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Two particle irreducible effective actions (2PIEAs) are valuable nonperturbative techniques in quantum
field theory; however, finite truncations of them violate the Ward identities (WIs) of theories with
spontaneously broken symmetries. The symmetry improvement (SI) method of Pilaftsis and Teresi
attempts to overcome this by imposing the WIs as constraints on the solution; however, the method suffers
from the nonexistence of solutions in linear response theory and in certain truncations in equilibrium.
Motivated by this, we introduce a new method called soft-symmetry improvement (SSI) which relaxes the
constraint. Violations of WIs are allowed but punished in a least-squares implementation of the symmetry
improvement idea. A new parameter ξ controls the strength of the constraint. The method interpolates
between the unimproved (ξ → ∞) and SI (ξ → 0) cases, and the hope is that practically useful solutions can
be found for finite ξ. We study the SSI 2PIEA for a scalar OðNÞ model in the Hartree-Fock approximation.
We find that the method is IR sensitive; the system must be formulated in finite volume V and temperature
T ¼ β−1, and the Vβ → ∞ limit must be taken carefully. Three distinct limits exist. Two are equivalent to
the unimproved 2PIEA and SI 2PIEA respectively, and the third is a new limit where the WI is satisfied but
the phase transition is strongly first order and solutions can fail to exist depending on ξ. Further, these limits
are disconnected from each other; there is no smooth way to interpolate from one to another. These results
suggest that any potential advantages of SSI methods, and indeed any application of (S)SI methods out of
equilibrium, must occur in finite volume.
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I. INTRODUCTION

There is growing interest in techniques for nonperturba-
tive and nonequilibrium quantum field theories. Potential
applications for new methods range from cold atoms to
cosmology (see, e.g., Ref. [1]). Recent progress on topics
such as the dynamics of nonequilibrium critical points and
phase transitions has come from the development of n
particle irreducible effective action (nPIEA; n ¼ 1; 2; 3;…)
methods. These methods have a long history. The 1PIEA
was introduced by Goldstone et al. [2] and Jona-Lasinio
[3]. The 2PIEA was introduced independently by several
authors [4–6] and finally received its modern formulation
by Cornwall et al. [7]. This method has seen widespread
use in both condensed matter and fundamental physics (see,
e.g., Refs. [1,8] for fairly recent reviews). De Dominicis
and Martin [9] then realized that these were special cases of
a general formalism for arbitrary n. This work was then
extended by others [8,10–12], but the practical use of
effective actions for n ≥ 3 remains minimal, largely due to
difficulties with the renormalization of physically interest-
ing theories.
nPIEAs can be thought of as generalizations of mean

field theory which (a) are elegant, (b) are general, (c) are in
principle exact, and (d) have been promoted for their
applicability to nonequilibrium situations (see, e.g.,
Ref. [1] and references therein for extensive discussion

of all these points). Nonperturbative methods are essential
in nonequilibrium QFT because secular terms (i.e., terms
which grow without bound over time) in the time evolution
equations invalidate perturbation theory. nPIEAs with
n > 1 achieve the required nonperturbative resummation
in a manifestly self-consistent way which can be derived
from first principles. “In principle exact” here means that
the nPIEA equations of motion are exactly equivalent to the
original nonperturbative definition of the quantum field
theory. The only necessary approximation is in the numeri-
cal solution of these equations. The resulting equations of
motion are also useful in equilibrium because many-body
effects are included self-consistently. “General” means that
the methods are applicable in principle to any quantum
field theory whatsoever (although in a theory with many
fields or with large n, the resulting nPIEA could be very
bulky). Finally, “elegant” here means that few conceptually
new elements are needed in the formulation of nPIEAs in
addition to the usual terms of textbook quantum field
theory. The complication is mainly of a technical, not
conceptual, nature. To our knowledge, no other techniques
satisfy all of these criteria.
nPIEA methods work by recasting perturbation theory as

a variational method. Instead of working with standard
Feynman diagrams built from bare propagators and verti-
ces, one works with a reduced set of Feynman diagrams
built from the exact mean field φ, propagators Δ, and
vertex functions Vð3Þ; Vð4Þ;…; VðnÞ. These quantities are*michael.brown6@my.jcu.edu.au
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determined by solving equations of motion δΓðnÞ=δφ ¼
δΓðnÞ=δΔ ¼ 0, etc. The ΓðnÞ functionals are themselves
built from φ, Δ, Vð3Þ, and so on. The ΓðnÞ and accompany-
ing equations of motion are exactly equivalent to the
original quantum field theory but are sensitive to physical
effects which are invisible to perturbation theory.
Furthermore, this ability to capture nonperturbative
physics is competitive with or exceeds other standard
resummation methods such as Borel-Padé summation, at
least in a toy model where exact solutions are available as a
benchmark [13].
An unfortunate practical difficulty faced by would-be

users of nPIEAs is that, once truncated to finite order,
solutions of the equations of motion derived from Γðn>1Þ no
longer obey the expected symmetry properties [i.e., Ward
identities (WIs)] which are obeyed by the exact solution,
even if the truncation is manifestly invariant. This occurs
simply because there is no guarantee that the pattern of
partial resummations encoded in an approximation to ΓðnÞ
will respect the order by order cancellations required to
fully maintain the WIs. The most obvious effect of this is
that Goldstone bosons are unphysically massive and the
symmetry breaking phase transition is incorrectly predicted
in models of spontaneous symmetry breaking treated
within the Hartree-Fock approximation (see, e.g.,
Ref. [14] and references therein). The use of higher order
truncations can cure this problem, but more subtle sym-
metry violating effects still occur. Similar remarks apply for
gauge theories, where an unphysical gauge dependence
remains in quantities that should be physical.
Several methods have been advocated in the literature to

combat this problem, though none is without flaws. For
example, the widely used external propagator method [15]
is not fully self-consistent: after the variational solution is
found, “external” correlation functions are constructed
which do satisfy the WIs. However, the incorrect varia-
tional solutions are still the ones used in the self-consistent
step. As a result, more subtle problems such as violations of
unitarity persist. Ivanov et al. [16] developed a gapless
version of the 2PIEA in the Hartree-Fock approximation
which restores the second order phase transition and
Goldstone theorem but requires the addition of an ad hoc
correction term. There is not, as far as we know, any first
principles motivation for the scheme or any systematic way
of extending it. Leupold [17] discusses the use of nonlinear
representations, which restores the symmetry at the
expense of requiring nonpolynomial Lagrangians.
Pilaftsis and Teresi [14] introduced a promising method
called symmetry improvement (SI), which imposes the WIs
directly as constraints on the solution through Lagrange
multipliers. SI has been applied with some success with the
SI 2PIEA [14,18–21] and extended to the SI 3PIEA [22];
however, the method is inconsistent out of equilibrium (at
least at the linear response level) [23], and sometimes
solutions fail to exist due to the constraint causing a

renormalization group defying coupling between short
and long distance physics [24]. Considering that the
symptom in both cases is the nonexistence of solutions,
and that the constraint in the SI method is singular and
requires some careful treatment to begin with, it is
reasonable to suspect that the culprit may be that the
method is overconstraining. This motivates the investiga-
tion of whether it is possible to generalize the SI method
and at the same time allow the solutions more freedom.
That is what this paper does.
We introduce a new method which we call soft-symmetry

improvement (SSI) which relaxes the constraint. Violations
of WIs are allowed but punished in the solution of the SSI
nPIEA. The method is essentially a least-squares imple-
mentation of the symmetry improvement idea. A new
parameter, the stiffness ξ, controls the strength of the
constraint. The method interpolates between the unim-
proved (ξ → ∞) and SI (ξ → 0) cases, and the hope is that
practically useful solutions can be found for finite ξ. We
study the SSI 2PIEA for a scalar OðNÞ model in the
Hartree-Fock approximation. We find that the method is IR
sensitive; the system must be formulated in finite volume V
and temperature T ¼ β−1, and the Vβ → ∞ limit must be
taken carefully. Three distinct limits exist. Two are equiv-
alent to the unimproved 2PIEA and SI 2PIEA respectively,
and the third is a new limit where the WI is satisfied but
the phase transition is strongly first order and solutions can
fail to exist depending on ξ. Further, these limits are
disconnected from each other; there is no smooth inter-
polation from one limit to another. These results suggest
that any potential advantages of SSI methods [and any
consideration of (S)SI out of equilibrium] must occur in
finite volume.
The structure of this paper is as follows. Following this

Introduction, Sec. II introduces the SSI formalism. Then, in
Sec. III, the SSI 2PIEA is renormalized in the Hartree-Fock
approximation at finite Vβ. Solutions are then found in
Sec. IV with careful consideration of the various Vβ → ∞
limits. Finally, we discuss our results in Sec. V. The
notation agrees with our previous papers [22,23] except
where noted. In particular, the deWitt summation conven-
tion is used; i.e., sums over repeated indices imply
integrations over corresponding spacetime arguments.

