation properties for the photon field these changes
have to be related and a different choice leads to the same
conclusion.
As in the conventional Gupta-Bleuler method one can

now go on and implement a gauge-fixing condition on the
Hilbert space of physical states, such that no negative-norm
states appear in physical observables. In Sec. X we show, in
the context of BRST quantization, that this can be done
consistently.
Finally we note that, although the theory contains

negative-energy states in some observer frames, the vac-
uum is stable in the sense that it is not possible to create
physical particles from nothing. This follows from the fact
that frames exist in which the theory does not contain any
negative-energy states (concordant frames). In such frames
energy conservation prohibits the mentioned process.
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Observer Lorentz invariance then implies that it must be
forbidden in any observer frame. A similar argument shows
that a charged particle emitting Cherenkov radiation will
stop doing so after a while. In concordant frames this
happens when it has lost energy to the point that no more
photons (with spacelike momenta) can be emitted [13].
This depends on the fact that the energy is bounded from
below in all observer frames.

VIII. CAUSALITY

The notion of causality is closely related to relativity and
Lorentz symmetry. In quantum field theory one usually
considers microcausality, i.e. the local (anti)commutativity
of observables for spacelike separations. In the present case
the theory is microcausal if

Dμνðx−yÞ¼ ½AμðxÞ;AνðyÞ�¼0 for ðx−yÞ2<0: ð61Þ

In this section we will confirm by explicit calculation that
Eq. (61) holds.
Using the commutation relation of the creation and

annihilation operators in Eqs. (59), we find that we can
write

DμνðzÞ ¼ −
Z

d3p
ð2πÞ3

X
λ

gλλ

Λ0
λðpÞ

½eðλÞμð~pÞeðλÞν�ð~pÞe−ip·z

−eðλÞμ�ð~pÞeðλÞνð~pÞeip·z�jp0¼Eλð~pÞ; ð62Þ

where z ¼ x − y. Using Eq. (43), the fact that

eðλÞμ�ð−pÞeðλÞνð−pÞ ¼ eðλÞμðpÞeðλÞν�ðpÞ, and Λ0ðpÞ !p→−p

−Λ0ðpÞ, we can write this as

DμνðzÞ ¼ −
Z

d4p
ð2πÞ3

X
λλ

gλλeðλÞμðpÞeðλÞν�ðpÞsgnðΛ0ðpÞÞ

× δðΛλðpÞÞe−ip·z: ð63Þ

It is straightforward to check, by explicit calculation or by
using the relation in Eq. (51), that this is equal to

DμνðzÞ ¼ −
Z

d3p
ð2πÞ3

Z
C

dp0

ð2πÞP
μνe−ip·z

¼ i
Z

d3p
ð2πÞ3

Z
C

dp0

ð2πÞ
AdjðSÞμν
detðSÞ e−ip·z; ð64Þ

where the contour in the complex p0 plane encircles all
poles in the clockwise direction, Pμν is given in Eq. (46),
and AdjðSÞμν ¼ detðSÞðS−1Þμν is the adjugate matrix of S,
whose relation to Pμν is given in Eq. (45). Note that Pμν

contains double and triple poles at pμ ¼ ςKμ, with Kμ

defined in Eq. (12) and ς ¼ �1. The result of calculating
the residues at these higher-order poles corresponds to the

definitions of the polarization vectors at the mentioned
momenta, given in Eq. (13).
The expression in Eq. (64) is manifestly observer

Lorentz covariant. Therefore, we can calculate its compo-
nents in a particular frame. If z2 ¼ ðx − yÞ2 < 0, we can
go to an observer frame, where z0 ¼ 0. In this frame
we perform the contour integration. Realizing that
detðSÞ ¼ 1

