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It is important to find nontrivial constraint relations for color-ordered amplitudes in gauge theories. In the
past several years, a pure group-theoretic iterative method has been proposed for deriving linear constraints
on color-ordered amplitudes in SU(N) gauge theories. In this paper, we use the same method to derive
linear constraints on four-point gluon amplitudes in SO(N) and Sp(2N) gauge theories. These constraints
are derived up to four-loop order. It is found that there are n = 1, 6, 10, 13, 16 constraint relations at L = 0,
1, 2, 3, 4 loop orders in both SO(N) and Sp(2N) cases. Correspondingly, there are 2,3,5,8, and 11
independent four-point color-ordered amplitudes at L = 0, 1, 2, 3, 4 loop orders in both theories.
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I. INTRODUCTION

Scattering amplitudes are important gauge-invariant
observables in perturbative quantum gauge theories.
Many efforts have been made to simplify the computation
of color-ordered amplitudes in recent years. It has also been
found that color-ordered amplitudes are not all indepen-
dent. Tree-level color-ordered amplitudes in SU(N) gauge
theories satisfy many constraint relations, such as U(1)
decoupling relations [1-5], Kleiss-Kuijf (KK) relations
[6,7], and Bern-Carrasco-Johansson (BCJ) relations
[8-12]. The KK relations reduce the number of indepen-
dent n-point color-ordered amplitudes with a given helicity
configuration to (n—2)!, and the BCJ relations further
reduce this number to (n — 3)!.

Just as for tree-level color-ordered amplitudes, loop
amplitudes in SU(N) gauge theories are also not all
independent to each other. The loop-level U(1) decoupling
relations are well-known relations between loop amplitudes
and exist at arbitrary loops [3]. These relations can be
derived from the fact that U(1) photon decouples from
SU(N) gluon scattering processes. The extension of KK
and BCJ relations to one and two loop has also been
explored [7,13—17]. In the past several years, some non-
trivial all-loop relations have been derived for four-, five-,
and six-point color-ordered loop amplitudes in SU(N)
gauge theories based on a group-theoretic method [18-21].

Color-ordered amplitudes in SU(N) gauge theories have
been studied extensively. One important reason is that
SU(N) gauge symmetry plays an important role in the
modern standard model of particle physics. However, it is
known that the standard model suffers from several

explored beyond the standard model, like grand unified
theories (GUTs) and string theories. In these candidate
theories, orthogonal gauge groups often play important
roles, such as SO(10) in GUTs [22-26] and SO(32) in
string theories [27-31]. Thus, it is interesting to study
scattering amplitudes in gauge theories with SO(N) or
other gauge groups.

In this paper, we consider constraint relations for four-
point color-ordered amplitudes in two kinds of gauge
theories, namely, SO(N) gauge theories and Sp(2N) gauge
theories. All external and internal particles are in adjoint
representations of the gauge groups. By employing the
group-theoretic approach [19-21], we derive constraint
relations satisfied by four-point color-ordered amplitudes
in both gauge theories up to four-loop order. It is found that,
at L =0, 1, 2, 3, 4 loop orders, there are, respectively,
n=1,6, 10, 13, 16 group-theoretic constraint relations for
four-point color-ordered amplitudes in both kinds of
theories. The number of independent color-ordered ampli-
tudes at each loop order for both theories is listed in Table I.
These results are consistent with those from a direct
counting of color-basis elements and trace-basis elements
up to the four-loop level [19,32].

In Sec. II, we list some basic results for the SO(N) group
and present the trace basis and L-loop color decomposition
of four-point amplitudes. In Sec. III, loop-level group-
theoretic constraint relations among four-point color-
ordered amplitudes in SO(N) theories are derived up to
four-loop order. In Sec. IV, we list some basic results for the
Sp(2N) group and present the trace basis and L-loop color

difficulties, such as neutrino oscillations and dark-matter =~ TABLE L. Loop orders vs numbers of independent amplitudes.
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decomposition of four-point amplitudes. In Sec. V, loop-
level constraint relations are derived for four-point
amplitudes in Sp(2N) gauge theories up to four-loop
order. The last section is devoted to conclusions and
discussion. Some details of the calculations are provided
in the Appendix.

II. TRACE BASIS OF FOUR-POINT AMPLITUDES
IN SO(N) GAUGE THEORIES

We first list some basic results and our conventions for
the SO(N) group and algebra. In the fundamental repre-
sentation, the generators of SO(N) algebra are antisym-
metric, traceless matrices, which can be chosen as follows:

i,j=1,2,...,N,
(eij)kl = 5ik5j1- (1)

The above generators can be denoted by {7¢}
l[a=1,2,....,N(N —1)/2]. They satisfy the SO(N) Lie
algebra

[Ta’ Tb] — ifabCTC, (2)

where f9¢ is the SO(N) structure constant, and the
normalization condition

Tr(TT?) = 256. (3)

From the above two equations, the structure constant can be
expressed as the trace of generators,

fabe = —%Tr([T“, TP|T¢) = —iTe(TT?T¢).  (4)
The quadratic Carsimir operator of SO(N) is

D TT = (N = 1)y (5)

a

Two useful identities for the trace of SO(N) generators are
Tr(T*AT“B) = Tr(A)Tr(B) — (=1)"(AB"),  (6)
Tr(T*A)Tr(T*B) = Tr(AB) — (=1)"#(AB"),  (7)

where A, B are products of SO(N) generator matrices or
Iyyy. ng is the number of generators in B and ngz =0
if B=Iy.. If B=T'T’T?..T""'T", then B" =
Tt T3T?T!.

