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We investigate whether the beta function of the finite-N Gross-Neveu model, as calculated up to the four-
loop level, exhibits evidence for an infrared zero. As part of our analysis, we calculate and analyze Padé
approximants to this beta function and evaluate effects of scheme dependence. From our study, we find that
in the range of coupling where the perturbative calculation of the four-loop beta function is reliable, it does
not exhibit robust evidence for an infrared zero.
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I. INTRODUCTION

The Gross-Neveu (GN) model [1] is a quantum
field theory in d ¼ 2 spacetime dimensions with an
N-component massless fermion ψ j, j ¼ 1;…; N, defined
by the path integral

Z ¼
Z Y

x

½Dψ �½Dψ̄ �ei
R

d2xL; ð1:1Þ

with the Lagrangian density [2]

L ¼ iψ̄∂ψ þ g
2
ðψ̄ψÞ2: ð1:2Þ

This model is of interest because it exhibits, albeit in a
lower-dimensional, nongauge-theory context, some proper-
ties of quantum chromodynamics (QCD), namely asymp-
totic freedom, dynamical symmetry breaking of a certain
chiral symmetry, and the formation of a massive bound
state of fermions. These properties were shown by an exact
solution of the model in [1] in an N → ∞ limit that enabled
Gross and Neveu to obtain nonperturbative information
about the theory. A semiclassical calculation of the bound-
state spectrum of the model was carried out in [3].
The Gross-Neveu model has also been studied at finite

N, where it is not, in general, exactly solvable. In these
studies, one again makes use of a property that the model
shares with QCD, namely asymptotic freedom, which
allows one to carry out reliable perturbative calculations
at high Euclidean energy/momentum scales μ in the deep
ultraviolet (UV), where the running four-fermion coupling,
gðμÞ, approaches zero. In this context, there is an interesting
and fundamental question: how does this running coupling
gðμÞ change as the scale μ decreases from the deep UV to
the infrared (IR) limit at μ ¼ 0? This change of gðμÞ as a
function of μ is described by the renormalization group

(RG) [4] and the associated beta function, β ¼ dg=dt,
where dt ¼ d ln μ. The asymptotic freedom property is
equivalent to the fact that β is negative in the vicinity of the
origin, g ¼ 0, so that this point is a UV fixed point (UVFP)
of the renormalization group. As μ decreases from the UV
toward the IR, several different types of behavior of a
theory are, a priori, possible. One is that the (perturbatively
calculated) beta function has no IR zero, so that as μ
decreases, gðμÞ eventually increases beyond the range
where perturbative methods can be used to study its RG
evolution. An alternative possibility is that β has an IR zero
at sufficiently small coupling so that it can be studied using
perturbative methods. An exact IR zero of β would be an IR
fixed point (IRFP) of the renormalization group. In the
N → ∞ limit used in [1] to solve the model, the resultant
beta function [given below in Eq. (2.9)] does not exhibit
any IR zero. Reference [5] calculated 1=N corrections to
the N → ∞ limit in the Gross-Neveu model and excluded
the presence of an IR zero to this order. However, to our
knowledge, there has not been an analysis of the beta
function of the GN model for finite N to higher-loop order
to address the question of whether it exhibits evidence for
an infrared fixed point.
In this paper we shall carry out this analysis of the beta

function of the finite-N Gross-Neveu model to address and
answer the question of whether this function exhibits an IR
zero. We shall investigate the beta function to the highest
loop order to which it has been calculated, namely four
loops, making use of a recent computation of the four-loop
term in Ref. [6].
This paper is organized as follows. In Sec. II we review

some background information about the Gross-Neveu
model. In Sec. III we carry out our analysis of the beta
function of the finite-N Gross-Neveu model up to the four-
loop level. In Sec. IV we extend this analysis using Padé
approximants. Section V contains an analysis of the effect
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of scheme transformations on the beta function. In Sec. VI
we comment further on the large-N limit. Our conclusions
are given in Sec. VII.

II. SOME RELEVANT BACKGROUND
ON THE GROSS-NEVEU MODEL

Here we briefly review some relevant background
concerning the Gross-Neveu model. We first comment
on some notation. In Ref. [1], the coefficient in front of the
ðψ̄ψÞ2 operator was written as a squared coupling, which
we denote as ðg2GN=2Þ, while many subsequent works have
written it as g=2, so one has

g≡ g2GN: ð2:1Þ

The analysis of the model in [1] made use of a functional
integral identity to express the path integral as the m → ∞
limit of a path integral containing an auxiliary real scalar
field ϕ with a mass m and a Yukawa interaction

LY ¼ gGNm½ψ̄ψ �ϕ: ð2:2Þ

Since ϕ is a real field, the hermiticity of LY implies that gGN
must be real, which, in conjunction with Eq. (2.1), implies
that g must be non-negative:

g ≥ 0: ð2:3Þ

For d ¼ 2 (as more generally, for any even spacetime
dimension), one can define a product of Dirac gamma
matrices, denoted γ5, that satisfies the anticommutation
relation fγ5; γμg ¼ 0 for all γμ. This γ5 matrix also satisfies

