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a-function in three dimensions: Beyond the leading order
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Recently, evidence was provided for the existence of an a-function for renormalizable quantum field
theories in three dimensions. An explicit expression was given at lowest order for general theories involving
scalars and fermions and shown to be related to the f-functions by a gradient flow equation with positive-
definite metric as in four dimensions. Here, we extend this lowest-order calculation to a general Abelian
Chern-Simons gauge theory coupled to fermions and scalars and derive a prediction for part of the four-
loop Yukawa f-function. We also compute the complete four-loop Yukawa f-function for the scalar-
fermion theory and show that it is entirely consistent with the gradient flow equations at next-to-leading

order.
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I. INTRODUCTION

Following Cardy’s suggestion [1] that Zamolodchikov’s
two-dimensional ¢ theorem [2] might have an analogue in
four dimensions, considerable progress has been made in
proving the so-called a theorem in even dimensions [3-9].
In a recent paper [10] we provided evidence that for a wide
range of renormalizable quantum field theories in three
dimensions we can similarly define a function A which
satisfies the equation

A =Typ, (1.1)
for a function T;;; we denote the function by A since the
notation a is often used in four dimensions for the Euler
density coefficient in the Weyl anomaly. A crucial conse-
quence of Eq. (1.1) is that we then have

d 0
—A=p——A=0G,pp,
Md,u ﬁagl ub'p

(1.2)
where G;; =T ;y), thus demonstrating a function with
monotonic behavior under renormalization group (RG)
flow and providing a three-dimensional version of the
strong a theorem so long as Gy; is positive definite. This
is remarkable, since attempts [11] to extend the methods
[6] used to prove the strong a theorem to three
dimensions did not appear to lead to a relation of the
desired form. In Ref. [10] we firstly used the leading-
order (two-loop) f-functions computed in Refs. [12,13] to
construct a solution of Eq. (1.1) for Abelian and non-
Abelian [for the case SU(n)] Chern-Simons theories at
leading order. Our method was essentially that employed
in four dimensions in the classic work of Ref. [14]. The
“metric” G;; was indeed found to be positive definite at
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this order, at least perturbatively. The Yukawa and scalar
couplings in these theories were of a restricted form.
However, by considering completely general scalar and
fermion theories (but without gauge interactions) we were
able to argue that the existence of the a-function was
somewhat trivial for these theories at leading order, but
that predictions for the scalar-coupling-dependent contri-
butions to the next-to-leading-order (four-loop) Yukawa
p-function emerged and could be verified by an explicit
computation.

In this paper our purpose is first of all to extend the
general leading-order calculation to the gauged case (we
present results for the Abelian case, but the extension to
the non-Abelian case is straightforward) and secondly to
complete the four-loop computation' of the Yukawa
p-function [10] for a general scalar or fermion theory
and show that we can extend the definition of the
a-function in Eq. (1.1) to this order. It turns out that
in the gauged case the existence of the a-function is
nontrivial even at leading order; it imposes constraints on
the p-function coefficients which we will show are
satisfied. A by-product of our extended leading-order
computation is a prediction for the scalar-coupling-
dependent contribution to the four-loop Yukawa
p-function for a completely general (i.e. gauged) renor-
malizable theory in three dimensions.

It has already been proposed that the free energy F in
three dimensions may have similar properties to the four-
dimensional a-function, leading to a conjectured “F
theorem” [15-18]. It has been shown that for certain
theories in three dimensions the free energy does indeed
decrease monotonically along RG trajectories. It has also
been shown that F obeys a gradient flow equation at
leading order for theories which may be regarded as a

"Modulo the anomalous dimensions for which we do not have
a fully independent computation, as we shall explain later.
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perturbation around a conformal field theory. This covers
theories with a scalar potential, which may be regarded a
perturbation around a free field theory. However the only
nontrivial example at leading order, namely a gauged
scalar-fermion theory, does not fall into this class. This is
the reason why we have pursued the computation beyond
leading order despite its complexities. On the other hand,
our method does not provide any general insight as to the
origin of the gradient flow, so it would be interesting to
investigate the relation between the “F-function” and our
a-function.

