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Huge electromagnetic fields are known to be present during the late stages of the dynamics of supernovae.
Thus, when dealing with electrodynamics in this context, the possibility may arise to probe nonlinear theories
(generalizations of the Maxwellian electromagnetism). We firstly solve Einstein field equations minimally
coupled to an arbitrary (current-free) nonlinear Lagrangian of electrodynamics (NLED) in the slow rotation
regime a ≪ M (black hole’s mass), up to first order in a=M. We then make use of the robust and self-
contained Born-Infeld Lagrangian in order to compare and contrast the physical properties of such NLED
spacetime with its Maxwellian counterpart (a slowly rotating Kerr-Newman spacetime), especially focusing
on the astrophysics of both neutrino flavor oscillations (νe → νμ, ντ) and spin-flip (νl → νr, “l” stands for
“left” and “r” stands for “right”, change of neutrino handedness) mass level crossings, the equivalent to
gyroscopic precessions. Such analysis proves that in the spacetime of a slowly rotating nonlinear charged
black hole (RNCBH), intrinsically associated with the assumption the electromagnetism is nonlinear, the
neutrino dynamics in core-collapse supernovae could be significantly changed. In such an astrophysical
environment, a positive enhancement (reduction of the electron fraction Ye < 0.5) of the r-process may take
place. Consequently, it might result in hyperluminous supernova explosions due to enlargement, in atomic
number and amount, of the decaying nuclides. Finally, we envisage some physical scenarios that may lead to
short-lived charged black holes with high charge-to-mass ratios (associated with unstable highly magnetized
neutron stars) and ways to possibly disentangle theories of the electromagnetism from other black hole
observables (by means of light polarization measurements).

DOI: 10.1103/PhysRevD.95.025011

I. INTRODUCTION

It is well known that particles endowed with spin also
interactwithgravity [1]. In the astrophysical scenario, themost
commonly observed ones are photons, though neutrinos are
also produced bountifully in coalescing systems (see [2] and
references therein) due to nuclear fusion reactions in the
nucleosynthesis of heavy elements [3], playing a very impor-
tant role in the supernova physics. Neutrinos subsist just on
superposition ofmass eigenstates: flavor states [4]. This aspect
is noteworthy since it implies flavors can oscillate under
convenient conditions in physical (labs, accelerators) and
astrophysical environments (exploding stars), whichmay lead
to observable effects [5]. This aspect was exactly the early
reason for the introduction of the flavor states, in order to lead
to the neutrino oscillations that could explain the theretofore

anomalous abundance of neutrinos coming from the Sun
[6,7], as well as the ones present in material media [8,9]. Due
to the improvements in detecting neutrinos, e.g., MiniBooNE
at Fermilab USA, KamLAND-Zen Collaboration, CERN/
Geneve—Gran Sasso/Italy, ANTARES in the France
Mediterranean Sea, SuperKamiokande and K2K in Japan,
Baksan Neutrino Observatory (BNO) in the Caucasus
Mountains in Russia, Daya Bay reactor neutrino experiment
in China, Sudbury Neutrino Observatory (SNO) in Ontario
Canada, IceCube Neutrino Observatory at the South Pole
[10], etc.; detailed analyses where neutrino conversions take
place become more pertinent. More importantly yet, due to
the unavoidable interaction of neutrinos with gravity, such
particles could give us invaluable and precise information
about various astrophysical environments such as exploding
stars, i.e., supernovae.
In a supernova, neutrinos carry away almost all the binding

energy of the just-born neutron star, i.e.,ΔEν ∼ 3 × 1053 erg
[11]. Because of this abrupt neutrino cooling process (which
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may lead the system to increase its density), the proto-neutron
star (PNS) might undergo a catastrophic phase transition to a
hybrid or quark star, where an interacting strange kaon
condensation state is said to appear [12],1 possibly leading
to the formation of a short-lived rotating and nonlinear
charged black hole (RNCBH) [15,16], that is, a black hole
described by a theory of the electromagnetism more general
than Maxwell’s. This might happen because electromagnetic
fields could easily surpass certain scale fields (intrinsically
associated with nonlinear theories of the electromagnetism)
near the black hole horizons if they are charged enough. In
Sec. X, we envisage some scenarios which might result in
such a situation. The RNCBHmay appear, for instance, after
the just-formed proto-neutron star undergoes a phase tran-
sition creating a charge separation amidst the crust and the
collapsing core [15], as well as by means other possible
effects, which are also be briefly discussed in Sec. X.
All the above motivates and leads us to the main scope of

this work: to surmise the existence of axially symmetric
nonlinear charged black holes (at least for some instants of
time, i.e., transiently) and study their properties and impli-
cations, specially through the physics of neutrinos. Foremost,
we solve the system of equations coming from the minimal
coupling of standard general relativity with generalizations of
the Maxwell’s Lagrangian, known as nonlinear electrody-
namics (NLED), in the slow rotation regime (a ≪ M, a is the
rotational parameter of the black hole and M its mass).
NLED is the approach to describe electromagnetic inter-

actions in a relativistically invariant setup. Several approaches
were envisioned, such as Heisenberg; Euler and Kochel;
Euler; Heisenberg and Euler (added F2-term) [17–21];
Weisskopf (added a logarithmic term) [22]; Born; Born
and Infeld [23] (bounded the electric field strength by giving
to the electron a finite radius); and Plebanski (robust frame-
work, including plasma physics) [24], to extend Maxwell
electrodynamics (linear in Lorentz invariant F) so as to deal
with divergences in analysis of electromagnetic (EM) phe-
nomena, as well as to insert desired effects into the theory
under the classical point of view. Applications of NLED have
been extensively studied in the literature, extending from
cosmological and astrophysical contexts [25–32] to nonlinear
optics [33], high power laser technology, and plasma physics
[34–37], and the field nonlinear exponential growth due to

chiral plasma instability during the weak parity-violating
electron-capture (chirality imbalance) process in core collapse
SNe [38,39]. These authors stress that the original B-field
gives a positive feedback to itself, to grow exponentially,
being this last the actual chiral plasma instability. In our
understanding, this field increase would suggest that NLED
might be at action inside just-born pulsars. For further details
on magnetic field amplification, see Ref. [40].
Meanwhile, the gravitational effects on the neutrino

oscillation phases (between active species νa → νb and
of active into sterile species νa → νs), and consequently on
the overall neutrino dynamics (which would also include
neutrino spin-flip conversions νl → νr, related to their
handedness), have been the focus of several discussions
in the literature [3,41–43]. It has become clear that gravity
would be essential for building a complete picture of the
neutrino dynamics in very dense and self-gravitating
matter, in particular, in the very deep inside regions of
supernovae. In recent analyses [3,41], it has been pointed
out that the neutrino outflow and related supernova
expansion have been discussed in most of the specific
literature ignoring any gravitationally induced effects.
Indeed, neutrino oscillations in the accretion disk produced
by the coalescence of a binary neutron star system [2], and
in the inner edge of the fall-back supernova ejecta, as well
as around the neutrinosphere, could be strongly influenced
by gravity, which then would affect the supernova accretion
dynamics (neutron digging in fingers)2 [44,45] and the final

1The reason for this lies mainly in the fact that densities so high
(supranuclear) could be attained during the gravitational collapse
that even a quark phase might arise [13], as suggested by QCD
physics involving the appearance of Cooper pairs, “bosonization”
and/or kaon condensation, color-flavor locking, quark deconfine-
ment, and other theoretically allowed QCD stages which might
drive phase transitions at the very inner core (for further details
see [14] and references therein). These stages could appear when
a equation of state of cold baryon-rich matter is considered. All
this would be as well accompanied by the expected neutrino
cooling which would decrease even more the pressure of the
supernova progenitor (deleptonization process), allowing this
way for gravity to make the star even further compact.

2Fornonexperts in the field ofnumericalmodelingof supernovae,
in what follows we resume the relevant physics and astrophysics
pertinent to the concept of neutron fingers taking benefit from the
abstract of Ref. [44] and the discussion on this fluid feature given in
Ref. [45]. Neutron fingers are instabilities in a Ledoux stable fluid
driven by thermal and lepton diffusion, technically quoted as doubly
diffusive instabilities. Whenever these fluid motions are present
below the neutrino sphere in a core-collapse supernova progenitor,
they can induce convective-like fluid motions at those supernova
layers and may enhance the neutrino emission by advecting
neutrinos outward toward the neutrino sphere, which may thus
play an important role in the supernovamechanism. Neutron fingers
have also been suggested as being critical for producing explosions
in the sophisticated spherically symmetric supernova simulations by
the Livermore group. Such instability has been argued to arise in an
extensive region below the neutrino sphere of a proto-supernova
where entropy and lepton gradients are stabilizing and destabilizing,
respectively, if, as that group asserts, the rate of neutrino-mediated
thermal equilibration greatly exceeds that of neutrino-mediated
lepton equilibration. According to Bruenn and collaborators [44],
application of the Livermore group’s criteria tomodels derived from
core collapse simulations using both their equation of state and the
very well-known Lattimer-Swesty equation of state do show a large
region below the neutrinosphere unstable to neutron fingers. Indeed,
from the convective regions below the neutrinosphere, neutron
fingers dig into the star and reach its center in about one second.
Then they propagate outward to englobe almost all the exploding
star. An interesting discussion on the relevance of this astrophysical
fluid dynamics phenomenon and its timescale (1–50 ms) for the
production of bursts of gravitational waves during the deleptoniza-
tion phase of supernovae is given in Ref. [46].
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explosion wind. Because of this, all the fundamental
quantities of relevance for the explosion dynamics would
be, in principle, affected by the gravitational field of the
putatively just-formed RNCBH here under analysis. Thus,
most of the gravitational effects we discuss in the present
paper would be directly connected with the drawbacks or
difficulties of the current neutrino oscillation description of
the effects in supernova explosions, which still fail in
succeeding to eject the stellar inner mantle, especially in
3-D simulations [44]. Regarding this issue, SN modelers
argue that most likely turbulence is the culprit.
We therefore state hereafter that the full consideration of