γ25 ¼ 1 and γ†5 ¼ γ5. (An explicit representation is γ0 ¼ σ1,
γ1 ¼ σ2, with γ0γ1 ¼ iγ5 ¼ iσ3, where σj are the Pauli
matrices.) One can then define chiral projection operators
PL;R ¼ ð1=2Þð1� γ5Þ. As usual, one then defines left and
right chiral components of the fermion field as ψL ¼ PLψ
and ψR ¼ PRψ .
The Gross-Neveu model is invariant under a discrete

global Z2 group generated by the identity and the chiral
transformation

ψ → γ5ψ : ð2:4Þ

This discrete chiral transformation (2.4) takes ψ̄ψ → −ψ̄ψ ,
and hence this Z2 symmetry forbids (i) a mass term in the
Lagrangian (1.2) and (ii) the generation of a nonzero
condensate hψ̄ψi. This is true to all (finite) orders of
perturbation theory.
The Gross-Neveu model is also invariant under the

continuous global (cg) symmetry group

Gcg ¼ UðNÞ ð2:5Þ

defined by the transformation

ψ → Uψ ; ð2:6Þ

where U ∈ UðNÞ (so ψ̄ → ψ̄U†). In terms of the chiral
components of the fermion field, the continuous global
symmetry transformation (2.6) is ψL → UψL, ψR → UψR.
In contrast to the discrete γ5 symmetry, the continuous
symmetry Gcg leaves the operator ψ̄ψ invariant [7].
An exact solution of the theory was obtained in [1] in the

limit N → ∞ and gGN → 0 with the product

λ≡ g2GNN ≡ gN ð2:7Þ

a fixed and finite function of μ. We shall denote this as the
LN limit [i.e., the large-N limit with the condition (2.7)
imposed]. In this limit, there is a nonperturbative generation
of a nonzero bilinear fermion condensate, hψ̄ψi, dynami-
cally breaking the discreteZ2 chiral symmetry. In this limit,
there is also the formation of a massive bound state of
fermions.
The beta function for gGN is

βGN ¼ dgGN
dt

; ð2:8Þ

where dt ¼ d ln μ. (The μ dependence of the coupling will
often be suppressed in the notation.) In the LN limit, this
beta function is [1,8]

βGN ¼ −
gGNλ
2π

: ð2:9Þ

The fact that this beta function is negative is an expression
of the asymptotic freedom of the theory. This beta function
does not exhibit any zero away from the origin, i.e., any
infrared zero. However, since the calculation in [1] was
performed in the LN limit, this leaves open the possibility
that at finite N, there could be an IR zero in the beta
function that would disappear in the LN limit. We discuss
this LN limit further in Sec. VI below.

III. BETA FUNCTION FOR GENERAL N

Although the Gross-Neveu model is not, in general,
solvable away from the LN limit, there has also been
interest over the years in analyzing it for finite N. In terms
of the coupling g, the beta function of the finite-N GN
model is

β ¼ dg
dt

; ð3:1Þ

where, as before, dt ¼ d ln μ. For our purposes, it will be
convenient to introduce a variable a that includes the
factor 1=ð2πÞ resulting from Feynman integrals in d ¼ 2
dimensions, namely
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a ¼ g
2π

¼ g2GN
2π

: ð3:2Þ

The model defined by the Lagrangian of Eq. (1.2) can be
generalized with the addition of further four-fermion
operators [1,9]. The regularization and renormalization
of the Gross-Neveu model has been carried out in this
more general context [6,9–13].
As was true of other theories, such as the nonlinear σ

model [14], one may consider this model in spacetime
dimension d > 2. At finite N, the model is not renormaliz-
able for d > 2, since the Maxwellian dimension of a four-
fermion operator is 2ðd − 1Þ, which is larger than d if
d > 2. As in the case of the nonlinear σ model [14], in the
N → ∞ limit, one can still solve the model and study its
properties. Alternatively, for finite N, one can regard it as a
low-energy effective field theory. With this generalization
and d ≳ 2, β has the form

β ¼ g
�
d − 2þ

X∞
l¼1

bl

�
g
2π

�
l
�

¼ 2πa

�
d − 2þ

X∞
l¼1

blal
�
; ð3:3Þ

where blal is the l-loop term. The n-loop (nl) beta
function, denoted βnl, is obtained by the replacement of
l ¼ ∞ by l ¼ n in Eq. (3.3). Early discussions of the GN
model for d > 2 include [1] and [10]; for more recent work
see, e.g., [6,15], and, for condensed-matter applications,
[16], and references therein. In this paper, aside from some
comments in Sec. VI, we will restrict ourselves to the
Gross-Neveu model in d ¼ 2, where g is dimensionless.
The l ¼ 1 and l ¼ 2 loop terms in β are independent of

the scheme used for regularization and renormalization,
while the terms at loop order l ≥ 3 are scheme-dependent.
The beta function was calculated up to two-loop level in
[11], with the results

b1 ¼ −2ðN − 1Þ ð3:4Þ

and

b2 ¼ 2ðN − 1Þ: ð3:5Þ

(See also [17] for a two-loop calculation in a related
Thirring model.) The fact that b1 in Eq. (3.4) is negative
means that in d ¼ 2, this theory is asymptotically free for
any finite N > 1 as well as in the N → ∞ limit considered
in [1].
The three-loop coefficient, b3, was calculated in [12,13]

in the commonly used scheme with dimensional regulari-
zation and modified minimal subtraction, denoted MS [18],
yielding the result

b3 ¼
ðN − 1Þð2N − 7Þ

2
: ð3:6Þ

Recently, the four-loop coefficient, b4 has been calculated,
again in the MS scheme, to be [6]

b4 ¼
1

3
ðN − 1Þ½−2N2 − 19N þ 24 − 6ð11N − 17Þζ3�;

ð3:7Þ

where ζs ¼
P∞

n¼1 n
−s is the Riemann zeta function.