It is known that scattering amplitudes in SU(N) gauge
theories can be decomposed into two parts, color parts and
kinematic parts. The color parts can be expressed in terms
of structure constants or traces of SU(N) matrices in the
fundamental representation. This leads to two kinds of
decomposition, which can be called f-based decomposition
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and trace-based decomposition. In f-based decomposition
[7,33], a full n-point amplitude is written as

.A,, = ZQCM, (8)
A

where a color factor ¢, is a product of several structure
constructs and a, is the corresponding kinematic factor. In
trace-based decomposition, the full n-particle amplitude is
written as

‘AH = ZtiAh (9)

where the trace basis {#;} includes independent traces of
SU(N) matrices and A; is the color-ordered amplitude
corresponding to #;. Using some identities of SU(N)
algebra, a color factor ¢, can be written as a linear

P
combination of trace-basis elements,
Cp == ZMpiti' (10)
i

Then, the color-ordered amplitude A; can be expressed as
A=) a,M,. (11)
P

If the matrix M has a nonzero right null vector r, then we
can obtain a constraint equation for the color-ordered
amplitudes, A - r = 0.

The above is the basic idea used before to derive group-
theoretic constraints on color-ordered amplitudes. We
adopt the same idea to derive constraints on four-point
color-ordered amplitudes in SO(N) gauge theories. The
trace basis for four-point amplitudes in SO(N) gauge
theory is

T, = Tr(THT2THT),
Ty = Te(THTRT4TS),
Ty = Te(THT“TT%),

Ty =Tr(T“T*)Tr(T*T™),
Ts = To(T“T%)Tr(TT*),
Tg = Tr(TT)Tr(TT%).

(12)
At tree level, only single traces appear in the trace-based
color decomposition. At one-loop order, double-trace terms
appear. At higher-loop order, traces with different powers
of N appear in the decomposition. Thus, the trace-based

color decomposition of four-point L-loop amplitude has the
following form:

L 3

AL ="

m=0 i=

~

-1 6
N"T A" + N'T,AY.(13)
1 =4

3
i
o

{A“"1 and {AEL"O} are the color-ordered amplitudes at
L-loop order. This decomposition allows for a relative
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factor of N between the leading and subleading contribu-
tions to a given T'(;). This is different from the SU(N) case
where the suppression always comes in N2 [19]. The reason
is that the algebraic identities satisfied by SU(N) and
SO(N) have different structural features. For SO(N'), both
a single-trace term and a double-trace term appear on the
right-hand side of the identity (6). For SU(N), a similar
identity is Tr(T“AT“B) = Tr(A)Tr(B) — 4 Tr(AB). When
we only consider adjoint particles, % terms always cancel
and can be omitted. Thus, only a double-trace term appears
on the right-hand side of the SU(N) identity. Using these
identities to construct a higher-loop trace basis from a tree-
level single-trace basis, we can obtain the different sup-
pression behaviors between SO(N) and SU(N).

III. CONSTRAINT RELATIONS AMONG SO(N)
FOUR-POINT AMPLITUDES

As discussed in the previous section, in order to find the
constraint relations among four-point L-loop color-ordered
amplitudes, we should first find out a complete color basis
for the L-loop amplitudes, and then find the transformation
matrix M between the color basis and L-loop trace basis.
The right null vectors of M give the constraint relations.

At tree level, there are three kinds of color factors,

c, = fa]azbfbaga‘"

c, = fa4a1bfba2a3’ Cy= fa;albfba2a4,

(14)

which correspond to s, t, and u-channel diagrams, respec-
tively. These color factors are not independent and satisfy
the Jacobi identity, ¢, = ¢, — ¢,,. Thus, we can choose c;, ¢,
as independent color-basis elements. According to Egs. (4)
and (6), ¢, ¢, can be expressed by the tree-level trace
basis {T;,i =1,2,3}. The corresponding transformation

matrix is
MO — -1 1 0 .
-1 0 1

The right null vector of M(© is

(15)

rO =(1,1,1), (16)

where the prime means the transpose of the matrix.
This vector implies a relation among the color-ordered
amplitudes,

A0(1,2,3.4) + A00(1,2,4,3) + A©0(1,4,2,3) = 0.
(17)

This relation for the SO(N) amplitudes is the same as that
for SU(N) amplitudes.