II. SOFT SYMMETRY IMPROVEMENT OF 2PIEA

The soft-symmetry improved 2PIEA is a modification of
the 2PIEA defined for theories with an internal symmetry.
In order to have a concrete example, we use the OðNÞ
symmetric scalar ðϕ2Þ2 theory discussed in our previous
papers [22,23]. Wewill focus on the spontaneous symmetry
breaking regime where the field has a nonzero expectation
value φa ¼ hϕai ¼ ð0;…; 0; vÞ, a “Higgs” boson with
mass mH and N − 1 massless Goldstone bosons. The
definition of the SSI 2PIEA can be motivated by starting
with the standard 2PIEA Γ½φ;Δ� (suppressing indices and
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spacetime arguments where these just clutter) and the trivial
identity

exp

�
i
ℏ
Γ½φ;Δ�

�
¼
Z

Dϕδðϕ − φÞ exp
�
i
ℏ
Γ½ϕ;Δ�

�
: ð1Þ

The usual symmetry improved action ΓSI½φ;Δ� is then
obtained by inserting a delta function,

exp

�
i
ℏ
ΓSI½φ;Δ�

�
¼ N

Z
Dϕδðϕ − φÞ

× exp

�
i
ℏ
Γ½ϕ;Δ�

�
δðW½ϕ;Δ�Þ; ð2Þ

where the Ward identity is [22]

0 ¼ WA
a ½ϕ;Δ�≡ Δ−1

abT
A
bcϕc ð3Þ

and the normalization factor N is chosen so that ΓSI½φ;Δ�
numerically equals Γ½φ;Δ� when the arguments satisfy the
Ward identity [25]. TA

bc is a generator of the OðNÞ
symmetry where A ¼ 1;…; NðN − 1Þ=2 runs over the
linearly independent generators. When an explicit basis
of generators is required, we take Tjk

ab ¼ iðδjaδkb − δjbδkaÞ
where A ¼ ðj; kÞ is thought of as an (antisymmetric)

multi-index. Note that the implicit integration convention
can be maintained if TA

abðx; yÞ ∝ δðx − yÞ contains a
spacetime delta function, though in this notation one must
remember that the upper indices do not have corresponding
spacetime arguments since they merely label the particular
generator. ΓSI½φ;Δ� is defined only for field configurations
satisfying the Ward identity and equals the usual effective
action on those configurations. Thus, ΓSI½φ;Δ� is nothing
but the SI 2PIEA introduced by Pilaftsis and Teresi [14],
arrived at in a new way.
Proceeding from the hypothesis that the problems with

symmetry improvement are due to the strict imposition of
the constraint, as embodied by the delta function above, we
introduce a SSI effective action ΓSSI

ξ ½φ;Δ� where the Ward
identity is no longer strictly enforced. Small violations
W ≠ 0 are allowed but punished in the functional integral.
A new free parameter controls how strictly the constraint is
enforced. The hope is that the added freedom allows
consistent solutions with nontrivial dynamics (e.g., linear
response to external sources), while the stiffness can be
tuned to make violations of the Ward identity acceptably
small in practice. To achieve this, we replace the delta
function by a smoothed version δðWÞ → δξðWÞ defined as
follows:

exp

�
i
ℏ
ΓSSI
ξ ½φ;Δ�

�
¼ N0

Z
Dϕδðϕ − φÞ exp

�
i
ℏ
Γ½ϕ;Δ�

�
δξðW½ϕ;Δ�Þ

¼ N1

Z
D½ϕ; λϕ; λW � exp

�
i
ℏ

�
λϕðϕ − φÞ þ Γ½ϕ;Δ� þ λWW −

1

2
ξλ2W

��

¼ N2

Z
D½ϕ; λϕ� exp

�
i
ℏ

�
λϕðϕ − φÞ þ Γ½ϕ;Δ� þ 1

2ξ
W2

��

¼ exp

�
i
ℏ

�
Γ½φ;Δ� þ 1

2ξ
W2½φ;Δ�

��
: ð4Þ

The first line is a formal expression that is defined by the
next line. The Fourier representation of the delta functions
is used to replace δðϕ − φÞ → R

Dλϕ exp i
ℏ λϕðϕ − φÞ, etc.

The 1
2
ξλ2W term is responsible for smoothing the delta

function, with the limit ξ → 0 corresponding to a stiffening
of the constraint. In the third line, the integral over λW,
which is Gaussian, is performed. Finally, the integral over
λϕ yields a delta function which kills the ϕ integral,
resulting in

ΓSSI
ξ ½φ;Δ� ¼ Γ½φ;Δ� þ 1

2ξ
W2½φ;Δ�: ð5Þ

The method can be generalized by using a weighted
smoothing term − 1

2
ξλWR−1λW , where R−1 is an arbitrary

positive definite symmetric kernel which may depend on φ
and Δ, which gives

ΓSSI
ξR ½φ;Δ� ¼ Γ½φ;Δ� þ 1

2ξ
WRW −

iℏ
2
Tr lnR: ð6Þ

The simpler form ΓSSI
ξ ½φ;Δ� corresponds to a trivial kernel

(now with indices explicit),

RAB
ab ðx; yÞ ¼ δABδabδðx − yÞ; ð7Þ

which is used exclusively in the following, though one
should note that the freedom to choose a nontrivial R may
be useful in certain circumstances. The end result is simply
thatW ¼ 0 is enforced in the sense of (possibly weighted if
R is nontrivial) least-squared error, rather than as a strict
constraint.
We define the SSI equations of motion as the result of the

variational principle δΓSSI
ξ ¼ 0, which gives
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δΓ½φ;Δ�
δφa

¼ −
1

ξ
WA

c ½φ;Δ�
δ

δφa
WA

c ½φ;Δ�

¼ −
1

ξ
ðΔ−1

cf T
A
fgφgÞΔ−1

cd T
A
da; ð8Þ

δΓ½φ;Δ�
δΔab

¼ −
1

ξ
WA

c ½φ;Δ�
δ

δΔab
WA

c ½φ;Δ�

¼ 1

ξ
ðΔ−1

cf T
A
fgφgÞΔ−1

ca ðΔ−1
bdT

A
deφeÞ: ð9Þ

Now, the spontaneous symmetry breaking (SSB) ansatz

φa ¼ vδaN; ð10Þ

Δ−1
ab ¼

8<
:

Δ−1
G a ¼ b ≠ N;

Δ−1
H a ¼ b ¼ N;

0 a ≠ b

ð11Þ

can be used, where ΔG=H are the Goldstone/Higgs propa-
gators respectively. This ansatz yields

δΓ½φ;Δ�
δφgðxÞ

¼ 0; ðg ≠ NÞ; ð12Þ

δΓ½φ;Δ�
δφNðxÞ

¼ 1

ξ
2ðN − 1Þv

Z
yz
Δ−1

G ðy; zÞΔ−1
G ðy; xÞ

¼ 1

ξ
2ðN − 1Þvm4

G; ð13Þ

δΓ½φ;Δ�
δΔGðx; yÞ

¼ −
1

ξ
2v2

Z
wrz

Δ−1
G ðw; rÞΔ−1

G ðw; xÞΔ−1
G ðy; zÞ

¼ 1

ξ
2v2m6

G; ð14Þ

δΓ½φ;Δ�
δΔH

¼ 0; ð15Þ

where mG is the Goldstone mass.
Note that if one takes ξ → 0 proportionally to vm4

G,
one obtains for the nontrivial right-hand sides above
2ðN − 1Þvm4

G=ξ → constant and 2v2m6
G=ξ → ðconstÞ×

vm2
G → 0, and one recovers the usual SI 2PIEA scheme

in the limit. In Sec. IV D, this is shown to hold with a
careful treatment of the infinite volume limit. This confirms
the intuition that ξ → 0 approaches hard symmetry
improvement and that ΓSSI

ξ ½φ;Δ� → ΓSI½φ;Δ�, which really
is just the standard symmetry improved effective action. In
the next sections, these equations of motion are renormal-
ized and solved in the Hartree-Fock approximation.

III. RENORMALIZATION OF THE
HARTREE-FOCK TRUNCATION

There is a well-established renormalization theory for
2PIEAs (see, e.g., Refs. [15,26–28]). Our renormalization
method is not particularly novel (we closely follow
Refs. [14,22]), but it is important to carefully treat the
behavior of the theory in the infrared which does lead to
some new aspects. Therefore, we formulate the theory in
Euclidean spacetime (i.e., the Matsubara formalism) in a
box of volume V ¼ L3 with periodic boundary conditions
of period L in the space directions and β in the time τ ¼ it
direction. It turns out that the SSI method is sensitive to the
manner of taking the Vβ → ∞ limit. The Euclidean
continuation leads to x ¼ ðt; xÞ → xE ≡ ðτ; xÞ, Rx → −i

R
xE

and the conventions

fðxEÞ ¼
1

Vβ

X
n;k

eiðωnτþk·xÞfðn; kÞ; ð16Þ

fðn; kÞ ¼
Z
xE

e−iðωnτþk·xÞfðxEÞ ð17Þ

for Fourier transforms. The Matsubara frequencies are
ωn ¼ 2πn=β, and the wave vectors k are discretized on a
lattice of spacing 2π=L. The four-dimensional Euclidean
shorthand kE ¼ ðωn; kÞ is often useful.
We will work in the Hartree-Fock approximation, which

normally leads a momentum independent self-energy
and propagators of the form Δ−1

G=Hðn; kÞ ¼ k2E þm2
G=H.

