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Aether field in extra dimensions: Stefan-Boltzmann law and Casimir effect
at finite temperature
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The Lorentz and CPT symmetries are not violated at the highest laboratory energies available. However
these symmetries may be violated at Planck scale. A particular development is to investigate the breakdown
of Lorentz and CPT symmetries by introducing an aether field that exhibits nonzero vacuum expectation
value along the fifth dimension. The interactions of the aether field with scalar, electromagnetic, and
fermions fields are analyzed. The Stefan-Boltzmann law and Casimir effect at finite temperature are

calculated using the Thermo Field Dynamics formalism.
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I. INTRODUCTION

Lorentz and CPT invariance are fundamental sym-
metries of the Standard Model. Theories at high energies
available in laboratory have been investigated for possible
Lorentz and CPT violations with negative results. String
theories are a particular example where Lorentz and CPT
symmetries breaking has been analyzed [1]. These ideas led
to the consideration of the Standard Model at very high
energies (essentially infinite energies), i.e., the construction
of the Standard Model Extension that includes a part that is
Lorentz invariant and a part that is not invariant under
Lorentz and CPT symmetry [2—4].

A particular mechanism to introduce spontaneous
Lorentz breaking is to consider the existence of a vector
field with nonzero vacuum expectation value [5,6]. This
vector field has a fixed norm and a preferred direction at
each point in space-time. A model with spontaneous
Lorentz breaking in five dimensions has been developed
[7.8]. It provides a different way to consider Lorentz
violation in extra dimensions. This model adds a
Lorentz-violating vector field, u* = (0,0,0,0, v), called
the aether field, with nonzero expectation value aligned
along the fifth dimension. It ensures that Lorentz invariance
is preserved in four dimensions.

The aether field interacts with any matter field. All fields
that interact with the aether field exhibit a violation of
the Lorentz symmetry. Its interaction with other fields
modifies their dispersion relations. For example this leads
to different spacings in Kaluza-Klein towers of each field
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[7]. The role of the aether field for the stability of the extra
dimension has been discussed [9,10]. The Casimir energy
as a mechanism for stability in five-dimensional models has
been considered [10,11].

The Casimir effect is the interaction between two parallel
conducting plates [12]. The plates modify the quantum
vacuum, and as a result the plates are attracted toward each
other. Initially this effect was predicted for the electromag-
netic field. However it can be defined for any quantum
field. The first experimental observation was carried out
by Sparnaay [13]. At present a high degree of accuracy has
been achieved [14,15]. Our objective is to calculate the
Casimir effect for the aether field interacting with various
fields: scalar, electromagnetic and fermions at finite
temperature.

The temperature effect may be calculated by three
equivalents methods: (i) Matsubara formalism [16] is
based on a substitution of time, 7, by a complex time,
irz. (ii) Closed time path formalism [17] is a real time
formalism. This procedure leads to a doubling of the
degrees of freedom of the system. And the Green functions
are represented by a two-dimensional matrix structure.
(iii)) Another real time formalism is the Thermo Field
Dynamics (TFD) [18-22]. This approach consists of two
ingredients: (a) the doubling of the original Fock space,
composed of the original and a fictitious space and (b) the
Bogoliubov transformation. The Bogoliubov transforma-
tion is a rotation between two spaces, original and
fictitious. Here the TFD formalism is chosen to calculate
finite temperature effects.

This paper is organized as follows. In Sec. II, some
details of the aether field are presented. In Sec. III, a brief
introduction to TFD is given. In Secs. IV, V and VI,
interactions between the aether field with scalar, electro-
magnetic and fermions fields are considered, respec-
tively. For each case the Stefan-Boltzmann law and the
Casimir effect at zero and finite temperature are
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calculated. In Sec. VII, some concluding remarks are
discussed.