PHYSICAL REVIEW D 95, 025015 (2017)

For L-loop amplitudes, it is complicated to explicitly
find out a complete color basis. Here we adopt the same
assumption used in [19] that all (L + 1)-loop color factors
can be obtained from L-loop color factors by attaching a
rung between two of its external legs. This assumption can
be checked explicitly at lower loop orders (L <4) for
SU(N) [19] and is thought to be correct at L > 4 loop
orders. For a diagram with color factor

c = fra (18)

where ““---” denotes product of some structure constants,

attaching a rung between its external legs (i, j) means the
color factor of the resulting diagram is

o= fba,-efeajdf*b*”.f*d*.”. (19)

For four-point amplitudes, we assume that all possible

color factors of (L + 1)-loop diagrams can be obtained

from L-loop color factors by attaching legs (1,2),(1,3),(1,4)
as in Eq. (19). Then we consider the effect of this attaching

Tl » T4
process on the trace basis. Let 7 = <T2 ) T = <T5 )

T3 Te
After the process of attaching a rung, 7" and T transform as

NT NT
T-((ABC)| T |, T-DEF| T |, (20)
T T

where A,B,C,D,E F are all 3 x3 matrices and are
different for each attaching way. These matrices are given
explicitly in the Appendix.

Let us explain how to use the iterative method to derive
higher-loop right null vectors from lower-loop ones.
Suppose {c,(,L>} is a complete (maybe overcomplete) color
basis for L-loop amplitudes, and the color basis elements
can be expanded by the L-loop trace basis {T,(CL),(k:
1,2,...,6L+3)} =
{NET; N“'T; N2IT,, T, T, (i=1,2,3,j=4,5,6)},

6L+3

=3 M. (21)
k=1

An L-loop four-point full amplitude can be written as

6L+3

AL = Z T,(CL>A,<{L> = Zc((f)a((ll‘), (22)
k=1 a

where {A,({L)} corresponds one to one with {A(") 1} in (13).
An L-loop right null vector &) of MY satisfies
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6L+3

> M=o, (23)
k=1

and implies a constraint on L-loop color-ordered ampli-
tudes

6L+3
S Al =o. (24)
k=1

The (L + 1)-loop color factors can be obtained by the
attaching procedure; this procedure also transforms an L-
loop trace basis element to a linear combination of an
(L + 1)-loop trace basis,

6L+9

. Z GLL+1 L+l) (25)

where G is a (6L + 3) x
Then, we have

(6L +9) transformation matrix.

6L+36L+9

Z ZMak G;j JL+1) §L+1)'

(26)

L+1 (L+1) L+1
Z M,

An (L + 1)-loop right null vector &) must satisfy

6L+9 6L+3 6L+9

(L+1) L+1 LL+1 L+1
S M = SN MG~
(27)
which means

GLL+1) . p(L+1)

= linear combination of {r(X)}. (28)

This is the relation between L-loop and (L + 1)-loop right
null vectors and is the basic equation of the recursive
method.

A. Constraints on one-loop amplitudes

We have obtained r©) in Eq. (16). The transformation
matrix G(*!) between the trace bases of tree amplitudes and
one-loop amplitudes is

G = (A,B,C). (29)

The explicit forms of A, B, C are in the Appendix. By
solving the basic recursive equation

GOV . r1) = linear combination of {r(®},  (30)

we get six one-loop right null vectors,

PHYSICAL REVIEW D 95, 025015 (2017)
{r} = (4,2,2,1,0,0,0,0,0)", (2,4,2,0,1,0,0,0,0),

(2,2.4,0,0,1,0,0,0Y,  (=1,-1,-1,0,0,0,1,0,0)’,
(=1,-1,-1,0,0,0,0,1,0), (=1,—-1,-1,0,0,0,0,0,1)".
(31)

The last three null vectors imply the following equations:

AL0(1,2:3,4) = A0)(1,3;2,4) = A(10)(1,4;2,3),

(32)

AL (1,2;3,4) = AUD(1,2,3,4) + ATD(1,2,4,3)

+AD(1,4,2,3). (33)

The three color-ordered amplitudes corresponding to dou-
ble-trace-basis elements are equal to each other and they are
linear combinations of leading-order amplitudes. The other
three vectors imply the following constraint equations:

4A1D(1,2,3,4) +24000(1,2,4,3) +240:1(1, 4,2, 3)
A0(1,2,3 4), (34)

240:0(1,2,3,4) +4A(D(1,2,4,3) +240:1(1,4,2,3)
A10(1,2,4,3), (35)

240:0(1,2,3,4) +240(1,2,4,3) +4A11(1,4,2,3)
— —A(0)(1,4,2,3). (36)

From (33) to (36), all subleading color-ordered amplitudes
are expressed as linear combinations of three leading-order
amplitudes. Thus, at one-loop order, the number of inde-
pendent amplitudes is 3.

The number of independent right null vectors can also be
obtained from direct counting of independent color factors
and trace-basis elements at the one-loop level. It is known
that there are three independent one-loop color factors
corresponding to three different box diagrams and there are
nine (6L + 3) independent trace-basis elements. Thus, the
number of independent null vectors should be 6. This is
consistent with the recursive result.