However, it turns out that the SSI term leads to a
momentum dependent Goldstone self-energy. The equa-
tions of motion can be solved by treating the Goldstone
zero mode propagator Δ−1

G ð0; 0Þ as a dynamical variable
separate from the nonzero modes. We define mG to be the
mass associated with the nonzero Goldstone modes, i.e.,
Δ−1

G ðn; kÞ ¼ k2E þm2
G for n, k ≠ 0. The zero mode propa-

gator gains an independent scaling factor Δ−1
G ð0; 0Þ≡ ϵm2

G.
Note that the Goldstone theorem can be satisfied if ϵ ¼ 0

even ifm2
G ≠ 0. This is the case for the novel βV → ∞ limit

of the theory. The other limits are a reduction to the
unimproved 2PIEA where ϵ ¼ 1 and m2

G ≠ 0 and a reduc-
tion to the SI 2PIEA where m2

G ¼ 0 and ϵ ≠ 0.
The 2PIEA is derived from the partition functional

Z½J; K� ¼
Z

D½ϕ� exp
�
−SE½ϕ� − Jaϕa −

1

2
ϕaKabϕb

�
;

ð18Þ

where

SE½ϕ� ¼
Z
x

1

2
ð∇ϕaÞ2 þ

1

2
m2ϕaϕa þ

1

4!
λðϕaϕaÞ2 ð19Þ
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is the Euclidean action. Then,W½J; K� ¼ − lnZ½J; K� is the
connected generating functional and

Γ½φ;Δ� ¼ W − J
δW
δJ

− K
δW
δK

ð20Þ

is the 2PIEA once J and K are eliminated in terms of φ and
Δ using

δW
δJa

¼ hϕai ¼ φa; ð21Þ

δW
δKab

¼ 1

2
hϕaϕbi ¼

1

2
ðΔab þ φaφbÞ: ð22Þ

The Legendre transform (20) can be evaluated by the saddle
point method, which results in the standard expression [7]

Γ ¼ SE½φ� þ
1

2
Tr lnðΔ−1Þ þ 1

2
TrðΔ−1

0 Δ − 1Þ þ Γ2; ð23Þ

where Γ2 is the set of two particle irreducible graphs and

Δ−1
0ab ≡ δ2SE

δϕaδϕb

����
ϕ→φ

¼
�
−∇2 þm2 þ 1

6
λφ2

�
δab þ

1

3
λφaφb ð24Þ

is the unperturbed propagator. To OðλÞ,

Γ2 ¼
1

4!
λΔaaΔbb þ

1

12
λΔabΔab: ð25Þ

To form ΓSSI
ξ , one adds the soft-symmetry improvement

term − 1
2ξW

2. Note thatW is pure imaginary due to the i in

TA, so−W2 is positive definite. After using the SSB ansatz,

the condition WA
a ¼ 0 becomes Goldstone’s theorem

vΔ−1
G ð0; 0Þ ¼ 0. We drop an irrelevant constant, use the

SSB ansatz, and insert the renormalization constants
Z, ZΔ, δm2

0;1, δλ0, and δλA;B1;2 by making the replacements
(cf. Ref. [22])

ðϕ;φ; vÞ → Z1=2ðϕ;φ; vÞ; ð26Þ

m2 → Z−1Z−1
Δ ðm2 þ δm2Þ; ð27Þ

λ → Z−2ðλþ δλÞ; ð28Þ

Δ → ZZΔΔ: ð29Þ

Due to the presence of composite operators in the effective
action, additional renormalization constants are required
compared to the standard perturbative renormalization
theory: δm2

0 and δλ0 for terms in the bare action, δm2
1

for one-loop terms, δλA1 for terms of the form ϕaϕaΔbb, δλB1
for ϕaϕbΔab terms, δλA2 for ΔaaΔbb, and δλB2 for ΔabΔab.
The fact that extra counterterms are required to renormalize
the 2PIEA is not a problem so long as a sufficient number
of renormalization conditions can be found. Altogether,
there are nine renormalization constants which must be
eliminated by imposing nine conditions. It turns out that
Z ¼ ZΔ ¼ 1 in the Hartree-Fock approximation due to the
momentum independence of the UV divergences in this
approximation (this is well known in the 2PIEA literature
[26,27], but it may not be immediately obvious that it
continues to hold with the addition of the SSI terms; indeed,
it does). One can introduce a renormalization constant Zξ

for ξ, but this turns out to be unnecessary. Thus, we arrive at
the renormalized SSI effective action

ΓSSI
ξ ½φ;Δ� ¼

Z
x

�
m2 þ δm2

0

2
v2 þ λþ δλ0

4!
v4
�
þ 1

2
ðN − 1ÞTr lnðΔ−1

G Þ þ 1

2
Tr lnðΔ−1

H Þ

þ 1

2
ðN − 1ÞTr

��
−∇2 þm2 þ δm2

1 þ
λþ δλA1

6
v2
�
ΔG

�

þ 1

2
Tr

��
−∇2 þm2 þ δm2

1 þ
3λþ δλA1 þ 2δλB1

6
v2
�
ΔH

�
þ Γ2 þ

1

ξ
ðN − 1Þv2

Z
xyz

Δ−1
G ðx; yÞΔ−1

G ðx; zÞ ð30Þ

with

Γ2 ¼
1

4!
ðN − 1Þ½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �ΔGΔG

þ 1

4!
ðλþ δλA2 Þ2ðN − 1ÞΔGΔH

þ 1

4!
ð3λþ δλA2 þ 2δλB2 ÞΔHΔH þOðλ2Þ: ð31Þ

ΓSSI
ξ ½φ;Δ� can be simplified using the mode

expansions

ΔG=HðxE; yEÞ ¼
1

Vβ

X
n;k

eikE·ðxE−yEÞΔG=Hðn; kÞ ð32Þ

and doing the integrals, noting that the integrals in the SSI
term give
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Z
xyz

Δ−1
G ðx; yÞΔ−1

G ðx; zÞ ¼ Vβ½Δ−1
G ð0; 0Þ�2: ð33Þ

The result is

ΓSSI
ξ ½φ;Δ�¼Vβ

�
m2þδm2

0

2
v2þλþδλ0

4!
v4
�

þ1

2
ðN−1Þ

X
n;k

ln
1

ΔGðn;kÞ
þ1

2

X
n;k

ln
1

ΔHðn;kÞ

þ1

2
ðN−1Þ

X
n;k

�
k2Eþm2þδm2

1

þλþδλA1
6

v2
�
ΔGðn;kÞþ

1

2

X
n;k

�
k2Eþm2þδm2

1

þ3λþδλA1 þ2δλB1
6

v2
�
ΔHðn;kÞþΓ2

þ1

ξ
ðN−1Þv2Vβ½Δ−1

G ð0;0Þ�2: ð34Þ

As a brief digression, a simple consistency check can be
performed by examining the tree level equations of motion,
which are (setting renormalization constants to their trivial
values)

0 ¼ v

��
m2 þ λ

6
v2
�
þ 2ðN − 1Þ

ξ
½Δ−1

G ð0; 0Þ�2
�
; ð35Þ

Δ−1
G ðn; kÞ ¼ k2E þm2 þ λ

6
v2; n; k ≠ 0; ð36Þ

Δ−1
G ð0; 0Þ ¼ m2 þ λ

6
v2 −

4Vβ
ξ

v2½Δ−1
G ð0; 0Þ�3; ð37Þ

Δ−1
H ðn; kÞ ¼ k2E þm2 þ λ

2
v2: ð38Þ

Indeed, the classical solutions v2 ¼ −6m2=λ, Δ−1
G ðn; kÞ ¼

k2E and Δ−1
H ðn; kÞ ¼ k2E þm2

H ¼ k2E þ λ
3
v2 are consistent

with these as expected. However, since these equations are
self-consistent, spurious solutions are also possible. This
can be investigated by solving (35) and (37) together on the
assumption that v2 ≠ 0, −6m2=λ. Using (35) to reduce the
degree of (37) to first order gives the potentially spurious
solution

−
ξ

2ðN −1Þ ¼
�
m2þ λ

6
v2
�	�

1−
2Vβ
N − 1

v2
�
m2þλ

6
v2
��

2

;

ð39Þ

Δ−1
G ð0;0Þ ¼

�
m2 þ λ

6
v2
�	�

1−
2Vβ
N − 1

v2
�
m2 þ λ

6
v2
��

:

ð40Þ

The condition that there are no tachyons requires
Δ−1

G ð0; 0Þ ≥ 0 which implies

0 ≤ m2 þ λ

6
v2 <

N − 1

2Vβv2
: ð41Þ

This then implies that the right-hand side of (39) is positive,
but then the left-hand side ∝ −ξ is negative, leading to a
contradiction. Thus, the only spurious solutions are
tachyonic and so are easily dismissable.
Returning to the main line of the argument, the rest of the

paper restricts attention to the Hartree-Fock truncation
where only the OðλÞ terms in Γ2 are kept. Thus,

Γ2 ¼
1

4!
ðN − 1Þ½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �

×
1

Vβ

X
n;k

ΔGðn; kÞ
X
j;q

ΔGðj;qÞ

þ 1

4!
ðλþ δλA2 Þ2ðN − 1Þ 1

Vβ

X
n;k

ΔGðn; kÞ
X
j;q

ΔHðj;qÞ

þ 1

4!
ð3λþ δλA2 þ 2δλB2 Þ

1

Vβ

X
n;k

ΔHðn; kÞ
X
j;q

ΔHðj;qÞ:

ð42Þ

The resulting equations of motion are the vacuum expect-
ation value (vev) equation

0 ¼ Vβ

�
m2 þ δm2

0

2
2vþ λþ δλ0

4!
4v3
�

þ ðN − 1Þ λþ δλA1
6

v
X
n;k

ΔGðn; kÞ

þ 3λþ δλA1 þ 2δλB1
6

v
X
n;k

ΔHðn; kÞ

þ 1

ξ
ðN − 1Þ2vVβ½Δ−1

G ð0; 0Þ�2; ð43Þ

the Goldstone propagator equation

1

ΔGðn; kÞ
¼ k2E þm2 þ δm2

1 þ
λþ δλA1

6
v2

þ 1

6
½ðN þ 1Þλþ ðN − 1ÞδλA2 þ 2δλB2 �

×
1

Vβ

X
j;q

ΔGðj;qÞ

þ 1

3!
ðλþ δλA2 Þ

1

Vβ

X
j;q

ΔHðj;qÞ

− δn0δk0
4v2

ξ
Vβ½Δ−1

G ð0; 0Þ�3; ð44Þ
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and the Higgs propagator equation

1

ΔHðn; kÞ
¼ k2E þm2 þ δm2

1

þ 3λþ δλA1 þ 2δλB1
6

v2

þ 1

3!
ðλþ δλA2 ÞðN − 1Þ 1

Vβ

X
j;q

ΔGðj;qÞ

þ 1

3!

3λþ δλA2 þ 2δλB2
Vβ

X
j;q

ΔHðj;qÞ: ð45Þ

As previously mentioned, the self-energies are momen-
tum independent except for the δn0δk0 term in ΔG.
Therefore, we write the propagators as

ΔGðn; kÞ ¼
(
ΔGð0; 0Þ n ¼ k ¼ 0

1
k2Eþm2

G
n; k ≠ 0

; ð46Þ

ΔHðn; kÞ ¼
1

k2E þm2
H

ð47Þ

and define Δ−1
G ð0; 0Þ≡ ϵm2

G which is now independent of
the nonzero modes. The zero mode obeys the equation

Δ−1
G ð0; 0Þ ¼ m2

G − 4
1

ξ
v2Vβ½Δ−1

G ð0; 0Þ�3: ð48Þ

Now, there are two cases which must be distinguished. In
the first, m2

G ¼ 0, and the zero mode equation has the
solutions

Δ−1
G ð0; 0Þ ¼

(
0;

�i
ffiffiffiffiffiffiffiffiffi

ξ
4v2Vβ

q
;

ð49Þ

the latter two of which are clearly unphysical. However, the
first solution is just what one would have if ΔGðn; kÞ ¼ k−2E
as usual for a massless particle (i.e., the zero mode no
longer needs to be treated separately). Then,

P
j;qΔGðj;qÞ

and
P

j;qΔHðj;qÞ are just the familiar Hartree-Fock tad-
pole sums, which in the infinite volume limit areX

j;q

ΔGðj; qÞ ¼ βVðT ∞
G þ T fin

G þ T th
GÞ; ð50Þ

X
j;q

ΔHðj; qÞ ¼ βVðT ∞
H þ T fin

H þ T th
HÞ; ð51Þ

where

T ∞
G=H ¼ −

m2
G=H

16π2

�
1

η
− γ þ 1þ ln ð4πÞ

�
; ð52Þ

T fin
G=H ¼ m2

G=H

16π2
ln
m2

G=H

μ2
ð53Þ

are the vacuum contributions in dimensional regularization
in 4 − 2η dimensions with MS subtraction at the scale μ
(γ ≈ 0.577 is the Euler gamma constant) and T th

G=H are the
Bose-Einstein integrals

T th
G=H ¼

Z
k

1

ωk

1

eβωk − 1
; ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

G=H

q
: ð54Þ

If, on the other hand, m2
G ≠ 0, then ΔG no longer has the

usual form, and the Goldstone tadpole must be handled
differently. In this case, it can be rewritten as

X
j;q

ΔGðj;qÞ ¼
X
j;q≠0

ΔGðj;qÞ þ ΔGð0; 0Þ

¼
X
j;q≠0

ΔGðj;qÞ þ
1

m2
G
þ ΔGð0; 0Þ −

1

m2
G

¼
X
j;q

~ΔGðj;qÞ þ ΔGð0; 0Þ −
1

m2
G
; ð55Þ

where ~ΔG is an auxiliary propagator defined to have the
usual form

~ΔGðn; kÞ ¼
1

k2E þm2
G
: ð56Þ

Then,
P

j;q
~ΔGðj;qÞ is just the familiar Hartree-Fock tad-

pole sum for a particle of mass mG. The terms ΔGð0; 0Þ −
1
m2

G
in the Goldstone tadpole account for the shift in the zero

mode propagator from its usual value. The zero mode
equation can be rewritten as

FIG. 1. Plot of ϵ (blue) vs ξ̂ solving the Goldstone boson zero
mode equation (59). The line at ϵ ¼ 1 is to guide the eye.
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ϵ ¼ 1 −
4v2Vβm4

G

ξ
ϵ3 ¼ 1 −

4ϵ3

27ξ̂
; ð57Þ

where

ξ̂ ¼ ξ

27v2Vβm4
G

ð58Þ

is dimensionless and the numeric factor has been chosen for
later convenience. The real solution of this cubic equation
is

ϵ ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̂ð

ffiffiffiffiffiffiffiffiffiffiffi
ξ̂þ 1

q
− 1Þ3

r  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ̂

ð
ffiffiffiffiffiffiffiffiffiffiffi
ξ̂þ 1

p
− 1Þ2

3

s
− 1

!
; ð59Þ

which is monotonically increasing from 0 to 1 as ξ̂ goes
from 0 to þ∞ and behaves asymptotically as

ϵ ∼

(
3ξ̂1=3

22=3
þOðξ̂2=3Þ; ξ̂ → 0;

1 − 4
27ξ̂

þOðξ̂−2Þ; ξ̂ → ∞:
ð60Þ

The behavior of ϵ is shown in Fig. 1.
The remaining equations are renormalized by demanding

that kinematically distinct divergences vanish, essentially
duplicating the renormalization method of Refs. [14,22].
This is done by substituting the tadpoles (50)–(51) in the
equations of motion, rearranging to obtain expressions for
v, m2

G, and m2
H, then demanding that the divergences

proportional to v, T fin
G , and T fin

H independently vanish.
This leads to 11 equations which are nontrivially consistent
and determine the nine counterterms. No new difficulties
are found here compared to the standard treatment, and the
details are left in a Mathematica notebook in the
Supplemental Material [29]. The resulting finite equations
of motion are the vev equation

v ¼ 0; ð61Þ

or

0 ¼ m2 þ λ

6
v2 þ ðN − 1Þ λ

6

×

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ 1

Vβ
1

m2
G

�
1

ϵ
− 1

��

þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�

þ ðN − 1Þ2
ξ

ðm2
GϵÞ2; ð62Þ

the Goldstone gap equation

m2
G ¼ m2 þ λ

6
v2 þ ðN þ 1Þ λ

6

×

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ 1

Vβ
1

m2
G

�
1

ϵ
− 1

��

þ λ

6

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
; ð63Þ

and the Higgs gap equation

m2
H ¼ m2 þ λ

2
v2 þ ðN − 1Þ λ

6

×

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ 1

Vβ
1

m2
G

�
1

ϵ
− 1

��

þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
: ð64Þ

IV. SOLUTION IN THE INFINITE VOLUME/LOW
TEMPERATURE LIMIT

A. Scaling of the solutions

We desire solutions of (62)–(64) in the Vβ → ∞ limit. It
is possible in general to look for solutions in the symmetric
and broken phases with scalings ξ ∼ ðVβÞα and m2