ξ

Q
8
i¼0ðp0 − ωiÞ, we get that

DμνðzÞjz0¼0 ¼ −ξ
Z

d3p
ð2πÞ3

X8
i¼1

×

�
AdjðSÞμνQ
j≠iðp0 − ωjÞ

e−i~p·~z
�
p0¼ωi

: ð65Þ

This result is not valid at the two points in momentum
space pμ ¼ ςKμ [see Eq. (12)] when k2AF > 0. At these two
momenta, the functions ΛλðpÞ with λ ¼ 3, þ, − have
degenerate roots. Therefore, the expression in Eq. (64) has
a triple pole. However, performing the p0 contour integra-

tion at the fixed three-momentum value ~p ¼ ς ~K in the
appropriate way gives identically zero.
Away from pμ ¼ ςKμ, we use that every component of

the numerator in Eq. (65) is a polynomial in p0.
Furthermore, it is easy to show that

X8
i¼1

ðωiÞnQ
j≠iðωi − ωjÞ

¼

8>><
>>:

0 if n ¼ 0;…; 6

1 if n ¼ 7P
8
i¼1 ωi if n ¼ 8

:

ð66Þ

Using the explicit expression for AdjðSÞ, that follows from
Eq. (45) and Eq. (46), it becomes clear that

DμνðzÞjz0¼0 ¼ 0; ð67Þ
i.e. every component of DμνðzÞ vanishes in an observer
frame where z0 ¼ 0. Therefore, since DμνðzÞ is observer
Lorentz covariant, we conclude that it vanishes in any
frame with ðx − yÞ2 < 0, i.e. the fields commute for
spacelike separation, confirming microcausality. Notice
that we also confirmed Eq. (56b). The other commutation
relations in Eq. (57) can be derived in a completely
analogous way.

IX. FEYNMAN PROPAGATOR

We take the Feynman propagator in coordinate space to
be equal to the vacuum expectation value of the time-
ordered product of fields at x and y, i.e.

Dμν
F ðx − yÞ ¼ θðx0 − y0ÞDμν

þ ðx − yÞ
þ θðy0 − x0ÞDμν

− ðx − yÞ; ð68Þ

COVARIANT QUANTIZATION OF CPT-VIOLATING PHOTONS PHYSICAL REVIEW D 95, 025025 (2017)

025025-13



with

Dμν
þ ðx − yÞ ¼ h0jAμðxÞAνðyÞj0i; ð69aÞ

Dμν
− ðx − yÞ ¼ h0jAνðyÞAμðxÞj0i: ð69bÞ

Notice that the � signs in these definitions have nothing to
do with the λ ¼ � polarizations, rather they correspond (in
concordant frames) to the positive and negative energy
modes. This is further clarified when we look at the explicit
expressions for Dμν

� ðx − yÞ that follow from inserting
Eq. (54). They are given by

Dμν
� ðzÞ ¼ −

Z
d4p
ð2πÞ4

X
λλ0

gλλ
0
θð�Λ0

λðpÞÞsgnð�Λ0
λðpÞÞ

× ð2πÞδðΛλðpÞÞϵðλÞμϵðλ0Þν�e−ip·z; ð70Þ

with z ¼ x − y. Due to the Heaviside stepfunction
θð�Λ0

λðpÞÞ, discussed at the end of Sec. IV, Dμν
� ðzÞ is

only nonvanishing if �Λ0
λðpÞ > 0, which in concordant

frames is equivalent to �p0 > 0.
Using the Fourier transform of the Heaviside stepfunction,

θðz0Þ ¼ i
2π

R
e−iτz

0
dτ

τþiε , we can write the Feynman propagator as

Dμν
F ðzÞ ¼

Z
C

d4p
ð2πÞ4 P

μνe−ip·z

¼ −i
Z

d4p
ð2πÞ4

�ðp2 −m2
γÞημν

ΛTðpÞ − iε
þ 4ðpμpνk2AF þ kμAFk

ν
AFp

2 − ðpμkνAF þ pνkμAFÞðp · kAFÞÞ
ðp2 −m2

γ þ iεÞðΛTðpÞ − iεÞ

þ 2iϵμναβðkAFÞαpβ

ΛTðpÞ − iε
− ð1 − ξÞ pμpν

ðp2 − ξm2
γ þ iεÞðp2 −m2

γ þ iεÞ
�
e−ip·z; ð71Þ

where, on the first line, the integration contour in the complex
p0 plane goes above (below) the poles (ω) for which
Λ0
λðpÞjp0¼ω is positive (negative). After the second equality

sign, this is represented by a Feynman ε prescription.