II. LORENTZ VIOLATION IN FIVE DIMENSIONS

The spontaneously broken Lorentz symmetry is written
in terms of an aether field, u“. The aether is a spacelike
5-vector with a nonvanishing expectation value. A five-
dimensional flat space-time with coordinates x¢ = (x*,y),
with 4 =0, 1, 2, 3, is considered. The fifth dimension is
compactified on a circle. An antisymmetric tensor B, is
defined in terms of the field u?,

Bab = vaub - vbua- (1)

Then the action is

S=M, / dx\/g {—%BabB“b — Nugu® — v?) + ZE,] ,
(2)

where ¢ is a metric determinant and M, is a scaling
parameter. Here £; represents various interaction terms
that couple the aether field to the matter field. A Lagrange
multiplier, A, enforces the constraint

utu, = v°. (3)

For the case £; = 0, the field equation for u* is
V,B% + v2ubu VB = 0. (4)

This equation is solved for any case for which B, = 0.
A possible solution is

u’ = (0,0,0,0,v), (5)

where the aether is a spacelike vector field which has a
nonvanishing component exclusively along the extra
direction. This choice preserves the Lorentz invariance
in the four-dimensional space. Furthermore the energy-
momentum tensor associated with the aether field,

1
Tab — BacBg _ ZgabBchcd + v_zu“ubuCVdBCd, (6)

vanishes when B** = 0. This work is based on the solution
given by Eq. (5).

III. THERMO FIELD DYNAMICS
Here a brief introduction to the TFD formalism is
presented. In TFD the Fock space S is doubled, Sy =

S® S’, where S is the dual Fock space. Another funda-
mental ingredient in TFD is the Bogoliubov transformation
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which introduces thermal effects through a rotation
between tilde (S) and nontilde (S) operators.

Using arbitrary operator O and O in Fock space S and S,
respectively, the Bogoliubov transformation is

O(a) )—u( ) O(k) )
<§@*<a> e (56‘“(@)’
where £ = —1 for bosons and & = +1 for fermions. The
Bogoliubov transformation, U (a), is defined as
_( ula)  -w(a)
4= (i) e ) o

with u?(a) + éw?(a) = 1. Here a field theory on the
topology I'Y) = (S')? x RP~? with 1 <d < D, is consid-
ered. D are the space-time dimensions, and d is the
number of compactified dimensions. This establishes a
formalism in such way that any set of dimensions of the
manifold R? can be compactified, where the circumference
of the nth S! is specified by a,. Then the a parameter is
assumed as the compactification parameter defined by
a=(ay,ay,...ap_;). The effect of temperature is
described by the choice ay = f and ay, ...ap_; = 0, where
p = 1/kgT with kg being the Boltzmann constant.

Any propagator in the TFD formalism is written in terms
of the a-parameter. As an example consider the scalar
field [19]. Then the propagator is

Go'"(x = x's) = i(0.0le[p* (x: ) (¥ @)][0.0).  (9)
where

p(x;a) = U(@)p(x)U (a). (10)
Here A and B = 1-2, and 7 is the time ordering operator. In

the thermal vacuum |0(a)) = U(a)|0,0), the propagator
becomes

G (x = s a@) = i(0(a) e[ (x)B (x)]|0(ax)).

5
=i / Ak G (k). (11)

(27)°
where
Gy'”(k:a) = U @Gy ((a).  (12)
with
G (k) (Goék) 5Gg(k)>’ "
and
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1

Colk) = K —m?+ie’

(14)

where m is the scalar field mass.
The physical quantities are given by the nontilde
variables. Then the physical Green function is

Gy (k) = Go(k) + &w? (ki) Gy (k) = Go(K)]. (1)
where w?(k; a) is the generalized Bogoliubov transforma-
tion [23] which is given as

w?(k; a) ZZZS ! io: (-q)”ZLHnr
s=1 {o,} lpy ooy =1
X exXp [— Zaojl,,jk"f} , (16)
=1

with d being the number of compactified dimensions, n =
1(—1) for fermions (bosons), {c,} denotes the set of all
combinations with s elements, and k is the 5-momentum.

In this paper three different topologies are used:

(i) The topology TI'l =S!xR* where a= (5,0,0,
0,0). In this case the time axis is compactified in
S', with circumference f.

(ii) The topology F% with a = (0,0,0,i2d,0), where
the compactification along the coordinate z is
considered.

(iii) The topology I'Z = S! x S! x R with a = (5,0, 0,
i2d,0) is used. In this case the double compactifi-
cation consists in one being the time and the other
being along the coordinate z.

