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We discuss the effects of a direct coupling between a Lorentz-violating rank-two antisymmetric tensor
field and the Maxwell field. Two possible couplings are considered, which can be distinguished by whether
or not they lead to vacuum birefringence. In both cases, the magnitude of the field components and the
coupling coefficient can be bounded by observational constraints. For light propagating in the presence of a
topological defect solution, both couplings lead to the deflection of light rays; however, these angular
deflections can be expected to be extremely small: 10−9 arcseconds for the nonbirefringent coupling,
and no more than 10−26 arcseconds for the birefringent coupling. We discuss the plausibility of this
phenomenon as a method for detection of these monopoles.
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I. INTRODUCTION

Since its discovery and development at the beginning of
the 20th century, Lorentz symmetry has been shown many
times to be a very good symmetry of nature. Over the past
decade and a half, however, there has been significant
interest in investigating the possible ways in which Lorentz
symmetry might be violated. One of the more active
research programs being pursued to this end is the so-
called Standard Model Extension, or SME [1]. This
program “extends” the Standard Model by relaxing the
requirement that the field combinations appearing in the
Standard-Model Lagrangian be Lorentz scalars, and
allowing combinations that are spacetime tensors to appear
in the Lagrangian. Since the total action must still be a
scalar, this means that the coefficients of these new terms
will also be Lorentz tensors. The presence of these terms in
the Lagrangian will affect the equations of motion of the
fields (on the classical level) and the field propagators
and Feynman rules (on the quantum level); in principle,
then, these new tensor coefficients could be measured
experimentally.1 While none of these postulated coeffi-
cients has thus far been measured to be unambiguously
nonzero, many bounds have been placed on the values
of these coefficients, some of which are exceedingly
stringent [2].
The SME was initially developed from a particle-physics

perspective, and in particular, it was initially assumed that

the “arena” in which fields exist and interact was flat
Minkowski spacetime. In the context of flat spacetime, it is
legitimate to assume that these new tensor coefficients are
constants throughout space and time, and so can be viewed
as “constants of nature.” However, it was soon realized that
this simple picture runs into trouble when we try to extend
it to curved Riemannian spacetime. The first obvious
objection in this case is that while many constant tensor
fields exist on a flat manifold (e.g., ∂aAb ¼ 0 has many
solutions), a constant field (e.g., with ∇aAb ¼ 0) will not,
in general, exist on a curved manifold. One might try to
fix this problem by allowing the tensor coefficients of the
new terms to be fixed nonconstant background tensor fields
in the case of curved spacetime. However, this leads to a
second problem with the original conception of the SME,
less obvious but more serious. It was shown by Kostelecký
[3] that the presence of a fixed background tensor field
would necessarily lead to violations of the Bianchi iden-
tities. The only way to circumvent this problem, while
retaining a spacetime that is well described by Riemannian
geometry, is to allow these “background tensor fields” to be
dynamic. Schematically, the full action of the theory will
then be of the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½−ð∇T Þð∇T Þ − VðT Þ

þ LSMðΨÞ þ LLVðΨ; T Þ�; ð1Þ

where T is a “Lorentz-violating” tensor field and Ψ
represents the “conventional” matter fields of the
Standard Model. In this Lagrangian, LSM is the Standard
Model Lagrangian (including gravity), while LLV repre-
sents a small coupling between conventional matter and the
Lorentz-violating tensor field. Since the Lorentz-violating
tensor fields will now be dynamic, they will satisfy their
own diffeomorphism-invariant equations of motion, and so
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1Since these coefficients are tensors, their specification in

terms of components is frame dependent; the standard choice of
frame, and the one we will use for this paper, is the “Sun-centered
frame,” in which the z axis is parallel to the axis of the Earth’s
rotation and the x axis points towards the Vernal Equinox.
Spherical angles in these coordinates are the standard astronomi-
cal right ascension and declination.
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the Bianchi identities will automatically be satisfied so long
as the equations of motion for this field (and the conven-
tional matter fields) hold. By appropriately choosing the
form of the potential VðT Þ, we can recover the “original
SME” limit of flat spacetime and a constant background
tensor field coupled to conventional matter. In such a
picture, Lorentz symmetry is broken spontaneously rather
than explicitly.
Since the Lorentz-violating tensor field T must be

dynamical, it is natural to ask how this field will behave.
The dynamics of such tensor fields in flat spacetime have
been widely studied over the past few years, particularly in
the case where T is a vector field Aa [4–7], a symmetric
rank-two tensor field Cab [8], or an antisymmetric rank-two
tensor field Bab [9]. Most of this prior work has centered on
the situation where the tensor field is constant throughout
space, taking on some value T̄ that minimizes its potential
energy. However, this field value will not, generally speak-
ing, be unique. A general potential VðT Þ which breaks
Lorentz symmetry will possess many possible values of T
which minimize the potential energy; these field values
form the so-called vacuum manifold in field space. This
raises the possibility of topological defect solutions in the
cases where the vacuum manifold is topologically non-
trivial, and it has been shown that in the case of the
antisymmetric rank-two tensor field, there exist topological
monopole solutions [10,11]. These solutions are static,
stable, and spherically symmetric, but the field is not in the
vacuum manifold except asymptotically, and it approaches
different points in the vacuum manifold as we go to spatial
infinity in different directions. Moreover, if an antisym-
metric tensor field capable of supporting these defects
exists, one would expect a certain number of these
monopoles to arise in the early Universe via the Kibble
mechanism [12], and these monopoles might persist as
relics today. In other words, not only are nonconstant tensor
fields required in curved spacetimes, but they arise natu-
rally in the context of (nearly) flat spacetime as well.
The possibility of a stable nonconstant background for

a Lorentz-violating field leads us to ask what the effects
of such a field on matter would be. To the best of our
knowledge, all prior work dealing with Lorentz violation
(particularly within the SME program [4–9]) has only dealt
with position-independent effects; however, the existence
of monopole solutions provides us with the motivation
that position-dependent effects might also be physically
relevant. In this paper, we examine the effects of an
antisymmetric tensor monopole as a background field
coupled to the electromagnetic field. In Sec. II, we present
our model and review the formalism used to examine
Lorentz-violating effects in electrodynamics. In Sec. III, we
use observational and experimental data to gain an idea of
the size of the effects which will arise and bound the
parameters of our model. The main results of this work are
then derived in Sec. IV, in which it is shown that an

antisymmetric tensor monopole coupled directly to light
would cause a lensing effect on light rays, akin to a
gravitational lensing effect but in flat spacetime.
We will use units throughout where ℏ ¼ c ¼ 1. The

metric signature will be ð−;þ;þ;þÞ.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

The main objects of interest in this paper are a conven-
tional Maxwell field Aa and an antisymmetric rank-two
tensor field Bab. The Lagrangian for this model is

L ¼ −
1

4
FabFab −

1

6
FabcFabc − VðBabÞ

−
1

4
ðkFÞabcdFabFcd: ð2Þ

Taking each of these terms in turn, Fab ¼ 2∂ ½aAb� is the
field strength for the Maxwell field, and Fabc ¼ 3∂ ½aBbc� is
the field strength for the “Lorentz-violating” field Bab. The
field Bab has a potential energy VðBabÞ, given by

VðBabÞ ¼
λ

4
ðBabBab − b2Þ2; ð3Þ

where b is a characteristic mass scale for the field
(having mass dimension 1), and λ is a dimensionless
scaling constant for the potential. Finally, ðkFÞabcd is a
tensor that couples the Maxwell field to the Lorentz-
violating field. We will examine specific forms for this
tensor later; for the moment, we simply take this to be some
general tensor depending on Bab.
If we take the equations of motion associated with this

