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The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity,
requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff
Λ. If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for
model building including some models of inflation. I demonstrate simple models which satisfy all forms of
the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge
forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate
the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are
evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the
WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum
gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at
the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to
EFTs, Λ≲ ðlog 1

gÞ−1=2Mpl, where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs

produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
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I. INTRODUCTION AND SYNOPSIS

While local quantum field theory has been a remarkably
successful framework for fundamental physics, we remain
largely ignorant of the nature of physics far in the ultra-
violet (UV) where quantum gravity effects become strong.
However, we may still make progress in explaining
phenomena at lower energies using effective field theories
(EFTs), where one remains agnostic about the detailed
dynamics above some cutoff scale (though often assuming
certain symmetries of the UV physics).
The unspoken assumption in this approach is that the

EFT under consideration could emerge at low energies
from a complete theory of quantum gravity (QG). This
assumption is challenged by the “swampland” hypothesis
[1,2], which suggests that some EFTs cannot be consis-
tently completed into a UV quantum gravity theory.
Broadly, there are two approaches to addressing this issue:
From the “top down,” one may explore candidate QG
theories such as string theory and attempt to make generic
statements about the set of low-energy EFTs that can
emerge from it (distinguishing the “landscape” from the
“swampland”). This cannot be exhaustive, however, so to
truly rule out an EFT one must take a “bottom-up”
approach of directly arguing that it is somehow inconsistent
with QG (see, e.g., [3] for an example of a subtle break-
down of a naïvely valid EFT).
The weak gravity conjecture (WGC) [4] is an example of

a proposed constraint on the possible gauge EFTs that
could arise from quantum gravity. In fact there are many
different specific forms of this conjecture that have been

proposed [4–10]. These generally either mandate the
existence of charged particles with mass less than their
charge in Planck units (m < qMpl) or bound the cutoff
scale Λ of a gauge EFT as Λ≲ gMpl, where g is the gauge
coupling. Similarly there have been various different argu-
ments in support of these conjectures. From the top down,
numerous examples have been presented of the WGC
criterion being enforced in examples from string theory
[4,8] or models of emergent gauge fields [11]. Bottom-up
arguments typically make use of universal, low-energy
features of theories with gauge fields and gravity, namely
charged black holes (BHs) (though see also the results of
[12] based on requirements of unitarity, analyticity and
causality of low-energy theories).
The constraints from the weak gravity conjecture are

particularly relevant for models of cosmic inflation. This is
best illustrated by the example of the “extranatural infla-
tion” model [13], in which the inflaton ϕ arises from the
Wilson line of aUð1Þ gauge field around an extra dimension,
an S1 of radius R. Gauge invariance and compactness of the
Uð1Þ group imply that the potential can include only terms
of the form cos nϕf with f ¼ ð2πRgÞ−1 and n ∈ Z. Inflation
then lasts for N e-folds ∼ f=Mpl e-foldings, so if the gauge
coupling g can be taken arbitrarily small, then thismodel can
produce an arbitrarily long period of inflaton. However, the
WGCwould indicate that the cutoff of this 5D gauge theory
must be appear at a scale Λ < gMpl. Requiring Λ < 1=R to
maintain some regime of 5D EFT control then bounds
the inflaton field range f ≲Mpl, preventing inflation.
This behavior is similar to that found for string theory
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axions—field ranges are typically bounded to be sub-
Planckian in controlled settings [14]. The viability of trans-
Planckian field excursions is also relevant to models
involving new axionlike particles, such as in the recent
framework of cosmological relaxation of theweak scale [15].
Thus there are important consequences for model build-

ing if the weak gravity conjecture is taken as a “veto” on
EFTs.Of course, theWGC is a conjecture and not a theorem,
meaning that there is no proof of any inconsistencywhen it is
violated. However, between the wealth of top-down exam-
ples in which it is satisfied and the various bottom-up
arguments put forward to motivate it more universally, one
might plausibly imagine that it is indeed satisfied in any EFT
emerging from quantum gravity.
In this paper, however, I argue instead thatwhile theWGC

may correctly reflect a constraint on how gauge theories UV
complete into quantum gravity theories, this does not imply
that low-energyEFTs satisfy such constraints. Specifically, I
will consider a toymodelwhich satisfies thevarious forms of
the WGC and show that spontaneous symmetry breaking
can then lead to a low-energy EFT with a gauge force that
strongly violates the WGC. Therefore, from an EFT per-
spective we cannot take the WGC as a criterion to rule out
models, as a model that violates the WGC could be UV-
completed into one that satisfies it, without affecting the
low-energy theory. One can then ask about the status of the
various bottom-up arguments that have been made to
motivate the WGC for general gauge EFTs. The construc-
tions I consider shed light on specific loopholes to these
arguments that nullify their ability to constrain EFTs.
Within the models I consider, parametric violation of the

WGC comes at the price of specific nonminimal particle
content, with increasingly severe violation requiring more
contrived models. This could suggest that in a possible
landscape of EFTs the WGC is “generically” satisfied and
that moderate violations of the WGC are more common
than extreme violations.
While the standard parametrics of the WGC bound can

be badly violated in these models, they do not in fact allow
arbitrarily small gauge couplings if one accounts for the
tendency of large numbers of species to lower the cutoff
(for fixed Planck scale). Therefore one cannot realize the
limit of an exact global symmetry (zero gauge coupling),
which is generally deemed to be in conflict with black hole
quantum mechanics and/or entropy bounds. Furthermore,
in Sec. IV I argue that entropy bounds (e.g., the Bekenstein
bound [16] or holographic entropy bounds [17,18]) give a
direct, bottom-up constraint on gauge EFTs of the form
Λ≲ ðlog 1

gÞ−1=2Mpl. Interestingly, the Higgsing models I
discuss can saturate, but not violate, this bound if the WGC
is satisfied in the UV theory. This bound is therefore a
better candidate for an inescapable constraint on gauge
EFTs than the conventional WGC Λ≲ gMpl.
This paper is organized as follows. In Sec. II, I review the

common formulations of the weak gravity conjecture and

the arguments involving black holes that have been pre-
sented to motivate them. In Sec. III, I present a model in
which Higgsing produces a low-energy EFTwhich violates
theWGC and discuss how this EFT in fact manages to avoid
the potential problems with black hole physics suggested
by the previous arguments. In Sec. IV, I propose the weaker
bound on gauge EFTs discussed above, motivated both by
the limits of the Higgsed models I discuss and by consid-
erations of black hole entropy. Finally, I conclude in Sec. V
with some discussion of the role of the WGC in guiding
model building in light of these results.