G ∼
ðVβÞ−γ for γ ≥ 0. In Sec. IV B, we examine the symmetric
phase (v ¼ 0,mG ≠ 0) and show that it is unaffected by SSI
as expected. In Sec. IV C, we examine the broken phase
v ≠ 0 with mG ≠ 0. Ordinarily, Goldstone’s theorem is
broken in this regime; however, with the additional freedom
afforded by SSI, we find a scaling for ξ such that ϵ → 0 and
Goldstone’s theorem is nevertheless satisfied. Finally, in
Sec. IV D, we examine the broken phase v ≠ 0 with
massless GoldstonesmG ¼ 0. We expect SSI in this regime
to be close to the old symmetry improvement method, and
in fact it turns out to be exactly equivalent. The apparent
extra freedom of the SSI method (the choice of ξ) is
equivalent the freedom to choose the Lagrange multiplier of
the SI method, which we demonstrate by deriving the
explicit connection between them. This gives a new insight
into why the SI equations of motion do not depend on the
Lagrange multiplier, which previously appeared as a
remarkable coincidence but now can be understood as a
consequence of the Vβ → ∞ limit.
The effects of SSI enter into (62)–(64) through two

terms, for which we introduce the shorthands

S1 ¼
1

Vβ
1

m2
G

�
1

ϵ
− 1

�
; ð65Þ

S2 ¼
2ðN − 1Þ

ξ
ðm2

GϵÞ2: ð66Þ

In the following sections, we consider all possible scalings
of ξ and mG and their effect on these terms, ruling out most
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possibilities. For reference purposes, we collect here the
scalings that work in each section. In Sec. IV B, we
find that the symmetric phase exists independently of
the Vβ → ∞ limit. In Sec. IV C, it is necessary to let ξ
scale as ξ ¼ ðVβÞ−2ζ where ζ is a constant (with mass
dimension ½ζ� ¼ −6), for which

ϵ →
1

Vβ

�
ζ

4v2m4
G

�
1=3

→ 0; ð67Þ

S1 →

�
4v2

ζm2
G

�
1=3

; ð68Þ

S2 →
1

ζ
ðN − 1Þ

�
ζm2

Gffiffiffi
2

p
v2

�
2=3

: ð69Þ

The equations of motion are then nondimensionalized
and studied using three methods: perturbation theory in
ζ−1, at leading order in 1=N, and through exact numerical
solutions. Finally, in Sec. IV D, both ξ and mG must be
scaled as

ξ ¼ ðVβÞαμ2þ4αζ̂; ð70Þ

m2
G ¼ ðVβÞ−γμ2−4γy; ð71Þ

where γ > 0, αþ 2γ þ 2 ¼ 0, and ζ̂ and y are dimension-
less. Any scaling satisfying these conditions leads to
identical equations of motion and solutions. Then,

ϵ →
1

Vβμ4

�
ζ̂

4xy2

�1=3

; ð72Þ

S1 → 0; ð73Þ

S2 → μ2ðN − 1Þ
�

y2

2ζ̂x2

�
1=3

; ð74Þ

where x ¼ v2=μ2 is the dimensionless vev.

B. Symmetric phase

At high temperatures, there should be a symmetric phase
solution to the equations of motion. We therefore examine
the v → 0 limit of the equations of motion. As v → 0 at

fixed ξ, ϵ → 1 − 4v2Vβm4
G

ξ provided mG does not go to

infinity faster than 1=
ffiffiffi
v

p
. Then,

S1 →
4v2m2

G

ξ
→ 0; ð75Þ

and the equations of motion (62)–(64) reduce to

m2
G ¼ m2

H ¼ m2 þ 1

6
ðN þ 2Þλ

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
;

ð76Þ

which is a symmetric (i.e., equal mass) phase as expected.
Indeed, the gap equation is unmodified by SSI in the
symmetric phase because thereW ¼ 0 trivially. This phase
terminates at the critical point m2

G ¼ m2
H ¼ 0 which gives

the critical temperature

T⋆ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
12v̄2

N þ 2

s
; ð77Þ

where m2 ¼ −λv̄2=6 and the overbar denotes the zero
temperature value of a quantity. That T⋆ is independent
of ξ is consistent with the previously known result that the
same critical point is found in all symmetry improvement
schemes [22]. There is no subtlety involved in the
Vβ → ∞ limit in this case.

C. Broken phase with m2
G ≠ 0

Attempting to describe the broken phase with the SSI
equations of motion is rather more complicated than the
symmetric phase. Decreasing temperature at fixed ξ gives
ξ̂ → 0 and

S1 →

�
4v2

ξm2
GðVβÞ2

�
1=3

; ð78Þ

so the equations of motion (62)–(64) become for the vev

0 ¼ m2 þ λ

6
v2 þ ðN − 1Þ λ

6

×

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ
�

4v2

ξm2
GðVβÞ2

�
1=3
�

þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�

þ 1

ξ
ðN − 1Þ

�
ξm2

Gffiffiffi
2

p
v2Vβ

�
2=3

; ð79Þ

and for the Goldstone

m2
G ¼ m2 þ λ

6
v2 þ ðN þ 1Þ λ

6

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G

þ
�

4v2

ξm2
GðVβÞ2

�
1=3
�
þ λ

6

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
;

ð80Þ

and for the Higgs
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m2
H ¼ m2 þ λ

2
v2 þ ðN − 1Þ λ

6

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G

þ
�

4v2

ξm2
GðVβÞ2

�
1=3
�
þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
:

ð81Þ

Note that all of the soft-symmetry improvement terms
vanish in the limit Vβ → ∞. Thus, the SSI 2PIEA reduces
to the unimproved 2PIEA if Vβ → ∞ at fixed ξ. It is
necessary to allow ξ to vary as the Vβ → ∞ limit is taken to
obtain a nontrivial correction to the unimproved 2PIEA.
This is the first sign that the limit is nontrivial.
This section examines the simplest scheme to find a

nontrivial limit. This turns out to be the novel limit
mentioned in the Introduction. It is shown in Sec. IV D
that the only other nontrivial limit is equivalent to the old SI
2PIEA. We proceed by letting ξ vary with Vβ as ξ ¼
ðVβÞαζ where ζ is a constant (with mass dimension
½ζ� ¼ 2þ 4α). If α ≥ 1, the SSI terms vanish in the limit.
If α < 1,

ϵ →

� ðVβÞαζ
4v2Vβm4

G

�
1=3

; ð82Þ

and the symmetry improvement terms are

S1 →
1

m2
G

��
4v2m4

G

ζ

�
1=3

ðVβÞð−α−2Þ=3 − 1

Vβ

�
; ð83Þ

S2 →
1

ζ
ðN − 1Þ

�
ζm2

Gffiffiffi
2

p
v2

�
2=3

ðVβÞð−2−αÞ=3: ð84Þ

The only nontrivial possibility is α ¼ −2, for which

ϵ →
1

Vβ

�
ζ

4v2m4
G

�
1=3

→ 0; ð85Þ

S1 →

�
4v2

ζm2
G

�
1=3

; ð86Þ

S2 →
1

ζ
ðN − 1Þ

�
ζm2

Gffiffiffi
2

p
v2

�
2=3

: ð87Þ

The equations of motion are for the vev

0 ¼ m2 þ λ

6
v2

þ ðN − 1Þ λ
6

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ
�
4v2

ζm2
G

�
1=3
�

þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
þ ðN − 1Þ

�
m2

Gffiffiffiffiffi
2ζ

p
v2

�
2=3

;

ð88Þ

for the Goldstone

m2
G ¼ m2 þ λ

6
v2

þ ðN þ 1Þ λ
6

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ
�
4v2

ζm2
G

�
1=3
�

þ λ

6

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
; ð89Þ

and for the Higgs

m2
H ¼ m2 þ λ

2
v2

þ ðN − 1Þ λ
6

�
m2

G

16π2
ln
m2

G

μ2
þ T th

G þ
�
4v2

ζm2
G

�
1=3
�

þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
: ð90Þ

Importantly, note that the mass appearing in Goldstone’s
theorem is ϵm2

G [from the definition of ϵ: Δ−1
G ð0; 0Þ ¼

ϵm2
G], which obeys ϵm2

G → 0 as Vβ → ∞ thanks to the
scaling chosen for ξ. Thus, this scheme satisfies
Goldstone’s theorem even if m2

G ≠ 0. What m2
G ≠ 0 indi-

cates here is not actually a violation of Goldstone’s theorem
but a noncommunication of the masslessness of the
Goldstone zero mode to the other modes.
Defining the dimensionless variables

x ¼ v2=μ2; ð91Þ

y ¼ m2
G=μ

2; ð92Þ

z ¼ m2
H=μ

2; ð93Þ

x̄ ¼ v̄2=μ2; ð94Þ

X̄ ¼ −6m2=λμ2; ð95Þ

ζ̂ ¼ ζμ6; ð96Þ

TG=H ¼ μ−2T th
G=H ð97Þ

(note the distinction between the Lagrangian parameter X̄
and the zero temperature value of the mean field x̄, which
happen to be equal at tree level and in the usual renorm-
alization scheme for the Hartree-Fock approximation), this
system becomes
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0 ¼ λ