X. BRST AND THE SPACE OF STATES

The structure of the space of states is most clearly
established in the BRST formalism [30] by completing the
photon Lagrangian (2) with the contributions for the
Stückelberg scalar field ϕ as well as the (anticommuting)
ghost and antighost fields c and c̄ (with ghostnumbers 1
and −1, respectively),

LStück ¼ LA þ Lϕ þ Lgh ð72Þ

where LA is given by (2), while

Lϕ ¼ 1

2
ð∂μϕÞ2 −

1

2
ξm2

γϕ
2 ð73Þ

and

Lgh ¼ −c̄ð∂2 þ ξm2
γÞc: ð74Þ

Note that the antighost field c̄ is defined to be anti-
Hermitian (c̄† ¼ −c̄), while all other fields are
Hermitian. Lagrangian (72) can now be obtained from
the Lagrangian

L0
Stück ¼ −

1

4
FμνFμν þ 1

2
kκAFϵκλμνA

λFμν

þ 1

2
m2

γ

�
Aμ −

1

mγ
∂μϕ

�
2

þ ξ

2
B2

þ Bð∂μAμ þ ξmγϕÞ − c̄ð∂2 þ ξm2
γÞc ð75Þ

upon integrating out the (auxiliary) Nakanishi-Lautrup
field B [31].
Lagrangian (75) changes by a total derivative under the

BRST transformation s defined by

sAμ ¼ ϵ∂μc ð76Þ

sϕ ¼ ϵmγc ð77Þ

sc̄ ¼ ϵB ð78Þ

sB ¼ sc ¼ 0 ð79Þ

where ϵ is some constant infinitesimal Grassmann-valued
parameter. The BRST transformations (76)–(79) are gen-
erated by the action of the nilpotent BRST charge
QB ¼ R d3~xjB0 ¼ R d3xðB∂0c − ∂0BcÞ, where jBμ is the
conserved Noether current. The space of physical states
is defined by the space of closed states (those that are
annihilated by QB) of ghost number zero modulo the exact
states (those that are in the image of QB). Restricting
ourselves to ghost number zero (no ghost excitations), it
follows from (77) that one-particle states created by the
field ϕ are unphysical. Moreover, we see from (76) and (77)
that the linear combination
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χμ ¼ Aμ −
1

mγ
∂μϕ ð80Þ

(the Proca field) is BRST invariant, and thus any one-
particle states created by χμ are closed. Finally, we see from
(78) that any one-particle excitations of the Nakanishi-
Lautrup field B are exact. Using the equations of motion for
B and ϕ, it follows that on shell we can replace B → ∂μχ

μ.
From this we see that the physical one-particle states can be
taken to correspond to the three transverse polarizations
of χμ [which coincide with the transverse polarizations

eðiÞμ ð~pÞ, i ¼ þ, −, 3, of Aμ]. The exact one-particle states
correspond to the remaining longitudinal mode of χμ.
It is worthwhile to point out that the quantization is

unaffected by the Lorentz-violating kAF term.