We comment on the dependence of the beta function
coefficients on N. The property that these coefficients all
contain a factor of (N − 1) is a consequence of the fact that
for N ¼ 1 the GN model is equivalent to the massless
Abelian Thirring model [19], which has an identically zero
beta function [20,21]. Note that this statement about the
beta function of the Thirring model is scheme-independent;
if a beta function vanishes in one scheme, then it vanishes
in all other schemes reached by acceptable (nonsingular)
scheme transformations [22]. It follows that all of the
coefficients bl contain a factor of (N − 1). Therefore, it
is only necessary to analyze the beta function of the
Gross-Neveu model for N > 1, where it is nonvanishing,
and we will thus restrict our discussion to the physical
integral values N ≥ 2 henceforth. We next discuss how the
bl depend on N in the relevant range N > 1. For this
discussion, we consider N to be extended from the positive
integers to the real numbers. The three-loop coefficient b3
is a monotonically increasing function of N that is negative
for N < 7=2, vanishes for N ¼ 7=2, and is positive for
N > 7=2. Thus, for physical, integral values, b3 < 0 if
N ¼ 2 or N ¼ 3 and b3 > 0 if N ≥ 4. The coefficient b4 is
negative for large N and is positive for N in the interval

Nb4z;m < N < Nb4z;p; ð3:8Þ

where the subscript b4z stands for “b4 zero” and

Nb4z;ðp;mÞ ¼
−19 − 66ζ3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
553þ 3324ζ3 þ 4356ζ23

p
4

ð3:9Þ

with ðp;mÞ corresponding to the � sign. These have the
values Nb4z;m ¼ −50.616 and Nb4z;p ¼ 1.448 to the given
floating-point accuracy. Thus, in the relevant range N > 1
under consideration here, b4 is negative.
We proceed to investigate the question of whether the

beta function for the Gross-Neveu model at finite N
exhibits evidence for an infrared zero. We denote an IR
zero of the n-loop beta function βnl as aIR;nl, and the
corresponding value of g as gIR;nl ¼ 2πaIR;nl. This IR zero
of beta is a zero for positive a closest to the origin (if there
is such a zero), which one would thus reach as μ decreases
from the deep UV at large μ to the IR at small μ and a
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increases from 0. At the two-loop level, β2l has an IR
zero at

aIR;2l ¼ −
b1
b2

¼ 1; ð3:10Þ

i.e., gIR;2l ¼ 2π. Note that this value is independent of N.
To judge whether this constitutes convincing evidence of an
IR zero in the beta function, it is necessary to determine if
higher-loop calculations confirm it. We next carry out
this task.
At the three-loop level, the condition that β3l ¼ 0 away

from the origin is the quadratic equation b1 þ b2aþ
b3a2 ¼ 0. This has two solutions,

a ¼ 2½−1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 3Þp �

2N − 7
: ð3:11Þ

If N < 3, then these solutions are complex and hence
unphysical. IfN¼3, these roots coincide, so that aIR;3l¼2,
i.e., gIR;3l ¼ 4π. For N ≥ 3, there is only one physical root,
namely

aIR;3l ¼ 2½−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN − 3Þp �

2N − 7
: ð3:12Þ

However, this is not, in general, close to the two-loop zero
of the beta function at aIR;2l ¼ 1. Furthermore, while
aIR;2l ¼ 1 is independent of N, aIR;3l has a completely
different behavior as a function of N; it decreases mono-
tonically with N in the interval N ≥ 3 over which it is
physical and approaches zero asymptotically like

aIR;3l ∼
ffiffiffiffi
2

N

r
−

1

N
þO

�
1

N3=2

�
as N → ∞: ð3:13Þ

At the four-loop level, the condition that β4l ¼ 0 away
from the origin is the cubic equation

b1 þ b2aþ b3a2 þ b4a3 ¼ 0: ð3:14Þ
The nature of the roots of this equation is determined by the
discriminant,

Δ3 ¼ b22b
2
3 − 27b21b

2
4 − 4ðb1b33 þ b4b32Þ þ 18b1b2b3b4:

ð3:15Þ
This discriminant is negative for the relevant range N ≥ 2
(indeed, it is negative for all real N). This implies that
Eq. (3.14) has one real root and a pair of complex-
conjugate roots. The real root is negative and hence is
unphysical, since it violates the positivity requirement
(2.3). Moreover, since it is negative, it is clearly incom-
patible with the values of aIR;2l and aIR;3l, which are
positive (discarding the unphysical complex value of aIR;3l
at N ¼ 2). We therefore do not label this root as aIR;4l, but
instead as art;4l, where rt stands simply for the real root of