Lagrangian, we obtain

∂bðFba þ ðkFÞbacdFcdÞ ¼ 0 ð4Þ

for the Maxwell field Aa, and

∂cFcab − λðBcdBcd − b2ÞBab −
1

4

δðkFÞcdef
δBab

FcdFef ¼ 0

ð5Þ

for the Lorentz-violating field Bab. In particular, if we
have Fab ¼ 0, the first equation of motion (4) is
satisfied automatically, and the second equation of motion
reduces to

∂cFcab − λðBcdBcd − b2ÞBab ¼ 0: ð6Þ

Given a solution to (6), we can then look for perturbational
solutions about it, with “small” Fab. Note that the terms in
(5) involving Fab, corresponding to the backreaction of the
Maxwell field on the Bab background, will be second order
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in our “small” perturbation. The linearized versions of (4)
and (5) are therefore decoupled, and we will hereafter
ignore the linearized perturbations to the Lorentz-violating
field Bab.
To examine the dynamics of such perturbational solu-

tions, we can employ the formalism of Kostelecký and
Mewes [13]. For a general coupling tensor ðkFÞabcd, we can
define a new antisymmetric tensor Dab as

Dab ¼ Fab þ ðkFÞabcdFcd: ð7Þ

We can then suggestively denote the “electric” (time-space)
and “magnetic” (space-space) parts of this tensor in terms
of two spatial vector fields ~D and ~H, such that D0i ¼ Di

and Dij ¼ ϵijkHk. In terms of these new objects, the full
Maxwell equation (4) reduces to ∂bDba ¼ 0; expressed in
terms of the vectors ~D and ~H, this reduces to

~∇ · ~D ¼ 0;
∂ ~D
∂t − ~∇ × ~H ¼ 0: ð8Þ

Moreover, since ∂ ½aFbc� ¼ 0 by construction, we also have

~∇ · ~B ¼ 0; ~∇ × ~Eþ ∂ ~B
∂t ¼ 0: ð9Þ

Thus, the behavior of the Maxwell field in the presence
of such a coupling is equivalent to its behavior in a linear
medium; the tensor Dab is the analog of the electric
displacement tensor. The constitutive relations for this
“medium” can be extracted from (7):

� ~D
~H

�
¼

�
1þ κDE κDB

κHE 1þ κHB

�� ~E
~B

�
; ð10Þ

where 1 is the 3 × 3 identity matrix and the κ’s are 3 × 3
matrices given by

ðκDEÞij ¼ −2ðkFÞ0i0j; ð11aÞ

ðκDBÞij ¼ −ðκHEÞji ¼ ðkFÞ0iklϵjkl; and ð11bÞ

ðκHBÞij ¼
1

2
ϵiklϵjmnðkFÞklmn: ð11cÞ

Since the tensor ðkFÞabcd is dependent on Bab, the con-
stitutive matrices (11) should also be expressible in terms of
the components of Bab. However, the precise relationship
will depend on the form of ðkFÞabcd. We take the symmetry
structure of this tensor to be the same as in Kostelecký and
Mewes [13], namely, to have the same symmetry as the

Riemann tensor with the additional constraint of a vanish-
ing double trace ðkFÞabab.2 Under this assumption, it can be
shown that it is impossible to construct a tensor ðkFÞabcd
out of the metric and Bab that is linear in the Lorentz-
violating field and that does not automatically vanish when
contracted with FabFcd. We must therefore consider
couplings that are quadratic in Bab. Careful examination
of the possible tensor structures reveals two such possibil-
ities: a “birefringent” coupling

ðkBÞabcd ¼ ξ

�
BabBcd − B½abBcd� −

1

6
ηa½cηd�bBefBef

�
ð12Þ

and a “monorefringent” coupling3

ðkMÞabcd ¼ −χ
�
B½a

eη
b�½cBd�e þ 1

4
ηa½cηd�bBefBef

�
: ð13Þ

(The reasons for these names will become clear below.)
Since ðkFÞabcd can be seen from (2) to be dimensionless,
this implies that the coefficients ξ and χ in front of these
terms will have mass dimension −2. These parameters
are assumed to be “small” parameters that determine the
strength of the coupling; we will assume them to be
nonzero, but in principle, they could be either positive
or negative.
We will examine each of these couplings in turn. In what

follows, it will be helpful to define the spatial vectors ~Q

and ~R to be the “electric” and “magnetic” parts of Bab,
respectively; in other words, Qi ¼ B0i and Ri ¼ 1

2
ϵijkBjk.

A. Birefringent coupling

Calculating the components of the constitutive tensors
for the “birefringent” coupling (12), we find that

2In [13], the tensor ðkFÞabcd is assumed to be constant. The
symmetry structure chosen in that work was predicated on this
assumption, as it implied that certain parts of this tensor did not
affect the equations of motion. In the present work, we will
eventually want to allow for nonconstant ðkFÞabcd; however, we
have chosen to retain this symmetry structure in the present work
so that the formalism in [13] still applies. Moreover, we suspect
that the effects of these terms will be negligible for the purposes
of this paper: the double trace term will correspond to a conformal
rescaling of the metric, and so it will not affect light rays; and the
completely antisymmetric term will be equivalent (via integration
by parts) to a derivative of Bab, which we will ultimately neglect
in the optical limit.

3This coupling can be obtained by starting with the usual
Maxwell term ηacηbdFabFcd, replacing the “fiducial” metric ηab

with an “effective” metric ~ηab ¼ ηab þ χBa
cBbc, and discarding

terms higher than first order in χ.
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ðκDEÞij ¼ ξ

�
−2QiQj þ 1

3
ð ~Q2 − ~R2Þδij

�
; ð14aÞ

ðκDBÞij ¼ ξ

�
−2QiRj þ 2

3
ð ~Q · ~RÞδij

�
; and ð14bÞ

ðκHBÞij ¼ ξ

�
2RiRj þ 1

3
ð ~Q2 − ~R2Þδij

�
: ð14cÞ

We can see immediately from (14) that the “linear medium”
for our electromagnetic fields will be, in general, aniso-
tropic; in fact, the only way for all of these matrices to be
isotropic (i.e., proportional to δij) is for all of them to

vanish, with ~Q ¼ ~R ¼ 0.
These κ matrices can also be reparametrized in terms

of certain parity-even and parity-odd combinations,
denoted ~κe�, ~κo�, and ~κtr [13]; experimental bounds on
the components of the tensor ðkFÞabcd are usually quoted in
terms of these matrices [2]. In our case, we have

ð~κe�Þij ¼ ξ

�
−QiQj � RiRj þ 1

3
ð ~Q2 ∓ ~R2Þδij

�
; ð15aÞ

ð~κoþÞij ¼ 2ξQ½iRj�; ð15bÞ

ð~κo−Þij ¼ 2ξ

�
−QðiRjÞ þ 1

3
ð ~Q · ~RÞδij

�
; and ð15cÞ

~κtr ¼ −
ξ

3
ð ~Q2 þ ~R2Þ: ð15dÞ

It is known that if either ~κeþ or ~κo− is nonzero, electro-
magnetic waves will experience vacuum birefringence at
leading order in our Lorentz-violating parameter [13,14].
We can see from the form of (15) that a coupling of the

form (12) will always produce birefringence unless both ~Q

and ~R are zero.
Finally, since in all of the above expressions a change in

the coupling strength ξ is indistinguishable from a rescaling

of ~Q and ~R, we will define two new vectors Q̄ ¼ ffiffiffiffiffijξjp
~Q

and R̄ ¼ ffiffiffiffiffijξjp
~R. In terms of these rescaled vectors, we have

ð~κe�Þij ¼ ξ̄

�
−Q̄iQ̄j � R̄iR̄j þ 1

3
ðQ̄2 ∓ R̄2Þδij

�
; ð16aÞ

ð~κoþÞij ¼ 2ξ̄Q̄½iR̄j�; ð16bÞ

ð~κo−Þij ¼ 2ξ̄½−Q̄ðiR̄jÞ þ 1

3
ðQ̄ · R̄Þδij�; and ð16cÞ

~κtr ¼ −
ξ̄

3
ðQ̄2 þ R̄2Þ; ð16dÞ

where ξ̄ ¼ ξ=jξj ¼ �1.