XI. DISCUSSION

In this paper, we performed the covariant quantization
of Lorentz- and CPT-violating Maxwell-Chern-Simons
theory for spacelike, lightlike, as well as timelike kμAF.
To avoid imaginary energies and for regularization pur-
poses, a nonzero photon mass was introduced through the
Stückelberg mechanism. This can be done well below any
observational constraints.
We found explicit expressions for a set of four orthogo-

nal and normalized polarization vectors, whose definition is
valid in almost all of four-momentum space. These polari-
zation vectors are eigenvectors of the equation-of-motion
operator and have the functions ΛλðpÞ, defined in Eq. (10),
as their eigenvalues. The relations ΛλðpÞ ¼ 0 determine the
dispersion relations for the different polarization modes and
their solutions fix the on-shell polarization vectors. The
hypersurface in momentum space where the definitions of
the polarization vectors are invalid only intersects the
relevant mass shells at two singular points and only for
timelike kμAF. This corresponds to the vanishing of the LV
term in the original Lagrangian. We highlighted the treat-
ment of these singular points throughout the paper.
We discussed several properties of the dispersion rela-

tion. In particular, we showed that it has eight nondegen-
erate roots, except at the two singular points, where it has
two sets of three degenerate roots (and two nondegenerate
ones). We confirmed that the observer-Lorentz-invariant
condition k2AF < m2

γ guarantees the reality of all the roots.
Moreover, we derived an observer Lorentz noninvariant
condition, ðk0AFÞ2 < m2

γ , that makes sure that all energies
are positive. Since the latter condition cannot be maintained
in arbitrary observer frames, the sign of the roots cannot be
used to select a branch of the dispersion relation, as is done
in the usual, Lorentz-symmetric, case. However, we found
that the sign of Λ0ðpÞ can be used instead. This fact is
closely related to the observer invariance of the root
ordering and the group velocity being smaller than unity.

Being able to unambiguously identify the different
branches of the dispersion relation in all observer frames,
allowed us to construct an observer Lorentz covariant mode
expansion of the photon field in terms of the polarization
vectors for the different modes. Using the resulting explicit
expression for the photon field, we performed the quan-
tization of the theory. We also derived the Feynman
propagator and showed that the theory is microcausal.
Finally we showed, in the context of BRST quantization,
that the three transverse modes are the physical ones.
One obvious direction into which one can extend the

present work is investigating the massless limit. We expect
that taking the limit mγ → 0 at the end of a calculation of a
physical observable gives a consistent result for lightlike
and spacelike kμAF (for timelike kμAF, the imaginary energies
will reappear). All the more because the λ ¼ 3 polarization
mode seems to decouple in a gauge-invariant theory,
because eð3Þμ ∝ pμ in that case, resulting in two physical
states. As in the Lorentz-symmetric case, in the massless
limit it is not possible to find a basis of four orthogonal
covariant polarization vectors in the general class of gauges
we consider in this paper. However, we expect that it is
possible, using BRST quantization, to show that the non-
covariant components of the field are unphysical and
decouple.
A second option for follow-up work is to include

interactions and quantum effects. The latter might introduce
other, possibly higher-dimensional, LV coefficients
through radiative corrections. To go beyond tree-level
one has to consider the effect of such effective LV
coefficients.
Finally, one could try to apply the methods of the present

work to the CPT-even kF term of the minimal SME or even
include higher-dimensional kinetic terms for the photon,
which have been categorized in Ref. [32]. Note that, in the
latter case, one would have to find a way to consistently
deal with spurious Ostrogradski modes [33] that arise due
to higher-order time derivatives in the Lagrangian.
Presently, the fact that the covariant quantization of the

present Lorentz- and CPT-violating theory is possible, at
least with a nonzero photon mass (well below observational
constraints), despite the presence of negative-energy states in
some observer frames, is an important result of this paper. It
is of relevance, in particular, to considerations of vacuum
Cherenkov radiation, for which such negative-energy states
are unavoidable. Moreover, the explicit expressions for the
polarization vectors, their bilinears, and the Feynman propa-
gator, in arbitrary observer frames, pave the way for
calculations of LV observables involving kμAF.
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APPENDIX A: REALITY AND SIGN
OF THE ROOTS OF Λ�ðpÞ