II. BOTTOM-UP ARGUMENTS FOR A WEAK
GRAVITY CONJECTURE

The term “weak gravity conjecture” encompasses a
number of different proposed constraints [4–10] on gauge
theories coupled to gravity, generally involving the para-
metric scale gMpl [for a single Uð1Þ field with coupling g]
but differing in their precise physical implications. As a
broad categorization we can distinguish between “electric”
forms of the WGC, which make requirements on the
spectrum of charged particles in the theory, and the
“magnetic”WGC, which requires that effective field theory
break down at or below the scale Λ ∼ gMpl (motivated by
arguments involving magnetic monopoles). I now review
these statements of the WGC and critique the bottom-up
arguments motivating them, which will offer insight into
how they are evaded by the model of Sec. III.

A. Electric form

The most minimal electric form of the WGC simply
requires that any Uð1Þ gauge theory contain a charged
particle of mass m and charge q such that m < q, in “GR
units” where Newton’s constant and electric charge are
normalized such that extremal black holes have M ¼ Q.1

This is a necessary condition for extremal black holes to be
kinematically able to decay completely into fundamental
charged particles [4]. It has been argued that exact stability
for extremal black holes is pathological in the same way as
conjectured stable black hole “remnants” invoked to
address the black hole information paradox [19,20] and
that this motivates the conjecture.
There are two immediate problems with such an argu-

ment. Firstly, stable extremal black holes do not seem
problematic once one accounts for charge quantization.
This ensures that below any given massM there are a finite
number of allowed extremal black hole solutions ∼M=e,
where e is the charge quantum. The density of states
remains finite therefore, in contrast to the case of black hole

1Though I will use these units throughout, most of the
expressions I will write besides this extremality condition will
be only parametric relations, withoutOð1Þ or evenOð8πÞ factors
included. Also, I will often write Mpl explicitly, even though
Mpl ∼Oð1Þ in these units.
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remnants. (I will return, however, to the issue of entropy
bounds in Sec. IV.) Secondly, even in the absence of
fundamental charged particles, corrections to pure Einstein-
Maxwell theory can lead to deviations from the extremal
bound M ≥ Q which would allow large black holes to
decay into smaller ones. In particular, in [21] it was shown
that adding higher-derivative terms to an effective Einstein-
Maxwell Lagrangian with signs consistent with UV com-
pletion implies that the extremal bound weakens for small
black holes, so that M < Q is allowed. These small black
holes are then sufficient to allow larger black holes to
decay, without invoking fundamental (pointlike) particles.
Despite the above counterarguments, one may simply

choose to assume as a conjecture that all black holes must
be able to decay into sub-Planckian particles (i.e., non-
BHs). Then the existence of at least one particle withm < q
is required. Analogous conditions have in fact been derived
in the context of 3D gravity theories dual to 2D conformal
field theories (CFTs) [10,22]. However, this does not place
any practical constraint on EFTs, as it could be satisfied by
a particle with mass above the EFT cutoff (even as high as
the Planck mass), which would have negligible effects on
the low-energy dynamics.2 To constrain the content of
EFTs, one must adopt a more constraining form of the
WGC. Two possibilities were discussed in [4]. One
proposal is the so-called “strong form” of the WGC, which
requires that m < q for the lightest charged particle in the
spectrum. Another is what I will call the “unit-charge”
WGC, which requires that there exist a particle with the
minimal quantum of charge, denoted g, with mass

m < gMpl. This would for example imply that any EFT
with a Uð1Þ gauge field but no charged particles cannot be
valid beyond the scale gMpl.
Another more recent proposal, dubbed the “sublattice

weak gravity conjecture” (sLWGC), was made in [9,10].
This proposes that, given a theory with some lattice of
possible Uð1Þ charge assignments for states [i.e., an N-
dimensional lattice if there are N Uð1Þ fields], there is some
sublatticewith the property that there exists a charged particle
for every site on the sublattice, with the norm of the charge
vector being greater than the mass. [Earlier it had been
proposed [7] that thiswas true for the entire charge lattice (the
“latticeWGC” or LWGC), but this was shown to be violated
by Kaluza-Klein reduction in certain constructions [9].] For
the case of a single Uð1Þ field, the sLWGC amounts to the
statement that there exists some integer k such that for all
integers n there exist particles with charge qn ¼ nkg with
masses mn < qn. This infinite tower of particles implies an
effective cutoff for the 4D gauge EFT at Λ ∼ kgMpl.
However, without any bound on the integer k (defining
the size of the sublattice), the sLWGC does not give any
bottom-up constraint on EFT. In particular, the examples I
will discuss in Sec. III will produce low-energy theories
which satisfy the sLWGC, but with parametrically large k, so
that the EFT cutoff is much higher than the naïve estimate.
The various forms of the electric WGC are summarized

in Table I (along with the magnetic WGC).
Note that none of the electric forms of the WGC

discussed here rule out the extranatural inflation model,
as they are all satisfied by the light (potentially massless)
charged particle in that model, contrary to some claims in
the literature [6,27–31]. I review this issue in the Appendix.