6
ðx − X̄Þ

þ ðN − 1Þ λ
6

�
1

16π2
y ln yþ TG þ

�
4x

ζ̂y

�
1=3
�

þ λ

2

�
1

16π2
z ln zþ TH

�
þ ðN − 1Þ

�
yffiffiffiffiffi
2ζ̂

p
x

�
2=3

;

ð98Þ

y ¼ λ

6
ðx − X̄Þ

þ ðN þ 1Þ λ
6

�
1

16π2
y ln yþ TG þ

�
4x

ζ̂y

�
1=3
�

þ λ

6

�
1

16π2
z ln zþ TH

�
; ð99Þ

z ¼ λ

3
x − ðN − 1Þ

�
yffiffiffiffiffi
2ζ̂

p
x

�
2=3

: ð100Þ

Looking for a zero temperature solution gives the
system

0 ¼ λ

6
ðx̄ − X̄Þ þ ðN − 1Þ λ

6

�
1

16π2
ȳ ln ȳþ

�
4x̄

ζ̂ ȳ

�
1=3
�

þ λ

2

1

16π2
z̄ ln z̄þ ðN − 1Þ

�
ȳ2

2ζ̂x̄2

�
1=3

; ð101Þ

ȳ ¼ λ

6
ðx̄ − X̄Þ þ ðN þ 1Þ λ

6

�
1

16π2
ȳ ln ȳþ

�
4x̄

ζ̂ ȳ

�
1=3
�

þ λ

6

1

16π2
z̄ ln z̄; ð102Þ

z̄ ¼ λx̄
3
− ðN − 1Þ

�
ȳ2

2ζ̂x̄2

�
1=3

: ð103Þ

First, ignoring the SSI terms, one finds the usual unim-
proved 2PI solution x̄ ¼ X̄, ȳ ¼ 0, z̄ ¼ λx̄=3 ¼ 1. Now,
examine the large N limit of these equations, taking as
the scaling limit g ¼ λN ¼ constant and x̄, X̄ ∼ N1, ȳ,
z̄ ∼ N0 and ζ̂ ∼ Na with a to be determined. To leading
order,

0 ¼ g
6N

ðx̄ − X̄Þ

þ g
6

�
1

16π2
ȳ ln ȳþ Nð1−aÞ=3

�
4x̄=N

ðζ̂=NaÞȳ

�
1=3
�

þ Nð1−aÞ=3
�

ȳ2

2ðζ̂=NaÞðx̄=NÞ2
�
1=3

; ð104Þ

ȳ¼ g
6N

ðx̄− X̄Þþ
�
g
6

1

16π2
ȳ ln ȳþNð1−aÞ=3

�
4x̄=N

ðζ̂=NaÞȳ

�
1=3
�
;

ð105Þ

z̄ ¼ gx̄
3N

− Nð1−aÞ=3
�

ȳ2

2ðζ̂=NaÞðx̄=NÞ2
�
1=3

: ð106Þ

Note that the z dependence of the first two equations is
higher order in 1=N. Scaling limits exist if a ≥ 1. Note that
the SSI term in ΓSSI

ξ goes as ξ−1Nv2 ∼ N3−a so that one
needs a ≥ 2 for a scaling limit for ΓSSI

ξ to exist. a ¼ 1 can
also be ruled out by considering the equations of motion,
for in this case the leading approximation is

0 ¼ g
6N

ðx̄ − X̄Þ þ g
6

�
1

16π2
ȳ ln ȳþ

�
4x̄=N

ðζ̂=NÞȳ

�
1=3
�

þ
�

ȳ2

2ðζ̂=NÞðx̄=NÞ2
�
1=3

; ð107Þ

ȳ ¼ g
6N

ðx̄ − X̄Þ þ g
6

�
1

16π2
ȳ ln ȳþ

�
4x̄=N

ðζ̂=NÞȳ

�
1=3
�
;

ð108Þ

z̄ ¼ gx̄
3N

−
�

ȳ2

2ðζ̂=NÞðx̄=NÞ2
�
1=3

: ð109Þ

Using (107) to simplify (108),

ȳ ¼ −
�

ȳ2

2ðζ̂=NÞðx̄=NÞ2
�

1=3

; ð110Þ

which has the solution

ȳ ¼ −
1

2ðζ̂=NÞðx̄=NÞ2 < 0; ð111Þ

with an unphysical tachyonic Goldstone m2
G < 0. This is

not necessarily a problem because the zero mode ΔGð0; 0Þ
is always positive and, in finite volume with β and L
sufficiently small (i.e., β, L < 2π=jmGj), each mode
ΔGðn; kÞ ¼ 1=ðω2

n þ k2 þm2
GÞ with n, k ≠ 0 is still pos-

itive. Physically, confinement energy is stabilizing the
tachyon. However, a second condition is that the imaginary
part of the first equation of motion vanishes, yielding

0 ¼ −
1

16π2
jȳjð2kþ 1Þπ

− sin

�ð2kþ 1Þπ
3

��
4x̄=N

ðζ̂=NÞjȳj

�
1=3

; ð112Þ

where the branch chosen is ȳ ¼ jȳj exp ðiπð2kþ 1ÞÞ where
k is an integer. Using the solution for ȳ, this becomes
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k ¼ −
1

2
− 32πðζ̂=NÞðx̄=NÞ3 sin

�ð2kþ 1Þπ
3

�
; ð113Þ

which only has solutions of the form k ¼ 3j if

j ¼ −
1

6
−
16πffiffiffi
3

p ðζ̂=NÞðx̄=NÞ3 ð114Þ

is an integer. The existence of solutions only for certain
discrete values of ζ̂x̄3 is troubling and highly counterin-
tuitive (note especially that the relationship between ζ̂ and x̄
for a given j is independent of g, so that no matter how g is
varied at fixed m2 and ζ̂, x̄ is fixed even though one
expects x̄ ∼ N=g).
If a > 1, the SSI terms in the equation of motion are of

higher order, and the leading large N approximation is just
the standard one, i.e.,

0 ¼ g
6N

ðx̄ − X̄Þ þ g
6

1

16π2
ȳ ln ȳ; ð115Þ

ȳ ¼ g
6N

ðx̄ − X̄Þ þ g
6

1

16π2
ȳ ln ȳ; ð116Þ

z̄ ¼ gx̄
3N

; ð117Þ

which has the solution x̄ ¼ X̄, ȳ ¼ 0 and z̄ ¼ λx̄=3 as
expected. Now, note that if 1 < a < 4 the SSI terms go as a
fractional power of N between N0 and N−1 which cannot
balance any of the terms coming from diagrams, which all
go as integer powers of N−1. This implies that, if a > 1, it
must be of the form a ¼ 4þ 3k where k ¼ 0; 1; 2;….
The SSI terms then scale as N−ð1þkÞ in the equation of
motion and N−1−3k in ΓSSI

ξ . Thus, the SSI equations of
motion possess a satisfactory leading large N limit, but
only if the scaling is such that the SSI terms are of higher
order. This is the first sign that the SSI terms are
problematic.
Now, consider the case where symmetry improvement is

only weakly imposed, i.e., the SSI terms are a small
perturbation. Intuitively, this can be achieved by taking ζ̂
sufficiently large. It is thus natural to solve the equations of
motion (101)–(103) perturbatively in powers of ζ̂−1=3 as
ζ̂ → ∞. Writing x̄ ¼ x̄0 þ ζ̂−1=3x̄1 þ ζ̂−2=3x̄2 þ � � � and so
on, the leading equations of motion are just the unimproved
two particle irreducible (2PI) ones:

0 ¼ λ

6
ðx̄0 − X̄Þ þ ðN − 1Þ λ

6

1

16π2
ȳ0 ln ȳ0

þ λ

2

1

16π2
z̄0 ln z̄0; ð118Þ

ȳ0 ¼
λ

6
ðx̄0 − X̄Þ þ ðN þ 1Þ λ

6

1

16π2
ȳ0 ln ȳ0

þ λ

6

1

16π2
z̄0 ln z̄0; ð119Þ

z̄0 ¼
λx̄0
3

: ð120Þ

(a)

(b)

(c)

FIG. 2. Solutions of (98)–(100), the SSI equations of motion in
the Hartree-Fock approximation. The colored curves are broken
phase x (Fig. 2(a)), y (Fig. 2(b)), and z (Fig. 2(c)) and symmetric
phase (solid black) solutions vs temperature for λ ¼ 10, N ¼ 4,
X̄ ¼ 0.3. and several values of ζ̂ from 105 to ∞ (unimproved).
The critical temperature is T⋆=μ ≈ 0.775.
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The first order perturbation obeys a system of equations
which can be arranged as the matrix equation

0
BBB@

λ
6

ðN−1Þλ
96π2

ð1þ ln ȳ0Þ λ
32π2

ð1þ ln z̄0Þ
λ
6

ðNþ1Þλ
96π2

ð1þ ln ȳ0Þ − 1 λ
96π2

ð1þ ln z̄0Þ
λ
3

0 −1

1
CCCA
0
B@

x̄1
ȳ1
z̄1

1
CA

¼ ðN − 1Þ
�
ȳ20
2x̄20

�
1=3

0
BB@

− λx̄0
3ȳ0

− 1

− Nþ1
N−1

λx̄0
3ȳ0

1

1
CCA: ð121Þ

Note that this equation is singular in the limit ȳ0 → 0. The
solution for ȳ1 in this limit is

ȳ1 → −
32π2

ln ȳ0

�
x̄0
2ȳ0

�
1=3

→ ∞: ð122Þ

There is no sense in which the SSI terms are a small
perturbation, no matter the value of ζ̂. This can also be seen
from a direct examination of the full equations of motion.
In the limit ȳ → 0, the ð4x̄

ζ̂ ȳ
Þ1=3 terms always dominate for

any finite value of ζ̂. The result is that the SSI solution must
always have ȳ ≠ 0, even at zero temperature. For the same
reason, a perturbation analysis near the critical temperature
also fails, and, in fact, real valued solutions do not exist in a
(ζ̂ dependent) range of temperatures beneath the critical
temperature. Further, m2

G appears to increase as the SSI
terms are more strongly imposed. Physically, the unim-
proved 2PI equations of motion “would like to have” a
nonzero Goldstone mass. When the mass of the zero mode
is forced to vanish, the SSI 2PIEA adjusts by increasing the
mass of the other modes. This can be verified by examining
numerical solutions.