IV. SCALAR FIELD INTERACTING
WITH AETHER FIELD

The Lagrangian for the massless scalar field interacting
with the aether field is

1
Ly, = ——8a¢8a¢ —5 U, p0, ¢, (17)
2u5

where u“ is a spacelike 5-vector which has the form
= (0,0,0,0, v); the mass scale, Hy» is added for dimen-
sional consistency; and the latin indices a, b, c, ... run from
0 to 4.
To avoid divergences, the energy-momentum tensor,

oL,

cd __
" = 00.9)

O - gLy, (18)

is written at different space-time points as
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T¢/(x) = limz {—5C¢(X)3d¢(X’) + %gedaa(ﬁ(x)@“(ﬁ(ﬂ)

—é{wwmwnWMw
Hg

—%g b9 p(x )abqs(x’)] } (19)

where the first line is the Lorentz invariant part and the
second line is the Lorentz-violating (aether field) part.
Using the commutation relation,

[p(x), 9 p(x')] = ing5(% — ), (20)

where n§ = (1,0,0,0,0) is a timelike vector and

00(xp — x{,) = n$é(xy — x;). Then the energy-momentum
tensor becomes

e (x) = im {1 (x, x') 2h (x) p ()] + 1 (x.x) 6 (x — ') },

x—x'

(21)
with

1
FCd(x, xl) s + 5gcdaaam

1 1
- (u“ucf)a(?’d - Engu”ubau%) , (22)
He

1
19(x,x') = —in§nd + > igd

i 1
—/7 (u uno,nd — Eg u“ubn0an0b> (23)
¢

The vacuum expectation value of the energy-momentum
tensor is

(T°(x)) = }Lfg{iF”d(x,X')Go(x - x)
+1¢(x, x")8(x — x') }, (24)

where the propagator is

iGo(x —¥) = (Odlp()p()][0).  (25)

Using the doublet notation, the physical energy-momentum
tensor in terms of the a-dependent field is

T4B) (x;a) = ilim {T*(x,¥') Gy (x —x';@)}.  (26)
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where 7°YAB)(x; ) = (T¢/UB) (x; a)) — (T¢4AB)(x)) and

~(AB) (AB)

Gy (x—x5a) =G, (AB)

(x=x50) -Gy ' (x—x). (27)
A. Applications

1. Stefan-Boltzmann law: a=(,0,0,0,0)

The generalized Bogoliubov transformation, Eq. (16) for
d=1and s =1, is

w2 (B) = e, (28)
lo=1
and the Green function becomes
Golx = x38) =2 Golx —x' = iBlong).  (29)

l=1

where ny = (1,0,0,0,0). The energy-momentum tensor is
given by

T (x; ) :2ilim{FCd(x,x') iGo(x—x’— iﬂlono)}-

x—x' =1
(30)

Using u® = (0,0,0,0,v) its component ¢ =d =0, the
Stefan-Boltzmann law, becomes

T (x; ) = ilim { > {—8‘)8’0 + %gﬂoaaa’a

!
X=X lo=1

1 1
- (uau08aa/0 _ Egoouauhaua$)>:|

He

x Go(x —x' — i/)’lono)}

7 1 v?
=—T*1+4+-(1-=]]. 1
Sl o

Therefore the aether field in the fifth dimension modifies
the usual Stefan-Boltzmann law. Even if v = O the fifth
dimension contributes ~16% to the law.

2. Casimir effect at zero temperature: a=(0,0,0,i2d,0)

The distance between two plates is d. Then

[Se]

W2(d) — Z e—i2dk3l3 (32)

=1
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is the Bogoliubov transformation, Eq. (16) for d = 1 and
s =1, and

Go(x—x'3d) =2 Go(x—x' —2dlsn;)  (33)
=1

is the Green function with n3 = (0,0,0,1,0). Then the
Casimir energy and Casimir pressure, respectively, are
given as

n? 1 v?

n? 1 v’
T =g 16 ()] 69
¢

Both results are modified by the aether field. The Casimir
energy and pressure are changed by 50% and 16%,
respectively, with v = 0.

3. Casimir effect at finite temperature: a=($,0,0,i2d.0)

The Casimir effect at finite temperature with the spatial
compactification is calculated. The Bogoliubov transfor-
mation, Eq. (16) for d =2 and s = 2, is

(s [s9)
0 i 113
W2(ﬁ, d) — E e—ﬂk Iy + E e—12dk I8
ly=1 =1

+2 Z e~ PROl=2dk3 15 (36)

lo,l3=1

The first two terms are associated with the Stefan-
Boltzmann law and the Casimir effect at zero temperature.
The Green function for the third term is

Go(x—x':p.d) =4 > Go(x —x' — iplony — 2dl3ns).

lo,l3=1

(37)

Then Casimir energy at finite temperature is

025021-4



AETHER FIELD IN EXTRA DIMENSIONS: STEFAN- ...