Eq. (3.14). We find that the magnitude of art;4l decreases
toward zero monotonically as N increases in the relevant
interval N ≥ 2, with the asymptotic behavior

art;4l ∼ −
31=3

N2=3 þ
1

2N
þO

�
1

N4=3

�
as N → ∞: ð3:16Þ

We list the values of aIR;2l, aIR;3l, and art;4l in Table I forN
from 2 to 10 and for three representative larger values,
N ¼ 100, 300, and 103.
In our discussion above, we had stated that in order to

judge whether the result for aIR;2l constitutes convincing
evidence of an IR zero in the beta function, it is necessary to
determine if higher-loop calculations confirm it. A neces-
sary condition for the reliability of a perturbative calcu-
lation is that if one calculates some quantity to a given loop
order, then there should not be a large fractional change in
this quantity if one computes it to one higher order in the
loop expansion. This condition applies, in particular, to the
calculation of a putative zero of the beta function.
Quantitatively, in order for the perturbative calculation of
the IR zero of a beta function to be reliable, it is necessary
that the fractional difference

jaIR;ðn−1Þl − aIR;nlj
1
2
½aIR;ðn−1Þl þ aIR;nl�

ð3:17Þ

should be reasonably small and should tend to decrease
with increasing loop order, n. As is evident both from our
analytic formulas and from the numerical results listed in
Table I, this necessary condition is not satisfied in the
present case.

TABLE I. Values of aIR;2l, aIR;3l, and art;4l for the beta
function of the Gross-Neveu model, as a function of N. Here,
the three-loop and four-loop coefficients b3 and b4 are calculated
in the MS scheme. If N ¼ 2, then the zeros of β3l at nonzero a
form an unphysical complex (cmplx) pair. As indicated, all of the
values of art;4l are negative and hence unphysical. See text for
further details.

N aIR;2l aIR;3l art;4l

2 1 cmplx −0.573
3 1 2.000 −0.370
4 1 0.828 −0.302
5 1 0.667 −0.264
6 1 0.580 −0.239
7 1 0.522 −0.220
8 1 0.481 −0.205
9 1 0.448 −0.194
10 1 0.422 −0.184
100 1 0.134 −0.0567
300 1 0.0788 −0.0295
103 1 0.0438 −0.0138
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The reason for this is clear from a plot of the beta
functions βnl at loop orders n ¼ 2, n ¼ 3, and n ¼ 4. This
shows that the IR zero in the two-loop beta function occurs
at a value of a that is too large for the perturbative
calculation to be reliable. In Figs. 1 and 2 we plot the
two-loop, three-loop, and four-loop beta functions for the
Gross-Neveu model as functions of a for two illustrative
values of N, namelyN ¼ 3 and N ¼ 10. As is evident from
these plots, the beta function does not satisfy the necessary
criterion for the reliability of a calculation of an IR zero. For
the IR zero of the two-loop beta function at aIR;2l ¼ 1 to be
reliable, one requires that the curves for the three-loop and
four-loop beta functions should agree approximately with
the curve for the two-loop beta function for a≃ 1, and that
these higher-loop beta functions should thus have respec-
tive IR zeros that are close to the two-loop zero at
aIR;2l ¼ 1. But this is not the case; for N ¼ 3, β3l has a
double zero at the larger value, aIR;3l ¼ 2 and then goes
negative again, while β4l has no IR zero in the physical
region, a > 0. For N ¼ 10 the three-loop beta function β3l
vanishes at a smaller value of a than a ¼ 1 (and this value,
aIR;3l decreases as N increases), while the four-loop beta
function β4l again has no IR zero in the physical region,
a > 0. The behavior illustrated for N ¼ 10 is generic for
other values of N ≥ 4. Indeed, the curves for these beta
functions at loop order n ¼ 2, 3, 4 only agree with each
other close to the origin, and deviate strongly from each
other before one gets to values of a where a zero occurs.
Specifically, for N ¼ 3, β2l and β3l only agree with each
other for a up to about 0.5, while β4l deviates from these
lower-loop beta functions as a increases beyond approx-
imately 0.2. As N increases, these deviations occur for
smaller a. Thus, for N ¼ 10, β2l and β3l only agree with
each other for a up to roughly 0.15, while β4l deviates from

these lower-loop beta functions as a increases beyond
about 0.08.
These results are similar to what was found in a search for

a UV zero in the beta function of an IR-free theory, namely

the OðNÞ λj~ϕj4 scalar field theory in d ¼ 4 spacetime
dimensions [23]. In that theory, although the two-loop beta
function exhibits a UV zero, higher-loop calculations up to
five-loop order for general N and up to six-loop order for
N ¼ 1 do not confirm the two-loop result, and the reason
was found to be that the two-loopUVzero occurs at too large
a value of the quartic coupling for the two-loop perturbative
calculation to be applicable and reliable.

IV. ANALYSIS WITH PADÉ APPROXIMANTS

In this section we carry out a further investigation of a
possible IR fixed point in the renormalization-group flow
for the Gross-Neveu model by calculating and analyzing
Padé approximants (PAs) to the beta function at three-loop
and four-loop level. Since we are interested in a possible
zero of the beta function away from the origin, it will be
convenient to deal with a reduced (rd) beta function,

βrd ≡ β

2πb1a2
¼ 1þ 1

b1

X∞
l¼2

blal−1: ð4:1Þ

The n-loop reduced beta function with n ≥ 2, denoted
βrd;nl, is obtained from Eq. (4.1) by replacing l ¼ ∞ by
l ¼ n as the upper limit in the summand. This n-loop
reduced beta function is thus a polynomial of degree n − 1
in a. The ½p; q� Padé approximant to this polynomial is the
rational function

½p; q�βrd;nl ¼
1þPp

j¼1 njx
j

1þPq
k¼1 dkx

k ð4:2Þ
FIG. 1. Plot of the n-loop β function βa;nl of the Gross-Neveu
model as a function of a for N ¼ 3 and (i) n ¼ 2 (red), (ii) n ¼ 3
(green), and (iii) n ¼ 4 (blue). At a ¼ 0.5, going from bottom to
top, the curves are β4l, β3l, and β2l.