B. Constraints on two-loop amplitudes

In this section we derive the constraints on two-loop
amplitudes. The transformation matrix between one-loop
and two-loop trace bases is

A B C 0 0
G'=10 A 0 B C|. (37)
0 0 D E F

By solving the recursive equation

025015-4



GROUP-THEORETIC RELATIONS FOR AMPLITUDES ... PHYSICAL REVIEW D 95, 025015 (2017)

G2 . r?) = linear combination of {r(}, (38)
we get ten two-loop right null vectors,

{r®} =(10,10,10,1,1,1,0,0,0,0,0,0,0,0,0)’,

(7,7,3,1,1,0,1,0,0,0,0,0,0,0,0), (=7,-3,-3,-1,0,0,0,1,0,0,0,0,0,0,0),
(=3,-7,-3,0,-1,0,0,0,1,0,0,0,0,0,0),

(40,12,12,8,0,0,0,0,0,1,0,0,0,0,0), (12,40,12,0,8,0,0,0,0,0,1,0,0,0,0),

(—68, —68, —40, —8,—8,0,0,0,0,0,0,1,0,0,0)’,

(=30, -30, 14, —4,—4,0,0,0,0,0,0,0,1,0,0)’, (26, 10, 10,4,0,0,0,0,0,0,0,0,0, 1,0)’,

(10,26, 10,0,4,0,0,0,0,0,0,0,0,0, 1), (39)

which imply ten constraint relations between 15 two-loop color-ordered amplitudes. Thus, the number of independent
amplitudes at two-loop order is 5.
The first null vector implies the following linear constraint on the six leading amplitudes:
10(A%2)(1,2,3,4) + AP2(1,2,4,3) + A2 (1,4,2,3))
+ACD(1,2,3,4) + ABD(1,2,4,3) + A2 (1,4,2,3) = 0. (40)
Then, only five of the six leading amplitudes are independent. From the other null vectors, all other subleading color-
ordered amplitudes can be expressed as linear combinations of the six leading amplitudes. The second null vector implies
TA2)(1,2,3,4) + 7422 (1,2,4,3) + 3422 (1,4,2,3)
+ACD(1,2,3,4) + AD(1,2,4,3) + A®D(1,2:3,4) = 0. (41)
The third and fourth null vectors imply relations that are equivalent to permutations of the above. The relation implied by the
seventh null vector is
—68A422)(1,2,3,4) — 68A%2)(1,2,4,3) — 40A>2)(1,4,2,3)
—8AR1(1,2,3,4) =841 (1,2,4,3) + AR0(1,4,2,3) = 0. (42)
The fifth and sixth null vectors imply relations that are equivalent to perturbations of the above. The eighth null vectors give
the following relation:
—30A2)(1,2,3,4) —30A2)(1,2,4,3) — 14422 (1,4,2,3)
—4ARD(1,2,3,4) — 4421 (1,2,4,3) + AR0(1,2;3,4) = 0. (43)
The ninth and tenth null vectors imply relations that are equivalent to permutations of the above.
At two-loop order, there are six planar ladder diagrams. The color factors of them are not all linearly independent and

satisfy one linear constraint equation. Thus, there are five linearly independent planar color factors. All color factors of

nonplanar diagrams can be written as linear combinations of the planar color factors. A typical color factor of a planar ladder

. . (2Lad . . . (2NP
diagram is c§234a ) = faila pardas pasasar paidas pastas fagmar - A typical color factor of a nonplanar diagram is c§234 ) =

farla fadas fasacas fasdas fasaiar £ae3a1 Two relations among planar and nonplanar color factors are

(2,Lad) (2,Lad)

(2,Lad) (2,Lad) (2,Lad) (2,Lad) o
Ciza  —Clzn  TC3 —Ciau +Capn  —Clgz =0, (44)
(.NP) _ (2.Lad) (2.Lad) (2.Lad) (2,Lad)
3¢iu = Ci —Clxm —Chap t 0 (45)

The dimension of the two-loop trace basis is 15. Thus, by counting the numbers of color-basis elements and trace-basis
elements, ten independent right null vectors should be obtained. This is consistent with the recursive results.
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C. Constraints on three-loop amplitudes

The three-loop right null vectors obtained by the recursive method are

(21,21,21,2,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)',
(72,0,0,12,-2,-2,0,-4,0,1,0,0,0,0,0,0,0,0,0,0,0),

(84,156, 84,6,20,6,4,4,0,0,1,0,0,0,0,0,0,0,0,0,0),

(0072 -2,-2,12,-4,0,0,0,0,1,0,0,0,0,0,0,0,0,0),

(—14, -14,-1,-1,-1,6,0,0,0,0,0,1,0,0,0,0,0,0,0,0)",

(—14, -14,-1,-1,-1,0,6,0,0,0,0,0,1,0,0,0,0,0,0,0)",

(140, -140, -140,-13,-13,-13,-6,-6,0,0,0,0,0,0,1,0,0,0,0,0,0)’,
(=256,-72,-72,-32,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,0),
(—408,-592, —408, —32, —64, -32,-16,-16,0,0,0,0,0,0,0,0, 1,0,0,0,0)",
(=72,-72,-256,0,0,-32,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0),

(100, 100, 100, 8, 8, 8,-8,0,0,0,0,0,0,0,0,0,0,0, 1,0,0)",

(100, 100, 100, 8, 8, 8,0,-8,0,0,0,0,0,0,0,0,0,0,0, 1,0)",

(268,268,268, 24,24,24,8,8,0,0,0,0,0,0,0,0,0,0,0,0,1)". (46)

These right null vectors imply 13 constraint relations to the 21 three-loop color-ordered amplitudes. Thus, the number of
independent amplitudes is 8.