gravitational effects on neutrinos propagating in the nearby
spacetime of a black hole should be taken into account in
SNe studies and that a possibly relevant piece for engineer-
ing such process would be a rotating and charged black
hole or any very compact object permeated by nonlinear
electromagnetic fields. For instance, the gravitational red-
shift (sensitive to nonlinear electrodynamics) should play a
fundamental role in the entire supernova explosion physics,
both theory and observations indicate such properties
should take place in the final stage of evolution of massive
stars, e.g., a Wolf-Rayet, or the coalescence of a binary NS
system.
Summarizing, the central engine here purported should

be properly integrated in any scheme intended to success-
fully explain the dynamics of such astrophysical explo-
sions. This is the principal motivation of the present paper.

A. A brief account on neutrino oscillations
in a gravitational field

As already mentioned, most of the dynamical features
associated with neutrino flavor transformations are inti-
mately connected to or dependent on their difference in
masses Δm2

21 ≡m2
2 −m2

1, or simply Δm2. Therefore, in
order for a flavor conversion to be observable while
happening over a distance x, in a curved spacetime, the
wave packet describing a couple of mass eigenstates should
overlap (i.e., they should undergo quantum-mechanical
interference); otherwise, each of the individual masses will
separate from each other as time goes by. The comments in
this paragraph apply to the vacuum oscillations, although it
is clear that similar conditions apply to the level-crossing
phenomenon of oscillations in matter, or the MSW effect
[8,9]. In this last case, the difference of the squares of the
neutrino mass eigenvalues Δjmswm2, the mixing angle in
matter tan 2θjmsw, and the resonance condition vjmswðrÞ
should also be affected by the gravity associated with the
curved spacetime.
In general relativity, there exists a condition on the

width of the neutrino wave packets such that neutrino
oscillations are observed while taking place in a curved
spacetime. Recalling that the infinitesimal line element in
such spacetime reads ds2 ¼ gαβdxαdxβ (for simplicity, we

assume here a spherically symmetric spacetime in a
coordinate system such that gαβ is diagonal, and we choose
the metric signature ½þ;−;−;−�), the searched condition
on the width of the neutrino wave packetsΔd translates into
the covariant inequality [43]

Δd≳
Z

ð−gijPi
2P

j
2Þ

1
2dλ −

Z
ð−gijPi

1P
j
1Þ

1
2dλ; ð1Þ

where λ is an affine parameter along the geodesics and Pi,
i ¼ 1, 2, 3, are the space components of Pμ (the conjugate
four-momentum to xμ, the generator of spacetime trans-
lations of neutrinos), which satisfies the “mass shell
condition” PμPμ ¼ m2. As seems reasonable due to the
neutrino very small masses, we approximate the tangent
four-vectors to the trajectories, _xμ ≐ dxμ=dλ, to null-like
ones, _xμ _xμ ¼ 0. Due to the freedom in rescaling the
affine parameter, we assume here that P0¼ _x0 and
Pi
a¼ _xið1−ϵaÞ, a ¼ 1, 2, with ϵ ≪ 1 due to the neutrino

small masses and a stands for the neutrino mass eigen-
states. From _xμ _xμ ¼ 0, small ϵ, and the mass shell relation,
it straightforwardly follows that

ϵa ¼
m2

a

−2gij _xi _xj
¼ m2

a

2g00ð_x0Þ2
: ð2Þ

Finally, from Eq. (2) and by recalling that dl2 ¼
−gij _xi _xjðdλÞ2 ¼ g00ð_x0Þ2ðdλÞ2, where dl is the infinitesi-
mal proper spatial length (for t constant) in the spacetime
gμν, we have that Eq. (1) can be cast as

Δd≳ Δm2

2

Z
dl

½g00ð_x0Þ2�
¼ Δm2

2

Z
g00
E2
0

dl; ð3Þ

where E0 is a constant (energy at infinity) coming from the
geodesic equation g00 _x0 ¼ E0.
As one can understand from the above brief analysis,

to properly discuss the potential detectability of neutrino
flavor conversions taking place over the spacetime of a
nonlinear charged and slowly rotating black hole, one of the
goals of this paper, it is needed to have computed the g00
metric component of such geometry, once the neutrino
energy is known in advance. Consequently, because in our
study case (neutrino physics inside the cores of supernovae)
this geometry could be far different from the one corre-
sponding to the Schwarzschild spacetime, one would
expect to find not previously reported effects. This way,
all the information that could be gathered in connection to
such events may help characterize whether the supernova
event formed a Schwarzschild-like black hole rather than a
Kerr-Newman-like one, which would prove the astrophysi-
cal formation and existence of such compact supernova
remnants. An idea relatively similar to our view here
involving neutrino propagation inside supernovae was also
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discussed by Beacom as the signature of the formation of a
BH inside a SN [47].
Our analyses in this work could also be seen under the

following perspective: finding astrophysical entities and
environments that could be used as tools to probe (non-
linear) electrodynamical processes in the cosmos, quite
similarly, conceptually speaking, to Crispino and collabo-
rators’ investigations, who used scattered electromagnetic
radiation to probe the charge of a black hole [48].
The plan of this paper is the following. In the next

section, we obtain the field equations for slowly rotating
nonlinear charged black holes. Section III reviews the
geodesics in the aforesaid spacetimes, important for the
neutrino physics, such as flavor oscillations, that shall be
investigated in Sec. IV, and spin precession (or spin-flip)
discussed in Sec. V. In Sec. VI, we apply the generic results
of neutrino oscillations and spin precession for Born-Infeld
theory, in order to explore their differences when compared
to the Maxwell Lagrangian. We also make use of the effect
of frame dragging in axially symmetric spacetimes to
contrast the aforementioned theories in Sec. VII.
Section VIII is devoted to elaborate upon the relevance
of charge (nonlinearity of the electromagnetism) in black
holes for r-processes. Simple estimates are given in Sec. IX
only for assessing relevant scales for some physical
processes in the astrophysical context. Finally, in Sec. X,
we discuss and summarize the main points of our assump-
tions and analysis. We work with geometric units unless
otherwise stated. For the electromagnetism, we work with
Gaussian units. The metric signature is chosen to be
−2 [(þ;−;−;−)].

II. FIELD EQUATIONS FOR SLOWLY ROTATING
NONLINEAR BLACK HOLES

When one considers that the norm of the angular
momentum per unit of mass, a, of a spinning black hole
is constrained to be much smaller than its outer horizon rþ
(which implies a=r ≪ 1, as well as a=M ≪ 1,M its mass);
then, based on the Kerr-Newman solution [49], the
Ansatz to the metric to account for nonlinear
Lagrangians of the electromagnetism can be written in
Schwarzschild coordinates ðt; r; θ;ϕÞ as

ds2 ¼ g00ðrÞdt2 −
1

g00ðrÞ
dr2 − r2dθ2 − r2 sin2 θdϕ2

− 2a sin2 θAðrÞdtdϕ; ð4Þ

where g00ðrÞ is the solution to the associated static and
spherically symmetric black hole for the theory under
interest. In Eq. (4), AðrÞ is the function to be determined
from the nonlinear electromagnetic field equations, which
we describe below.
The whole set of field equations is obtained by the

minimal coupling between standard general relativity

(Einstein-Hilbert action) and nonlinear theories of the
electromagnetism with Lagrangian densities dependent
upon its invariants LðF;GÞ, and it reads (see [50] and
references therein)

Gμν ¼ 8πTμν;

∂
∂xμ

h ffiffiffiffiffiffi
−g

p �
LFFμν þ LGF

� μν�i ¼ 0; ð5Þ

added to

∂
∂xμ ð

ffiffiffiffiffiffi
−g

p
F
� μνÞ ¼ 0; ð6Þ

with an energy-momentum tensor built only on the non-
linear electromagnetic fields (since we are only interested
in black hole solutions to general relativity, which allows us
to assume that the mass and charge of the system are only at
its origin3), given by [50]

4πTμν ≐ 2ffiffiffiffiffiffi−gp ∂L
∂gμν

¼ 4LFFμαFνβgαβ − ðL −GLGÞgμν: ð7Þ

We have defined in the above equations that LX is the
derivative of the Lagrangian density L with respect to

the invariant X, F≐FμνFμν, G≐F
� μν

Fμν, F
� μν ≐ ημναβFαβ=

ð2 ffiffiffiffiffiffi−gp Þ, η0123 ≐ þ1 is a totally antisymmetric tensor,
Fμν ≐ ∂μAν − ∂νAμ is the electromagnetic field four-
tensor, Aμ is the electromagnetic four-potential, and