1 v?
—T41 1—-—
Sor[vel ﬂ)]

TOO (11) (ﬁ d)
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P 1 1 | v?
14404* 2 ,uj)

2 & (2dh)
_72 3

and the Casimir pressure at finite temperature is

2 1 1}2
904* [l 2 <1 _?5,)]

T33 (11) (ﬂ d)

3(plo)? [1 _ 1 (2dly)?
+ (2d15)*P

2ty = 3%221 <1 ) M ’ G8)

”_21 e v
4804 | 6\ 42

2 & 3(2dl)? -
”2 10;1 [(ﬁl())z

These results display modifications due to the aether field
and the extra dimension. If v = 0, changes persist in the
presence of the fifth dimension.

V. ELECTROMAGNETIC FIELD INTERACTING
WITH AETHER FIELD

The Lagrangian for the electromagnetic field with the
lowest-order coupling in u? is

1 1
—FpF — —uu g“F ;. F . (40)

ﬁ =
o 2y

The energy-momentum tensor becomes

1
tcd — _FcbadAb + chdFabFab
1
— — (W U°F 4y — uuy, F )0 AP
Ha

1
+ o) G uu’ g™ F y F . (41)
Ha

which is

= tig + tid, “2)
where t&d, and t{¢, are Lorentz invariant and Lorentz-
violating (aether field) parts, respectively. The Belinfante

method [24] is used to define the Lorentz invariant part.
Then it leads to the symmetric energy-momentum tensor

1
Tghy = —F°,F% + ZQCdFabFab~ (43)

The same method is not applicable for the Lorentz-
violating part. Then the total energy-momentum tensor
becomes

+(2d1,)*)

2[3(2d13)* ~ (Blo)?] 1,
[
¢ pdb 1 cd ab 111 cd,a,,b ml
T = -F F +4g F F +’u 2g uug FamFbl
A
— uu‘F ,,0%Ab + u“ubFacadAb} ) (44)

This tensor is not completely symmetric. This is a feature of
theories which exhibit Lorentz violation. To avoid diver-
gences, the energy-momentum tensor at different space-
time points is

T(x) = Tgfy (%) + {5 (%), (45)

where

. 1
T () = lims |=F ()P4 () 4 3 “F )P ()

x—x'

(46)

is the usual Lorentz invariant electromagnetic part in five
dimensions and

1 1
TE0) = 2 lime 3 o ()P

H 2
— UUF ) (x)OVAL (X)) + uu, F,C (x)07AL (X) |,
(47)
is the Lorentz-violating contribution due to the aether field.

Hereafter we choose the Coulomb gauge. The non-null
commutation relations are defined by

)75 (2)] = 185 = 300, 3G =), (48)

where 7;(x) = 0yA;(x) is the momentum conjugate to A;.
Then the Lorentz invariant electromagnetic part becomes
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¢, (x) = lim { — A (x, x')e[A; (x)A, ()] and

x—x'

+2i (ncnd - lg”‘")é(x - x’)} (49)
070 4 ch.dl,ij(x’ x/) — (gmiac _ gciam)(glja/d _gdj(:)/l). (51)

with

AT (x, x') = ch.dm’ij (x,x) — l gcdrmlymlyij (x,x')  (50) The energy-momentum tensor associated with the

4 Lorentz-violating part is
|

1 1
T{4(x) = — lim {5 G U g 1. (0, X )2 [A () A ()] A+ Ly (3, )10, 8(x = X') = Ly (%, X )1 8(x — X))

Ha x—x'

= uu[0y Y (x, )l Ay (x) Ay ()] + 11 (x,x)8(x = )]

w1y [Dy 0 (1, 2 ) A (1) Ay ()] + 1y, P (3. x5 (x = )] } (52)
where
Ly (6.X') = ingy (gt = V20,00)8(% = ) = ingy(gup = V20,,0)8(% ). (53)
Iy (6 x') = g70,0 — g/, (54)
D i (x,x') = g°ig10,0" — gigh 09", (55)
1,4(x, ) = —ingno,,(az -V~29,0"), (56)
1,4, (x,x') = indng, (60 — V=20°0") — indn§ (85 — V2000,). (57)