B. Magnetic form

A stronger constraint on the EFT than any of the above
conjectures is provided by the magnetic WGC, which states
that a Uð1Þ gauge theory with charge quantum g must have

TABLE I. Summary of the various forms of the WGC discussed in this section, including their definition, motivation, whether or not
they place constraints on low-energy EFT models, and whether or not they remain satisfied when a UV gauge group is Higgsed to a
smaller one in the IR (as discussed in Sec. III). Note that none of the WGC variants which constrain EFTs are robust against Higgsing.

Conjecture Statement Motivated by
Constrains

EFT?
Survives
Higgsing?

Minimal electric WGC There exists some particle
with q=m > 1

Requiring black holes to decay
into particles

N Y

Sublattice WGC [9,10] For some k ∈ Z and all n ∈ Z,
there exist particles of charge

q ¼ nkg with q=m > 1

Examples in Kaluza-Klein
theories and string theory

N Y

Strong electric WGC The lightest charged particle
has q=m > 1

Examples in string theory Y N

Unit-charge electric WGC A particle with unit
charge has q=m > 1

Examples in string theory Y N

Magnetic WGC There is a cutoff of the Uð1Þ
theory at a scale Λ≲ gMpl

Requiring that there exists a
monopole which is not a black hole

Y N

2It has been argued in [23,24] that the existence of branes or
domain walls satisfying WGC-like bounds, even if they are very
heavy, implies the instability of nonsupersymmetric anti–de Sitter
(AdS) vacua. Since vacuum stability is a UV-sensitive property,
this is consistent with the statement that the minimal WGC does
not constrain the EFT. However, exact stability is crucial for the
existence of CFT duals of AdS spacetimes [25,26].
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a cutoff Λ≲ gMpl. The name refers to arguments based on
magnetic charge which motivate it, which I now review.
Because Uð1Þ gauge fields should be compact in

quantum gravity [32], one can write down magnetically
charged black hole solutions, with the magnetic charge
obeying the Dirac condition Qm ¼ 2πn

g for n ∈ Z. In
particular the minimal (extremal) magnetically charged
black hole has M ¼ Qm ¼ 2π=g, which for a perturbative
electric theory is parametrically larger than the Planck scale
and therefore naïvely in the realm of validity of the EFT.
The existence of such a black hole solution may suggest

that there should also exist a magnetic monopole which is
not a black hole. One could argue this based on the issue of
stable black holes [4], as in the electric case, though this is
subject to the same counterarguments regarding the finite-
ness of the number of stable states. However, in [33] a
qualitatively different argument was suggested. The min-
imal, extremal magnetically charged black hole has zero
temperature and a parametrically large entropy S ∼ 1=g2, so
it actually corresponds to a large number of degenerate
quantum states. It seems unusual if magnetic charge can
only ever appear in such highly entropic configurations. A
more typical scenario is for charges to originate from some
nongravitational physics as “fundamental” (low-entropy)
states. If we adopt this as a principle, then we require that
there must exist some magnetic monopole that is not a
black hole.
With this assumption one obtains the magnetic WGC

following [33]. Magnetic monopoles are necessarily
extended objects; i.e., at scales shorter than some length
L they are not described by pure Uð1Þ gauge theory. One
may therefore expect that this scale represents the cutoff of
theUð1Þ gauge EFT, Λ ∼ 1=L. We can estimate the mass of
the monopole from the energy of the magnetic field outside
its core, giving Mmonopole ∼ 1=ðg2LÞ. Requiring that the
monopole be larger than the Schwarzschild radius asso-
ciated with this mass, L≳ 1

g2LM2
pl
, one obtains the bound

1=L≲ gMpl. The assumption that Λ ∼ 1=L then gives the
magnetic WGC Λ≲ gMpl However, in Sec. III, I will show
an explicit example in which the above reasoning fails,
even if one accepts the premise that there must exist a non-
BH monopole.
Note that due to the inherent ambiguity in the definition

of a “cutoff scale,” the magnetic WGC can only be
considered as a rough, parametric bound (≲ rather than ≤),
so I have not and will not keep track of Oð1Þ factors when
discussing it. This is in contrast to the electric WGC for
which the exactness of the bound Q ≤ M for black holes
leads to a sharp bound on q=m for charged particles.

C. The generalized (multifield) WGC

The above arguments can be extended to theories with
more than one Uð1Þ gauge field, giving rise to “general-
ized” WGCs (which I will refer to as “multifield” WGCs).

This was done for the electric WGC in [5], which
considered the necessary conditions for black holes of
arbitrary charges under N different Uð1Þ’s to decay
completely into charged particles. If each particle is
associated with a vector 1

m ðq1; q2;…; qNÞ, where qi is its
charge under the ith of the N Uð1Þ’s, then the requirement
is that the convex hull of all such vectors encloses the unit
N-sphere [5]. For the simple case of N identical Uð1Þ’s,
each associated with one charged particle of mass m and
charge q, this gives a bound of m ≤ q=

ffiffiffiffi
N

p
.

A similar generalization of the magnetic WGC argument
is to demand that amonopolewith charge under allN Uð1Þ’s
is not a black hole. The self-energy of such a monopole is
about Λð 1g2

1

þ 1
g2
2

þ � � � þ 1
g2N
Þ, so that the requirement that

the monopole is larger than its Schwarzschild radius
becomes Λ≲ ð 1g2

1

þ 1
g2
2

þ � � � þ 1
g2N
Þ−1=2Mpl. If all the gauge

couplings are identical, this becomes

Λ≲ gffiffiffiffi
N

p Mpl: ð1Þ

Due to the aforementionedOð1Þ ambiguity of the magnetic
WGC bound, this claim is not very meaningful if N is of
order a few but does have import if we consider parametri-
cally large N.
The same result is obtained through a top-down

approach in Ref. [11] for emergent gauge fields arising
from a CPN−1 model. In that model a gauge field with
coupling g emerges from a sector with ∼1=g2 degrees
of freedom, so multiple gauge fields require at least
Ntot∼ ð 1g2

1

þ 1
g2
2

þ�� �þ 1
g2N
Þ degrees of freedom. This renorm-

alizes the Planck scale relative to the cutoff as
Mpl ≳ ΛN1=2

tot , giving the above result.
It is clear that arguments against the validity of the

single-field WGCs within effective field theory would
also rule out these multifield generalizations. However,
in Sec. IV, I will show that taking the multifield WGC to
hold at some UV scale ensures that the low-energy EFTs
satisfy well-motivated entropy bounds.