FIG. 2. Plot of the n-loop β function βa;nl of the Gross-Neveu
model as a function of a forN ¼ 10 and (i) n ¼ 2 (red), (ii) n ¼ 3
(green), and (iii) n ¼ 4 (blue). At a ¼ 0.2, going from bottom to
top, the curves are β4l, β2l, and β3l.
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with

pþ q ¼ n − 1; ð4:3Þ

where the nj and dk are a-independent coefficients of the
respective polynomials in the numerator and denominator
of ½p; q�βrd;nl . (Our notation follows [24].) Hence, at a given
n-loop order, there are n Padé approximants that one can
calculate, namely

f½n − k; k − 1�βrd;nlg with 1 ≤ k ≤ n: ð4:4Þ
These provide rational-function approximations of the
series expansion for βrd;nl that fits this series to the loop
order n. As in our earlier work, e.g., [25,26], these provide
an alternate approach to investigating zeros of a beta
function.
We shall label one of the p zeros of a ½p; q�βrd;nl Padé

approximant as ½p; q�zero and one of the q poles of this
approximant as ½p; q�pole; in each case, the value of n is
given by Eq. (4.3) as n ¼ pþ qþ 1. At the n-loop level,
the Padé approximant ½n − 1; 0�βrd;nl is equal to the reduced
n-loop beta function βrd;nl itself, which we have already
analyzed in the previous section, and the PA ½0; n − 1�βrd;nl
has no zeros, and hence is not useful for our study. Hence,
at the n-loop level, we focus on the n − 2 PAs ½p; q�βrd;nl
with ½p; q� ¼ ½n − k; k − 1� having 2 ≤ k ≤ n − 1.
At the n ¼ 3 loop level, we thus consider the ½1; 1�βrd;3l

Padé approximant. This is

½1; 1�βrd;3l ¼
1þ ðb2b1 −

b3
b2
Þa

1 − ðb3b2Þa
¼ 1 − ð2N−3

4
Þa

1 − ð2N−7
4

Þa ; ð4:5Þ

where the coefficients b1, b2, and b3 were given in
Eqs. (3.4)–(3.6) above. This [1,1] PA has a zero at

½1; 1�zero ¼
4

2N − 3
ð4:6Þ

and a pole at

½1; 1�pole ¼
4

2N − 7
: ð4:7Þ

The a ¼ ½1; 1�pole is not relevant, since if N ¼ 2 or 3, it has
the respective negative and hence unphysical values −4=3
and −4, while for N ≥ 4, it lies farther from the origin than
the zero. This is clear from the fact that the difference

½1; 1�pole − ½1; 1�zero ¼
16

ð2N − 3Þð2N − 7Þ ð4:8Þ

is positive for this range N ≥ 4. Since the ½1; 1�pole lies
farther from the origin than ½1; 1�zero, the coupling a ¼ aðμÞ
never reaches the pole as μ decreases from large values in
the UV to μ ¼ 0 and thus aðμÞ increases from 0 to ½1; 1�zero.

We list the values of the zero of the ½1; 1�βrd;3l Padé
approximant in Table II. For N ≥ 3, the value of a ¼
½1; 1�zero is smaller than aIR;3l and decreases more rapidly to
zero as N → ∞ than aIR;3l. If N ¼ 2, the comparison
cannot be made, since aIR;3l is complex. Thus, this analysis
of the [1,1] Padé approximant to the reduced three-loop
beta function, βrd;3l yields further evidence against a
(reliably calculable) IR zero in the beta function up to
the three-loop level.
At the n ¼ 4 loop level, there are two Padé approximants

to analyze, namely ½2; 1�βrd;4l and ½1; 2�βrd;4l . We calculate

½2; 1�βrd;4l ¼
1þ ðb2b1 −

b4
b3
Þaþ ðb3b1 −

b2b4
b1b3

Þa2
1 − b4

b3
a

; ð4:9Þ

where the coefficients bn were given in Eqs. (3.4)–(3.7).
The zeros of the numerator occur at a ¼ ½2; 1�zero;ði;iiÞ,
where

½2;1�zero;ði;iiÞ

¼b2b3−b1b4�½b21b24þb22b
2
3−4b1b33þ2b1b2b3b4�1=2

2ðb2b4−b23Þ
ð4:10Þ

and the subscripts i and ii correspond to the � sign in front
of the square root. It is straightforward to substitute the
explicit expressions for the coefficients b2, b3, and b4 in
Eq. (4.10), but the resultant expressions for these quadratic
roots in terms of the explicit coefficients bn, 1 ≤ n ≤ 4 are
somewhat lengthy, so we do not display them. The pole of
the ½2; 1�βrd;4l PA occurs at a ¼ ½2; 1�pole, where

TABLE II. Values of ½1; 1�zero from [1,1] Padé approximant to
the reduced three-loop beta function, βrd;3l, and ½2; 1�zero;i from
the [2,1] Padé approximant to the four-loop beta function, βrd;4l.
See text for further details.