B. Monorefringent coupling

Applying the same techniques to the monorefringent
coupling (13), we find that the constitutive matrices are
somewhat simpler than in the previous case:

ðκDEÞij ¼ −ðκHBÞij ¼ −
χ

2
ðQiQj þ RiRjÞ; and ð17aÞ

ðκDBÞij ¼ χQ½iRj�: ð17bÞ

As with the birefringent coupling, this “medium” can be

seen to be anisotropic unless both ~Q and ~R vanish.
However, this coupling does not produce birefringence:
if we construct the matrices ~κe�, ~κo�, and ~κtr as above,
we find that

ð~κe−Þij ¼ −
χ

2

�
QiQj þ RiRj −

1

3
δijð ~Q2 þ ~R2Þ

�
; ð18aÞ

ð~κoþÞij ¼ χQ½iRj�; ð18bÞ

ð~κeþÞij ¼ ð~κo−Þij ¼ 0; and ð18cÞ

~κtr ¼ −
χ

6
ð ~Q2 þ ~R2Þ: ð18dÞ

The vanishing of ð~κeþÞij and ð~κo−Þij implies that to leading
order in χ, there are no birefringent effects due to this
coupling. This will have important implications for the
experimental bounds we can place on the size of this
coupling term.
Finally, we can define rescaled versions of the vectors ~Q

and ~R as we did for the birefringent case, with Q̄ ¼ ffiffiffiffiffijχjp
~Q

and R̄ ¼ ffiffiffiffiffijχjp
~R. In terms of these, the nonzero matrices

in (18) become

ð~κe−Þij ¼ −
χ̄

2

�
Q̄iQ̄j þ R̄iR̄j −

1

3
δijðQ̄2 þ R̄2Þ

�
; ð19aÞ

ð~κoþÞij ¼ χ̄Q̄½iR̄j�; ð19bÞ

~κtr ¼ −
χ̄

6
ðQ̄2 þ R̄2Þ: ð19cÞ

In parallel with the birefringent case, we have χ̄ ¼ �1.

III. CONSTANT-FIELD PARAMETER BOUNDS

Up to this point, we have not made any particular
assumptions concerning the properties of the “linear
medium” in which our Maxwell fields are propagating;
in particular, our constitutive relations (10) may well vary
from point to point in space. In almost all of the literature
on Lorentz symmetry violation to date, it is assumed that
the Lorentz-violating fields form a constant background in
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space. In such a circumstance, the constitutive relations
(10) are the same at all points in space, and the Maxwell
field behaves as though it is propagating in a homogeneous
(though anisotropic) medium.4 The monopole backgrounds
that we will be examining in Sec. IV are nonconstant, and
so some of the effects we will be examining do not have an
analog in the current literature. However, we can still
examine the behavior of our model in the case of a constant
background field Bab in order to get an idea of the size of
the effects we are looking for.

A. Birefringent coupling bounds

As noted above, the coupling tensor (12) will necessarily
lead to vacuum birefringence. Current observational
bounds on vacuum birefringence are quite stringent;
nonobservance of vacuum birefringence will thereby allow
us to place tight bounds on the components Q̄i and R̄i,
which will in turn allow us to estimate the order of
magnitude of the parameter combination

ffiffiffiffiffijξjp
b.

1. Bounds from optical and IR sources

The first major analysis of vacuum birefringence in the
context of the SME was done by Kostelecký and Mewes
[14]. Their analysis was able to place bounds on the
magnitude of parameter σ (equal to twice the difference
in the phase velocity between the two polarizations) for a
list of sixteen optical and infrared sources, shown in
Table I. This parameter σA for a given source A can in
turn be expressed in terms of the components of the tensor
ðkFÞabcd and the right ascension and declination of the
source fαA; δAg. Putting all of these together, then, we see
that each independent bound on σA will constrain some
polynomial function of the Q̄i and R̄i, and that this function
will depend on the right ascension and declination of the
source in question. The actual form of these functions is
quite complicated, and the reader is referred to the
Appendix for details on how they are constructed.
We treat each of these sixteen two-sided bounds in [14]

as a strict exclusion; this leaves a small region of parameter
space near the origin that is allowed under the simultaneous
imposition of all of the bounds. The maximum magnitudes
of the components Q̄x, Q̄y, and Q̄z in this allowed region of
parameter space are 1.56 × 10−16, 1.54 × 10−16, and
1.43 × 10−16, respectively. The bounds on the magnitudes
of R̄x, R̄y, and R̄z are identical; this is to be expected, since
all of the coefficients that control birefringent effects (i.e.,
the components of ~κeþ and ~κo−) are antisymmetric under

the exchange ~Q ↔ ~R, and all of our observational bounds
are taken to be symmetric about zero. Finally, the value of

ξBabBab ¼ 2ξð− ~Q2 þ ~R2Þ in the allowed region of param-
eter space is bounded by

jξBabBabj < 4.59 × 10−32: ð20Þ

This bound is symmetric about zero for the same reasons
that the individual bounds on the components of Q̄ and R̄
are the same.
Finally, note that if the field is in the vacuum manifold,

we will have BabBab ¼ b2. Since it will generally be the
case that the vacuum manifold is in or near the vacuum
manifold throughout the vast majority of space, we can
equally well view the bound (20) as a constraint on the
combination jξjb2 of the model’s parameters.

2. Bounds from γ-ray sources

More recently, Kostelecký and Mewes published a work
[16] based on six polarization measurements of gamma-ray
bursts (Table II). The bounds on certain components of
ðkFÞabcd derived in this latter work were much more
stringent than those from the work [14], by a factor of
approximately 104.
The same analysis as in the previous subsection can be

applied to this data. Within the allowed region of parameter
space, the magnitudes of Q̄x, Q̄y, and Q̄z are bounded by
1.12 × 10−18, 1.00 × 10−18, and 1.53 × 10−18, respectively;
as for the optical case, the bounds on R̄x, R̄y, and R̄z are the
same. Finally, the magnitude of ξBabBab is bounded by

TABLE I. Sources used in the bounds placed in Sec. III A 1.
Bounds on jσj are those from [14]; right ascension α and
declination δwere found in the Centre de Donneés astronomiques
de Strasbourg online catalog [15].