III. HIGGSING TO VIOLATE THE WGC

I now ask the question: If a theory satisfies some form of
the weak gravity conjecture, will any low-energy EFT limit
of it also satisfy the same WGC? If not, then regardless of
whether this WGC is true for any UV quantum gravity
theory, we cannot invoke it to veto EFT models. Instead
however we may ask what would be required to complete a
given WGC-violating EFT into a WGC-satisfying theory.
Consider a model with two Uð1Þ gauge fields A and B.

For simplicity take these two Uð1Þ’s to have the same
charge quantum g. The magnetic WGC then implies a field
theory cutoff at or below the scale Λ ∼ gMpl, but we are free
to consider an EFT below this scale. We can satisfy the
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electric WGC by having two particles of charge (1,0) and
(0,1) under (A, B), with masses less than Λ. [The multifield
WGC would imply additional factors of

ffiffiffi
2

p
in these

bounds, but in this section this Oð1Þ factor will be
irrelevant.] Similarly the sLWGC (in fact even the original
LWGC) can be satisfied if there are towers of particles
above the scale Λ, with charges (n, m) and mass less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þm2

p
Λ for all n;m ∈ Z.

Now introduce a scalar field with charge (Z, 1), for an
integer Z ≫ 1. Note that if this field is given a mass above
those of the (1,0) and (0,1) fields, then even the strong
version of the electric WGC is still satisfied. Now consider
a phase of this theory where the scalar field acquires a
vacuum expectation value v, giving a mass m2

V ¼ ðZgÞ2v2
to the linear combination of fields VH ≡ Aþ B=Z by the
Higgs mechanism (working everywhere to first order in
1=Z). The linear combination VL ≡ B − A=Z remains
exactly massless and at low energies appears as the only
observable gauge force. The spectrum of particles in the
Higgs phase with their relative masses are shown in Fig. 1.
However, charges under the massless Uð1Þ are now
quantized in units of geff ≡ g=Z; e.g., the particle charged
as (1, 0) under (A, B) couples with this minimal charge. For
parametrically large Z, this low-energy gauge coupling can
be much smaller than that of the UV theory. Direct
application of the magnetic WGC to the low-energy theory
would then imply a field theory cutoff at or below
Λapparent ∼ geffMpl ¼ g=ZMpl. However it is clear that in
the complete theory no actual “new physics” is associated
with this apparent scale. In particular, the massive gauge
field can easily lie well above this scale—we may take Zg
as large as Oð1Þ and v as large as Λ in the original theory
while maintaining perturbative field theory control, giving
geff ≡ g=Z ∼ g2 andmV ≈ Λ ≈ gMpl ≈

ffiffiffiffiffiffiffi
geff

p
Mpl. Therefore

the cutoff of the low-energy Uð1Þ theory can be as high as

Λ≲ ffiffiffiffiffiffiffi
geff

p
Mpl: ð2Þ

This means that one may have to probe energies well above
the apparent magnetic WGC cutoff geffMpl in order to
discover the origin of the low-energy theory in terms of two
WGC-satisfying gauge fields. Note however that para-
metric violation of the WGC in the low-energy theory is
achieved only if the integer Z in the UV theory is para-
metrically large.
As for the electric WGC, the weakest form (that there

exists some particle with q > m=Mpl) is still satisfied in the
Higgs theory, as the particle with charges (0,1) under (A, B)
still has charge ≈g under the massless gauge field in the
Higgs phase and mass < gMpl. However, this particle can
be heavy enough to be completely invisible in the low-
energy theory below Λapparent. Similarly, if the sLWGC was
satisfied in the original theory, then it is also still satisfied
in the Higgsed theory, but with a coarser sublattice, e.g.,
k ¼ Z in the notation of Sec. II A. Again, the particles
responsible for satisfying this form of the WGC can all lie
well above the scale Λapparent. In contrast, the forms of the
electric WGC which gave meaningful constraints for EFT
models, namely the strongWGC and the unit-chargeWGC,
can both be violated in the low-energy theory, as one can
verify for the spectrum of Fig. 1.
The theory in the un-Higgsed phase satisfied theWGC in

all forms and thus by construction avoided any of the
potential “paradoxes” for black hole physics. We can ask
the same questions about black holes and magnetic monop-
oles within the WGC-violating EFTafter Higgsing. We will
find that the paradoxes are all resolved, with the theory
essentially exploiting the weaknesses of the arguments
discussed in Sec. II.
First we can consider the decay of extremal charged

black holes, which motivated the electric forms of the
WGC. Even in the Higgs phase, black holes with extremal
charge under the massless gauge field B − A=Z are guar-
anteed to be able to decay, due to the existence of the
particle with A, B charge (0,1) with mass < gMpl. Such a
decay causes black holes to lose Z units of the charge
quantum geff ¼ g=Z. However, the particle responsible for
this decay is much heavier than the naïve WGC scale of the
low-energy theory, geffMpl, realizing the “loophole” in the
minimal electric WGC that prevents it from constraining
EFTs. The decay through this particle only allows charges
to be lost modulo g; however, since g≲ 1 any controlled
black hole solution (with M > Q > 1 in Planck units) will
be able to decay.
One can also ask about the status of magnetic monopoles

and magnetically charged black holes in the Higgsed
theory. Suppose that in the Coulomb phase the theory
contains magnetic monopoles of both A and B [Fig. 2(a)],
each with charge 2π=g, size ∼Λ−1, and mass ∼Λ=g2,
thereby satisfying the criteria of the magnetic WGC.
Higgsing a component of the gauge group then implies