The structure of the paper is as follows. In Sec. II we
discuss the construction of the a-function at leading order,
corresponding to the two-loop Yukawa f-function. Here we
consider a completely general Chern-Simons gauge theory
coupled to fermions and scalars, and we show that in this
gauged case Eq. (1.1) imposes nontrivial constraints on the
p-function coefficients which are indeed satisfied. In
Sec. I we proceed to the next-to-leading order, but for
a general ungauged scalar or fermion theory. Here the
a-function is determined by the two-loop scalar S-function
and the four-loop Yukawa p-function. We show that
Eq. (1.1) imposes a plethora of constraints upon the
four-loop Yukawa f-function coefficients; and we compute
the four-loop f-function to demonstrate that these are all
satisfied. Various remarks are offered in a conclusion.
Finally, a number of technical details are postponed to
Appendixes: namely, an explicit list of the tensor structures
in which we expressed the f-function results, together with
an explanation of our choice of these structures, and the full
set of consistency conditions and four-loop Yukawa
p-function results at next-to-leading order. We also discuss
there the scheme dependence of our results. We present in a
final Appendix our prediction for the scalar-coupling-
dependent contribution to the general four-loop Yukawa
p-function, as mentioned above.

II. LEADING-ORDER RESULTS

In this section we define the general three-dimensional
Abelian Chern-Simons theory, present its f-functions at
lowest order (two loops) and construct the leading term in
the a-function. The Lagrangian is given by

1 -
L=3[e"A,0,4, + (D,;)* + iy, Dy, ]

=+ ;1 YapiiWaWpdihj — éhijklmn¢i¢j¢k¢l¢m¢n’ (2.1)
where we employ a real basis for both scalar and fermion
fields and D, = 9, — iEA,,, where E is a charge matrix (E?
and EY for scalar and fermion fields, respectively). Recall
that in d =3, @ =y'T, and there is no obstacle to
decomposing y into real Majorana fields. Gauge invariance
entails the identities
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Eltlljcychij + EI}I)IcYacij + E?myabmj + E;ﬁm Yahim = 0’

E;/)ﬂhpjklmn +perms =0. (2.2)
The L-loop Yukawa and scalar p-functions take the
respective forms

nL
(ﬁg/m)abij = Z C«(xL)<Uch))abijv
a=1

L “ L L
(ﬂgz ))ijklmn = de(l )(Vé ))ijklmn’ (23)
a=1

where U ,(,L) and VSIL) denote L-loop tensor structures. In the

interest of brevity, in the main body of the text we shall
simply give a diagrammatic representation of the various
tensor structures appearing here; to avoid any ambiguity the
full expressions will be given in Appendix A. In these
diagrams the Yukawa and scalar couplings will be repre-
sented by vertices, with the fermion and scalar legs
indicated thus, with lines indicating contracted indices:

hijklmn —

At two loops, the number of tensor structures appearing
in the Yukawa pg-function in Eq. (2.3) is given by n, = 29,
and the two-loop tensor structures are displayed in Fig. 1
and written explicitly in Egs. (A1)—-(A3). A small circle
represents a single gauge matrix E¢ or E¥, and a square
represents a product of two E? or E¥. Each tensor structure
is defined so as to have a “weight" of one, as explained in
Appendix A, where we also explain our choice for these
structures, which is not unique since tensor structures
containing gauge matrices may be related through the
gauge-invariance identity Eq. (2.2). We note here that
ngz)—U%) correspond to anomalous dimension contribu-
tions and consequently we may simply read off the

corresponding values of cg)—cg)

Ref. [12] with no further calculation. In the case of U;i)

from the results of

and U gzs), there is also a graph with a fermion loop which is
not depicted but whose contribution may be seen in
Eq. (A3). We have assumed that the contributions from
single fermion loops and single scalar loops are equal; this
is consistent with our other explicit calculations but in any
case does not affect any of our conclusions.

The computation of the two-loop Yukawa pB-function is
very straightforward and we simply quote the result,
namely
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FIG. 1. Two-loop tensor structures appearing in /f(f).