Source α δ log10jσj
IC 5063 20h52m02s −57°0400800 −30.8
3A 0557 − 383 05h58m02s −38°2000400 −31.2
IRAS 18325 − 5925 18h36m58s −59°2400800 −31.0
IRAS 19850 − 1818 20h00m52s −18°1002700 −31.0
3C 324 15h49m49s 21°2503900 −32.2
3C 256 11h20m43s 23°2705500 −32.2
3C 356 17h24m19s 50°5704000 −32.2
FIRST J084044.5+363328 08h40m45s 36°3302800 −32.2
FIRST J155633.8+351758 15h56m34s 35°1705700 −32.2
3CR 68.1 02h32m29s 34°2304600 −32.2
QSO J2359-1241 23h59m54s −12°4104800 −31.1
3C 234 10h01m50s 28°4700900 −31.7
4C 40.36 18h10m56s 40°4502400 −32.2
4C 48.48 19h33m05s 48°1104200 −32.2
IAU 0211 − 122 02h14m17s −11°5804500 −32.2
IAU 0828þ 193 08h30m53s 19°1301600 −32.2

4In fact, the bulk of the analysis in Kostelecký and Mewes’
original papers [13,14] relies on this assumption. However, the
definitions of theirs that we have presented in Sec. II do not rely
on ðkFÞabcd being constant in spacetime.
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jξBabBabj < 4.56 × 10−36: ð21Þ

While these bounds are significantly stronger, it should
be noted that they are not as experimentally robust as the
bounds derived from the optical and infrared observations
in Sec. III A 1, particularly for this model. Since our
parameter space is effectively six dimensional, and only
six sources were used in the derivation of these newer
bounds, we have “just enough” information to constrain all
the parameters of our model. However, the method used to
bound coefficients of ðkFÞabcd in both [14,16] is based on
the assumption that the light is not “accidentally” emitted in
a normal mode, in which case the birefringent effects would
be unobservable. If this were the case for any one of the six
sources we have used, we would effectively “lose” this
bound, which would likely leave at least one parameter
of our model unconstrained. The larger number of data
points used in the earlier work [14] leads to more robust
constraints since the loss of one or two data points would
still result in a bounded region of parameter space.
Finally, it must also be remembered for both the optical

and infrared bounds and for the gamma-ray bounds that
several of the sources used are at cosmological distances.
The bounds in [13,14,16] assume that the tensor ðkFÞabcd is
effectively constant over the time of flight of the detected
photons. However, if we are to take seriously the idea that
the Lorentz-violating field Bab has its own dynamics, it is
entirely possible that this field [and therefore ðkFÞabcd]
would evolve significantly over the time of flight of the
photon. A more detailed model of the cosmological
evolution of Bab might lead to different bounds; however,
such an investigation is well beyond the scope of this paper.

B. Monorefringent coupling bounds

As shown in Sec. II B, the coupling (13) does not result
in birefringence; thus, we must look to other experimental
constraints on the parameters for this coupling. The
strongest bounds on the nonbirefringent coefficients of
the SME are currently those from the cryogenic sapphire
resonator experiments of Nagel et al. [18]. By carefully

looking for “beat” frequencies in a pair of optical oscillators
oriented at right angles, they were able to bound the
difference in the speed of light between these two axes,
and by changing the orientation and velocity of the
apparatus (both actively and passively), they were able
to look for the effects of various coefficients in the SME.
A summary of their results is shown in Table III.
We can use these experimental bounds to make a crude

estimate of the bounds on the parameters in the mono-
refringent coupling case. We will consider the allowed
region of parameter space to be bounded by the 2σ contour
above and examine the bounds of this region.5 Note that
unlike in Sec. III A, these bounds are not symmetric about
zero, so we must separately examine the χ̄ ¼ þ1 and
χ̄ ¼ −1 cases.
If we examine the resulting allowed region of parameter

space, we find that the magnitudes of the components of

Q̄ ¼ ffiffiffiffiffijχjp
~Q and R̄ ¼ ffiffiffiffiffijχjp

~R are all bounded by approx-
imately 5 × 10−8; the magnitude of the field norm χBabBab

in the allowed region of parameter space is bounded by

jχBabBabj < 5 × 10−15: ð22Þ

As with the birefringent case, this bound can also be viewed
as a bound on the parameter combination jχjb2.

IV. MONOPOLE LENSING

A. Geometric optics near a monopole

In the previous section, we worked under the assumption
that the background field Bab was constant in space and

TABLE II. Gamma-ray sources used to place the bounds in
Sec. III A 2. Redshift data given in [16] were converted to
comoving distances L using the PLANCK 2015 data [17]; the
bound on σ is then given by σ < π=ð2LΔEÞ, where ΔE is the
energy span of the gamma-ray burst.

Source α δ z log10 jσj
930131 182° −8° 0.1 −35.7
960924 37° 3° 0.1 −35.7
041219A 6° 63° 0.02 −36.1
110301A 229° 29° 0.21 −36.5
110721A 333° −39° 0.45 −36.8
100826A 279° −22° 0.71 −37.0

TABLE III. Bounds on the monorefringent coefficients of the
minimal SME in the photon sector, as found by Nagel et al. [18].

Coefficient Estimate and 1σ bound

ð~κe−ÞXY ð−0.7� 1.6Þ × 10−18

ð~κe−ÞXZ ð−5.5� 4.0Þ × 10−18

ð~κe−ÞYZ ð−1.9� 3.2Þ × 10−18

ð~κe−ÞXX − ð~κe−ÞYY ð−1.5� 3.4Þ × 10−18

ð~κe−ÞZZ ð−2.9� 2.8Þ × 10−16

ð~κoþÞXY ð−3.0� 3.4Þ × 10−14

ð~κoþÞXZ ð0.2� 1.7Þ × 10−14

ð~κoþÞYZ ð−2.0� 1.6Þ × 10−14

~κtr ð−6.0� 4.0Þ × 10−10

5This is an extremely crude method of estimation and should
only be trusted to within an order of magnitude. Beyond the
obvious problems of treating the 2σ bounds as strict exclusions, it
should also be noted that the SME coefficients in our model are
strongly correlated: only six independent parameters determine
the nine coefficients in Table III, while the analysis in [18]
assumed that all of these coefficients were independent. A more
sophisticated analysis, such as that in [7], would be necessary to
place a more accurate bound.
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time. However, recent work on monopole solutions
[10,11,19] has shown that there exist spherically symmetric
static solutions in which the field Bab varies spatially, both
in magnitude and direction. In the context of Lorentz-
violating electrodynamics, this means that the κ-matrices
appearing in the constitutive relations (10) vary from point
to point in space (although not in time). In other words,
in the presence of a monopole solution, electromagnetic
fields act as though they were in an inhomogeneous,
anisotropic, and possibly birefringent medium. In particu-
lar, the inhomogeneity of the medium implies that light
rays traveling near the monopole will be deflected from
straight-line paths.
To quantify this effect, we apply a geometric-optics

approximation to the modified Maxwell equations (8) and
(9). Our derivation will roughly follow the techniques of
Sluijter et al. [20]. We choose an ansatz for the electro-
magnetic fields of the form

~Eðt; ~xÞ ¼ ~eð~xÞeikðSð~xÞ−tÞ; ð23aÞ

~Bðt; ~xÞ ¼ ~bð~xÞeikðSð~xÞ−tÞ: ð23bÞ

The constitutive relations (10) then imply that

~Dðt; ~xÞ ¼ ~dð~xÞeikðSð~xÞ−tÞ; ð24aÞ

~Hðt; ~xÞ ¼ ~hð~xÞeikðSð~xÞ−tÞ; ð24bÞ

where we have defined

~d ¼ ð1þ κDEÞ~eþ κDB
~b; ð25Þ

~h ¼ κHE~eþ ð1þ κHBÞ~b: ð26Þ

[Recall that the κ’s in these equations are 3 × 3 matrices

acting on the vectors ~eð~xÞ and ~bð~xÞ; moreover, we are now
allowing these matrices to vary spatially, although not in
time.] Plugging these into the modified Maxwell equations,
we obtain the equations