FIG. 1. Spectrum of charged particles (blue lines) and gauge
fields (red lines) for the model of Sec. III, along with the mass
scales implied by the WGC (black lines). This spectrum satisfies
the various WGCs for the A and B fields when the scalar of
charge (Z, 1) does not have a vacuum expectation value (VEV).
However, when the (Z, 1) field acquires a VEV, then most forms
of the WGC (see Table I) are violated for the remaining massless
gauge field, which has coupling geff ¼ g=Z.
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confinement of the corresponding magnetic fields (the
Meissner effect), such that the magnetic field of the massive
gauge boson Aþ B=Z is confined to flux tubes, while only
flux of the massless field B − A=Z can escape to infinity.
A long flux tube is a Nielsen-Olesen string [34] (the analog
of Abrikosov vortices in nonrelativistic superconductors)
with radius ∼1=mV and tension T ∼ v2.3 Magnetic charges
of the massless gauge field are quantized in units
of 2π=geff ¼ 2πZ=g.
For example, one could consider a solution with Z

monopoles of B and one antimonopole of A, connected by
flux tubes [Fig. 2(b)]. Since the net magnetic charge under
the massive field Aþ B=Z is zero, such a configuration has
finite energy. The size of the system is determined by
balancing the energy in the flux tubes Zv2L with that of the
magnetostatic repulsion of the monopoles ∼Z2ð2πg Þ2 1

L; in

the absence of gravity, equilibrium is achieved for L ∼
ffiffiffi
Z

p
gv .

This also determines the mass of the system and thus its
Schwarzschild radius, giving rS ∼ Z3=2v

gM2
pl
. If rS=L > 1, the

system in fact a black hole. From the above we have
rS=L ¼ Zv2=M2

pl. Imposing v < Λ < gMpl, we have
rS=L < Zg2, which is less than unity for a perturbative
theory. Therefore in the regime of EFT control this system
is never a black hole; i.e., there exists a magnetic monopole

of the unbroken gauge field B − A=Z which is not a black
hole, despite the fact that the magnetic WGC is violated for
this gauge field.
This example illustrates a specific loophole in the

argument presented for the magnetic WGC in the previous
section. To obtain the magnetic WGC we demanded that
there exist a magnetic monopole which is not a black hole.
Since the substructure of a monopole must involve ele-
ments beyond the Uð1Þ gauge theory, we interpreted the
size L of such a monopole as a cutoff length scale for
effective field theory, assuming Λ≲ 1=L. This assumption
is true in familiar examples such as the ‘t Hooft-Polyakov
monopole, which is a configuration of some heavy gauge
and scalar fields with size controlled by the respective
masses. However it is not true of the system just discussed,
for which the substructure consisted of extended objects
(flux tubes) and long-range forces. Instead the monopole
scale 1=L ∼ gvffiffiffi

Z
p is emergent and is in fact much lower than

the scale mV ¼ Zgv at which new states beyond the low-
energy Uð1Þ theory appears. Thus the existence of a non-
black-hole monopole does not in fact signal a breakdown of
the Uð1Þ gauge theory at a specific scale.

A. Implications for model building

The above example indicates that a gauge theory with
charge quantum geff need not have an EFT cutoff at a scale
geffMpl as suggested by the WGC but instead could be
completed into a WGC-satisfying model at scales as high asffiffiffiffiffiffiffi
geff

p
Mpl. This possibility of a higher cutoff makes the

extranatural inflation model viable. If the above two-field
model is realized in the 5D theory, with the inflaton
identified as the fifth component of the unbroken gauge
field, then the inflaton period is given by feff ∼ ðgeffRÞ−1 ¼
ðgZ RÞ−1; imposing that the cutoff scale gMpl is above the
compactification scale 1=R now gives the bound f ≲ ZMpl,
so that large-field inflation can be achieved.
This in fact exactly parallels the model proposed in [33],

which also features two 5D gauge fields A and B and a
particle of charge (Z, 1).4 In that model, this particle did not
Higgs the Aþ B=Z gauge field but instead gave a large
mass for the axion in the Aþ B=Z direction through
quantum corrections. As in the model discussed here, this
left the B − A=Z direction with a small effective coupling
or large effective axion period (realizing the “alignment”
scenario of [35]). The exact same constraints apply for both
models: 1=R≲ gMpl to satisfy the WGC and Zg≲ 1 for
perturbativity.
We can also express the constraints in these models

in terms of the inflationary observables. The number of
e-foldings that inflation lasts goes as N e-folds ∼ feff=Mpl,

FIG. 2. Magnetic monopoles of the A, B gauge fields in the two
phases of the model. Left: In the Coulomb phase, the magnetic
WGC requires that magnetic monopoles of both the A and B
fields exist, with magnetic charge 2π=g and size of order the
cutoff length Λ−1, where Λ≲ gMpl. Right: In the Higgs phase
where a scalar of charge (Z, 1) gets a VEV, magnetic flux of the
massive gauge boson Aþ B=Z is confined, and only net B − A=Z
flux can escape to infinity. A monopole of B − A=Z charge can be
formed by joining Z monopoles of B and one antimonopole of A,
with the Aþ B=Z field confined to flux tubes.

3For definiteness of discussion, I will assume that the mass of
the Higgs field is greater than that of the massive gauge boson
mV ∼ Zgv (implying that the symmetry-breaking vacuum acts as
a type-II superconductor).