The explicit constraint equations can be written out easily from the null vectors and we do not do it here. The first vector
implies a constraint on the first nine color-ordered amplitudes {A,(f), k=1,2,...,9} in (22). The next 12 vectors mean that

all other amplitudes {AS), k =10,11,...,21} are linear combinations of the first nine amplitudes. These 12 vectors can be
divided sequentially into four sets. Three vectors (or equivalent vectors) in one set satisfy certain permutation symmetries.
At three-loop order, the number of independent color factors is 8 [32]. By counting the numbers of color-basis elements and
trace-basis elements, the number of right null vectors should be 13.

D. Constraints on four-loop amplitudes

At four-loop order, the number of linearly independent color-basis elements is 11 [32]. By counting the numbers of color-
basis elements and trace-basis elements, the number of right null vectors should be 16. Using the recursive method, we find
that the number of right null vectors is exactly 16. A set of independent vectors can be chosen as

(242,242,242,22,22,22,2,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

116 116 12 -1 44 11 !
<???33?? 00550,1,00000000000000>

-126 —126 =23 -7 =7 =2 42 -2 -1 !
<46 5 ?,?,——????000,1,0000000000000)
—126 —-126 =7 =23 -7 -2 -2 42 !
(5 , —46, 5 ?T????OS 000,1,000000000000)

(288, -96, -96, 56, -12,-12,0,-8,0,8,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)',
(—96,288,-96,—12,56,-12,0,0,-8,0,8,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)',
(—2032,-2032, —1648, —188, —188, —120, —24, -16, —-16, -8, -8,0,0,0,0,0,0, 1,0,0,0,0,0,0,0,0,0),’

— — — —_ — — !
< 1:627 1;’62’ 114 _347_34 g ﬁ72927£ £70707O90703050’1’0’070’07070707()) )

57 575 575
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(558 1542 1542 286 94 94 34 —114 34 12

5°5°5°'5'5°'5° 5 55
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!
___———OOOOOOOOO,],OOOOOOO)

1542 1542 94 286 94 34 34 114 12 !
( ,?7? ? ? ? 5 05?105010’070’070’070’170?07070705()) )
3()4 304 —1088 128 128 —32 192 —32 -96 !
1440, 70 0 OO0 149 148 TAs 72 o2 1
( 0, TS5 555 °5° 5 "5 00000000000,,00000)
—_ —_ —_ !
304, 1440, ﬁ,g,w,g,ﬁ,ﬁ,g,o —% ,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0
5 5 5 5 5 5 5
!
23536 23536 16032 , 448,448, —— 1024 384,32,32,%,%,0,0,0,0,0, 0,0,0,0,0,0,0,1,0,0,0 ) ,
5 5 5 55
112 4 784 -32 168 32 32 !
Rt - 1
( 5,5 96965 5,8,85 50000000000000, ,00)
—3632 —3632 —736 —224 -224 —104 104 —104 —32 !
( 1392 ) 5 s 5 s 5 ) 5 ) 5 7?7 5 5 707070709070’090?070101010a010a170> )
3632 —3632 -224 736 -224 —-104 —104 104 -32 !
—, —1392, 1
( 5 39 s "5 5 T35 T35 5 ,5,05 000000000000000>

These null vectors imply 16 constraint relations for 27
four-loop color-ordered amplitudes. Thus, there are 11
independent amplitudes. The first vector implies a con-
straint on the first 12 color-ordered amplitudes {A,ﬁ ) k=
1,2,...,12} in (22). The next 15 vectors mean that all

other amplitudes {A,(f), k=13,14,...,27} are linear com-
binations of the first 12 amplitudes. Again, these 15
relations can be divided into five sets. In each set, three
relations (or equivalent relations) satisfy certain permuta-
tion symmetries.