~∇S × ~hþ ~d ¼ −
1

ik
~∇ × ~h; ð27aÞ

~d · ~∇S ¼ −
1

ik
~∇ · ~d; ð27bÞ

~b · ~∇S ¼ −
1

ik
~∇ · ~b; ð27cÞ

~∇S × ~e − ~b ¼ −
1

ik
~∇ × ~e: ð27dÞ

We now apply the standard geometric-optics approxima-
tion and restrict our attention to solutions for which the

length scale variations of the vectors ~e, ~b, ~d, and ~h are much
less than the length scale defined by k. In other words,(

j ~∇ ~e j
j~ej ;

j ~∇ ~b j
j~bj

;
j ~∇ ~d j
j~dj

;
j ~∇ ~h j
j~hj

)
≪ k ð28Þ

in some appropriate sense, which allows us to neglect the
right-hand sides of the four equations (27). Note that if
the background field Bab is “slowly varying” in this sense,

then the slow variation of ~d and ~h follows from the slow

variation of ~e and ~b. We will assume that we are working in
a regime where Bab is varying sufficiently slowly to make
this approximation.
So far in this section, we have not assumed that the κ

matrices have any particular form; our equations are valid
for any (static) background field Bab, assuming it is static
and slowly varying. For the case of the monopole solution
originally found in [10], the field configuration is of the
form

Bθϕ ¼ gðrÞr2 sin θ; ð29Þ

with all other components vanishing. The function gðrÞ is
the solution to the differential equation6

∂
∂r

�∂g
∂r þ

2

r
g

�
− 2λð2g2 − b2Þg ¼ 0 ð30Þ

subject to the boundary conditions gð0Þ ¼ 0 and
gð∞Þ ¼ b=

ffiffiffi
2

p
. While a closed-form solution for gðrÞ is

not known, its asymptotic behavior as r → ∞ is

gðrÞ ¼ bffiffiffi
2

p
�
1 −

1

4λb2r2
−

3

8λ2b4r4
þ � � �

�
: ð31Þ

Finally, in terms of the “electric” and “magnetic” vectors ~Q
and ~R, it can easily be shown that for this solution we have
~Q ¼ 0 and

~R ¼ gðrÞr̂: ð32Þ

1. Birefringent coupling

At this point, we must focus on each coupling in turn.
For the birefringent coupling (12), we see from Eq. (14)
that the “off-diagonal” matrices κDB and κHE vanish, and
that κDE becomes isotropic:

ðκDEÞij ¼ −
1

3
ξg2ðrÞδij; ð33Þ

6This equation is just the equation of motion for Bab derived
from the Lagrangian (2), under the imposition of the ansatz (29).
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ðκHBÞij ¼ ξg2ðrÞ
�
2r̂ir̂j −

1

3
δij

�
: ð34Þ

This allows us to define effective permittivity and per-
meability tensors ϵij and μij such that di ¼ ϵijej and
bi ¼ μijhj. The permittivity tensor will be

ϵij ¼ δij þ ðκDEÞij ¼
�
1 −

1

3
ξg2

�
δij; ð35Þ

while the inverse of the permeability tensor will be

ðμ−1Þij ¼ δij þ ðκHBÞij

¼
�
1 −

1

3
ξg2

�
δij þ 2ξg2r̂ir̂j: ð36Þ

This last matrix can be inverted to yield

μij ¼ 1

1 − 1
3
ξg2

�
δij −

2ξg2

1þ 5
3
ξg2

r̂ir̂j
�
: ð37Þ

In the language of birefringent optics, then, the “medium”
in which our waves are propagating will be electrically
isotropic, magnetically anistropic, and unaxial; at all points,
the “optical axis” of the medium will be the radial
direction r̂.
Combining all of the above, then, we have from (27a)

and (25)

~e ¼ −
1

ϵ
ð ~∇SÞ × ~h; ð38Þ

where ϵ ¼ 1 − 1
3
ξg2 is the (position-dependent) permittiv-

ity. Plugging this into (27d), and defining the wave-normal

vector ~p ¼ ~∇S, we obtain

½pipj − ð~p · ~pÞδij þ ϵμij�hj ¼ 0: ð39Þ

For a nontrivial wave amplitude ~h to exist, it must be the
case that

det ½pipj − p2δij þ ϵμij� ¼ 0; ð40Þ

after some algebra, this condition boils down to

ðp2 − 1Þ
�
p2 −

ζb
1þ ζb

ð~p · r̂Þ2 − 1

1þ ζb

�
¼ 0; ð41Þ

where

ζb ¼
2ξg2

1 − 1
3
ξg2

≈ 2ξg2 ð42Þ

to linear order in ξ.

For a given direction of r̂ and value of ζb, Eq. (41)
defines a surface in ~p-space called the optical indicatrix.
This surface consists of two ellipsoids which are tangent
to each other at the points ~p ¼ �r̂, and which do not
otherwise intersect. These ellipsoids correspond to ordinary
and extraordinary waves, respectively; the ordinary waves
satisfy

Ho ¼
1

2
ðp2

o − 1Þ ¼ 0; ð43Þ

while the extraordinary waves satisfy

He ¼
1

2
ðð1þ ζbÞp2

e − ζbð~pe · r̂Þ2 − 1Þ ¼ 0: ð44Þ

(The reason for the choice of the overall factors in these
equations will become clear in Sec. IV B.)
For the ordinary waves, requiring that ~po ¼ p̂o is a unit

vector causes Eq. (39) to reduce to

�
p̂i
op̂

j
o −

ζb
1þ ζb

r̂ir̂j
�
hjo ¼ 0: ð45Þ

It is not hard to see that for this to be true, the vector ~ho
must be at right angles to both p̂o and r̂.

7 In other words, we
can define the magnetic field direction ĥo as

ĥo ¼
p̂o × r̂
jp̂o × r̂j : ð46Þ

Equation (27a) then tells us that the (electric) polarization
of the ordinary wave êo is given by

êo ¼
r̂ − p̂oðp̂o · r̂Þ
jr̂ − p̂oðp̂o · r̂Þj

: ð47Þ

In other words, the electric polarization for an ordinary
wave points along the projection of r̂ in the plane
orthogonal to p̂o. These waves propagate at constant speed
through space since p2

o is constant.
The polarization of the extraordinary waves is somewhat

less obvious. We simply cite the work of [20], with the

substitution ~E ↔ ~H.8 The magnetic field direction ĥe for
an extraordinary wave with wave-front vector ~pe can be
shown to point in the direction

7In the case where p̂o∥r̂, the wave direction is parallel to the
optical axis, so the ordinary and extraordinary waves travel at the
same speed.

8This substitution is necessary because [20] assumed the
medium to be electrically anisotropic but magnetically isotropic.
In the present case, however, our “medium” is electrically
isotropic but magnetically anisotropic.
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ĥe ¼
ð~pe × r̂Þ × ½ð1þ ζbÞ~pe − ζbð~pe · r̂Þr̂�
jð~pe × r̂Þ × ½ð1þ ζbÞ~pe − ζbð~pe · r̂Þr̂�j

; ð48Þ

while the electric field vector êe will point in the direction

êe ¼ −
~pe × r̂
j~pe × r̂j : ð49Þ

Note that the magnetic polarization direction ĥe is not, in
general, perpendicular to the extraordinary wave-front
vector ~pe.