Using the definition of the electromagnetic field propagator,
(0lz[A;(x)A;(¥)]]0) = ig;;Go(x — x'), (58)

with Gy(x — x’) being the massless scalar field propagator, the vacuum expectation value of the energy-momentum tensor is

1 1|1
(T(x)) = lim{—iF"d(x, XNGo(x — x') +2i (ngng — 490‘1) S(x—x') + el {2gc‘lu“uhgm’(il“abml(x, X)Go(x —x)
X=X A

A Ly i (X, X' )10 (x — x') — Ia,bl(x’x,)nOmé(x -x')) - ”auc[irmd(xv x')Go(x — x') + Ilad(x7 x')6(x — x')]

+ u®uy [iTy% 4 (x, ') Gy (x — xX') + 1,9, b (x, x')8(x — x’)]] }, (59)
where
red(x, x') = 2 <aca/d - %ydaba;,) , (60)
Capim (X, %) = 91m0a0), = 9p0a0) = 9a1Om0)y + 9apOn9). (61)
Iy d(x, ¥') = 30,0, (62)
0 (x,x') = g 0,0/ — ga0 9. (63)
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The physical energy-momentum tensor is defined as

TCd(AB> (X; (l) _ <Tcd(AB) ()C; a)> _ <Tcd(AB) (x)>, (64)

where the doublet notation is used to introduce the a-
parameter. Then

Tcd(AB) ( X a)

= —ilim{FCd(x,x’)

x—x'

111
— /7 |:§ gcduaubglmrablm (x’ xl)
A

— uaucl—*lad(x’ xl) + MaubFZCb’ad(x, x/):| }
x GE)AB) (x = x5 a), (65)

where (_}(()AB) (x —x';a) is given in Eq. (27).
Using Eq. (65) for different a-parameters, the Stefan-
Boltzmann law and the Casimir effect at zero and finite

temperature are calculated.

A. Stefan-Boltzmann law: a=($,0,0,0,0)
The energy-momentum tensor is written as

Tcd(ll)(ﬁ)

11
=—2ilim Z{F”d X, x)—'u— [2g uub " i (2, X)

X—)X l —1 A

—uuT 4 (x,x') + u“ubl“z“b*ad(x,x’)} }
X Go(x—xl—i/))lono), (66)

where Egs. (28) and (29) have been used. The component
¢ =d =0 with u* =(0,0,0,0, v) becomes

TN (B) = 15T4[1+112<1—%2)]. (67)
A

TCd(ll)(ﬂ, d)
x> lp.s=1
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This is the Stefan-Boltzmann law modified by the aether
field. If the aether field is zero, i.e., v = 0, the modification
due to the fifth dimension is about 8%.

B. Casimir effect at zero temperature:
a=(0,0,0,i2d,0)

Using Egs. (32) and (33),

tensor 1s

Tcd(ll)(d)

= —2ilim Z{l"“’ x,x') -

the energy-momentum

X—?X

11
[EnguuuhglmFablm(x’x/)
MA

—uu’T 4 (x, x) + u“ubrz””*ad(x,x’)} }

XGo(X—X/—2d13n3). (68)

Then the Casimir energy, 7°°("!) (), and Casimir pressure,
T30 (q), are

2 1 V2

T () — — " 1—-(1-%
e T wa)l (69)

2 1 99?2
TR () = —— " 1122\l (70
() 2404* +12 ,ui ( )

The Casimir energy and Casimir pressure in four dimen-
sions are obtained from this result when the aether field, v,
vanishes. The extra dimension still contributes about 25%
and 8% to energy and pressure, respectively.