F
� μν

is its associate dual [51]. Besides, g has been defined
as the determinant of the metric given by Eq. (4). In the
above equations, only for mathematical convenience, we
have taken L ¼ 4πLGa, where LGa is the Lagrangian
density in Gaussian units [for instance, for Maxwell’s
electromagnetism, we have LGa ¼ −F=ð16πÞ]. Finally,
let us define the electromagnetic fields by means of
Ftr ≐ Er, Ftθ ≐ Eθ, Frφ ≐ Bθ, and Fφθ ≐ Br. Local
fields are to be obtained by means of a tetrad decom-
position of Fμν following the above-mentioned defini-
tions. Notice from the second term of Eq. (5) that we are
assuming our system is such that its current four-vector
is null.
In the spherically symmetric case, the above field

equations with asymptotically flat black hole solutions
lead to [50]

3In this work, we are neglecting the baryonic contribution to
the stress-energy tensor, though it generates the neutrinos we
make use of in order to explore some nonlinear theories of the
electromagnetism, because we assume a situation in which it has
already collapsed into a black hole (presumed to be charged). In
this case, neutrinos could be treated as test particles in this just-
formed black hole spacetime.
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g00ðrÞ ¼ 1 −
2M
r

þ 2QA0

r
−
2N
r

ð8Þ

and

∂L
∂Er0

¼ Q
r2

ð9Þ

with

Er0 ≐ −
∂A0

∂r and
∂N
∂r ≐ −Lr2: ð10Þ

[L ¼ LðFÞ in this case since we are assuming the non-
existence of magnetic charges.] The constantsM and Q are
the total mass (total energy) and charge of the system,
respectively, and are formally constants of integration. In
Eq. (8), a gauge has been imposed such that A0ðrÞ and N
(the part of the total electromagnetic energy explicitly
associated with a nonlinear Lagrangian) are null at infinity,
guaranteeing the asymptotic flatness of the solutions and
the asymptotic nullity of electromagnetic fields. Given Er0
and L ¼ LðEr0Þ, A0ðrÞ andN ðrÞ can be obtained by means
of integration from an arbitrary radial coordinate r up to
infinity.
Let us assume that the fields for the slowly rotating black

holes are

Er ¼ Er0 þOða2Þ; Br ¼ BraaþOða2Þ;
Eθ ¼ Oða2Þ; Bθ ¼ BθaaþOða2Þ: ð11Þ

By substituting Eqs. (4) and (11) into Eq. (5), one can easily
show that the only new equation arising, apart from the one
in the spherically symmetric case, reads

8BθaEr0g00LF þ 2LAðrÞsin2θ

¼ sin2θ

�
AðrÞðg00rÞ0

r2
þ 1

2
½g0000AðrÞ − g00A00ðrÞ�

�
;

ð12Þ

where the prime symbol stands for the derivative with
respect to the r coordinate. Since the Lagrangian LðF;GÞ is
at least a quadratic function of the fields, then in the above
equation it is implicit that L and LF are evaluated at a ¼ 0.
From Eq. (12), one can immediately check that it is
meaningful just if

Bθa ¼ fðrÞ sin2 θ; ð13Þ

where fðrÞ is an arbitrary function of the radial coordinate.
The equation governing the field components Bra and Bθa
can be obtained from Eqs. (5) and (6) and are

∂Bra

∂r þ ∂Bθa

∂θ ¼ 0 ð14Þ

and

0 ¼ sin θ
∂
∂r
�
LF

�
−AðrÞEr0 þ g00

Bθa

sin2θ

	


−
1

r2
∂
∂θ
�
LFBra

sin θ
−
r2LGEr0

a



: ð15Þ

From Eqs. (13) and (14), it follows that

Bra ¼ gðrÞ sin 2θ; ð16Þ

which leads to the very simple relation

fðrÞ ¼ −g0ðrÞ: ð17Þ

Since the Lagrangian must be an even power of the
invariant G, it is straightforward to see that

LG ¼ −
8aLYEr0Bra

r2 sin θ
þO

�
a2

r2



; Y ≐ G2: ð18Þ

Finally, gathering Eqs. (13), (16), and (18), Eq. (15) can be
cast in the form

−fLF½AðrÞEr0 þ g00g0ðrÞ�g0 þ
2gðrÞ
r2

½LF þ 8LYE2
r0� ¼ 0:

ð19Þ

Up to zeroth order, one can also put Eq. (8), with the help of
Eq. (9), to the form

ðg00rÞ0 ¼ 2Lr2 − 2QEr0 þ 1: ð20Þ

Then, from Eqs. (12), (13), and (17) and the above one, we
simply have

2Qg0ðrÞg00¼ð−2QEr0þ1ÞAðrÞþr2

2
½g0000AðrÞ−g00A00ðrÞ�:

ð21Þ

Hence, we have two undetermined functions gðrÞ and AðrÞ
and two coupled equations, Eqs. (19) and (21). As the
boundary condition, for large r, the functions should
approach their Maxwellian (Ma) counterparts,

AðrÞ → AðrÞMa ¼ g00 − 1 ¼ Q2

r2
−
2M
r

;

gðrÞ → gðrÞMa ¼
Q
r
; ð22Þ
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as it can be shown by choosing LðF;GÞ ¼ −F=4 and
solving the equations for the metric g00, Er0 and Eqs. (19)
and (21).
Since, in general, the problem set out above can just be

solved numerically, it turns out that the r variable is not
convenient for this end. Numerically, it is much more
suitable to use the dimensionless variable u, defined as
u ≐ M=r. Concerning the integration of the aforesaid
equations, u should run from 0 to uh, where the latter is
given as the smallest solution to g00ðuhÞ ¼ 0. The quantity
uh is called the outermost horizon of the black hole, and
determining it is important because it defines the region of
physical interest (u < uh), which has an impact on all
position-dependent observables.

III. GEODESICS IN SLOWLY ROTATING
NONLINEAR SPACETIMES

Forasmuch as we are interested in describing neutrinos in
spacetimes related to axially symmetric nonlinear black
holes, the general study of geodesics is necessary, given
that these particles have no charge and hence are not
sensitive to forces of electromagnetic origin. This is also so
since the Dirac equation in the limit of the WKB approxi-
mation (the one we are interested in here) assures that the
phase part of neutrino spinors satisfy a Hamilton-Jacobi-
like equation [52] and by assuming that their amplitudes
vary slowly, they do not play a role for convenient
spacetime distances, revealing therefore the test particle
aspects of the neutrinos (quite similarly to the notion of rays
in optics). We underline from the previous sentences that
we are overlooking the interaction of the B-field with the
neutrino anomalous magnetic moment and spin. Upon the
aforesaid premises, there are several ways of describing
neutrino trajectories. An elegant approach would be solving
the associated Hamilton-Jacobi equation [51] for the
spacetime given by Eq. (4). Nevertheless, we follow the
Lagrangian approach. Given that we are working up to
first order in “a=r”, due to the frame dragging effect, test
particles only remain confined in a plane if it is the
equatorial one [53], and thus, for simplicity, we limit
our analysis to θ ¼ π=2. For this case, the proper
Lagrangian for test particles (t.p.) is [54]

Lðt:p:Þ ≐ 1

2

�
g00_t2 −

_r2

g00
− r2 _φ2 − 2aAðrÞ_t _φ

	
; ð23Þ

where _xμ ≐ dxμ=dλ, with λ an affine parameter along the
curve followed by the test particle. From Eq. (4), the
coordinates t and φ are cyclic ones for the above
Lagrangian. Hence, the quantities pt ≐ E and pφ ≐ −l,
with pμ ¼ gμνpμ, pμ ≐ m_xμ, andm the rest mass of the test
particle of interest, are constants along the geodesics.

From our previous definitions and Eq. (23), we thus have

_t ¼
~Er2 þ aAðrÞ~l
g00ðrÞr2

; _φ ¼
~lg00ðrÞ − ~EaAðrÞ

g00ðrÞr2
; ð24Þ

where we neglected terms of second order in a=r and
defined that for any quantity C, ~C ≐ C=m. Another first
integral that comes out of our prescription is

_r2 ¼ ~E2 − g00ðrÞ
�
~l2

r2
−
2 ~E ~l aAðrÞ
g00ðrÞr2

þ ϵ

	
; ð25Þ

where ϵ ¼ 0, 1, according to which the geodesic is light-
like or time-like, respectively. The above equation is
obtained by means of the line element given by Eq. (4).
Just for the sake of completeness, the last first integral of

our analysis is _θ ¼ 0. From Eq. (25), one can even define
an effective potential by means of ~V2 ¼ ~E2, for _r ¼ 0,
which then reads [49,55]

~V� ¼
~laAðrÞ
r2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ðrÞ

�
~l2

r2
þ ϵ

	s
: ð26Þ

One could just work with ~Vþ, since the “symmetry rule”
~V−ð~lÞ ¼ − ~Vþð−~lÞ holds [55]. All features characterizing
the motion of neutral test particles can be obtained by
means of the scrutiny of the above equation. We do not
perform such an analysis here, for we are only interested in
neutrino spin-flip transitions and flavor oscillations.
In what follows, we discuss neutrino oscillations

(νa → νb) in connection to the oscillation length and the
transition probability. Analysis regarding spin-flip is done
in Sec. V.