2. Monorefringent case

For the monorefringent coupling, the “on-diagonal”
constitutive matrices (17) in the presence of a monopole
become

ðκDEÞij ¼ −ðκHBÞij ¼ −
χ

2
g2ðrÞr̂ir̂j; ð50Þ

with the matrices κDB and κHE vanishing. Thus, we can
define the permittivity and inverse permeability tensors as

ϵij ¼ δij −
1

2
χg2r̂ir̂j; ð51Þ

ðμ−1Þij ¼ δij þ 1

2
χg2r̂ir̂j: ð52Þ

In this case, we have a “medium” which is anisotropic both
electrically and magnetically; once again, the “optical axis”
of the medium will be the radial direction.
Following similar logic to the previous subsection, we

can combine Eqs. (27a) and (27d) to yield the equation
Mijej ¼ 0, where9

Mij ≡ ϵikmϵjlnðμ−1Þklpmpn − ϵijej ¼ 0: ð53Þ

This implies that the determinant of Mij must vanish; after
some algebra, this condition reduces to

ðp2 − ζmð~p · r̂Þ2 − ð1 − ζmÞÞ
× ðð1þ ζmÞp2 − ζmð~p · r̂Þ2 − 1Þ ¼ 0; ð54Þ

where we have defined

ζm ¼ χ

2
g2: ð55Þ

The form of this condition is somewhat surprising, as it
seems to imply that our optical indicatrix again consists of
two ellipsoids: either

Ha ¼
1

2

�
1

1 − ζm
p2 −

ζm
1 − ζm

ð~p · r̂Þ2 − 1

�
¼ 0

or

Hb ¼
1

2
ðð1þ ζmÞp2 − ζmð~p · r̂Þ2 − 1Þ ¼ 0:

In the previous case, this double-valued solution for ~p
was indicative of birefringence; here, this interpretation
would seem to be at odds with our results from Sec. II B.
However, we note thatHa andHb are equal to each other to
leading order in our Lorentz-violating parameter χ; this
would therefore imply that birefringence does not enter at
leading order in χ, which is consistent with our results from
Sec. II B.10 Moreover, these factors are also equal to the
expression He (44) found for the extraordinary waves of
the birefringent propagator in the previous section. In
effect, to leading order in our Lorentz-violating parameter,
light waves in the presence of a monopole will behave the
same in the monorefringent case (for both polarizations) as
will the extraordinary waves in the birefringent case.

B. Ray tracing

Since the optical indicatrix for both polarizations of light
in the monorefringent case is of the same form as the
indicatrix for the extraordinary waves in the birefringent
case, we can restrict our attention to the birefringent case.
The results for the monorefringent case will then be
obtainable from those for the extraordinary rays in the
birefringent case under the substitution ξ → χ=4. For
notational simplicity, we will “drop the subscript” on ζb
and ζm, differentiating between these two quantities only
when necessary and generally referring to both as simply ζ.
To analyze the paths of the rays in the birefringent case,

we follow the method of Sluijter et al. [20] and interpret
the factors Ho and He as point-particle Hamiltonians,
whose trajectories evolve with respect to some parameter τ.
In other words, we expect that for both ordinary rays
and extraordinary rays, their position ~xðτÞ and momentum
~pðτÞ will satisfy

9Alternately, we can obtain the equation

½ϵikmϵjlnðϵ−1Þklpmpn − μij�hj ¼ 0

whose form is more closely analogous to Eq. (39) found in the
birefringent case. However, in that case, we had ϵij ∝ δij, which
allowed this equation to simplify further. Since the medium is
electrically anisotropic in this case, this form is not so useful.

10The fact that the two factors in (54) are not exactly equal to
each other may indicate that this model would exhibit birefrin-
gence at higher order; the Mewes-Kostelecký formalism in
[13,14] is only guaranteed to be valid to first order in the
Lorentz-violating parameter. Given the bounds on χb2 found
in Sec. III B, such effects would be exceedingly small, so we will
not pursue this possibility here.
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d~x
dτ

¼ ∇~pH and
d~p
dτ

¼ −∇~xH: ð56Þ

Under this interpretation, it is evident that the ordinary rays
will travel in straight lines: the ordinary Hamiltonian Ho is
simply that of a free particle, and we will have

d~x
dt

¼ ~p and
d~p
dt

¼ 0: ð57Þ

[The insertion of the extra factors of 1
2
in Eqs. (43) and (44)

was done to make these equations look “nice”.] Thus, the
velocity ~vo of an ordinary ray is constant with respect to
time. Its electric and magnetic polarization directions will
also be constant along its path: since the velocity is parallel
to the wave-normal direction p̂o, it can be seen from (46)
and (47) that ~vo, ĥo, and êo are always mutually orthogonal,
with ĥo perpendicular to the plane containing ~vo and r̂.
The paths of the extraordinary rays are less straightfor-

ward to find. It is illustrative to pass from the Hamiltonian
formulation for the ray’s motion to a Lagrangian formu-
lation. This can be done by performing a Legendre trans-
formation on He:

Leð~x; _~xÞ ¼ ~p · _~x −He; ð58Þ

where ~p can be written as a function of _~x by inverting the
relation

_~x ¼ ∇~pHe ¼ ð1þ ζÞ~p − ζð~p · r̂Þr̂: ð59Þ

[It can then be seen from (48), (49) and (59) that ~ve, ĥe, and
êe are mutually orthogonal, as is the case for the ordinary
rays.] To perform this Legendre transform, we define an
inverse metric tensor gij as

gij ¼ ð1þ ζÞδij − ζr̂ir̂j; ð60Þ
in terms of which we have

He ¼
1

2
ðgijpipj − 1Þ: ð61Þ

[The extra factors of ð1þ ζbÞ in (44) were chosen to make
this inverse metric more tractable.] It can then be seen that
_xi ¼ gijpj; inverting this, we then have pi ¼ gij _xi, where
gij is the metric tensor itself:

gij ¼
1

1þ ζ
δij þ

ζ

1þ ζ
r̂ir̂j: ð62Þ

Performing the Legendre transformation on He, then,
we find an effective point-particle Lagrangian for the
extraordinary rays:

Le ¼
1

2
ðgij _xi _xj þ 1Þ; ð63Þ

or, in terms of the path of the particle in spherical
coordinates frðτÞ; θðτÞ;ϕðτÞg,

Le ¼
1

2

�
_r2 þ 1

1þ ζ
r2ð_θ2 þ sin2θ _ϕ2Þ þ 1

�
: ð64Þ

This Lagrangian is independent of ϕ and t, implying that
there are two constants of motion: the angular momentum
in the z direction, given by

l ¼ 1

1þ ζ
r2sin2θ _ϕ; ð65Þ

and the “energy,”

E ¼ 1

2

�
_r2 þ 1

1þ ζ
r2ð_θ2 þ sin2θ _ϕ2Þ − 1

�
¼ 0: ð66Þ

Restricting our attention to the equatorial plane (θ ¼ π
2
),

we can write this as

1

2

�
_r2 þ ð1þ ζÞl

2

r2
− 1

�
¼ 0: ð67Þ

The motion of an extraordinary ray in the presence of a
Lorentz-violating monopole is therefore equivalent to the
motion of a particle with unit mass and total energy E ¼ 0
in an effective one-dimensional potential

VeffðrÞ ¼
l2ð1þ ζÞ

2r2
−
1

2
: ð68Þ

We now calculate the trajectory of a ray originating far
from the monopole and passing nearby it. Combining (65)
and (67), we can write down a differential equation relating
r and ϕ along the trajectory:

dϕ
dr

¼
_ϕ

_r
¼ � lð1þ ζÞr−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − l2ð1þ ζÞr−2
p : ð69Þ

The total angle of deflectionΔϕ of the light ray can then, in
principle, be found by integrating (69) from r ¼ ∞ to rmin
[defined as the value of r for which _r ¼ 0 in (67) above]
and doubling the result. However, a closed-form analytic
expression for Δϕ cannot be found, for the simple reason
that ζ is a function of r, due to its dependence on the field
profile g; as noted above, we do not have a closed-form
expression for gðrÞ.11 We can, however, plug (31) into (42)