In this Appendix we give the details of some statements
made in the main text, concerning the sign and the possible
complex-valuedness of the roots of Λ�ðpÞ. We do this by
considering the functions defined in Eq. (26) and plotted in
Figs. 1 and 2 for the case of timelike and spacelike/lightlike
kμAF, respectively.
First of all, we discuss the condition

jxαj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
ðA1Þ

for spacelike and lightlike kμAF, which is used below
Eq. (31). The points p0 ¼ xα are the points where the
branches of�fδðp0Þ start (see Fig. 2) and their expressions
are given in Eq. (31). Equation (A1) reflects the condition
that these points stay inside the curve of f0ðp0Þ. A little
algebra shows that Eq. (A1) holds if

~p2 >
−~k2AFm2

γ

ðk0AF
ffiffiffiffiffiffiffiffiffiffiffi
sin2 θ

p
þ α

ffiffiffiffiffiffiffiffiffiffiffi
−k2AF

p
cos θÞ2

; ðA2Þ

where θ is the angle between ~p and ~kAF. Since the
expression on the right is always negative, we see that
Eqs. (A1) and (A2) are always satisfied and thus thatΛ�ðpÞ
always have two real roots each for spacelike and light-
like kμAF.
Next, we consider the inequality

−fδð0Þ > f0ð0Þ; ðA3Þ

which, for k2AF > 0, is sufficient to make sure that the
signs of ω5 and ω6 are different. For k2AF < 0 it can
happen that fδð0Þ is not real. However, in that case it is
obvious from Fig. 2 and the argument following Eq. (A1)
that the signs of ω5 and ω6 will differ. It is easy to see that
−fδð0Þ ¼ f0ð0Þ if

j~pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0AFÞ2 − ~k2AF sin2 θ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0AFÞ2 − ~k2AF sin2 θ −m2

γ

q
:

ðA4Þ

If kμAF is spacelike, the first square root can become
imaginary. This corresponds to fδð0Þ being imaginary,
for which case ω5 and ω6 differ in sign. If both square roots
in Eq. (A4) are real, Eq. (A4) defines an interval for j~pj,
outside of which Eq. (A3) is satisfied and ΛþðpÞ has two
roots of opposite sign. Inside of the interval, however, the
signs of ω5 and ω6 are the same and after the redefinition of
one of the roots, the theory can contain states of negative

energy. It is clear from Eq. (A4) that there will be no
negative energies if ðk0AFÞ2 < m2

γ , because the second
square root is imaginary in that case. This confirms that
the condition in Eq. (28) implies energy positivity.
Furthermore, the second square root is real if

cos2 θ >
m2

γ − k2AF
~k2AF

: ðA5Þ

For angles satisfying this inequality and j~pj in the interval
in Eq. (A4), the two roots of the dispersion relation
ΛþðpÞ ¼ 0 have the same sign. Since we redefine the
energies as in Eq. (24), the theory will contain negative-
energy photons if ω5ð~pÞ < 0. This happens if the
extremum of fδðp0Þ lies to the left of p0 ¼ 0, i.e. if

k0ð~p · ~kAFÞ < 0. The momentum of the photons with
negative energy thus lies in a cone around the direction

defined by −sgnðk0Þ~kAF (and not in the opposite direction).
Finally, we show that all roots of ΛþðpÞ are real if

Eq. (29) holds, i.e. if

k2AF < m2
γ : ðA6Þ

For lightlike and spacelike kμAF, this was already evident
from the considerations following Eq. (A1). In the follow-
ing, we show it for timelike kμAF. To achieve this, we
ascertain that if k2AF < m2