N ½1; 1�zero ½2; 1�zero;i
2 4.000 0.940
3 1.333 0.998
4 0.800 0.999
5 0.571 0.992
6 0.444 0.982
7 0.364 0.9725
8 0.308 0.963
9 0.267 0.953
10 0.235 0.943
100 0.0203 0.683
300 0.00670 0.615
103 0.00200 0.585

CHOI, RYTTOV, and SHROCK PHYSICAL REVIEW D 95, 025012 (2017)

025012-6



½2; 1�pole ¼
b3
b4

¼ −
3ð2N − 7Þ

2½2N2 þ 19N − 24þ 6ð11N − 17Þζ3�
:

ð4:11Þ

If one has a series expansion of a function that contains
nzero zeros and npole poles, and one calculates ½r; s� Padé
approximants to this series with r > nzeros and s > npoles,
the approximants typically exhibit sets of nearly coincident
zero-pole pairs in addition to fitting the actual zeros and
poles of the function (e.g., see [24,26]). These nearly
coincident zero-pole pairs may thus be ignored. This

happens in the present case. For example, for N ¼ 3, the
½2; 1�βrd;4l PA has a zero at a ¼ 0.99773, a zero at a ¼
0.009015 and a pole at a ¼ 0.009015, and similarly for
other values of N. In Table II we list the first zero, denoted
½2; 1�zero;i, as a function of N.
We calculate the ½1; 2�βrd;4l Padé approximant to be

½1; 2�βrd;4l ¼
1þ ½b21b4þb3

2
−2b1b2b3

b1ðb22−b1b3Þ
�a

1þ ðb1b4−b2b3b2
2
−b1b3

Þaþ ðb23−b2b4b2
2
−b1b3

Þa2
: ð4:12Þ

The two poles of the ½1; 2�βrd;4l approximant occur at
a ¼ ½1; 2�pole;ði;iiÞ, where

½1; 2�pole;ði;iiÞ ¼
b1b4 − b2b3 � ½b21b24 − 3b22b

2
3 þ 4b1b33 þ 4b32b4 − 6b1b2b3b4�1=2

2ðb2b4 − b23Þ
: ð4:13Þ

The zero of this approximant occurs at a ¼ ½1; 2�zero,
where

½1; 2�zero ¼
b1ðb1b3 − b22Þ

b21b4 þ b32 − 2b1b2b3

¼ −
3ð2N − 3Þ

2½2N2 þ 13N − 9þ 6ð11N − 17Þζ3�
:

ð4:14Þ
Both of the poles ½1; 2�pole;i and ½1; 2�pole;ii are negative.
Furthermore, we find that this approximant has nearly
coincident zero-pole pairs, which thus can both be ignored.
For example, for N ¼ 3, the zero occurs at a ¼ −0.027540
while one of the poles occurs at the nearly equal value,
a ¼ −0.027556, and the other pole is at a ¼ −0.97919.
Similar results hold for other values of N, i.e., the ½1; 2�βrd;4l
PA has a nearly coincident zero-pole pair (at negative a)
together with a second unphysical pole at negative a.
As we have discussed, the four-loop beta function has a

negative real root, in strong contrast with the two-loop and
three-loop beta functions. At this four-loop level, the [1,2]
PA does not exhibit any true zero, but only a zero that is
nearly coincident with a pole and hence can be identified as
an artifact. The [2,1] PA yields a zero, but it is at a
completely different value than the only real root of the
actual four-loop beta function, art;4l. Thus, our analysis of
the [2,1] and [1,2] Padé approximants to the four-loop
(reduced) beta function yield further evidence against a
robust IR zero in this four-loop beta function.

V. ANALYSIS USING SCHEME
TRANSFORMATIONS

Since the coefficients bl with l ≥ 3 in the beta function
are scheme-dependent, it is necessary to check that the

conclusions from our analysis of the beta function with b3
and b4 calculated in the MS scheme are robust with respect
to scheme transformations. To begin, we study scheme
transformations that are designed to remove higher-loop
terms in the beta function. We first review some relevant
background. In [22], formulas were derived for the coef-
ficients b0l resulting from a general scheme transformation
fða0Þ of the form

a ¼ a0fða0Þ: ð5:1Þ
Since a scheme transformation has no effect in the case of a
free field theory, fða0Þ satisfies the condition that fð0Þ ¼ 1.
Expressing fða0Þ as a power series in a0, one has

fða0Þ ¼ 1þ
Xsmax

s¼1

ksða0Þs; ð5:2Þ

where the ks are constants and smax may be finite or infinite.
It follows that the Jacobian of this transformation, J ¼
da=da0 satisfies the condition Jð0Þ ¼ 1 and has the
expansion