11Numerical integration techniques can also be pursued,
and such investigations are ongoing. However, we would still
expect the geometric-optics approximation to break down if the
ray trajectory attained sufficiently small values of r; near the
monopole core, the length scale of the field variation would
presumably be shorter than the wavelength of the light waves
being deflected.
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[or (55)] to obtain a power series for ζ in powers of r−1.
Moreover, since ξb2 (or χb2) is expected to be many
orders of magnitude less than one, we can safely discard
any terms of Oðb4Þ or higher. All told, then, we have the
approximation

ζb ¼ ξb2
�
1 −

1

2λb2r2

�
þOðξ2b4; r−4Þ ð70Þ

(where we have now specialized to the birefringent case).
Defining μ ¼ ξb2 and ν ¼ ð2λb2l2Þ−1, and substituting
u ¼ l=r, we can write our integral for Δϕ as

Δϕ ≈
Z

umax

0

1þ μ − μνu2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ μÞu2 þ μνu4

p du ð71Þ

where umax ¼ l=rmin. This integral can be evaluated
exactly in terms of complete elliptic integrals; the result is

Δϕ ≈
1

umax
½EðqÞ þ qKðqÞ�; ð72Þ

where u2max is the (smaller) positive root of the denominator
of (71), i.e.,

u2max ¼
1þ μ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ μÞ2 − 4μν

p
2μν

;

and q ¼ ð1þ μÞumax − 1. To linear order in μ and ν, we
have u−1max ≈ 1þ μ=2 − μν=2 and q ≈ μν; thus, in this limit
the angle swept out by the light ray becomes

Δϕ ≈
π

2

�
1þ μ

2
þ μν

4

�
: ð73Þ

The deflection angle α between the propagation direction of
the incoming ray and the outgoing ray will then be

α ¼ 2Δϕ − π ≈
π

2
ξb2

�
1þ 1

4λb2l2

�
; ð74Þ

where a positive value of α corresponds to a ray being
attracted towards the monopole, and a negative value
corresponds to a ray being repelled from the monopole.
Note that the sign of α is the same as the sign of ξ; the
quantity in parentheses must be assumed to be positive
since the quantity ν ¼ ð2λb2l2Þ−1 has been assumed to
be small.
It is instructive to ask what the meaning of the parameter

ν is in the above calculation. To interpret it, we must assign
some meaning to the constant of motion l; the most
illuminating way to do this is to relate it to the impact

parameter β of the ray. The asymptotic velocity of the ray
(at r → ∞) can be seen from (67) to be _r ¼ �1; the plus or
minus corresponds to infalling or outgoing rays. It can also
be shown geometrically that a particle at location ðx; y; 0Þ
with velocity ð−v; 0; 0Þ will have _ϕ ¼ yv=r2. Thus, the
quantity l defined in (65) will be, for this particle,

l ¼ 1

1þ ζ
yv: ð75Þ

In the limit x → ∞ with y fixed, we can identify y with the
impact parameter β for this trajectory; thus,

l ¼ 1 − 1
6
ξb2

1þ 5
6
ξb2

β ≈ ð1 − ξb2Þβ; ð76Þ

where the prefactor comes from taking the limit of ζ
as r → ∞.
We see that l is not exactly equal to the impact parameter

β; however, since our result for the angular deflection (74)
is only accurate to Oðξ2b4Þ, we can effectively replace l
with the impact parameter in this equation:

α ¼ 2Δϕ − π ≈
π

2
ξb2

�
1þ 1

4λb2β2

�
: ð77Þ

Note, meanwhile, that the characteristic length scale of the
monopole core (as found in [10]) is rM ¼ ð ffiffiffi

λ
p

bÞ−1. Thus,
we have ν ¼ 1

2
ðrM=βÞ2; in other words, ν is best thought

of as telling us about the ratio of the physical size of the
monopole to the impact parameter of the ray.
Finally, recall that all of the above results hold for

light rays of any polarization in the presence of a
monorefringent coupling, under the substitution
ξ → χ=4. In particular, a positive value of χ in (13)
leads to light being “attracted” to the monopole, while a
negative value will lead to light being “repelled.” [The
leading negative sign in (13) was chosen to yield this
parallel interpretation.]

V. DISCUSSION

We have shown that a coupling between the Maxwell
field and an antisymmetric rank-two tensor field Bab can
have effects on the propagation speed of light. These
effects are dependent on the local magnitude of the field;
this implies that light rays propagating through a nonuni-
form background, such as a monopole solution, will be
deflected. For the “birefringent” coupling (12), light rays
whose electric polarization vector lies in the scattering
plane (“ordinary rays”) will travel past the monopole
undeflected; those whose electric polarization is
perpendicular to the scattering plane, meanwhile (“extraor-
dinary rays”), will be deflected due to their varying speed of
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light. For the “monorefringent” coupling (13), all rays will
be deflected regardless of their polarization. The leading-
order angular deflection of the rays, in terms of the model’s
parameters ξ, λ, and b and the ray’s impact parameter β, is
given in (77) for the extraordinary rays in the birefringent
case; the deflection for the monorefringent case is the same
under the substitution ξ → χ=4.
It is important to note that the observed effects, while due

to local anisotropies along the trajectory of the light ray, are
not themselves anisotropic when projected onto the sky; the
observed angular deflection pattern of distant sources is
rotationally symmetric about the monopole’s location on
the sky. This is because the monopole itself is rotationally
symmetric about this axis, so its lensing effects, when
integrated along the line of sight, are also rotationally
symmetric. This is to be contrasted with, for example, the
work of Tso and Bailey [21]. In that work, the metric
perturbations hab due to a compact object are distorted by a
coupling to a constant background tensor s̄ab. In general,
this causes the gravitational well to become asymmetric
with respect to rotations, and the asymmetry of the
gravitational well leads to a lensing pattern that is not
rotationally symmetric on the sky.
In this respect, these effects are most similar to the

gravitational lensing effects derived in previous work on
the Lorentz-violating monopole solutions [10,11,19]. In
the work of Li et al. [19], the gravitational deflection of a
null ray due to a Lorentz-violating monopole solution is
shown to be

αG ¼ 3

2
πϵ −

ffiffiffi
ϵ

pffiffiffi
λ

p
brm

þ ϵ

20λb2r2m
þOðr3mÞ; ð78Þ

where ϵ ¼ 16πGb2 and rm is the radial coordinate of
closest approach for the null ray in question. The most
notable similarity between the gravitational deflection αG
and the direct-coupling deflection α is that, in both cases,
the deflection angle does not vanish in the limit of large
impact parameter. (This is to be contrasted with the case
of light deflection by a conventional Schwarzschild
metric, for which the deflection angle goes to zero as
the impact parameter gets large.) In our case, we have