γ , we can always find a value of p0

for which

−fδðp0Þ > f0ðp0Þ; ðA7Þ

meaning that −fδðp0Þ must intersect f0ðp0Þ at two differ-
ent values of p0, corresponding to the two real roots of
ΛþðpÞ. To proof this, we start with an ansatz for p0,

p0 ¼ aj~pj; ðA8Þ

with a a dimensionless factor. At this value of p0, we find

f0ðaj~pjÞ ¼ ~p2ða2 − 1Þ −m2
γ ; ðA9aÞ

− fδðaj~pjÞ
¼ −2j~pj

ffiffiffiffi
X

p

≡−2j~pj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2~k2AF − 2ak0AFj~kAFj cosθþ ~k2AF cos2 θþ k2AF

q
:

ðA9bÞ

We do not gain much insight by solving −fδðaj~pjÞ >
f0ðaj~pjÞ for a directly. However, we easily find that
−fδðaj~pjÞ ¼ f0ðaj~pjÞ for
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j~pj ¼
ffiffiffiffi
X

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ ða2 − 1Þm2

γ

q
1 − a2

: ðA10Þ

Furthermore, −fδðaj~pjÞ − f0ðaj~pjÞ, as a function of j~pj,
is a parabola that opens upward if a2 < 1. So, if a2 < 1

and j~pj is in the interval defined by Eq. (A10), then
−fδðaj~pjÞ < f0ðaj~pjÞ. It follows that if we can find an
jaj < 1 such that the second square root in Eq. (A10)
becomes imaginary, then the mentioned interval of j~pj does
not exist and therefore −fδðaj~pjÞ > f0ðaj~pjÞ for any j~pj.
We find that the argument of the second square root in

Eq. (A10) vanishes if

a ¼ ðk0AFÞ2
m2

γ þ ~k2AF

0
B@j~kAFj

k0AF
cos θ

� 1

k0AF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

γ − k2AFÞ
 
m2

γ þ ~k2AF
ðk0AFÞ2

− cos2 θ
~k2AF

ðk0AFÞ2
!vuut
1
CA:

ðA11Þ

It is straightforward to check that the square root is real
if k2AF < m2

γ and that the absolute value of first term is
smaller than one in that case. Equation (A11) thus defines
an a-interval for which the second square root in Eq. (A10)
is imaginary. Therefore, near the center of this interval,
there are values of jaj < 1 for which −fδðaj~pjÞ >
f0ðaj~pjÞ. This means that −fδðp0Þ intersects f0ðp0Þ at
two different values of p0. We conclude that ΛþðpÞ always
has two real roots if k2AF < m2

γ .

APPENDIX B: GROUP VELOCITY

In this Appendix, we consider the group velocity of the
different modes of the photon. It is defined in Eq. (41) as

~vðλÞg ¼ ∂Eλð~pÞ
∂ ~p : ðB1Þ

We will show that

~vðλÞg ¼ −
�∂ΛλðpÞ

∂ ~p
� ∂ΛλðpÞ

∂p0

�
p0¼Eλð~pÞ

ðB2Þ

and that j~vðλÞg j < 1. For the modes with λ ¼ 0, 3 this is
trivial, and we will only consider the λ ¼ � modes in the
remainder of this Appendix.
The fact that Eq. (B2) holds, follows easily by realizing

that ΛTðpÞ ¼ ΛþðpÞΛ−ðpÞ is a polynomial in p0, which
allows us to write it as

ΛTðpÞ ¼ ðp0 − Eþð~pÞÞðp0 þ Eþð−~pÞÞ
× ðp0 − E−ð~pÞÞðp0 þ E−ð−~pÞÞ; ðB3Þ

where we used the energy redefinitions, given in Eq. (24).
From Eq. (B2), it follows that, for λ ¼ þ, −:

∂E�ð~pÞ
∂ ~p ¼ −

�∂ΛTðpÞ
∂ ~p

� ∂ΛTðpÞ
∂p0

�
p0¼E�ð~pÞ

¼ −
�∂Λ�ðpÞ

∂ ~p
� ∂Λ�ðpÞ

∂p0

�
p0¼E�ð~pÞ

; ðB4Þ

confirming Eq. (B2). This equality does not hold if
pμ ¼ ςKμ. In that degenerate case, the group velocity, as
given in Eq. (B1), becomes ill-defined, as can be seen from
explicit calculations for purely timelike kμAF, or from the
analysis at the end of this section. However, we can assign a
value to the right-hand side of Eq. (B2) by employing some
limiting procedure, as described below Eqs. (13). This is in
fact the quantity we need in Eq. (42).