C. Casimir effect at finite temperature: a = (4,0,0,i2d,0)

The energy-momentum tensor associated with the third
term of Eq. (36) is

1|1
—4ilim Z {F“’ x,x') — [Eg“du“ubg’mrablm(x, x')
ﬂA

— uuT 4 (x, X)) + uu, Ty 4 (x, x’)] }Go(x —x' —iplyny — 2dlsns), (71)

where the Green function is given by Eq. (37). Then the Casimir energy, 7°("") (8, d), at finite temperature is

~ (2dL3)* + (Ply)* -

[(2d13)* + 9(,510)2],5—2

RS 3(ply)*
']'001] d .
(6. z Z: ﬂlo)]

The total Casimir energy,

(72)

4((2d13)* = 3(plo)*]

E(p,d), at finite temperature, involving all terms in Eq. (36), is
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1 502 i 1 V2
E :—T41 1—— | - 1——(1-—
o =357 |15 (1-3) | - -3 (1)

(2d1)* =3(Blo)* | (2d13)* + (Plo)* -

[(2d15) +9(Blo)*] &=

PHYSICAL REVIEW D 95, 025021 (2017)

4
"7 2 TRdL Y T (Bl T ALY =37 7
The Casimir pressure, 73 (8, d), at finite temperature is
- RS 2d13 Cp? | @dB) + (Blo) = [(Blo)” +9(2d15)’] 12
TN =5 2 e R | 4B - ()] W
and the total Casimir pressure, P(f3,d), at finite temperature is
7 1 v? s 1 99?2
POA) =355 [l Z<1 _/Ti)] 2408 {1 n <1 _Eﬂ
4 S 3(2d1)7 = (Bl | (2d13)* + (Blo) = [(Blo)? +9(2d13)*] &> s
P> (dL)y + (B)F ) 4B3(2dly) - (Bl )] 7

lpy=1

The positive Stefan-Boltzmann law contributions in
Egs. (73) and (75) dominate in the high-temperature limit.
The Casimir energy and the Casimir pressure are negative
for low temperatures, since the Lorentz-violating contri-
butions are small. The extra dimension contributes to the
Casimir energy and pressure.

VI. FERMIONS FIELD INTERACTING
WITH AETHER FIELD

The Lagrangian for the fermion-aether interaction is

. _ i _
L, = iy O,y — mipy — 2z uuPyry Opy,  (76)
v

which leads to the field equation

iy D,y — my =~ Py Dy = 0. (77)
W

The energy-momentum tensor is

i
T = iy 0%y — p U ugry 0y, (78)
W

where Eq. (77) has been used. The first term is the Lorentz
invariant part, and the second term is the Lorentz-violating
(aether field) part. This result is rewritten at different points
of space-time as

x—x'

T¢(x) = lim |:l]/ Ot (x )y (x')]

| R

4

To avoid divergences the point-splitting technique is used.
The vacuum expectation value of the energy-momentum
tensor is

1
(T(x)) = =5ilim {(8"8‘1 —z uau”8d8“> Go(x — x’)] ,

/
X=X
v

(80)
where the fermion propagator definition

(Ol (x)y (x)]]0) = iS(x = '), (81)

with S(x —x") = (iy - 0 + m)Go(x — x’). For a massless
fermion, m = 0, is used.

Using the TFD formalism, the physical energy-
momentum tensor is

'(x=x'1a) = Gy (2= 2]},

(82)

TedAB) (x) = —5i lim {FCd[Gg)/;B

where
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[ed =99 — Lzuau"ﬁda“ (83)

W

and G(()?VB) (x — x’) is the Green function.
Applications of the energy-momentum tensor for differ-
ent a-parameters will be used.

A. Stefan-Boltzmanna law: a=(,0,0,0,0)
The Bogoliubov transformation, Eq. (16) for d = 1 and
s=1,1s

[Se]

W (p) = (=1)!the M, (84)

Io=1

This transformation leads to the thermal Green function,

Gop (x = ¥'3 ) = Go(x = x)
+ Z l+lo G* x -Xx+ lﬂlol’lo)
- Go(x —x' = iplony)). (85)

Then the energy-momentum tensor becomes

—SIIImZ

X—)X Z 1

= Go(x —x' = iplyny|}. (86)

T (B 1)o{T Gy (x' — x + iBlong)

The component ¢ =d =0 is

_ 7610T4<1 D (87)

This result is the modified Stefan-Boltzmann law. This
modification is due to the fifth dimension. The aether field,
v, does not contribute to this result. The extra dimension
still contributes 25%.