J ¼ 1þ
Xsmax

s¼1

ðsþ 1Þksða0Þs: ð5:3Þ

Then in the transformed scheme, the coefficients of the
three-loop and four-loop terms in the beta function are [22]

b03 ¼ b3 þ k1b2 þ ðk21 − k2Þb1; ð5:4Þ

b04 ¼ b4 þ 2k1b3 þ k21b2 þ ð−2k31 þ 4k1k2 − 2k3Þb1;
ð5:5Þ

and so forth for higher b0l.
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In [22] a set of conditions was given that should be
obeyed by a nonpathological scheme transformation.
Condition C1 was that the scheme transformation must
map a physical (real, positive) a to a real positive a0, since a
map that yields a negative or complex value of a0 would
violate the unitarity of the theory. As condition C2, we
required that the scheme transformation should preserve
perturbativity, and hence should not map a small or
moderate value of a to an excessively large value of a0
or vice versa. Condition C3 stated that the Jacobian J
should not vanish or diverge, since otherwise the trans-
formation would be singular. More generally, if J were to
become too small or too large, it could lead to a violation of
condition C2. Finally, condition C4 was that if a beta
function exhibited a zero at a sufficiently small value as to
be perturbatively reliable, then a scheme transformation
should not alter this property. Reference [22] also gave the
first explicit scheme transformation to set b0l ¼ 0 for l ≥ 3,
at least in the local vicinity of the origin, but it also showed
that this does not, in general, work to remove these higher-
loop terms at a point located away from the origin, i.e., an
IR zero in an asymptotically free theory or a UV zero in an
IR-free theory. The reason, as shown in [22] and [27], is
that if one attempts to apply such a scheme transformation
to remove these higher-loop terms at a point away from the
origin, then the transformation violates one or more of the
conditions C1-C4 for acceptability. As in [27], we denote
the scheme transformation presented in [22] (with
smax ¼ m) that removes the coefficients in the beta function
up to loop order l ¼ mþ 1, at least near the origin, as SR;m.
We proceed with our analysis with the SR;m scheme

transformation. The SR;2 transformation has [22]

k2 ¼
b3
b1

ð5:6Þ

and the SR;3 transformation has this k2 and

k3 ¼
b4
2b1

: ð5:7Þ

We begin by determining whether the scheme transforma-
tion SR;2 can be applied in the relevant region of awhere we
need to apply it to set b03 ¼ 0 and thus remove the three-
loop term in the beta function. Since the (scheme-
independent) two-loop value is aIR;2l ¼ a0IR;2l ¼ 1, the
relevant region is in the neighborhood of a ¼ 1. This SR;2
transformation is defined by Eq. (5.2) with smax ¼ 2 and k2
given by Eq. (5.6). If the application of this SR;2 trans-
formation in the vicinity of a ¼ were possible, then it
would follow from Eq. (5.5) that b04 ¼ b4. For SR;2,
Eq. (5.1) is

SR;2 ⇒ a ¼ a0½1þ k2ða0Þ2� ¼ a0
�
1þ b3

b1
ða0Þ2

�
: ð5:8Þ

Solving Eq. (5.8) for a0, we obtain three roots, and we
require that at least one of these should be a physical (real,
positive) value for a in the relevant range of values
comparable to aIR;2l ¼ 1. We find that this necessary
condition, C1, is not satisfied. Instead, two of the solutions
of Eq. (5.8) for a0 form a complex-conjugate pair, while the
third is negative. For example, for a ¼ aIR;2l ¼ 1 and
N ¼ 4, the three solutions for a0 are 1.191� 0.509i and
−2.383, while for N ¼ 10, the three solutions for a0 are
0.4125� 0.450i and −0.825. The Jacobian also exhibits
pathological behavior; J is given by

SR;2 ⇒ J ¼ 1þ 3k2ða0Þ2 ¼ 1þ 3b3
b1

ða0Þ2

¼ 1 −
3ð2N − 7Þ

4
ða0Þ2: ð5:9Þ

For aIR;2l ¼ a0IR;2l ¼ 1, J ¼ ð25− 6NÞ=4, which decreases
through zero as N (continued to the real numbers) increases
through the value N ¼ 25=6, violating condition C3. It is
therefore not possible to use this scheme transformation to
remove the three-loop term in the beta function in the
region of a where we are trying to do this, namely
the neighborhood of the (scheme-independent) value
a ¼ aIR;2l ¼ 1.
We can also investigate whether the scheme transforma-

tion SR;3 is physically acceptable to be applied in the
relevant range of values of a, namely a ¼ aIR;2l ¼ 1. This
transformation is defined by Eq. (5.2) with smax ¼ 3 and k2
and k3 given by Eqs. (5.6) and (5.7):

SR;3 ⇒ a ¼ a0½1þ k2ða0Þ2 þ k3ða0Þ3�

¼ a0
�
1þ b3

b1
ða0Þ2 þ b4

2b1
ða0Þ3

�
: ð5:10Þ

The Jacobian for this transformation is

SR;3 ⇒ J ¼ 1þ 3k2ða0Þ2 þ 4k3ða0Þ3

¼ 1þ 3b3
b1

ða0Þ2 þ 2b4
b1

ða0Þ3: ð5:11Þ

With this SR;3 scheme transformation we find that for the
relevant range of a≃ 1, J can deviate excessively far from
unity, violating condition C1. For example, for a ¼ 1 and
N ¼ 10, we find that J ¼ 339.8, much larger than unity.
One can also apply the various scheme transformations

that we have devised in [22]–[29] to the beta function
calculated in the MS scheme and compare the resulting
value(s) of the zero(s) of the beta function with the value(s)
obtained at the three-loop and four-loop level in the MS
scheme. Our general analyses in [22–29] (see also [30])
have shown that, for moderate values of the parameters
determining these scheme transformations, the resultant
values of the zero(s) are similar to those obtained in the
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original MS scheme. In particular, the negative, unphysical
value of art;4l will still be present in the transformed
scheme.
Summarizing this section, we have shown that our con-

clusion, that the beta function of the finite-N Gross-Neveu
model, calculated up to four-loop order, does not exhibit an
IR zero, is robust with respect to scheme transformations.