4In the notation of [33], the large charge we denote as Z
appears as N, which in this work refers to the number of Uð1Þ
gauge fields.
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while the Hubble scale during inflation is H ∼
ffiffiffiffi
V

p
=Mpl ∼

1=ðMplR2Þ. When saturating the constraints, one has
feff=Mpl ∼ Z ∼ 1=g ∼MplR, or in terms of the observables

H ≲ Mpl

N 2
e-folds

; ð3Þ

i.e., a long period of inflation comes at the expense of a low
Hubble scale. The cosmological data require H=Mpl ∼
10−4 and N e-folds > 60. One can see that this is close to
saturating the bound of Eq. (3) [though of course this
expression lacks Oð1Þ factors]. In physical terms this
implies that one or more of the constraints for EFT control
will be close to being saturated, i.e., that the EFT cutoff Λ
(which could be either the WGC scale gMpl or the scale at
which the 5D gauge theory becomes strongly coupled,
∼ 1

Zg
1
R) is not far above the compactification scale 1=R.

A low EFT cutoff has important quantitative implications
for the model, as the cutoff scale can generically be
associated with the masses of new particles, which may
carry gauge charge and thus contribute to the axion
potentials. The strength of the extranatural inflation model
lies in its relative insensitivity to UV physics at or above
the cutoff: Because the axions are emergent fields in 4D,
corresponding to nonlocal Wilson loop operators in the 5D
theory, any unknown physics at scales smaller than the
compactification scale gives suppressed contributions to the
axion potential. For example, charged particleswith 5Dmass
m5 contribute to the axion potentials with a factor of e−2πRm5 ,
which can be thought of as the Yukawa suppression for a
massive particle to propagate around the S1 [36]. For m5

not too far above 1=R, however, this correction to the
potential, though suppressed, may still be relevant for
phenomenology. In particular, a particle of charge (0,1)
under (A, B) would give a contribution to the inflaton
potential with period 1

2πRg ¼ feff=Z, i.e., much shorter than
the desired slow-roll potential. The result would be a slow-
roll potential modulated by small-amplitude, high-frequency
oscillations as sketched in Fig. 3. Observationally this
implies an oscillating component in the scalar power
spectrum, as discussed in [37–42]; in [33] it was discussed
how these biaxion models may be constrained or probed by
searches for such oscillations in the current data (most
recently [42]).
The above model with two Uð1Þ’s was conceived as a

minimal way to start from a UV theory that satisfies the
WGC and produce a low-energy theory that violates it, as is
necessary for extranatural inflation to be realized. In
this model however the EFT cutoff was still bounded by
Eq. (2), implying that large-field inflation is possible but
constrained, i.e., by Eq. (3). However, by considering more
fields one can realize models with even weaker constraints
on the EFT cutoff and therefore on phenomenology. For
example, one can essentially iterate the above Higgsing

pattern with three gauge fields A, B, C and two Higgs fields
with charges (Z, 1, 0) and (0, Z, 1). (As before, this is
exactly paralleled in the “triaxion” models of [33,43],
without Higgsing.) Now the effective gauge coupling of
the massless Uð1Þ is geff ¼ g=Z2, in terms of which the
cutoff bound is expressed as Λ≲ ðgeffÞ1=3Mpl rather than
Eq. (2). This allows even larger value for the extranatural
inflation field range, feff ∼ ðgeffRÞ−1, and eliminates any
tension between EFT control and fitting the cosmological
data [33].
In these models, avoiding the constraints and signals

naïvely suggested by the WGC clearly came at the cost of
some model-building complexity. The original extranatural
model with one gauge field could not realize any period of
inflation consistent with the WGC. The biaxion models are
the most minimal models which could produce inflation
while obeying the WGC (in the full theory); while these can
fit the current data, they could potentially be ruled out by
further measurements. However, one could still “model
build around” any falsification by proceeding to more
nonminimal models with additional gauge fields and
specific patterns of charge assignments, still satisfying
the WGC. Strictly speaking therefore, even if one takes
the WGC to hold at some UV scale, one does not obtain an
inevitable prediction [of the form of Eq. (3) or the
oscillations of Fig. 3] from the extranatural inflation
framework. However, if one invokes minimality (of field
content and/or charge assignments) as a model-building
criterion, then imposing the WGC implies that the biaxion
models are favored and their predictions should be con-
sidered as important benchmarks in testing extranatural
inflation. The WGC can therefore still have some relevance
in guiding model building despite not being a true con-
straint at the EFT level. In the concluding Sec. V, I will
explore this theme further.

FIG. 3. A sketch of a possible inflaton potential generated
within the biaxion models discussed here and in [33], for an EFT
cutoff that is only slightly above the compactification scale. In
this case the potential may receive a suppressed “higher har-
monic” contribution with a period 1=Z times the total field range,
leading to observable oscillations in the primordial power
spectrum. (The amplitude of this contribution is exaggerated
in this figure; current data constrain it to be smaller than pictured.)
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IV. A PROPOSED BOUND ON GAUGE EFTS

Repeated Higgsing of gauge fields after the pattern of the
previous section allows for exponentially small gauge
couplings in low-energy EFT, even if the UV theory
satisfies the weak gravity conjecture. This is in direct
analogy to axion models which generate exponentially
large decay constants through alignment of multiple fields
[44–47]. To be concrete, consider N Abelian gauge groups
Uð1Þ ×Uð1Þ × � � � ×Uð1Þ all with coupling g and N − 1
Higgs fields with charges ðZ; 1; 0;…; 0Þ, ð0; Z; 1; 0;…; 0Þ,
…ð0;…; Z; 1Þ. (Taking these couplings and charges to be
equal maximizes the violation of the WGC at low energy.)
When all of these Higgs fields acquire VEVs, the remaining
massless Uð1Þ has charge quantum geff ¼ g=ZN−1. After
applying the perturbativity bound Zg≲ 1 we have the
bound geff ≳ gN . Therefore exponential violation of the
WGC can be generated even if the integers Z and N are of
the order a few. However, there is still a limit on the
coupling that can be achieved, as when the multifield WGC
is taken into account then large N also lowers the cutoff as
Λ≲ gffiffiffi