α∞ ≡ lim
β→∞

α ¼ π

2
ξb2; ð79Þ

the corresponding quantity in the gravitational case is
ðαGÞ∞ ¼ 3

2
πϵ. In this asymptotic limit, light rays behave

as though there was a conical deficit angle due to the
monopole.
However, this observation also illuminates an important

difference between the direct-coupling case and the gravi-
tational case. As noted previously, the coupling parameters
ξ and χ can be either positive or negative. From (74), this
implies that extraordinary rays in the birefringent coupling

case are attracted towards the monopole when ξ > 0 but
are repelled by it when ξ < 0. In the limit β → ∞, the
deflected rays behave as if in a space with a conical deficit
angle when ξ is positive and a “conical surplus angle”when
ξ is negative. In contrast, light rays are always deflected
towards a monopole solution by its gravitational influence
since ϵ [and therefore αG, in the regime where (78) is valid]
is always positive.
We can also ask what we would see if a monopole lay

between us and a distant star. The effects are easiest to
visualize in the birefringent case. For simplicity, consider
the case in which the ray trajectory stays far from the
monopole, so the approximation ν ≈ 0 is valid. It will
always be the case that the ordinary rays sent out by the
star will reach us along a straight-line path; the image
observed this way would be highly polarized but other-
wise undistorted. (This image would effectively serve as a
“marker” of what we would see in the absence of the
monopole.) However, the extraordinary rays would form
zero, one, or two images, depending on the sign of ξ and
the angular separation between the monopole and the
distant star on the sky. A schematic illustration of the
images of a distant star created by a passing monopole is
shown in Fig. 1.
The fact that the extraordinary rays can create two (or

zero) distinct images when the monopole, observer, and
source are sufficiently closely aligned is characteristic of
the conical deficit (or surplus) angle “seen” by the
extraordinary rays, as mentioned above. If we approximate
α ≈ α∞ in Fig. 2 (i.e., ignoring the variation of α with
impact parameter), we can see that an extraordinary ray
can always get to the observer on the “same side” of the
monopole as the ordinary rays (the right-hand side of
the monopole in Fig. 2). Moreover, it can also get to the
observer via the “opposite side” of the monopole, so long
as the distance γDS is less than α∞DMS. At this threshold

FIG. 1. Multiple images of a distant star created by a passing
monopole, assuming a birefringent coupling with (a) ξ > 0 and
(b) ξ < 0. The monopole’s location is indicated by the dashed
circle; the (electric) polarization of the light from each image is
indicated by the direction of its stripes. For a monorefringent
coupling, the horizontally polarized images would vanish, and
the vertically polarized images would become unpolarized.
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and in this approximation, the ray would “skim” the
opposite side of the monopole and then arrive at the
observer from the direction of the monopole itself. (Of
course, this limit would correspond to β → 0 and therefore
ν → ∞, before which point the above approximation for α
would fail. Figure 2 should just be taken to be indicative
of the range in which multiple extraordinary images
can form.)
Of particular note is that there is always a double image

of the star due to the birefringent effects of the monopole;
the angular separation of the ordinary image and extraor-
dinary image (in the limit ν → 0) will be

θE ¼ α∞DMS

DS
¼ π

2
ξb2

DMS

DS
; ð80Þ

where DMS is the distance to the source from the monopole
and DS is the distance to the star.12 Given the nonobserva-
tion of such double images on the sky, we can immediately
say that if ξb2 is nonzero, it must be sufficiently small
that these double images are not observed. If we take the
maximum angular resolution of the Very Long Baseline

Array (about 120 μas [22]) as the best achievable resolution
with current technology, we must thereby conclude that
jξb2j < 10−10 or so. This bound is, of course, over 20
orders of magnitude less stringent than the bounds
placed on ξb2 via direct polarimetry measurements (see
Sec. III A). We therefore conclude that these multiple
images will, in general, be so closely spaced as to be
unresolvable.13

Most of the above discussion carries over to the mono-
refringent coupling case as well; the only major difference
is that both polarizations are deflected, rather than just one.
This would mean that the horizontally polarized images in
Fig. 1 would be superimposed on the vertically polarized
images. In other words, for χ > 0 we would initially see
one unpolarized image; a second unpolarized image would
then form to the left of the original, and finally the original
image would vanish. The situation would be similar for
χ < 0, except that the original image would vanish before
the appearance of the second image. The angular distance
between these two images would be twice the angular
scale calculated in (80) (under the substitution ξ → χ=4).
Even though the bounds on the monorefringent coupling
are much less stringent than the corresponding birefringent
bounds (see Sec. III B), the angular resolution needed to
resolve these distinct images is still 5 orders of magnitude
greater than is feasible with current or near-future
technology.
We can conclude that direct resolution of distinct

images, while, in principle, possible, is quite implausible
in practice; a monopole sitting at rest between the Earth and
a distant source would therefore be effectively unobserv-
able. However, the effects of this coupling could also be
observable via intensity variations of the starlight due to a
monopole in motion, passing between us and a distant
source. With sufficiently close alignment of the source,
monopole, and observer, one could hope to observe a
sudden jump or drop in the received intensity of a distant
source due to the appearance and disappearance of the
aforementioned multiple images. Moreover, even without
such good alignment, the bending of the rays would lead to
a “focusing” or “defocusing” of the source’s light rays as
the monopole moves past, just as a compact gravitational
object can focus such rays. These microlensing events
would therefore cause smooth intensity variation of the
distant source. Such variations of the source intensity (via
the appearance of multiple images or, more likely, micro-
lensing) are likely to be the only way that such monopoles
could be observable via foreseeable technology. We are
currently investigating these possibilities.

FIG. 2. Lensing diagram for triple image formation in the thin-
lens approximation, assuming an attractive birefringent coupling.
The points O, M, and S denote the observer, monopole, and
source, respectively; I1 and I2 are the extraordinary images on the
sky. Solid lines denote the paths of extraordinary rays from the
source to the observer; the dashed-dotted line denotes the path of
the ordinary rays.

12This can be seen from the triangle formed by O, S, and I1
(or I2) in Fig. 2. It is also worth noting that the angle θE would be
the radius of the “Einstein ring” in the case of perfect alignment
between Earth, the monopole, and the distant star.

13When completed, the Event Horizon Telescope [23] will
achieve an angular resolution an order of magnitude better than
the Very Long Baseline Array—a substantial accomplishment,
but still insufficient to observe these effects.
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APPENDIX: DEPENDENCE OF σ
ON MODEL PARAMETERS

Following the language of [13], the parameter σ for a
source with right ascension α and declination δ is given by

σ2 ¼ ð~ςa · ~kÞ2 þ ð~ςc · ~kÞ2; ðA1Þ
where we have defined the three ten-dimensional vectors in
this equation as

ςas ¼

2
66666666666666666664

cos2δþ cos2α − sin2α sin2δ

sin2δ cos2α − cos2δ − sin2α

−2 sin δ sin α cos α

− sin δ sin α cos α

sin δðsin2α − cos2αÞ
− cos δ sin α

cos δ cos α

− sin δ cos δ cos α

−cos2δ sin α cos α

− sin δ cos δ sin α

3
77777777777777777775

; ðA2Þ

ςac ¼

2
6666666666666666664

−2 sin δ sin α cos α

−2 sin δ sin α cos α
1
2
ð1þ sin2δÞðsin2α − cos2αÞ

1
2
ðsin δþ sin2α − sin2δ cos2αÞ

ð1þ sin2δÞ sin α cos α

− sin δ cos δ cos α

− sin δ cos δ sin α

cos δ sin α

sin δðsin2α − cos2αÞ
− cos δ cos α

3
7777777777777777775

; ðA3Þ

and

ka ¼

2
66666666666666666664

−Q̄yR̄y þ 1
3
Q̄ · R̄

Q̄xR̄x − 1
3
Q̄ · R̄

ðQ̄yÞ2 − ðR̄yÞ2 − 1
3
ðQ̄2 − R̄2Þ

ðQ̄zÞ2 − ðR̄zÞ2 − 1
3
ðQ̄2 − R̄2Þ

Q̄xQ̄y − R̄xR̄y

Q̄xQ̄z − R̄xR̄z

Q̄yQ̄z − R̄yR̄z

Q̄xR̄z þ Q̄zR̄x

−Q̄xR̄y − Q̄yR̄x

Q̄yR̄z þ Q̄zR̄y

3
77777777777777777775

: ðA4Þ

Note that this last vector contains the ten independent
parameters of the matrices ~κeþ and ~κo−.
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