It remains to be shown that j~vðλÞg j < 1. To this affect we
define

wμ
� ≡ ∂Λ�ðpÞ

∂pμ

¼ 2

 
pμ � ðp · kAFÞkμAF − k2AFp

μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kAFÞ2 − p2k2AF

p
!
; ðB5Þ

such that ~vðλÞg ¼ −½~wλ=w0
λ �p0¼Eλð~pÞ. It follows that j~v

ðλÞ
g j < 1

holds, if wμ
λ , evaluated on shell, is timelike. We determine

that on shell w2
λ is given by

w2
λ jp0¼Eλð~pÞ ¼ 4ðm2

γ − k2AFÞ: ðB6Þ

Therefore, w2
λ > 0 if k2AF < m2

γ . The latter is a necessary
condition for the theory to be consistent, as already
mentioned in Sec. IV. We thus conclude that the absolute
value of photon group velocity is smaller than unity for
the cases we consider. For the degenerate case of pμ ¼ ςKμ,
this statement is invalid, because Eq. (B2) does not hold (the
group velocity becomes ill-defined). However, Eq. (B6)
shows that the quantity relevant for Eq. (42), which is the
right-hand side of Eq. (B2), is smaller than unity, even if
pμ ¼ ςKμ. We note that a method to desingularize the
classical group velocity at the singular points exists [34].

APPENDIX C: ENERGY LOWER BOUND

Using the expression for the group velocity implied by
Eqs. (B2) and (B5), we will determine the lowest value the
photon energy can reach in a particular observer frame. For
the polarization modes with λ ¼ 0, 3 this is trivial, so we
will focus on the λ ¼ � modes. To find the stationary
points of the energy as a function of ~p, we will determine
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the ~p values for which ~w� in Eq. (B5), vanishes. These
points correspond to the lower bound for the energy, unless
the energy at the singular point (given by mγjk0AFj=

ffiffiffiffiffiffiffi
k2AF

p
)

is smaller.
It is straightforward to establish that ~w� vanishes if

~kAF ¼ ~0, if k0AF ¼ 0, or if ~p ∝ ~kAF, i.e. when ð~p · k̂AFÞ is
either j~pj or −j~pj. In all of these cases, the dispersion
relation can be solved exactly. For purely timelike and
purely spacelike kμAF, the concordant-frame-positive energy
solutions are given by

E�ð~pÞj~kAF¼~0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ ∓ 2jk0AFjj~pj
q

; ðC1aÞ

E�ð~pÞjk0AF¼0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ þ 2~k2AF ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k4AF þm2

γ
~k2AF þ ð~p · ~kAFÞ2

qr
;

ðC1bÞ

such that

~vð�Þ
g j~kAF¼~0 ¼

~p ∓ jk0AFjp̂
E�ð~pÞ

; ðC2aÞ

~vð�Þ
g jk0AF¼0¼

~p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k4AFþm2

γ
~k2AFþð~p ·~kAFÞ2

q
∓ ð~p ·~kAFÞ~kAF

E�ð~pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k4AFþm2

γ
~k2AFþð~p ·~kAFÞ2

q :

ðC2bÞ

The group velocity for the purely timelike case in
Eq. (C2a) can only vanish for the λ ¼ þ mode, in which
case j~pj ¼ jk0AFj, giving a energy lower bound offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ − ðk0AFÞ2
q

. For the λ ¼ − mode, the energy lower

bound for the purely timelike case is the energy at the

singular point (~p ¼ ~0), at which the group velocity
becomes ill-defined. If k0AF ¼ 0, the group velocity van-

ishes if ~p ¼ 0 (we will deal with ~p ∝ ~kAF separately). It
follows that the minimal energy is then given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ þ ~k2AF

q
∓ j~kAFj.