N
p Mpl. In terms of the low-energy coupling, the cutoff

bound is Λ≲ g1=Neffffiffiffi
N

p Mpl. N can be chosen to maximize this

upper bound, which gives

Λ≲
�
log

1

geff

�
−1=2

Mpl: ð4Þ

That is, if a theory satisfies the multifield WGC in the UV,
then repeated Higgsing cannot generate an EFT where the
effective gauge coupling geff violates this bound.
Interestingly, a completely separate argument for Eq. (4)

can be made based on considerations of entropy bounds,
which I will now present. This draws on similar reasoning
as the argument against exact global symmetries in quan-
tum gravity: If black holes could carry arbitrary, conserved
global charges, then they could store an infinite amount of
information, in violation of entropy bounds—e.g., the
holographic entropy bound [17,18] indicating that the
entropy of a volume of area A is given by S ¼ A=4G.
Gauge symmetries are not immediately ruled out in the
same way since gauge charges affect the structure of black
holes; in particular black holes can only carry a finite
amount of charge, Q ≤ M. However, consider the set of
charged black hole solutions of radius R, which have M ∼
R andQ ≤ M. Suppose that all charged particles have mass
well above the BH temperature T ∼ R−1, so that black holes
of different charge should be treated as separate thermo-
dynamic ensembles. If the quantum of charge is geff , then
there are ∼R=geff thermodynamically distinct charged
black holes in this set, each with a Bekenstein-Hawking
entropy of SBH ¼ A=4 ∼ R2. (We could imagine creating all
of these black holes by dropping charges into a large
Schwarzschild black hole and letting it evaporate to radius
R.) So the total number of distinct states in this set is in fact

eS where S ¼ SBH þ log ðR=geffÞ. The first term saturates
the usual holographic entropy bound, while the second can
be thought of as a correction that is typically well
subdominant [e.g., for geff ∼Oð1Þ, R≳M−1

pl ]. However,
for exponentially small geff , there is some R for which the
second term in fact dominates the entropy, namely if
R2 ≲ log ðR=geffÞ ≈ log ð1=geffÞ. If we wish to avoid gross
violation of the entropy bound, then we must introduce
some new physics to this setup at distance scales larger than
this, i.e., at some energy scale

Λ≲
�
log

1

geff

�
−1=2

Mpl:

Note that this new physics could perhaps be as mild as
introducing a charged particle below this scale, which could
be thermally Hawking radiated from black holes of this
size. Then black holes of different charge should not be
considered as distinct thermodynamic ensembles when
calculating the Bekenstein-Hawking entropy. Alternately,
the Einstein-Maxwell semiclassical description of black
holes could break down in some way at this scale.
I propose that Eq. (4) is the only version of the weak

gravity conjecture which can be considered as a constraint
on low-energy EFTs, due to the bottom-up argument just
presented. It is interesting and nontrivial that this bound can
be saturated but not violatedwhen Higgsing theories which
satisfy the multifield WGC in the UV. Following the
swampland philosophy, one may have expected that not
all possibilities for field content are consistent within
quantum gravity, such that it could be possible to write
down a Higgs model that produces a gauge coupling small
enough to violate Eq. (4). However, we instead find that,
given that the theory at some scale satisfies the multifield
WGC as expressed by Eq. (1), one can consider arbitrary
matter fields without being in danger of landing in an EFT
swampland by violating Eq. (4).

V. CONCLUSIONS

In this work I have considered whether the weak gravity
conjecture could be a robust constraint on effective field
theories, particularly in the context of EFT models gen-
erated by Higgsing theories with multiple gauge fields. I
showed that a UV theory which satisfies the WGC could
have a low-energy EFT description which badly violates
the usual WGC bounds. However, such an EFT always
satisfies the much weaker constraint of Eq. (4). This latter
bound is also motivated by requiring that charged black
holes do not grossly violate the holographic entropy bound.
One may ask whether these Higgsing models actually

disprove the forms of the WGC which constrain the EFT
(the last three entries of Table I). These conjectures could
still hold, even in a theory with a large landscape of EFTs, if
the fundamental theory is such that the patterns of Higgsing

PRASHANT SARASWAT PHYSICAL REVIEW D 95, 025013 (2017)

025013-8



I discussed are never realized. This could occur for example
if scalar fields are never realized with the gauge charges I
considered. While this is in principle a possibility, it would
require the WGC to be expanded to a much more extensive
(i.e., more hypothetical) conjecture, with no additional
motivation. Indeed, as I have discussed, the original
bottom-up arguments for the WGC based on black hole
physics are all evaded in the Higgsing model in well-
understood ways. Note however that if we allow arbitrary
matter representations to Higgs the gauge fields, then the
constraint implied by entropy bounds, Eq. (4), is guaran-
teed if and only if the theory does satisfy the multifield
WGC at some scale.
Taken together, these results suggest the following

interpretation of the physics surrounding the weak gravity
conjecture: The conventional forms of the WGC may
always be satisfied at some UV scale, perhaps the scale
at which gauge field theory is completed into some
quantum gravity theory. Consistent with this one could
consider arbitrary additional matter fields which sponta-
neously break these symmetries as I have discussed, giving
emergent violation of the WGC at the low-energy EFT
level. However, due to the “boundary condition” of having
the WGC realized in the UV, there never occurs a
problematic situation in which entropy bounds are violated;
i.e., Eq. (4) is always satisfied.
This viewpoint reconciles the arguments for violation of

the WGC presented here with the numerous examples of
the WGC being satisfied in string theory [4,8] and other
models where gauge fields emerge from more fundamental
objects [7,11]. Furthermore, it suggests that parametric
violation of the WGC in the EFT, while possible, could be
considered to be “nonminimal.” In the models I discussed,
achieving significant violation of the WGC at low energies
required specific field content and interactions, namely
parametrically large integer charges and/or particular tex-
tures of charges for multiple fields. These ingredients could
appear at very high scales, perhaps close to the field theory
cutoff, but were necessary at some point if the UV theory
satisfied the WGC. Increasingly strong violations of the
WGC required additional fields and more specific charge
assignments. One may expect that this specificity makes
such models “unlikely”; for example in the context of
theories with a large landscape of low-energy EFTs one
might expect that vacua with strong violation of the WGC
are the exception rather than the norm (under some suitable
measure). Of course, such conclusions are not rigorous as
the concept of minimality cannot be uniquely defined—
perhaps some deeper but simpler structure could underlie
what appears to be a strange proliferation of fields and
charges. Nevertheless, these considerations could be taken
as reasonable motivations to guide model building.
As stressed in the introduction (Sec. I), the status of the