VI. COMPARISON WITH RESULTS IN THE LN
LIMIT AND BEHAVIOR FOR d > 2

In this section we discuss how the conventional pertur-
bative beta function reduces in the LN limit, and we also
comment on some properties of the theory for spacetime
dimension d > 2. From Eq. (2.7), the quantity that remains
finite and nonzero in the LN limit is λ ¼ gN, and hence the
corresponding beta function that is finite in this limit is

βλ ¼
dλ
dt

¼ lim
LN

N
dg
dt

¼ lim
LN

Nβ: ð6:1Þ

With the limit N → ∞ having been taken, βλ has the series
expansion, for d ≳ 2, with ϵ ¼ d − 2,

βλ ¼ λ

�
ϵþ

X∞
l¼1

b̂lξl
�
; ð6:2Þ

where

ξ ¼ lim
LN

Na ¼ λ

2π
ð6:3Þ

and

b̂l ¼ lim
LN

bl
Nl : ð6:4Þ

Here we have used the fact that blal ¼ b̂lξl in the LN
limit. We find

b̂1 ¼ −2 ð6:5Þ
and

b̂l ¼ 0 for l ≥ 2: ð6:6Þ
The latter result follows from the fact that the structure of
the bubble graphs in the calculation of bl in, e.g., the MS
scheme, means that, for l ≥ 2, bl is a polynomial in N of
degree l − 1. Although the bl with l ≥ 3 are scheme-
dependent, this property is maintained by scheme trans-
formations that are finite in the LN limit [22]. Hence, for
l ≥ 2, limLNbl=Nl ¼ 0, which is the result given in
Eq. (6.6). Similarly, although b̂l with l ≥ 3 are, in general,
scheme-dependent, if they are zero in one scheme, such as
the MS scheme, then they are also zero in any other scheme
reached by a scheme transformation function that is finite in
the LN limit [22]. It follows that in the LN limit, with
d ¼ 2þ ϵ≳ 2,

βλ ¼ λ½ϵ − 2ξ� ¼ λ

�
ϵ −

λ

π

�
: ð6:7Þ

Hence,

d ¼ 2 ⇒ βλ ¼ −
λ2

π
; ð6:8Þ

with only the UV zero in this beta function at λ ¼ 0, and no
IR zero. We can relate this to the beta function that was
calculated in [1] in the LN limit. From Eqs. (2.1) and (3.1),
we have

β ¼ dg
dt

¼ 2gGN
dgGN
dt

¼ 2gGNβGN: ð6:9Þ

Explicitly, in the LN limit, from Eqs. (6.8) and (2.1),

βλ ¼ −
λ2

π
¼ −lim

LN

g4GNN
2

π
: ð6:10Þ

Combining Eqs. (6.1), (6.9), and (6.10) yields βGN¼
−g3GNN=ð2πÞ¼−gGNλ=ð2πÞ, in agreement with Eq. (2.9)
above, or equivalently, Eq. (3.7) in Ref. [1]. This agreement
was guaranteed, since the LN limit is a special limit of the
result for finite N. Accordingly, our finding that there is no
robust evidence for an IR zero in the finite-N beta function
of the (d ¼ 2) Gross-Neveu model is, a fortiori, in agree-
ment with the fact that in the LN limit, the beta function βλ
in Eq. (6.8) [equivalently, βGN in Eq. (2.9) above], does not
exhibit an IR zero.
If d > 2, then for small λ, the GN theory is IR-free, with

an IR zero of βλ at the origin, λ ¼ 0, and a UV zero of βλ at

λUV ¼ πϵ for d ≳ 2; LN limit; ð6:11Þ
which is a UV fixed point of the renormalization group.
This is closely analogous to the result found from an exact
solution of the OðNÞ nonlinear σ model (NLσ M) in d ¼
2þ ϵ dimensions in the N → ∞ limit [14]. In that theory,
denoting the analogous finite coupling in this limit as

x ¼ lim
N→∞

NλNLσM; ð6:12Þ

the exact solution yielded the beta function, for d ≳ 2,

βx ¼
dx
dt

¼ x

�
ϵ −

x
2π

�
: ð6:13Þ

Thus, this nonlinear sigma model is, like the GN model in
d≳ 2, IR-free with a UV fixed point at

xUV ¼ 2πϵ: ð6:14Þ

VII. CONCLUSIONS

The Gross-Neveu model in d ¼ 2 spacetime dimensions
has long been of value as an asymptotically free theory
which is exactly solvable in the LN limit, i.e., N → ∞ with
gN finite, and exhibits nonperturbative fermion mass
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generation and associated dynamical chiral symmetry
breaking. In this paper we have considered the finite-N
Gross-Neveu model. We have addressed and answered a
fundamental question about the UV to IR evolution of this
model, as embodied in the beta function, namely whether
this beta function exhibits evidence for an IR zero. For the
purpose of our study, we have analyzed the beta function to
the highest-loop order to which it has been calculated,
namely the four-loop order. Our study used a combination of
threemethods, namely a direct analysis of the three-loop and
four-loop beta functions, a study of Padé approximants, and

a study of the effect of scheme transformations. We find that
in the range of couplingwhere the perturbative calculation of
the four-loop beta function is reliable, it does not exhibit
robust evidence for an infrared zero.
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