Numerical solutions of (98)–(100) are shown in Fig. 2
for λ ¼ 10, N ¼ 4, X̄ ¼ 0.3, and several values of ζ̂ from
104 to ∞. The critical temperature for these values is
T⋆=μ ≈ 0.775. These parameter values are chosen for
illustrative, not physical, purposes. For very large ζ̂, the
solution is near the unimproved solution. However, as ζ̂ is
decreased, x and z decrease, and y increases (this is
consistent with the perturbation y1 being positive).
Broken phase solutions cease to exist above the upper
spinodal temperature Tusðζ̂Þ which depends on ζ̂. Note that
Tusðζ̂Þ drops below T⋆ for all ζ̂ < ζ̂c where ζ̂c is some-
where between 106 and 107. This means that for ζ̂ < ζ̂c
there is no solution between Tusðζ̂Þ and T⋆. Further, as
ζ̂ → 0, Tusðζ̂Þ → 0. This behavior can be seen in Fig. 3. At
a critical value ζ̂ ¼ ζ̂⋆, one has Tusðζ̂⋆Þ ¼ 0, and real
solutions cease to exist for all ζ̂ ≤ ζ̂⋆.
The mathematical origin of this loss of solution can be

understood by considering the zero temperature equations
of motion (101)–(103). We now use (103) to eliminate z̄ in
the (101) and (102) and consider the real and imaginary
parts of the right-hand sides of these equations as functions
of x̄ and ȳ. The relevant regions of the x̄ − ȳ plane are
shown in Fig. 4. The blue vertically meshed regions satisfy
ℜðð101ÞÞ > 0, the yellow horizontally meshed regions
satisfy ℑðð101ÞÞ ≠ 0, and the green diagonally meshed
regions satisfy ℜðð102ÞÞ > ȳ. Note that, for x̄, ȳ > 0,
ℑðð101ÞÞ ≠ 0 is equivalent to z̄ > 0, as is ℑðð102ÞÞ ≠ 0
which does not give anything new.
Valid solutions of the equations of motion are on the

boundary of the blue and green regions simultaneously and
outside of the yellow horizontally meshed region. As ζ̂ is
decreased, it can be seen that the blue vertically meshed
region “closes in” toward the origin, the green diagonally
meshed region grows upward, and the yellow horizontally
meshed region grows to the right. Solutions cease to exist
for ζ̂ ¼ ζ̂⋆ ≈ 12200 where all three regions intersect at a
common point. For all ζ̂ < ζ̂⋆, there are no solutions
(intersection points between the blue and green curves)
which are also real (outside the yellow horizontally meshed
region). If the temperature is nonzero, the thermal con-
tributions increase the real parts of the right-hand sides
which, in comparison with Fig. 4, hastens the onset of the
loss of solutions, which is therefore achieved at a greater
value ζ̂. Conversely, the temperature at which solutions are
lost for a given ζ̂ increases as a function of ζ̂, which, of
course, matches the behavior seen in Figs. 2 and 3.

D. Broken phase with m2
G → 0

In order to find a broken phase solution without the
pathological properties of the previous section, one can try
to find solutions with m2

G → 0 in the Vβ → ∞ limit. To
achieve this, take the scalings

FIG. 3. The upper spinodal temperature Tus vs ζ̂ for broken
phase solutions of the SSI equations of motion in the Hartree-
Fock approximation for λ ¼ 10, N ¼ 4, and X̄ ¼ 0.3. The critical
temperature is T⋆=μ ≈ 0.775.
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ξ ¼ ðVβÞαζ ¼ ðVβÞαμ2þ4αζ̂; ð123Þ

m2
G ¼ ðVβÞ−γμ2−4γy; ð124Þ

where γ > 0. The definitions of the other dimensionless
variables (x, z, etc.) are as before. Then,

ϵ ∼

8><
>:
�
ðVβÞαþ2γ−1

ðμ−4Þαþ2γ−1

�
1=3
�

ζ̂
4xy2

�
1=3

; αþ 2γ − 1 < 0;

1 − ðμ−4Þαþ2γ−1

ðVβÞαþ2γ−1
4xy2

ζ̂
; αþ 2γ − 1 > 0:

ð125Þ

One can take the equations of motion (62)–(64) with the
prescription S1 → 0 because, as discussed in Sec. III, the

FIG. 4. Real and imaginary parts of the right-hand sides of (101) and (102) as functions of x̄ and ȳ for λ ¼ 10, N ¼ 4, X̄ ¼ 0.3, and
ζ̂ ¼ 215 (upper left), 214 (upper right), 12200 (lower left), and 104 (lower right). The blue vertically meshed regions satisfyℜðð101ÞÞ > 0,
the yellow horizontally meshed regions satisfy ℑðð101ÞÞ ≠ 0, and the green diagonally meshed regions satisfy ℜðð102ÞÞ > ȳ.
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Goldstone tadpole reduces to the unmodified form in the
massless case. The result is the equation of motion for
the vev,

0 ¼ m2 þ λ

6
v2 þ ðN − 1Þ λ

6

T2

12
þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
þ S2; ð126Þ

for the Goldstone mass

0 ¼ m2 þ λ

6
v2 þ ðN þ 1Þ λ

6

T2

12
þ λ

6

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
;

ð127Þ

and for the Higgs mass

m2
H ¼ m2 þ λ

2
v2 þ ðN − 1Þ λ

6

T2

12
þ λ

2

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
;

ð128Þ

having used that T fin
G ¼ T2=12 for m2

G ¼ 0. Note that,
remarkably, Eqs. (127) and (128) are nothing but the SI
2PIEA equations of motion (cf. Ref. [22]). The only thing
new is the modification of the vev equation by the term S2.
To examine this further, one must consider the three cases
αþ 2γ − 1⋛0 which govern the possible scaling behaviors
of this term.
In the αþ 2γ − 1 > 0 case, ϵ → 1, and

S2 → μ2
ðμ−4Þαþ2γ

ðVβÞαþ2γ

ðN − 1Þ2y2
ζ̂

→ 0: ð129Þ

If, on the other hand, αþ 2γ − 1 ¼ 0, ϵ is a constant as
Vβ → ∞, and

S2 → μ2
ðμ−4Þ
ðVβÞ

1

ζ̂
ðN − 1Þ2y2ϵ2 → 0: ð130Þ

In both of these cases, Eq. (126) is unmodified by SSI and
cannot hold at the same time as the other two equations of
motion. To see this, solve the SI 2PI equations to get

m2
H ¼ −2m2 −

1

3
λðN þ 2ÞT

2

12
; ð131Þ

and

λ

6
v2 ¼ −m2 −

1

6
ðN þ 1ÞλT

2

12
−
1

6
λ

�
m2

H

16π2
ln
m2

H

μ2
þ T th

H

�
:

ð132Þ

Now, use these in (126) to get

T2

12
¼ m2

H

16π2
ln
m2

H

μ2
þ T th

H; ð133Þ

which only holds at T ¼ 0 (for μ ¼ m̄H) and T ¼ T⋆.
There is no solution at any other temperature.
The remaining case is αþ 2γ − 1 < 0. For this case, the

SSI term becomes

S2 → μ2
�ðμ−4Þαþ2γþ2

ðVβÞαþ2γþ2

�
1=3

ðN − 1Þ
�

y2

2ζ̂x2

�
1=3

: ð134Þ

Looking for asymptotic balance, the only solution is αþ
2γ þ 2 ¼ 0 (which automatically satisfies the condition
αþ 2γ − 1 < 0). In this case, Eq. (126) reduces to (in terms
of dimensionless variables now)