IV. TRACE BASIS OF FOUR-POINT AMPLITUDES
IN Sp(2N) GAUGE THEORIES

In this section, basic results and conventions about the
Sp(2N) group and algebra are presented. In the funda-
mental representation, the generators of Sp(2N) algebra are
antisymmetric Hermitian matrices. 2N row and column
indices are denoted by 1, 1,2,2,...,N,N. The N(2N + 1)
generators can be chosen as follows:

i 1
_E(eij+e?]_eji_e]f)v 7§(ei]+efj+eﬂ+e]i>v
i 1
_72(51']_6?/""@/'7_6][)’ ﬁ(eij_ef]'i'eji_e}?)?
(e + exx)s i(er = ext) (exk — exi)s (48)

where 1 <i < j< N, 1<k<N. Entries of the e-matrix

are  (€up),5 = Bupdpo(a.f.p.o =1, 1,....N,N). These
generators can be denoted by {79} [a=1,
2,...,N(2N + 1)]. Here and after, for simplicity, we use

(47)

|
the same indices a,b,... as the SO(N) case. These
generators satisfy the Sp(2N) Lie algebra

[T, T?] = iF*°Te, (49)
where F4%¢ is the Sp(2N) structure constant. The normali-
zation condition is

Tr(T9T?) = 25%. (50)
The structure constant can be expressed as the trace of
generators

Febe = —%Tr(T“ (1%, T¢)). (51)
The quadratic Carsimir operator is
> 1T = (2N + Doy (52)

Two useful identities for the trace of the Sp(2N) generators
in the fundamental representation are

+(-

= Tr(AB) —

Tr(TAT*B) = Tr(A)Tr(B)
Tr(T°A)Tr(T“B)

1)"(AB"),

(~1)#(AB"),  (53)
where A, B are products of series of Sp(2N) generator
matrices or I,y,oy- g is the number of generators in B and
ng =0 if B = Ihy.on-

The trace basis for four-point tree amplitudes in Sp(2N)
gauge theories are

025015-7



JIA-HUI HUANG PHYSICAL REVIEW D 95, 025015 (2017)

Ty = Tr(TOTeT®Te), T, =Tr(T“T%)Tr(T%T%), V. CONSTRAINT RELATIONS AMONG Sp(2N)
Te(TeTeTaT®), T, = Te(THTS)Te(TR T, FOUR-POINT AMPLITUDES

Ty = Te(TO TToTo), Ty = Te(TO T Tr(TT%). In this section, we use the same procedure as for the SO(N)

case to derive group-theoretic relations for four-point ampli-
(54)  tudesin Sp(2N) up to the four-loop level. At tree level, there

are three kinds of color factors, c,, ¢,, c,. They have the same

- forms as the SO(N) case and satisfy the Jacobi identity,

The full four-point L-loop Sp(2N) gauge amplitude A" ¢y = ¢, — ¢,. The transformation matrix between color fac-
can be decomposed in the L-loop trace basis, tors and the trace basis is also the same as the SO(N) case.

Then, at tree level, the right null vector is the same as (16),

L3 -1 6
AL =3NS AR 3T S TN AR (55) PO = (1.1.1)" (57)
m=0 i=1 n=1 j=4
The loop-level right null vectors for Sp (2N) can be derived
. . as for the SO(N) case. It is found that the transformation
{ASL’m)} and {AEL"”} are the color-ordered L-loop ampli-  matrices {G\L-L+D} of Sp(2N) have similar structures as the
tudes in the Sp(2N) case. The above decomposition can ~ SO(N)case. The A, B, C, D, E, F matrices in (20) of Sp(2N)
also be written in another useful form, are different from those of SO(N). The numbers of right null
vectors are the same for both cases at each loop order. This is
consistent with the result that the numbers of independent
- Ot 705 s6 color-basis elements are the same for all simple groups at each
- ; ko (56) loop order (at least up to four loop) [19,32].
A. Constraints on one-loop amplitudes
where {T;iL), k=1,2,...,6L +3} = {NtT;,Nt-'T,, Using the recursive method, the independent one-loop
N T T, (i =1,2,3,j =4,5,6) ). right null vectors are
J» J
|
(=2,-1,-1,1,0,0,0,0,0Y,  (=1,-2,-1, 0,1,0 0,0,0)’,
1 -1 '
-1,-1,-2,0,0,1,0,0,0), ,0,0,0,1,0,0
( ) ( 22 2 )
1 -1 -1 ! 1 -1 -1 !
,0,0,0,0,1,0 ,0,0,0,0,0,1 58
( 222 ) ( 222 > (58)

The explicit constraint equations are easy to write and are not listed here. At one-loop order, it is known that there are three
independent color factors corresponding to three different box diagrams for four-point amplitudes. The number of
independent trace-basis elements is 9(6L + 3). Thus, it is necessary that six null vectors be obtained by recursive method.
The number of independent amplitudes is three.