IV. NEUTRINO FLAVOR OSCILLATION

In this section we work with Planck units. As stated
previously, neutrino flavor oscillations would take place
due to the fact that neutrino flavor eigenstates jναi are linear
combinations of neutrino mass eigenstates jνji as (see, e.g.,
[56] and references therein)

jναi ¼ Uαj exp½−iΦj�jνji; ð27Þ

where repeated indexes are summed over. In the above
equation, the α index stands for the neutrino flavor eigen-
states, while the j one stands for the mass eigenstates. The
matrix Uαj is a unitary matrix that gives the mixing—level-
crossing—between the flavor eigenstates and the mass
eigenstates. Besides, Φj is the phase associated with the
jth mass eigenstate. For curved spacetimes, Φj reads [56]

Φj ¼
Z

PðjÞμdxμ; ð28Þ

MOSQUERA CUESTA, LAMBIASE, and PEREIRA PHYSICAL REVIEW D 95, 025011 (2017)

025011-6



where PðjÞμ is just to indicate the four-momentum of the
mass eigenstate j. We assume that neutrinos just have two
spin flavors. It is well known [57] in this case that one can
introduce a mixing angle, Θ, such that the transition
probability from one flavor eigenstate α to another β reads

Pðνα → νβÞ ¼ sin2ð2ΘÞ sin2
�
Φjk

2



; ð29Þ

where Φjk ≐ Φj − Φk. Whenever one is interested in
neutrino propagation in spacetimes given by Eq. (4), after
Eqs. (24) and (25) are taken into account, for the case _r ≠ 0,
Eq. (28) can be cast into the form

Φj ¼
Z

dr
mjϵ

_r

¼ m2
j

Z
ϵdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − g00ðrÞ½l2r2 −
2ElaAðrÞ
g00ðrÞr2 þm2

jϵ�
q : ð30Þ

Note that Eq. (30) is exact and becomes zero for null
geodesics. This is easily understood by the fact that
pμdxμ ¼ gμβpβdxμ ∝ ds2, which is zero for null paths.
Hence, when it is stated in the literature that null paths are
taken into consideration, approximations are done such that
parts of the Eq. (30) properties of null geodesic are utilized.
(In the standard treatment, one assumes that pμ ¼ gμνpν is
defined along a time-like geodesic, while the tangent four-
vector to the trajectory dxμ=dλ is taken to be null-like,
resulting in a factor of 2, when compared to the case where
both pμ and _xμ are defined along time-like geodesics. See
[58] for further details.) In the nonlinear case, it is
momentous to bear in mind that photons do not follow
null geodesics in their background spacetimes but in the so-
called effective geometries (see, e.g., [59] and references
therein). Therefore, the distinction between massive par-
ticles and photons in our case is paramount.
From the second expression in Eq. (24), we see that, in

general, it is impossible to have _φ ¼ 0. Hence, pure radial
geodesics do not exist in axially symmetric spacetimes. The
origin is the dragging of inertial frames, also known as the
Lense-Thirring effect [49]. Nevertheless, approximating
_φ ∼OðaÞ is always possible if one assumes that ~l ∼OðaÞ.
For these particular (nearly radial) geodesics, the effects
introduced by the nonlinearities of the Lagrangians are
completely washed away, since E ≫ m, and 0 < g00 ≤ 1
outside the horizon. Hence, although the neutrino oscil-
lation expression is that from special relativity in this case,
the general relativistic effect of frame dragging still persists
on their trajectories.

A. Neutrino oscillation length

Another important quantity that arises in the description
of neutrino oscillations is the oscillation length [58,60].

Basically, it estimates the length over which a given neutrino
has to travel for Φjk to change by 2π. Therefore, talking
about oscillation lengths, the proper relativistic covariant
distance is of importance [43]. For the case of the spacetimes
described by Eq. (4), from Eqs. (24) and (25) and assuming
that the particles involved have the same energy E and are
such that E ≫ mj;k, it follows that

Losc ≐ dlpr
dΦjk=ð2πÞ

≃ 2πEffiffiffiffiffiffi
g00

p ðm2
j −m2

kÞ
; ð31Þ

where we assumed that dlpr is the infinitesimal proper
distance, given by [51]

dl2pr ¼
�
−gij þ

g0ig0j
g00



dxidxj; ð32Þ

with i, j ¼ 1, 2, 3. If one wants to restore the conventional
units, the right-hand side of the equality in Eq. (31) must be
multiplied by ℏ=c3.
Hence, from Eq. (31), we learn that the oscillation length

decreases whenever g00 increases. This is exactly the case
for nonlinear charged black holes, when compared to a
Schwarzschild black hole. This means that when the black
hole is charged, neutrinos will tend to oscillate more than
they would when it is not charged, for each spacetime point
(location).

V. NEUTRINO SPIN PRECESSION

In this section, we summarize the main points about
neutrino flavor spin precession, also named neutrino flavor
spin-flip, or neutrino-antineutrino oscillations [61], and
study them in the framework of the metric given by Eq. (4).
For point-like particles, the equations governing the spin Sμ

coupling of test particles with the gravitational field are [1]

DSμ

dλ
¼ 0;

Duμ

dλ
¼ 0; ð33Þ

where D=dλ stands for the absolute derivative with λ an
affine parameter [51]. From the definition of the absolute
derivative, one sees that the spin does change whenever
spin connections are not null, as contrary to the case of an
intrinsically flat Minkowski spacetime.
A proper analysis about the spin evolution of a test

particle by a local observer is done with the use of
(orthonormal) tetrads (eaμ), i.e., [51]

gμν¼ηabeaμebν ; eaμeνa¼δνμ; eaμe
μ
b¼δab; ð34Þ

where

ηab¼diagð1;−1;−1;−1Þ; eμa¼gμνeaν ; eaμ¼ηabebμ:

ð35Þ
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The tetrad decomposition of a four-vector Cμ is defined as
Ca ≐ eaμCμ, with the derivative of Cb, Cb;c, instead is
defined by [51]

Cb;c ≐ eμc
∂Cb

∂xμ : ð36Þ

From ua ≐ eaμuμ, with uμ ≐ dxμ=dτ, (the four-velocity
of the test particle), it follows that Sa;bu

b ¼ dSa=dτ,
which allows us to conclude that Sa;b ¼ ∂Sa=∂yb and
ua ¼ dya=dτ, with ya the coordinates utilized by the local
observers. Hence, eaμ ¼ ∂ya=∂xμ and ds2 ¼ ηabdyadyb ¼
gμνdxμdxν.
From Ref. [51],

Aμ;νe
μ
aeνb ¼ Aa;b þ ηcdγcabAd; ð37Þ

where γabc are the Ricci rotation coefficients, defined as [51]

γabc ≐ eaμ;νe
μ
be

ν
c; ð38Þ

and by using Eqs. (37) and (38), Eq. (33) can be recast as
(see, for instance, [61])

dSa

dτ
¼ ϖabSb;

dua

dτ
¼ ϖabub; ð39Þ

with

ϖab ≐ ηacηbdγcdeue: ð40Þ

In virtue of the antisymmetry of γabc on its first two indexes
[51], it follows thatϖab is an antisymmetric tensor. Hence, it
can be decomposed into “electric” and “magnetic” parts, Eϖ

i
and Bϖ

i , respectively, quite similarly to what is done for the
electromagnetic tensor. In other words,

Eϖ
i ¼ ϖ0i; ϖij ¼ −ϵijkBϖ

k ; ð41Þ

with ϵijk being a totally antisymmetric tensor such that
ϵ123 ≐ 1. We have used the convention that the Latin indexes
that run from zero to three are the ones from the beginning
of the alphabet (a; b; c;…), while those that run from one
to three are the ones from the middle of the alphabet
(i; j; k;….).
In general, a neutrino has a nonzero velocity with respect

to a tetrad defined at a given point of the spacetime. Hence,
it can always be defined a “locally comoving frame”, where
in the latter it is instantaneously unmoving. In this frame,
s̄a ≐ ξiδai and ūa ¼ δa0 . Thus, by using the Lorentz trans-
formations to connect both systems, one ends up with the
relation [61]

Sa ¼
�
~ξ · ~u; ~ξþ ~uð~ξ · ~uÞ

1þ u0

	
; ð42Þ

where u0 and ~u are the temporal and the spatial compo-
nents, respectively, of the comoving frame with respect to
the inertial one, or the four-velocity of the particle in this
reference system. By substituting Eq. (42) in Eq. (39) (it is
important to use both equations), and taking it into account
Eq. (41), one arrives at [61]

d~ξ
dτ

¼ ~ξ × ~ϖ; ~ϖ ≐
�
~Bϖ þ

~Eϖ × ~u
1þ u0



: ð43Þ

Then, it is an elementary task to verify that the spin ~ξ of the
particle precesses about the vector ~ϖ.
From now on, we are interested in applying the above

formalism for the case of the intrinsic (quantum) spin of
neutrinos moving in spacetimes given by Eq. (4). To start
with, as suggested by Eq. (4), for local measurements, we
choose the tetrad

e0μ ¼
� ffiffiffiffiffiffi

g00
p

;0;0;−
aAðrÞsin2θffiffiffiffiffiffi

g00
p



; e1μ ¼

�
0;