TOO(Il)(ﬂ)

B. Casimir effect at zero temperature: a=(0,0,0,i2d,0)

For parallel plates perpendicular to the z-direction and
separated by a distance d, the Bogoliubov transformation,
Eq. (16) ford=1and s =1, is

o0

wz(d) _ Z(_1)1+z3e—52dk313_ (88)

=1

In order to calculate the Casimir effect at zero temper-
ature, the energy-momentum tensor is

PHYSICAL REVIEW D 95, 025021 (2017)

Ted) (g) —SLhmz 1)5{T[Gs(x" — x + 2dl3n3)

X=X =

= Go(x —x' = 2dl3n;}. (89)

Then the Casimir energy and Casimir pressure are,
respectively,

Tn? 1
T00(11)<d) — —W (1 + Z) 5 (90)

T2 1
LA 1
960a4< +4> 1)

It is important to note that the aether field, », does not
contribute to this result. The extra dimension still contrib-
utes 25% to the result.

T3 (g) =

C. Casimir effect at finite temperature: a = (4,0,0,i2d,0)

The Casimir effect at finite temperature and with spatial
compactification is calculated. The Bogoliubov transfor-
mation, Eq. (16) for d =2 and s = 2, is

w2 (B, d) =Y (=1)!Floe PR N (1) 1k gmi2dly
+2 Z (=1t = PRl=i2dk'l; (92)

Ip.=1

The first two terms correspond to the Stefan-Boltzmann
law and the Casimir effect at zero temperature. The Casimir
energy and Casimir pressure at finite temperature are
calculated using the third term. The energy-momentum
tensor is

[e]
10ilim
/
Y2 L=1

X {FCd[GB(X/ - X+ iﬂlol’lo + 2dl3l’l3)
- Go(.x - X, - iﬁlono - 2dl3n3]} (93)

r]'cd(ll)(d) _ (_])lo+13

Then the Casimir energy, 7)) (4, d), and Casimir pres-
sure, T3 (B, d), at finite temperature are

Z700(11) ﬂ d) = % i —1)loth
<2dzs> 3l (1
a1 tE) o
and
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733(“)(ﬂ, d) _ _% Z (_1)10+13
/3

Ioe1
3(2d15)2 = (Bly)? 1
@i+ (Bl T (1 +4>‘ 5)

E(p, d), at finite temperature is

The total Casimir energy,

Ep.d) = T4< > 28802a (HD

8 & (2d1 ) -3(pl )2 < 1>
_ [ +13 3 0 1 +—
72 ]0;1 2d13)2 + (Bly)?)? 4
(96)
and the total Casimir pressure, P(f,d), at finite

temperature is
Tn? 1 Tn? 1
P(B.d)=-—T*1 - 14-
(8.4) 180 ( +4> 960a4< +4>

8 S Ly 32 = () (1
2 > (=i [(Zdl3)32 + (/ﬂo())ZP (1 +4>‘
(97)

Ip.s=1

The modifications in Egs. (87), (90), (91), (96), (97) due
the aether field are different from similar results for the
scalar and electromagnetic fields. Explicit modifications
involving the » parameter do not exist. However the extra
dimension contributes 25% to the Casimir energy and
pressure.

PHYSICAL REVIEW D 95, 025021 (2017)
VII. CONCLUSIONS

The Standard Model is invariant under Lorentz and CPT
symmetries, and experimentally no breakdown of these
symmetries has been observed. At Planck scale (infinite
energies), breakdown of these symmetries is postulated. In
order to preserve the Lorentz invariance in four dimensions,
a spacelike aether field with nonvanishing components
along the fifth dimension, u* = (0,0,0,0,v), has been
introduced. The aether field interacts with any matter field.
Interactions with scalar, electromagnetic and fermions
fields are considered. The aether field modifies the
Stefan-Boltzmann law and the Casimir effect at zero and
finite temperature. The TFD formalism has been used to
introduce temperature effects. Since the wv-parameter is
small, these modifications may be considered as correc-
tions. The temperature effect may be used to enforce
constraint on the v-parameter. The modifications for scalar
and electromagnetic fields consist of two parts: (i) contri-
bution due to the fifth dimension and (ii) contribution of the
aether field, v. For the fermions field, the modifications are
only due to the fifth dimension, and there is no contribution
by the aether field. The extra dimension contributions
persist; i.e., an estimate of the change due to the fifth
dimension to the Stefan-Boltzmann law and the Casimir
effect are given.
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