2
py =80y +2Uy) + U + S (U + U +8(Ug) + U + 0y

— 16U + 24U + 40 + 24U — 16U - 8(UY) + U + UY)

2 2 40 ) 4. 2 8 o 2
+2(U§o>+U§1))—§U§2)—§U§3)—§Ué)—gUgs)

2 2 2 2
~32U% +UP) —8(UY + UR). (2.4)

Here and elsewhere we suppress a factor of (87)~! for each loop order. The individual coefficients c((lz) defined in Eq. (2.3)

may then easily be read off, e.g. ng) = 8, etc. The coefficients c§2), cf) , and ng) differ by factors from the corresponding

results in Ref. [10] due to our slightly different choice of basis tensors here, as described above. Note further that with our
choice of basis for U, <62)—U 522) as explained in Appendix A, each nonvanishing term here corresponds to a single Feynman
diagram.

There are m, = 14 tensor structures in the two-loop scalar f-function defined in Eq. (2.3), and they are of the form

depicted in Fig. 2 and defined precisely in Eq. (A4). Once again, in the case of V(gz) there is also a graph with a fermion loop
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FIG. 2. Two-loop tensor structures appearing in ﬂf).

which is not depicted but whose contribution may be seen in Eq. (A4). The computation of the two-loop scalar f-function is
again straightforward and it is given by

20
pi =V w30V avi =360V + Vi) — 120v
— 40V =8V — 120V +360(V(Y) — vIP) + 720(vY +2v12). (2.5)
. o - ) . 9 2
Once again, the individual coefficients d,’ defined in ) (5 5 (s
Eq. (2.3) may easily be read off when required later. AP = Z ag, )Ag,) + Z aé >Aé, )’ (2.8)
a=1 a=13

We now turn to the construction of the a-function at
lowest order. As discussed in Ref. [10], we impose Eq. (1.1)
in the form

where the AE,S), a=1...9, are given in Eq. (AS5) and

depicted in Fig. 3.

HAG) The terms A%)—Ag) are defined by

aYabij

— /;fb)l_j, (2.6)

AL = (U pis Y abis» (2.9)

abij

where we define with U as defined in Eq. (A3); we choose not to display

the corresponding diagrams which are of a very simple

0 symmetric form. The reader will note that we have not

Em— Ya’b’i’j’ =

oY (8aa b + BayOpar ) (6i8 ;7 + ;7 8ji).
abij

-

defined structures corresponding to A(I%)—Agsz). This is
purely for notational convenience, in order to ensure that

(2.7)

The corresponding (lowest-order) contribution to the metric
T,; is therefore effectively chosen to be the unit matrix in
coupling space. The most general lowest-order a-function
which may satisfy Eq. (2.6) is given by

AS) corresponds with U((xz) in Eq. (2.9). Differentiating the
terms in A®) with respect to Y abij corresponds to removing
each vertex in turn, leaving a structure which may be
expressed in terms of one or possibly several of the U((,2>.
For instance,
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YocijYear Y € 51(/? ),

We then find immediately upon comparison of the
coefficients of U((Iz) in Eq. (2.6) that

s _1

ay —an, a=1,...5. (2.10)

There is no constraint on the two-loop coefficients c?)—cgz)

in Eq. (2.4). This is because the symmetries of the
corresponding tensor structures appearing in Eq. (A5)
imply a one-to-one relation between a-function contribu-
tions and Yukawa p-function contributions. This may be

seen in Fig. 3 where in each of the diagrams Ags)_Ags) the
removal of any vertex leads to the same p-function
contribution. These a-function coefficients can thus be
tailored term by term to match any values for the f-function
coefficients. The same is true of A(153)—Ag), and again we
immediately find

1
)

2
(5) 2)

g = Cq

a=13,...25,

a=26,...29. (2.11)

However, the situation is different for Aés)—A(;). There are
four of these independent a-function structures, fewer than

the seven f-function structures in our basis. Differentiation
of each of these structures with respect to ¥ ,,;; leads to two

|

\
() (5) 5 5) )
AP AP A AP A
AY A

AL

i

AP

distinct f-function structures, which in turn should be
written in terms of our basis. Consequently we find a
nontrivial set of equations relating aS)—ags) with c?—cﬁ?

whose solution is

1
R I

l o
+-c¥ (213)

2
which are indeed satisfied by the coefficients in Eq. (2.4).
In obtaining these equations, we imposed the vanishing of
two of the seven potential coefficients, namely c(lzl) and cg?,
which are manifestly zero for reasons explained in
Appendix A. These consistency conditions correspond in
the obvious way to relations among the simple poles in the
Feynman diagrams corresponding to U(GZ)—U%). This is
because, with our basis choice, the nonbasis structures
which could potentially have contributed to céz) —c<,20) when
written in terms of the basis, in fact, correspond to
vanishing Feynman diagram contributions.