0 ¼ −
λ

6
X̄ þ λ

6
xþ ðN − 1Þ λ

6

T2=μ2

12
þ λ

2

�
z

16π2
ln zþ TH

�

þ ðN − 1Þ
�

y2

2ζ̂x2

�
1=3

: ð135Þ

Subtracting (128) from this gives

ðN − 1Þ
�

y2

2ζ̂x2

�
1=3

¼ λ

3
x − z; ð136Þ

which can be easily solved for y, giving

y2 ¼ 2ζ̂x2
�λ

3
x − z

N − 1

�3

: ð137Þ

Note that m2
G ¼ 0 regardless of the value of y. The only

constraint is that 0 ≤ y < ∞ which requires λx=3 ≥ z. This
can be verified using the solution of the SI 2PI equations of
motion

z ¼ 1 −
T2

T2⋆
; ð138Þ

x ¼ X̄ −
�
ðN þ 1ÞT

2=μ2

12
þ TH

�
ð139Þ

[recalling z̄ ¼ 1 and X̄ ¼ 3=λ are the zero temperature
solutions and T2⋆ ¼ 12X̄μ2=ðN þ 2Þ] so that

λ

3
x − z ¼ 1

X̄

�
T2=μ2

12
− TH

�
≥ 0; ð140Þ

since the thermal integral TH is maximized for massless
particles. Thus, 0 ≤ y2 < ∞, and y can always be chosen in
0 ≤ y < ∞. Thus, all of the limits ξ ∼ ðVβÞ−2γ−2 and m2

G ∼
ðVβÞ−γ with γ > 0 are equivalent and are identified as the
unique limiting procedure that gives back the old SI 2PIEA
from the SSI 2PIEA.
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One can also see that this procedure is the unique way of
connecting the SI and SSI methods by directly matching the
SSI term in ΓSSI

ξ with the Lagrange multiplier term in ΓSI.
To do this, one must recall the original formulation of the
symmetry improvement method. The constraint term in the
SI 2PIEA is (cf. “the simple constraint” discussed in
Ref. [23])

C ¼ i
2
la
AW

A
a : ð141Þ

The constraint is singular, meaning one must proceed by
violating the constraint by an amount ∼η then taking a limit
η → 0 such that lη is a constant. In the previous literature
[14,22,23], this procedure was carried out at the level of the
equations of motion. Now, it is convenient to implement
this at the level of the action by shifting the constraint
term to

i
2
la
AðWA

a − iFA
aÞ; ð142Þ

where FA
a ∼ η is the regulator written in OðNÞ-covariant

form. Setting the SI constraint term equal to the SSI term
gives

i
2
la
AðWA

a − iFA
aÞ ¼ −

1

2ξ
WA

aWA
a : ð143Þ

This can be simplified by recalling that WA
a ¼

Δ−1
abT

A
bcφc, going to an antisymmetric multi-index

A → jk for the Lie algebra indices, and using Tjk
bc ¼

iðδjbδkc − δjcδkbÞ and φc ¼ vδcN . This gives

2
i
2
Vβla

cNðiP⊥
ca½Δ−1

G ð0; 0Þ�v − iF cN
a Þ

¼ −
1

2ξ
ð−2ðN − 1Þv2Vβ½Δ−1

G ð0; 0Þ�2Þ; ð144Þ

having used
R
y Δ

−1
G ðx; yÞ ¼ Δ−1

G ð0; 0Þ and introduced the

transverse projector P⊥
ca ¼ δca − φcφa=φ2. Without loss of

generality, one can set

la
cN ¼ P⊥

ac

�
1

N − 1
ld
dN

�
; ð145Þ

F cN
a ¼ P⊥

acF ð146Þ

and find

−lc
cNðΔ−1

G ð0; 0Þv − F Þ ¼ 1

ξ
ðN − 1Þv2½Δ−1

G ð0; 0Þ�2: ð147Þ

Now, recall that the usual form of the SI regulator is
Δ−1

G ð0; 0Þv ¼ m2
Gv ¼ ηm3 where m is some arbitrary mass

scale (it is convenient to take m ¼ μ). This identifies
F ¼ ηm3. The η → 0 limit is taken so that ηlc

cN ¼ l0v
is a constant. Using this and Δ−1

G ð0; 0Þ ¼ ϵm2
G gives

−
l0v
η

ðϵm2
Gv − ημ3Þ ¼ 1

ξ
ðN − 1Þv2½ϵm2

G�2: ð148Þ

It is now convenient to take η ¼ ðVβÞ−δμ−4δ with δ > 0.
Taking also the usual scalings for ξ and m2

G, one finds

−ðVβÞδ−γμ4ðδ−γÞϵl0xyþ l0

ffiffiffi
x

p ¼ μ−4α−8γ

ðVβÞαþ2γ ϵ
2ðN − 1Þ xy

2

ζ̂
:

ð149Þ

If αþ 2γ − 1 > 0, asymptotic balance is impossible (dom-
inant terms can be matched, but not subdominant terms).
Likewise, balance cannot be achieved for αþ 2γ − 1 ¼ 0.
If αþ 2γ − 1 < 0; however,

− ðVβÞδ−γμ4ðδ−γÞ
�ðVβÞαþ2γ−1

ðμ−4Þαþ2γ−1

�
1=3
�

ζ̂

4xy2

�1=3

l0xyþ l0

ffiffiffi
x

p

¼ μ−4α−8γ

ðVβÞαþ2γ

�ðVβÞαþ2γ−1

ðμ−4Þαþ2γ−1

�
2=3
�

ζ̂

4xy2

�2=3

ðN − 1Þ xy
2

ζ̂
:

ð150Þ

Matching powers of (Vβ) on both sides gives

0 ¼ 3δ − 1þ α − γ; ð151Þ

0 ¼ αþ 2γ þ 2; ð152Þ

which of course duplicates the previous result. These
equations have the solutions

α ¼ −2δ; ð153Þ

γ ¼ δ − 1: ð154Þ

γ > 0 requires δ > 1. Substituting this into (150) gives

−
�

ζ̂

4xy2

�1=3

l0xyþl0

ffiffiffi
x

p ¼
�

ζ̂

4xy2

�2=3

ðN−1Þxy
2

ζ̂
;

ð155Þ

which can be solved for ζ̂, giving

ζ̂1=3 ¼
�

1

2
ffiffiffi
x

p
y

�
1=3
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðN − 1Þ y

l0

r �
: ð156Þ

This is the desired connection between the SSI stiffness
parameter ζ̂ and the SI Lagrange multiplier l0.
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V. DISCUSSION

In this paper, we have introduced a new method of soft-
symmetry improvement which relaxes the constraint of the
symmetry improvement method. Violations of Ward iden-
tities are allowed but punished in the solution of the SSI
effective action. The method is essentially a least-squares
implementation of the symmetry improvement idea. A new
parameter, the stiffness ξ, controls the strength of the
constraint. We studied the SSI 2PIEA for a scalar OðNÞ
model in the Hartree-Fock approximation and found that
the method is IR sensitive. The system must be formulated
in finite volume V and temperature T ¼ β−1, and the
Vβ → ∞ limit must be taken carefully.
We found three distinct limits in Sec. IV. In all cases, the

symmetric phase is the same and is unmodified from either
the unimproved 2PIEA or SI 2PIEA methods. Only the
broken phase is affected by SSI. Two of the limits are
equivalent to the unimproved 2PIEA and SI 2PIEA respec-
tively. The third is a new limit where ζ̂ ¼ ðVβÞ2ξμ6 is taken
to be fixed and finite as Vβ → ∞. In this limit, the WI is
satisfied, but the phase transition is strongly first order and
strongly dependent on the scaled stiffness ζ̂. Also, the upper
spinodal temperature decreases as ζ̂ decreases, and, for
ζ̂ < ζ̂c, solutions fail to exist between the upper spinodal
temperature and the critical temperature. For ζ̂ ¼ ζ̂⋆, the
upper spinodal temperature is equal to zero, and broken
phase solutions cease to exist entirely. The limit was studied
in both the leading large N limit and in perturbation theory

in ζ̂−1=3. The large N limit is trivial to leading order, and the
perturbation theory does not exist since the SSI term is
singular at the unimproved solution. These results all
suggest that the new limit is pathological.
The results of this paper are primarily restricted by the

use of the Hartree-Fock approximation. Investigations of
higher order approximations are motivated but would be far
more involved, numerically, than anything attempted here.
It is possible that a higher order truncation could ameliorate
some or all of the problems with SSI found here. However,
assuming the Hartree-Fock results hold true, we can
summarize the findings as follows: we have found a method
which subsumes both the unimproved 2PIEA and SI 2PIEA
and contains a new dynamical limit as Vβ → ∞. However,
these limits are disconnected from each other; there is no
smooth way to interpolate from one to another. Further,
each limit is in one way or other pathological. These results
suggest that any potential advantages of SSI methods [and
likely any consideration of (S)SI out of equilibrium] must
occur in finite volume. Whether this is possible or not
depends on the particular system being studied. Thus,
ultimately, symmetry improvement methods cannot be
trusted as a “black box”; their validity must be decided
on a case by case basis.
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