B. Constraints on two-loop amplitudes

From (28), the independent two-loop right null vectors for Sp(2N) four-point color-ordered amplitudes are
773 !
(_5,_5,_5,1,1,1,0,0,0,0,0,0,0,0,0)/, 5,5,5,_1,_1,0,1,0,0,0,0,0,0,0,0 s
-7 -3 -3 / -3 -7 -3 /
—_—,—,1 1 —,—,—,0,1 1
<2 ki 2 b 2 9 50’0’0’ 7070707070907())7 <2 ki 2 ki 2 90’ ’050’0’ ’0707070707())7

(10,3,3,-4,0,0,0,0,0,1,0,0,0,0,0), (3,10,3,0,-4,0,0,0,0,0,1,0,0,0,0)',

15 15 7

-17,-17,-10,4,4,0,0,0,0,0,0,1,0,0,0)’,
(17,17, -10, ) (2 bz

/
-2, 20000000100>

~13 =5 =5 ' -5 —13 =5 '
) 1 = ===02 1).
< 2 9 2 9 2 9 707 07 07 07 O? 07 O’ 07 09 ’0> 9 (2 b 2 9 2 ’0’ 707 07 07 O? 07 O? 07 09 0’ ) (59)
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These vectors imply ten constraint relations among 15 color-ordered two-loop amplitudes. Thus, the number of independent

amplitudes is 5. At two-loop order, there are six ladder diagrams. A typical color factor of ladder diagram is

5(122'5‘1) = Falbphle pede pd3f pfdg pgae The color factors of these ladder diagrams are not independent and satisfy a linear

equation. A typical nonplanar color factor is E%ﬁm = Falbpble pede pd3f pedgpfoa - Al the color factors of nonplanar
diagrams can be written as linear combinations of those of ladder diagrams. As for the SO(N) case, two similar relations
among planar and nonplanar color factors are

_(2.Lad)  -(2.Lad) . —(2.Lad) -(2.Lad) , -(2.Lad) —(2.Lad
C$234a ) - 6243; ) + C(l4z3a ) - C§3z4a ) + 0(134; ) - C$243a )= 0. (60)
_(2.NP _(2.Lad)  -(2.Lad)  -(2.Lad) , -(2.Lad
3C<1234 )= C§234a ) - 05432“ )~ C(1342a ) + C(1243a )- (61)

C. Constraints on three-loop amplitudes

The 13 independent three-loop right null vectors for Sp(2N) four-point color-ordered amplitudes are

222"
(18,0,0,-6,1,1,0,-2,0,1,0,0,0,0,0,0,0,0,0,0,0),
(21,39,21,-3,-10,-3,2,2,0,0,1,0,0,0,0,0,0,0,0,0,0),
(0,0,18,1,1,-6,-2,0,0,0,0,1,0,0,0,0,0,0,0,0,0),
(7 77 -1 -1 -1

/
<21 21 21 —2,—2,—2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0),

!
5’575’777777_3’070707070717070709070503050

)
G732 )

El

5,5,5,7,7,7,0,—3,0,0,0,0,0,I,0,0,0,0,0,0,0

2
(32,9,9,-8,0,0,0,-4,0,0,0,0,0,0,0,1,0,0,0,0,0),
(51,74,51,-8,-16,-8,4,4,0,0,0,0,0,0,0,0,1,0,0,0,0)',
(9,9,32,0,0,-8,-4,0,0,0,0,0,0,0,0,0,0,1,0,0,0)",

p— —_ —_— I
(35,35,35,¥,ﬁ,¥,3,3,0,0,0,0,0,0,1,0,0,0,0,0,o> ,

!/
gséyéo_zs_zy_21_2y0709090109010501()’0,0,17070 )
222
25 25 2 !
_57_57_57_2’_27_250’_27070’()’0’050’030’070707170 s
222
7 67 67 !
(%,%,%, -6,-6,-6,2,2,0,0,0,0,0,0,0,0,0,0,0,0, 1> . (62)

The first vector implies a constraint on the first nine color-ordered amplitudes {A,(f), k=1,2,...,9} in (56). The next 12

vectors mean that all other color-ordered amplitudes {A,(f), k=10,11,..., 21} are linear combinations of the first nine
amplitudes. Thus, the number of independent color-ordered amplitudes is 8. These 12 vectors can be put into four sets.
Three vectors (or equivalent vectors) in one set satisfy certain permutation symmetries.

D. Constraints on four-loop amplitudes

The 16 independent four-loop right null vectors obtained from (28) are as follows:
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121 121 121

<2’2’2
-29 =290 -3 33 —1 =22 -1
<5’5

52210 5 %35

23 63 63 =23 -7 -7 1 =211 1
2710710 10 '10°10°5" 5 ’5°5
(BreT B,

10°2°10° 10 10°5'5° 5 5

/
,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0> .

PHYSICAL REVIEW D 95, 025015 (2017)

!
,—11,-11,-11,1,1,1, 1,1, 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> .

-1 /
_’0’ 1’0’0’0’0’0707070707070907050) b

/

,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0

(-36,12,12,14,-3,-3,0,2,0,-4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0)’,
(12,-36,12,-3,14,-3,0,0,2,0,-4,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0)’,

(254,254,206, -47,-47,-30,6,4,4,4,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0)

~681 681 =57 1717 —11 =69 1 1
20720 7207272710710 '2°2°

<279 771 771 —143 —-47 —-47 17 =57 17 6
4

1075

’

-6 -6
5°5°

!
0000000100000000>

!
_’0’0’0’0’0’070’070717070907090’0’0) 9

,0,-.0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0

771 279 711 -47 —143 -47 17 17 =57 _ 6 )’

"20°7 10 7 10

19 19 136 —16 —16 —4 24 —4 24
’?7

‘90’???7’?’???