1ffiffiffiffiffiffi
g00

p ;0;0



;

e2μ ¼ ð0;0; r;0Þ; e3μ ¼ ð0;0;0; rsinθÞ: ð44Þ

Just for the sake of completeness, the corresponding inverse
tetrad reads

eμ0 ¼
�

1ffiffiffiffiffiffi
g00

p ; 0; 0; 0



; eμ1 ¼ ð0; ffiffiffiffiffiffi

g00
p

; 0; 0Þ;

eμ2 ¼
�
0; 0;

1

r
; 0



; eμ3 ¼

�
aAðrÞ sin θ
rg00ðrÞ

; 0; 0;
1

r sin θ



:

ð45Þ

It can be easily checked that the properties given by
Eq. (34) hold for the above tetrad up to the first order in
“a=r”, as internal consistency demands. For the aforesaid
tetrad, we now present the nonvanishing Ricci rotation
coefficients for Eq. (4). They follow from Eq. (38) as

γ010 ¼ −
g00;r
2
ffiffiffiffiffiffi
g00

p ; γ013 ¼
a sin θ½g00AðrÞ;r − AðrÞg00;r�

2rg00
;

γ023 ¼
aAðrÞ cos θ
r2

ffiffiffiffiffiffi
g00

p ; γ031 ¼ −γ013;

γ032 ¼ −γ023; γ122 ¼ −
ffiffiffiffiffiffi
g00

p
r

;

γ130 ¼ −γ013; γ133 ¼ γ122;

γ230 ¼ −γ023; γ233 ¼ −
cos θ
r sin θ

: ð46Þ
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In the above equations, we have defined C;r ≐ ∂C=∂r for a
given function CðrÞ. From the geodesic motion of test
particles, it follows that

ua ¼
� ffiffiffiffiffiffi

g00
p

_t −
aAðrÞsin2θffiffiffiffiffiffi

g00
p _φ;

_rffiffiffiffiffiffi
g00

p ; _θr; r sin θ _φ

	
: ð47Þ

From Eqs. (43), (41), (40), and (46), and taking that the
orbits lie in the plane θ ¼ π=2, so that _θ ¼ 0, one obtains
the “electric” component of tensor ϖab in the form

~Eϖ ¼
�
−
g00;r_t
2

þ aAðrÞ;r _φ
2

; 0;
a½AðrÞg00;r − g00AðrÞ;r�_r

2rg
3
2

00

	
;

ð48Þ

and the “magnetic” component

~Bϖ ¼
�
0;−

ffiffiffiffiffiffi
g00

p
_φþ a½AðrÞg00;r − g00AðrÞ;r�_t

2r
ffiffiffiffiffiffi
g00

p ; 0

	
: ð49Þ

Let us investigate now circular orbits under the condition
that _r ¼ 0 and ∂ ~V=∂r ¼ 0. From the critical points of the
effective potential ~V for ϵ ¼ 1, this implies

~l2� ¼ g00;rr3

2g00 − g00;rr
� Ba
ð2g00 − g00;rrÞ2

; ð50Þ

with

B ¼ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r7g200g00;rð2A − rA;rÞ2

q
: ð51Þ

The remainder first integrals (24) can be obtained from the
above equations and the consideration that ~E� ¼ ~V�.
For circular orbits in the equatorial plane, Eq. (43) tells

us that the angular velocity of the precession is generically
given by j ~ϖjθ̂. Therefore, we have that the spin-flip (s.f.)
probability for neutrinos in a slowly rotating and charged
spacetime is

Ps:f:ðτÞ ¼ sin2ðj ~ϖjτÞ: ð52Þ

We recall that in the above equation it is assumed that the
spin of the neutrino is initially antiparallel to its momentum
vector, as is the case for left-handed (Dirac) neutrinos.

VI. NEUTRINO OSCILLATIONS AND SPIN-FLIP
FOR THE BORN-INFELD LAGRANGIAN

We now study neutrino spin-flip and neutrino oscilla-
tions for the Lagrangian density put forward by Born and
Infeld in the 1930s. It can be written as [23]

LB:I ¼ b2
"
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F

2b2
−

G2

16b4

s #
: ð53Þ

In the above Lagrangian, b represents the scale field, and it
sets out the upper limit for the electric field when magnetic
aspects do not take place. It was recently shown [62,63] that
the b proposed by Born and Infeld is not able to reproduce
the energy spectrum of the hydrogen atom, both in the
frameworks of nonrelativistic and relativistic quantum
mechanics. A value much larger than that one predicted
under the unitary viewpoint is required, although a definite
one has not been obtained. This fact makes the direct probe
of the Born-Infeld Lagrangian even subtler, due to the
present difficulty in getting hyper-high electromagnetic
fields in laboratory. Apart from the aforementioned prob-
lematic issue, hereafter, we treat such a scale field as a free
parameter.
We start our analyzes with the behavior of the metric

given by Eq. (4) and the electromagnetic fields for a slowly
rotating axially symmetric spacetime in the scope of the
Born-Infeld Lagrangian. Such an analysis is important for it
would give the range of the parameters where considerable
departures from the static nonlinear counterpart could take
place. To this end, we note that it is already known that the
Born-Infeld Lagrangian leads to an exact solution to
Einstein’s equations in the spherically symmetric case
[64] (the seed for slowly rotating analyses), and it can
be cast as

g00 ¼ 1 − 2uþ 2

3u2
ðbMÞ2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2u4

ðbMÞ2

s !

þ 2α2u
3

ffiffiffiffiffiffiffi
bM
jαj

s
F
�
arccos

�
bM − jαju2
bM þ jαju2



;
1ffiffiffi
2

p
	
;

ð54Þ

where F ½…; 1=
ffiffiffi
2

p � is the elliptic function of first
kind [65].
In Figs. 1, 2, and 3, we show the numerical integration of

Eqs. (19) and (21) in terms of the dimensionless variable u
for some selected values of α ≐ Q=M, with bM ¼ 0.017,
for the components of the polar and radial magnetic fields
and the metric functions AðrÞ, vis-à-vis the Maxwellian
Lagrangian. The motivations for values of α of order of
unity are given in Sec. X. We now justify the value of bM
picked out. We are working with geometric units, which
means that b has units of the inverse of length while M has
units of length, rendering thus bM dimensionless. Their
conversion to cgs units is done by means of the following
rules [50,66]: M½g� ¼ M½cm�c2=G and b½statvolt=cm� ¼
b½cm−1�c2= ffiffiffiffi

G
p

. Let us assume that we work with black
holes of around 3 solar masses, as it seems reasonable for
those having a relationship with neutron stars. This means
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that in geometric units, M ≈ 5 × 105 cm. We know exper-
imentally that b must be larger than 1015 statvolt=cm
in order to explain the observed energy levels of the
hydrogen atom [62,63]. Therefore, in geometric units,
b>10−10cm−1. This finally means that bM > 10−4 is very
reasonable for astrophysical black holes, the ones we are
interested in here. One can perceive from the plots that the
distinctness between theories starts to become more accen-
tuated the closer the horizon is approached for each α. Near
that border there seems to exist a region where the magnetic
field experiences a sharp deviation with respect to the
Maxwellian one. Note that for all α selected the value of
bM also satisfies

bM <
9

jαj3F 2½π; 1ffiffi
2

p � ≈
0.654
jαj3 : ð55Þ

This means that the associated black holes just exhibit one
nondegenerated horizon [67,68]. Consequently, g00 is a
monotonic function of the radial coordinate. We recall that
Eq. (55) does not have a classical limit, formally obtained
when b tends to infinity. Whenever the inequality in
Eq. (55) occurs, one should expect significant deviations
from the standard classical solution, as it can be seen again
in Figs. 1, 2, and 3 for some values of the parameter α. For
the case where Eq. (55) is not valid, Einstein-Born-Infeld
black holes are the generalization of their Einstein-Maxwell
counterparts. Naturally, when naked singularities are
present, the aforementioned solutions may be considerably
different, especially close to the singularity. There, the
fields coming from Born-Infeld Lagrangian are minute
when compared to their associated classical ones, due to the
regularity of the former Lagrangian at the singularity.
We emphasize that in the light of the black hole energy

decomposition in nonlinear electrodynamics [50], when it
applies, the comparison of a nonlinear black hole with its
linear counterpart (Maxwellian Lagrangian) at the same
value of M, Q, and a generally means black holes with
different irreducible masses [69].
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1.5

0.1 0.2 0.3 0.4 0.5
u

1.02

1.04

1.06

1.08

1.10
ABI AMa

FIG. 1. Ratio of the off-diagonal term AðrÞ in Eq. (4) coming
from Born-Infeld (BI) Lagrangian and the Maxwell (Ma)
Lagrangian for selected values of the parameter α with
bM ¼ 0.017. The value of bM was chosen such that it is in
agreement with the condition bM > 10−4, valid for astrophysical
bodies with some solar masses, and Eq. (55) is satisfied for all
selected α. In this case, the associated black holes do have just
one horizon and do not have classical counterparts.
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FIG. 2. Ratio of the polar magnetic fields for the same theories,
selected values of α, and meaning of the curves as in Fig. 1.
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FIG. 3. Ratio of radial components of the magnetic field for the
same assumptions as Figs. 1 and 2.