WGC is an issue of practical importance in model building
for inflation, etc. The results of this work indicate that the

usual WGC constraints cannot be considered as absolute
rules for EFT models, though the bound of Eq. (4) perhaps
should be. This inequality is so much weaker than the
WGC though so as to be almost irrelevant (though it may
still be important for models such as the relaxion [15]
which may invoke field ranges many orders of magnitude
greater than the Planck scale). However, taking the view-
point discussed in this section, one could seek to complete
WGC-violating models into WGC-satisfying theories as
minimally as possible. For example, as discussed at the end
of Sec. III A, applying these considerations to extranatural
inflation focuses one’s attention on biaxion models and
their specific predictions for cosmological observables,
such as oscillations in the power spectrum. In this sense
the WGC, even when imposed only in the UVand not at the
low-energy EFT level, does guide model building and
phenomenology in a meaningful way.
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APPENDIX: THE ELECTRIC WGC AND
LARGE-FIELD INFLATION

In this Appendix I review why the electric forms of the
WGC do not constrain large-field axionic inflation models
such as extranatural inflation, contrary to the claims or
suggestions of [6,27–31]. These arguments, originally
pointed out by the authors of [33] and Reece [48], have
been previously referenced in [28] and later [6,30]; I review
them here so as to present a complete discussion of the
implications of the WGC for model building.
If the inflaton is realized as an axion, it must have a flat

potential over some effective field range feff ≳Mpl. The
potential of an axion arises from nonperturbative effects
such as instantons, generally characterized by some instan-
ton action S. For example, the contribution of a charged
particle to the potential of the inflaton in extranatural
inflation can be calculated in the worldline formalism
which involves the action of a charged particle propagating
in a loop around the extra dimension. The contribution of
an instanton of action S to the axion potential can be written
in the general form

V ∼ V0

X
n

cne−nS cos
nϕ
f

; ðA1Þ
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which represents a sum over configurations with n instan-
tons. For extranatural inflation, a charged particle of mass
m and charge q gives S ¼ 2πmR for the particle propa-
gating around the extra dimension, f ¼ ð2πRqÞ−1, and
cn ≈ 1=n5 for m ≪ R−1 [49,50]. For more general axions
however the cn may not be readily calculable. If the charged
particle satisfies the electric WGC, q=m > 1, then the
potential parameters satisfy

S < Mpl=f: ðA2Þ

In [4] it was proposed that the above relation is satisfied
for axions in more general contexts, constituting a “0-form”
version of the WGC. The arguments of [6,27–31] against
large field axion inflation invoke generalized multifield
versions of this 0-form WGC and show that, even in the
case of a multidimensional axion field space, realizing an
effective decay constant feff > Mpl for some direction
requires the existence of an instanton with S < 1. But S <
1 in a potential of the form (A1) implies that the higher
harmonic terms (with n > 1) are no longer parametrically
suppressed. In general this may prevent any theoretical
control of the potential or at least spoil its flatness and
prevent inflation.
However, this last conclusion does not always follow—

in fact, extranatural inflation provides a clear counterex-
ample. Even for a massless charged particle, trivially
satisfying the WGC and giving S ¼ 0 in Eq. (A1), the
potential can be explicitly calculated in perturbation theory
and has the higher harmonic terms (coefficients of cos nϕf )

suppressed by factors of cn ¼ 1=n5. This is in fact enough
to ensure that the potential is convergent and in fact nearly
indistinguishable from a pure cosine in practice. In the

models considered here and in the literature [33,43] the 5D
gauge theory is always taken to be perturbative, ensuring
that the loop expansion of the potential is valid. Thus there
is sufficient theoretical control to guarantee successful
inflation, despite the lack of parametric suppression of
higher harmonics.
In fact it is even possible to achieve an axion potential

with parametric suppression of higher harmonics consistent
with a minimal version of the 0-form WGC, due to another
loophole in these arguments. Suppose that more than one
instanton contributes to the axion potential, giving con-
tributions of the form of Eq. (A1) but with distinct actions
Si and decay constants fi. The 0-form analog of the
minimal electric WGC is the requirement that there exists
some instanton SWGC with corresponding decay constant
fWGC satisfying SWGC < Mpl=fWGC (corresponding in
extranatural inflation to having some particle with
m < q). However, one could have a situation where some
other instanton i that does not satisfy theWGC has a smaller
action, i.e., SWGC ≫ Si > 1, with fi > Mpl. The WGC-
satisfying instanton gives a contribution to the potential with
period fWGC ≪ Mpl, but this is exponentially subdominant
to the contribution from Si with super-Planckian period, so
that the potential can be flat enough to support inflation. The
lack of constraint exactly parallels the fact that the minimal
(1-form) electric WGC cannot constrain EFT models at all,
due to the possibility that the particle satisfying m < q can
still have a mass far above the scales of relevance for the
EFT. Constraints on axion inflation can only be obtained by
invoking stronger versions of the 0-formWGC analogous to
the last three entries of Table I, but as discussed here and
elsewhere these forms of the WGC do not seem to be
theoretically robust.
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