128 48
, , -56,-56, ——
5 5 5

257 —-49 121272 -4 =21

5
—257

—. L1

5 ° 5 5 5°5 5

227 227 =92 =28 =28 13 —13 13

(3
(
(5-
<1471 1471 1002
(
(
(

57575575

These null vectors imply 16 constraint relations for four-
loop color-ordered amplitudes. The number of independent
amplitudes is 11. The first vector glves a constraint to the
first 12 color-ordered amplitudes {A,(< L k=1.2,. , 12} in
(56). The next 15 vectors mean that all other amplitudes

{Af),k =13,14,...,27} are linear combinations of the
first 12 amplitudes. These 15 relations can be put into five
sets. In each set, three vectors (or equivalent vectors) satisfy
certain permutation symmetries.

VI. CONCLUSION AND DISCUSSION

In this paper, we consider the group-theoretic constraint
relations for four-point color-ordered SO(N) and Sp(2N)
gauge amplitudes. These explicit relations are derived up to
four-loop order. The blocks of transformation matrices

’4’4

-8

/
,0,—,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1) .

10 '10°10° 10 "5

/
0707070703050505050’0’1’070’0707O> b

—24
5
24 24
5°5°
-8
"5
8 /
0000000000000001@

/
OOOOOOOOOOOIOOOO)

!
000000000000,1,000)

/
,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0> :

5 (63)

I
(A, ..., F) in both theories have similar structures and the
tree-level constraint relations are the same in both theories.
In both theories, there are n =1, 6, 10, 13, 16 linear
constraint relations at L =0, 1, 2, 3, 4 loop orders. The
result also provides a check that the numbers of indepen-
dent color-basis elements of four-point amplitudes for
L=0,1,2,3,4are 2,3,5,8, and 11 for any simple group
[19,32]. In principle, higher-loop (L > 5) constraint rela-
tions can be derived with the recursive method order by
order. Here we stop the computation at the four-loop level.
One reason is that the dimension of null vectors (6L + 3)
become larger and larger. Another reason is the computa-
tional accuracy problem; i.e., entries of the higher-loop
null vectors have large different orders of magnitude and
some nonzero entries will output as zeros in numerical
computation.
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It is worth noting that our results and the results in [19—
21] are based on the assumption that all independent high-
loop color factors can be obtained by the attaching
approach from the lower-loop ones. According to our
results, it is true for SO(N) and Sp(2N) at least up to
four-loop order. It will be interesting to prove this
assumption to all loop orders or to provide a general
way of counting the number of independent color factors at
any loop order.
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(L + 1)-loop trace basis is (6L 4 3) x (6L +9) and has
the following form:

A B CO OO0 0
0 A0 B CO 0
00 DEF 00
00 0 A OB C (A1)
00 0 0DEF

A,B,C,D,E,F are all 3 x 3 matrices.
For SO(N), these matrices are of the following forms:

€12 — €4 0 0
APPENDIX: TRANSFORMATION MATRICES A= 0 —epp — €3 0 , (A2)
For both the SO(N) and Sp(2N) cases, the transforma- 0 0 —€13 T €14
tion matrix G(-£*+1) between the L-loop trace basis and the
|
3epn —2e13 +3eyy e —ep —ep3tey
B = €12 — €14 3epp +3e13 — 2eyy €13 — €14 ) (A3)
—612+€14 —812+€13 —2612+3€13+3€14
|
—epntep3 0 €13 — ey 4e;, 0 0
C=|—-entey —e3teny 0 . (A4) F=| 0 4de5; 0 (A7)
0 €12~ €13 €12~ €4 0 0 dey
ey, 0 0 . .
In the above matrices, e; takes 1 when we attach legs (1, 7)
D= 0 —2e3 0 , (A5)  and otherwise takes zero.
0 0 24 For Sp(2N), these matrices are
4613 — 4814 —4313 + 4614 0 —2612 — 2814 0 0
E = 0 —4612 + 4614 4612 - 4614 s A= 0 —2612 - 2613 0 s
—4612 + 46‘13 0 4612 - 4613 0 0 —2613 - 2614
(A6) (A8)
|
—3en +2e13 — 3eyy —ep e e;3—eyy
B = —ep ey —3ep —3ep3 +2eyy —e;3 ey ) (A9)
€12 — €14 €12 — €13 2ejp —3e;3 —3eyy
—ep e 0 e;3—ey
C=| —entey —ej3+tey 0 ) (A10)

0

€12 — €13

€12 — €14
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—4612
D= 0
0
4613 —4814
E = 0
—4612 +4€13
—4612
F = 0
0

PHYSICAL REVIEW D 95, 025015 (2017)

0 0
—4613 0 s (All)
0 —4614
—4613 + 4614 0
—4612 + 4314 4812 — 4614 s (AIZ)
0 4812 — 4813
0 0
—4613 0 (A13)
O —4814
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