FIG. 4. Maxwell to Born-Infeld black holes oscillation lengths
ratio for selected values of α for a fixed value of bM satisfying
bM > 10−4 and Eq. (55).
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We now progress with neutrino oscillations analyses
within the Born-Infeld Lagrangian. We primarily want to
compute the oscillation length when just two neutrino
flavors are considered. This is easily accomplished with the
use of Eqs. (31) and (54). In Fig. 4, we plot the ratio of
the oscillation lengths for selected values of α, the charge-
to-mass ratio, with a fixed value of bM that satisfies
bM > 10−4, and Eq. (55), assuming that the oscillating
particles do have the same energy E. Notice that in all cases
the neutrino oscillation lengths are smaller in the scope of
the Maxwellian Lagrangian. This can be physically under-
stood due to the nonlinearities brought in by the Born-
Infeld Lagrangian. Either theory, though, leads to smaller
neutrino oscillation lengths than the ones for Schwarzschild
black holes.
Let us now take a closer look at the spin-flip for the

Born-Infeld Lagrangian. We limit ourselves to circular
orbits. Given that in this case the frequency of spin-flip
for slowly rotating spacetimes should generically read
~ϖ ¼ ðϖs:f:

sph: þ Δϖs:f:Þθ̂, with jΔϖs:f:
sph:j=jϖs:f:j ≪ 1, we start

out our analyses with the dominant spherically symmetric
case. From Eqs. (47), (48), (49), (50), and the associate
first integrals (24), we have that the angular velocity of
precession of the neutrino spin, Eq. (43), can be simplified
up to a sign to

~ϖs:f:
sph: ¼ θ̂

ffiffiffiffiffiffiffiffiffi
g00;r
2r

r
: ð56Þ

We highlight that the main facets of the frequency of spin-
flip depend upon the choice of the parameter bM.
Whenever bM ≫ 1, Eq. (54) gives us

g00 ¼ 1 − 2uþ α2u2 −
α4u6

20ðbMÞ2 þO
�

1

ðbMÞ3
	
: ð57Þ

This signifies that the Einstein-Born-Infeld theory leads to
the lessening of the metric when compared to the Reissner-
Nordström metric. Therefore, bM ≫ 1 leads to an augment
of the frequency of spin-flip, Eq. (56), when compared to
the classical case. One also perceives from Eq. (57) that,
like in the classical case, ϖs:f: diminishes with the increase
of α.
Whenever bM ≪ 1, we have that Eq. (54) can be

approximated to

g00 ¼ 1 − 2uþ 4

3
α3=2

ffiffiffiffiffiffiffi
bM

p
F
�
π;

1ffiffiffi
2

p
	
uþOðbMÞ: ð58Þ

The comparison of the case bM ≪ 1 with the Reissner-
Nordström solution (same α) is not immediate, though. For
a given α, if u ≤ F ½π; 1= ffiffiffi

2
p � ffiffiffiffiffiffiffiffiffiffiffiffi

bM=α
p

=3, then it can be
shown that ϖs:f:

bM≪1 ≥ ϖs:f:
Ma. For a given u, the frequency of

spin-flip increases with the decrease of α. Notwithstanding,

either if bM ≪ 1 or bM ≫ 1, the frequency of spin-flip for
the case the charge is absent is larger than the case it is not.
We exemplify the aforementioned scenario in Fig. 5.
Now we investigate the changes impinged on ~ϖ due to

the Born-Infeld nonlinearities and the slow rotation of the
spacetime (Δϖs:f:

BI ). This is more readily understood when
compared to its Maxwellian counterpart. Figure 6 shows
the numerical analysis for circular orbits in the Born-Infeld
Lagrangian for bM ¼ 0.013 and some choices of the
parameter α (for specificity, we have chosen here ~lþ > 0

and ~Eþ). Notice that the Maxwellian corrections to ~ϖ are
always smaller (in modulus) than their Born-Infeld counter-
parts for a given a. This means that Born-Infeld theory
induces faster neutrino-antineutrino changes than the
Maxwellian one when only small rotations are concerned.

FIG. 5. Spherically symmetric transition probability of neutrino
spin-flip, Eqs. (52) and (56), for selected values of α and bM,
for circular orbits at u ¼ 0.24. Notice that in this case,
u ≤ F ½π; 1= ffiffiffi

2
p � ffiffiffiffiffiffiffiffiffiffiffiffi

bM=α
p

=3, and so the spin-flip frequency in
Born-Infeld theory is larger than its Maxwellian counterpart. We
point out that in this case the electromagnetic theories for a given
α would differ after τ ≈ 20M, which for stars with some solar
masses would be equivalent to ð10−4 − 10−3Þ s.
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FIG. 6. Induced spin-flip frequencies due to slow rotation for
Born-Infeld theory when compared to its Maxwellian counterpart
for bM ¼ 0.013 and selected values of α within the context of
circular orbits. The Born-Infeld frequency induction due to slow
rotation is always larger in magnitude than the classical case.
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VII. NONLINEAR PRECESSIONS

Next, we deduce the angular velocity of precession of
gyroscopes placed at a point of the spacetime defined by
Eq. (4). The formalism is the same as the one for spin-flip
described previously. Now, however, we place particles at
rest (with respect to local observers) at given spacetime
points, and their precession is uniquely due to the “rotation
of the spacetime”. This is nothing more than the effect of
dragging of inertial frames [49]. It could be seen as another
effect to probe Eq. (4) in the context of nonlinear theories of
the electromagnetism.
As can be seen in Refs. [49,61] and from Eq. (33) when

it is expanded in terms of connections, the components of
the angular velocity Ωk of precession of a gyroscope with
respect to a given tetrad can generically be calculated by
means of the relation [49]

ϵijkΩk ¼ −Γij0; ð59Þ

where the tetrad decomposition of the Christoffel symbol is
defined by the expression

Γijk ¼ eμi e
ν
je

β
kΓμνβ; Γμνβ ≐ 1

2
ð∂βgμν þ ∂νgμβ − ∂μgνβÞ:

ð60Þ

Notice that the sign present in Eq. (59) does not appear in
Ref. [49] due to fact that we chose a different signature to
the metric.
Subsequently to uninvolved calculations, one obtains the

following results for the Ωk components of the metric
related to Eq. (4) and the tetrad given by Eq. (44):

Ωr ¼ −
aAðrÞ cos θffiffiffiffiffiffi

g00
p

r2
;

Ωθ ¼ a½g00∂rAðrÞ − AðrÞ∂rg00� sin θ
2g00r

Ωϕ ¼ 0: ð61Þ

As we have already advanced, the above local angular
precession can also be obtained (apart from a sign due to
the vector product order chosen in Ref. [49]) from the spin-
flip formalism by assuming there ua ¼ δa0.
In Fig. 7, we plot the Born-Infeld to Maxwell ratio of the

radial precession frequency, as appearing in Eq. (61) for
various values of α with bM ¼ 0.1 and an arbitrary θ. One
sees that there is a minute change of Ωr coming from the
aforementioned theories. In Fig. 8, the plot illustrates the
polar angular frequency component in Eq. (61). For this
case, Born-Infeld theory could deviate considerably from
the Maxwell one. This is particularly the case for large
values of α and distances close to their associated outermost
horizons.

Hence, if measurements could be done concerning the
polar component of the precession of gyroscope-like
systems (such as planets) in the environs of the horizon
of a slowly rotating black hole (where we expect the
precession should be more relevant), then one would be
directly probing intrinsic properties of such spacetime, as
well as of electromagnetism, this way overcoming the
current experimental difficulty of probing it on terrestrial
and atmospheric laboratories.

VIII. R-PROCESS IN SUPERNOVA EVENTS
AROUND RNCBH SPACETIMES

In what follows, we revisit the effects of gravity on the
energy spectra of neutrinos (νe) and antineutrinos (ν̄e)
outflowing from the very inner ejecta of a type II supernova
explosion when a RNCBH might already have been
formed there.
In so doing, we follow inasmuch the seminal paper by

Fuller and Qian [3] on the astrophysics of neutrinos
escaping from the gravitational field a proto-neutron star,
since except for the specific strength of the gravitational
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FIG. 7. Born-Infeld to Maxwell ratio of Ωr appearing in
Eq. (61) for various values of α and θ, with bM ¼ 0.1.
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componentΩθ appearing in Eq. (61) for various values of α and θ,
with bM ¼ 0.1.
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field both spacetimes are rather similar, as we already
pointed out above.
In such environments, neutrinos are subjected to the

strongest gravitational redshift induced by any astrophysi-
cal object. Now, since the energy of electron antineutrinos
is higher than their electron partners (hEν̄ei > hEνei), the
former decouple deeper in the gravitational potential well
of a putative RNCBH than the latter do. Then, the ν̄e
undergo the larger gravity-induced redshift action as
compared to νe, and this effect should manifest itself in
several ways in the dynamics of the supernova explosion. It
is then expected that such a differential redshift modifies
the electron fraction (Ye), which is defined as