Having dealt with the special cases of purely timelike
and purely spacelike kμAF, we proceed to the general case
where the LV four vector has both nonzero time and space
components. As mentioned earlier, the group velocity then

only vanishes if ~p is (anti)parallel to ~kAF. The correspond-
ing expressions for E�ð~pÞ are given by

E�ð~pÞj~p∝~kAF ¼

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ þ ~k2AF � 2k0AFð~p · k̂AFÞ
q

∓ j~kAFj if k0AFð~p·k̂AFÞ
j~kAFj

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ þ ~k2AF ∓ 2k0AFð~p · k̂AFÞ
q

� j~kAFj if k0AFð~p·k̂AFÞ
j~kAFj

≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q : ðC3Þ

The lower expression only applies for timelike kμAF, because

k0AFð~p · k̂AFÞ> j~kAFj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2þm2

γ

q
requires k2AF > 0. For

k0AFð~p · k̂AFÞ ¼ j~kAFj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
, which also requires time-

like kμAF and corresponds to the singular point of Eq. (12),

Eq. (C3) gives E�ð~pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
, showing that the

energy is continuous through the singular point. However,
the group velocity that follows from Eq. (C3) is given by

~vð�Þ
g j~p∝~kAF ¼

8>><
>>:

~p�sgnðp̂·k̂AFÞk0AFp̂
E�ð~pÞ�j~kAFj

if k0AFð~p·k̂AFÞ
j~kAFj

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q
~p∓sgnðp̂·k̂AFÞk0AFp̂

E�ð~pÞ∓j~kAFj
if k0AFð~p·k̂AFÞ

j~kAFj
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þm2

γ

q ;

ðC4Þ

which is clearly not continuous through the singular

point, because approaching from below gives ~vð�Þ
g ¼

ðj~kAFjjk0AFj
�

ffiffiffiffiffiffi
k2AF

p
mγ

Þp̂, while approaching from above gives

~vð�Þ
g ¼ ðj~kAFjjk0AFj

∓
ffiffiffiffiffiffi
k2AF

p
mγ

Þp̂. Using methods described in

Ref. [34], one can nevertheless rigorously define the group
velocity at the singular points. Here we instead choose to
check explicitly if the energy at the singular point is the
smallest energy value.
We can thus use Eq. (C4) to determine the lower

bound for the energies, unless the minimal energy is
reached exactly at the singular point, which we check
explicitly. Investigating when the expression for the
group velocity vanishes, while simultaneously satisfy-
ing the condition on the right, and comparing to the
energy at the singular point, we come to the conclusion
that the lower bound for the photon energies in the
λ ¼ � modes is given by

E−ð~pÞjmin ¼

8>><
>>:

mγ jk0AFjffiffiffiffiffiffi
k2AF

p if j~kAFj ≤ ðk0AFÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0AFÞ2þm2

γ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ − k2AF

q
þ j~kAFj if j~kAFj ≥ ðk0AFÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0AFÞ2þm2
γ

p
;

ðC5aÞ
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Eþð~pÞjmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

γ − k2AF

q
− j~kAFj; ðC5bÞ

for timelike, lightlike, as well as spacelike kμAF.
Equations (C5) also capture the results for the purely
timelike and purely spacelike case.

These results show, first of all, that the energy has a
finite, albeit observer dependent, lower bound.
Furthermore, we confirm the results of Appendix A, that
the energy of the λ ¼ − mode is always positive, while
Eþð~pÞ can become negative if ðk0AFÞ2 > m2

γ .
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