Ye ≃
�
1þ Sν̄ep

Sνen

	
−1 ≃

�
1þ Lν̄ehEν̄ei

LνehEνei
	−1

; ð62Þ

that directlymeasures the neutron-to-proton ratio (np ≡ 1
Ye
− 1)

in the neutrino-driven supernova ejecta. This quantity is
essential for any r-process nucleosynthesis occurring in this
environment, which otherwise demand a low Ye.
In this respect, the neutrino νe → antineutrino ν̄e

oscillations mediated by the gravitational collapse of the
supernova inner core could properly explain the abnormally
large abundance of neutrons so as to support the r-process
nucleosynthesis in astrophysical environments like in
supernovae deep interior via the νe and ν̄e reaction
processes:

νe þ n → pþ e−∶rate Sνen;

ν̄e þ p → nþ eþ∶rate Sν̄ep:

If indeed ν̄es could be overabundant than νes, then, from the
above expression one concludes that the neutron produc-
tion is expected to be higher than the proton production in
the supernova inner cores, the sort of astrophysical sites we
are focusing on in this paper as the supposedly last stage
preceding the formation of the RNCBH. Hence, the
theoretically well-known and proven supernova spin-flip
conversion νe → ν̄e (Majorana type neutrinos, for instance)
could be significantly stimulated due to gravity-induced
effects inside supernovae cores so as to possibly afford for
the overabundance of neutrons required for the r-process to
effectively happen in this spacetime.
In providing the following estimates of the neutron-to-

proton ratio, we follow the important paper by Fuller and
Qian [3] (see also [70]). At a radial coordinate r in the
RNCBH spacetime, the electron fraction is determined as
in Eq. (62) by the local values of the luminosities and
average energies of the νe and ν̄e. However, since these
neutrino species have differing production/emission radii
(i.e., their neutrinospheres have different values of the
RNCBH radial coordinate), they should undergo very
different gravitational redshift effects. If we define the νe

neutrinosphere to be at rν−spνe and the ν̄e neutrinosphere to
be at rν−spν̄e

, then the second term of Eq. (62) can be recast as

Ye ¼
1

1þ Rn
p

; Rn
p
≡ R0

n
p
· Γ; ð63Þ

with

R0
n
p
≃
�
Lν−sp
ν̄e

hEν−sp
ν̄e

i
Lν−sp
νe hEν−sp

νe i
	
: ð64Þ

In these equations, Lν−sp
ν̄e

, hEν−sp
ν̄e

i are the average ν̄e energy
and luminosity as measured by a locally inertial observer at
rest at the ν̄e neutrinosphere and similarly for the quantities
which characterize the νe energy and luminosity at the νe
neutrinosphere. (We recall that first order corrections in a=r
for this spacetime do not affect local energy measure-
ments.) The approximation is made so that the ν̄e, νe energy
spectrum does not evolve significantly with increasing
radius above the ν̄e, νe sphere, as a result of the concomitant
emission, absorption, and scattering processes. The quan-
tity R0

n
p
is the local neutron-to-proton ratio. All the above

quantities are understood to be evaluated from the neutrino
and antineutrino energy spectra extant at the RNCBH radial
coordinate r.
In the above discussion, the effects of the RNCBH

gravitational field would be contained in the parameter Γ, in
the form

Γ≡
�
g00ðrν−spν̄e

Þ
g00ðrν−spνe Þ

	3
2

: ð65Þ

Since, in general, concerning the u coordinate, the metric
of a charged spacetime is larger than the Schwarzschild one
for any u < 1=2, and the ν̄e neutrinosphere is bigger than
the νe neutrinosphere, from Eqs. (63), (64), and (65), it
follows that YQ

e < YSchw
e . This means that the n=p asso-

ciated with charged spacetimes are, in general, larger
than their neutral counterparts for the supernova ejecta.
This is a feature that naturally favors r-processes.
Therefore, only the presence of charge per se may already
considerably change the neutron-to-proton ratio with
respect to the Schwarzschild case. This should also be
so for the case when nonlinear theories of the electromag-
netism are compared to neutral solutions. This all means
that, in principle, due to the large number of neutrinos in
supernova events, r-processes could reveal charged phases
of black holes. The issue of assessing which theory is the
one underlying a possible charged black hole seems also
possible at first, due both to the aforementioned large
number of neutrinos involved and the fact that supernova
events are usually related to strong gravitational and
electromagnetic fields, where spacetime metrics related
to nonlinear Lagrangians should differ more significantly
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from their classical counterparts. In Sec. X, we qualitatively
discuss a way to probe that by means of light polarization
measurements, as well as possible difficulties involved.
In the next section, we perform some simple estimates on

the r-process with the intent to evidence the importance of
charged (and nonlinear) environments, in the context of the
neutron-to-proton ratio in supernova ejecta and also as
related to the neutrino oscillation lengths.

IX. SOME SIMPLE ESTIMATES

In our previous calculations, we assumed that a=rþ ≪ 1,
which is equivalent to considering a=r ≪ 1 or a=M ≪ 1.
In order to give an astrophysical application to this
approximation, first consider the following system: a
neutron star of mass M and radius R, whose charged
nucleus is ongoing a gravitational collapse with an oppo-
sitely charged crust that is left behind. The physical reasons
that may lead to this scenario, as well as others resulting in
transiently charged black holes, are discussed in the next
section. Suppose besides that such a charged core spins
rigidly with constant angular velocity, whose norm we take
as Ωrot. If the system rotates slowly, in first order of
approximation, we could take it as spherically symmetric.
Therefore, its angular momentum could be estimated as
being proportional to MR2Ωrot. It is simple to see that in
taking into account general relativistic requirements, the
constrain a=r ≪ 1 can be cast as

ΩrotR ≪ c; ð66Þ

which is naturally the same as in Ref. [71]. If we now take
the radius of the stars to be of order of the Schwarzschild
horizon, R ≈ 2MG=c2, then, from the above equation,
it follows that Ωrot ≪ c3=ð2MGÞ ¼ 105ðM⨀=MÞ Hz.
Actually, the fastest pulsar ever measured so far has rotation
frequency around 720 Hz ([72] and references therein).
Hence, our slow rotation description would be of relevance
for several neutron stars. For an ordinary stable neutron
star, with M ≈M⨀ and R⋆ ≈ 106 cm, its Schwarzschild
horizon is located at Rschw ≈ 105 cm. Let us posit that
during the dynamical collapse of the star core, which
satisfies Eq. (66), its crust (or charged magnetosphere) has
remained at R⋆ (see the next section for further details).
Then, the latest neutrinos emitted by the inner core could
travel up to 10 RSchw before interacting with the crust. In
this region, nonlinear effects could play a role. Assume,
just as an example, that for the charged core α ¼ 0.5 and
bM ¼ 0.017. Take for the radial coordinate the value
u ¼ M=r ¼ 0.45 for the neutrino emission. In this case,
gBI00ð0.45Þ ≈ 0.135 and gMa

00 ð0.45Þ ≈ 0.151. In these condi-
tions, Eq. (31), when brought to usual cgs units, becomes

LoscðcmÞ ¼ 123ffiffiffiffiffiffi
g00

p E=MeV
ðΔm=eVÞ2 : ð67Þ

Assuming Δm2 ≈ 0.01 eV2 and E ≈MeV, we thus have
that LBI

osc ≈ 3.35 × 106 cm, while LMa
osc ≈ 3.16 × 106 cm.

Thereby, ðLMa
osc=LBI

oscÞ2 ≈ 0.8, as can be checked in Fig. 4.
For this case, there is a change of around 10% in the
oscillation lengths concerning the Born-Infeld and
Maxwell Lagrangians. Notice that this example gives an
oscillation length of the same order of distance as that
one where the charged crust lies. Therefore, the different
theories chosen could dramatically change the fate of the
charged crust left behind, as well as for the envelope
surrounding such star. Since the number of neutrinos
emitted in a neutron star system is colossal, even small
changes on the neutrino oscillation lengths, accounted for
by nonlinear Lagrangians, could play an important role into
the evolution of the aforementioned system.
Let us make some estimates concerning Ye (and con-

sequently r-processes) for astrophysical systems. Assume
again that the masses involved in our problem are on the
order of the solar mass. We take rν−spνe ¼ 3.5 Km and
rν−spν̄e

¼ 0.9rν−spνe , just to assume a case where the neutrino
spheres are closer to the outer horizon of some astrophysical
system (rþ ≈ 3 Km). This choice leads to uνe ¼ 0.42 and
uν̄e ¼ 0.467. Besides, we take [3] Eν−sp

ν̄e
¼ 25 MeV and

Eν−sp
νe ¼ 10 MeV. Figure 9 depicts Ye for such a case. In the

scope of the Born-Infeld electromagnetism, it is not difficult
to verify that YSch

e > YBI
e > YMa

e (the latter two inequalities
are naturally associated with a given α). This means that
charged black holes in the interior of the supernova
envelopes would favor r-processes, and therefore, they could
be a potential way to probe nonlinear electrodynamics.

X. DISCUSSION AND SUMMARY

We start by envisaging a method to disentangle rotation
effects from charge ones within supernova observations,
important in order to advance with probes of nonlinear
theories of the electromagnetism. It is well known that

1.5 2.0 2.5 3.0
L sp
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e
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FIG. 9. The Ye for the case u ¼ 0.42 as a function of the anti-
neutrino-to-neutrino local luminosity. For this case, it was chosen
rν−spνe ¼ 3.5 Km just to try to simulate the case where the neutrino
spheres are close to the horizon of the collapsing system. One
sees from this plot that YSchw

e is larger than YBI
e and YMa

e . Further
for a given α, YBI

e > YMa
e .
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distant supernovae appear only as point sources of light,
so asymmetric shapes could not be seen directly. Instead,
they should be inferred from the way the light is polarized.
In the light from a spherically symmetric star, however, all
orientations are equally represented, and there is no net
polarization. This is not the case for an asymmetric star or
explosion. Light emitted along the longer axis shows a net
excess of a particular polarization.
In 1982, Shapiro and Sutherland [73] introduced the

concept of supernova asymmetry in astronomy. They
purported that supernova (SN) atmospheres are scattering
dominated, based on the idea that light from an unresolved,
asymmetric, scattering atmosphere is linearly polarized. In
this seminal article, they computed (modeled) the degree of
linear polarization of light from supernovae (SNe), which a
nonspherical, scattering-dominated, supernova atmosphere
had to produce as a function of its asphericity. It was
claimed that any detection of net polarization of the
supernova light should be a direct measure of the aspher-
icity of its atmosphere and that such a feature could affect
what distant indicators, and several other astronomical
parameters, could afford. In our understanding, [73]
became a significant advance in the studies of stellar
explosions, making polarimetry a powerful tool in astro-
physics, which has been extensively in use so as to include
astronomical radio observations [74].
Just let us quote one of those breakthrough observations

where the polarization of light emitted from several super-
novae have been measured. Wang and collaborators [75]
observed supernova 2001el which was brightened and
dimmed. This was the first time the intrinsic polarization
of a normal type Ia supernova had been detected. This group
was able to show that at peak brightness the exploding star
was slightly flattened, with one axis shorter by about 10
percent. By a week later, however, the visible explosion was
virtually spherical. Indeed, they claim that as spherical
symmetry begins to dominate, about a week after maximum,
it is not because the supernova is changing shape but because
we are seeing different layers of it. This way, outer layers
expanding at thousands of kilometers per second would
grow diffuse and become transparent, allowing the inner
layers to become visible. They also stressed that when the
star explodes, the outer part is aspherical, but as seeing lower
down, the dense inner core appears spherical.
Now, as concerns our study in the present paper,

asphericity is the sort of geometrical effect one should
expect from an astrophysical rotating compact object, or
spacetime. That is, if supernovae are not spherically
symmetric, they should shine more brightly in one direction
than in others. Thus, since neutrino oscillations can take
place both at the supernova planar and radial directions, one
could expect to have different contributions to the abun-
dance of r-process products along the equatorial plane than
at any other particular direction, for instance, the polar
direction. This would mean that the light from BH-forming

type II supernovae and hypernovae would exhibit some
degree of polarization due to rotation. Likewise, if a
specialized method of densitometry could be performed
in the observed supernova envelope, one could measure the
r-products’ abundance in each of such distinct spatial
directions. For instance, for neutrino propagation in a
slowly rotating spacetime along a circular orbit of radius
R in the equatorial plane, the local energy El ¼ E=

ffiffiffiffiffiffi
g00

p
(E

is a constant, the energy at infinity) is constant along this
pathway. This is in contrast to the case of propagation in a
radial trajectory. In these different directions the neutrino
phases are given by [see the second equality of Eq. (31)]

Φθ¼π=2 ¼
m2

El
Rðϕ − ϕ0Þ ≠ Φrad ¼

m2

El
ðr − r0Þ; ð68Þ

where ϕ, ϕ0 are angular positions, while m is the neutrino
mass. Clearly the phase in the second part of Eq. (68) is
dominated by the gravitational redshift at positions r, r0,
whereas the planar phase is constant for a given R. This
means that gravity has no effect in the latter, which is the
same as for flat spacetime. Hence, having available a
comprehensive sample of type II supernovae and hyper-
novae exhibiting light polarization, e.g., a supernova with
noticeable asphericity and another with less or virtually
spherical, might help discern on the role of rotation of the
supernova progenitor and the just-formed BH in the
magnitude of the enhancement of the r-process products.
On the other hand, the presence of an evolving electric

field in the supernova ejecta could change the degree of
polarization of light outcoming from the inner core. As the
strength of the electric field depends on the total charge
which is generating it, then comparing different degrees of
polarization in samples of BH-forming type II supernovae
and hypernovae may allow the disentanglement of their
relative contributions to the total light polarization. This way,
implementing a detailed analysis of supernova samples
exhibiting light polarization and the presence of electro-
magnetic fields (e.g., inferred from either Zeeman effect or
Stark effect observations), one could have a tool for
disentangling the role of rotation and charge (nonlinearities
of electromagnetism) from astronomical observations.
Indeed, due to neutralization aspects, one would expect

that charged black holes are mainly related to unstable
scenarios, which would thus lead them to be short-lived. In
this regard, several physical mechanisms could be con-
ceived for their formation. We envisage some here (for
other mechanisms to generate black holes, not necessarily
charged ones, see Ref. [76]).
Consider compact stars (neutron stars) that exhibit large

magnetic fields and are good conductors (Goldreich-
Julian’s model [77]). These systems are such that electric
fields would also be present and would be of order
ðΩR=cÞB [77], where Ω is the angular frequency of the
star, and R and B are its radius and magnetic field,
respectively. From the above, one immediately concludes
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that the larger the magnetic field is the larger the electric
field is, whose origin would be related to a charge density
that for certain cases would lead to a net charge.4 For
instance, a net charge of 1020 C (α ≈ 0.1 for stars with
masses around a solar mass) would be related to a magnetic
field of around 1019 G for (typical) neutron stars with
ΩR=c ≈ 10−2 and R ≈ 106 cm. It is known that very large
magnetic fields would lead compact stars to be unstable,
possibly collapsing into black holes [78,79]. A neutron star
with a mass around 2 solar masses and radius around 10
Km would be unstable for magnetic fields larger than
1018 G. This value is estimated by using the virial theorem
in astrophysics [77] and is related to fields of any nature
(dipolar, poloidal, or toroidal); stable systems are the ones
in which their magnetic energies are smaller than the
magnitude of their gravitational energies. Thus, for a star
collapsing as a whole leaving behind a charged magneto-
sphere (this might happen due to their very different
natures, which would imply very different characteristic
times of collapse), the latter presumably always present in
highly magnetized systems [77], short-lived charged black
holes could always be formed. It is even possible that the
crust may be left behind when the core collapses because it
should interact more strongly with the magnetosphere. In
all cases, the typical sizes related to charged spacetimes
would be of the order of the radius R of the star, and the
times they would be charged are around 10−4 s (≈1=

ffiffiffiffiffiffi
Gρ

p
≈

R=c for core densities around 1015 g cm−3). We plan to
investigate more carefully all these scenarios elsewhere.
The above-mentioned mechanisms, as well as others,

would motivate searches for (nonlinear) charged black
holes and their natural “probers” would be neutrinos, given
their bountiful production in any astrophysical context; see
for instance Ref. [47]. As a by-product of this, in principle,
it would be possible to assess the nature of electromag-
netism (Maxwell’s or not), due to the special imprint
different theories would have on certain phenomena,
such as neutrino oscillations, spin-flip, and r-processes in
supernova events, as we have analyzed in this work
and commented previously. One should bear in mind,
though, that ambiguities may still arise regarding probes
of nonlinear theories of the electromagnetism, since they
are intrinsically associated with (yet unknown) scale
parameters as well as the charges and angular momenta
of the transient black holes, neutrinospheres, neutrino
luminosities, neutrino energies, neutrino masses, etc.,

which could all lead to overlaps in physical observables.
Nonetheless, even in spite of these difficulties, it is
worthwhile investigating at least consequences of charged
black holes because even if they are fleeting they could be
astrophysically relevant.
In summary, we first solved generic Einstein’s equations

for slowly rotating black holes minimally coupled to non-
linear Lagrangians of the electromagnetism dependent upon
its two local invariants. We used neutrinos (in the WKB
approximation) to probe some of the aspects of these
spacetimes,whichmay be invaluable tools to discern charged
and uncharged black holes, as well as Maxwellian from
nonlinear electrodynamics. The major departures from the
classical case concerning themagnetic fields, theoff-diagonal
metric term, the precession of gyroscopes, the spin-flip, the
neutrino flavoroscillation, etc.would just occur near theouter
horizon of a nonlinear slowly rotating black hole because it
would be there that the spacetime properties would change
more pronouncedly. Besides, kinematical effects such as
precessions (to be measured with gyroscope-like systems)
could be of relevance in order to distinguish nonlinearities
present in charged black holes, as well as experiments that
take into account magnetic fields (asymptotically dipolar
ones). Our calculations suggest that magnetic fields from
nonlinear electrodynamics should deviate more pronoun-
cedly apropos of their Maxwellian counterparts. Therefore,
subsequent investigations on the probe and nature of charged
black holes should focus more closely on this aspect.
Concerning the relevance of our analyses to supernova

events, we have pointed out that the presence of charge only
per semay considerably change the neutron-to-proton ratio in
supernova ejecta apropos of neutral solutions to general
relativity, which would already change the r-processes.
This would mean that, in principle, nonlinear charged black
holes could indeed influence more supernova events and the
formation of heavier elements than Schwarzschild ones,
whichdeserve better studies thatwill be elaborated elsewhere.
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charge. Besides, when one neglects macroscopic currents near the
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