Combining Egs. (2.10)—(2.12) with coefficients ) read
off from Eq. (2.4), we find that the lowest-order contribu-
tion to the a-function is

FIG. 3. Contributions to A® from Yukawa couplings.
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(A +49) +8(AY + AD) + 4Dy

+ 1248 +240) 41241 840 —4(A) + AY) + AY)

20 2

vaG A9 - 20a0 248

3 3

~32(AY + AD) —8(Al) + A

We cannot extend this leading-order (i.e. five-loop)
a-function in order to generate the two-loop scalar
p-function in a similar way via Eq. (1.1), as was pointed
out in Ref. [10]. It is clear, on the analogy of the Yukawa
p-function, that in order to satisfy Eq. (1.1) with regard to
the two-loop scalar S-function the a-function must contain

terms such as (V((f)) ijktmnPijkimn [With vy as defined in
Eq. (2.3)] which correspond to seven-loop diagrams. We

therefore postpone this discussion to the next section where
we provide a full discussion of the seven-loop a-function.

III. HIGHER-ORDER RESULTS

In this section we consider the seven-loop a-function,
which will be determined via Eq. (1.1) by the two-loop
scalar p-function and the four-loop Yukawa S-function.
This hierarchy of loop orders for different couplings was
first noticed in the four-dimensional context [19]. At this
order we need to consider also next-to-leading-order
contributions on the right-hand side of Eq. (1.1).
Including all relevant terms, we obtain (using a somewhat
schematic notation)

d, A = dnT\) % (3.1)
dyA?D = ayTO)pY + avT()p. (3.2)

Here T@ is the leading-order contribution to 7';; which as

mentioned before is effectively a unit tensor, and T@ isa
potential higher-order contribution described in detail later;

we can easily see that no Tg,s}f or TES) contributions are
possible. We write

AD = A7 4 AT+ AT + a(B) s (B )iy (3:3)

Here AEZ), A%} and Ag) are the pure scalar, mixed scalar

and Yukawa and pure Yukawa contributions to A(7),
respectively, while the last term represents the usual
arbitrariness [7] in the definition of A satisfying
Eq. (1.1). We remark that since the p-functions are
renormalization scheme dependent beyond one loop, the
A-function we construct will also be scheme dependent. We
analyze the scheme dependence in more detail at the end of
Appendix B. Here we simply note that in any particular

4 .60 1 s
~ 342 — 345

o, (2.14)

[
scheme, at a critical point where the f-functions vanish, the
dependence on a in Eq. (3.3) disappears and the A-function
is universal at the critical point (up to a numerical factor
which we have fixed by requiring that the metric is the unit
matrix at leading order).

We can see how ﬂf) will determine Af) and A%} through

Eq. (3.1) while £ will determine A} through Eq. (3.2).
Equation (3.2) will also provide consistency checks on the
mixed a-function terms Agy) Starting with Eq. (3.1), then,
we expand

14
7 7) 4 (7 7 7) 4 (7
A =aa) AR =Y "alA) . (34)
a=2

as depicted in Fig. 4, while Agp will be defined later.
Notice that, as suggested at the end of Sec. II, we have

4
Aia = (Vf(l>)ijklmnhijklmn7 (3.5)
with V¥ as defined in Eq. (2.3). The significance of the
labels H,—H 3 on the diagrams will be explained shortly.

Equations (2.3), (3.1), and (3.4) then imply

1
a0 L0

hy 3 1
1
aga) - Eﬂd((lz), a=23 and a=6,..9,
a;:} —2d?. =45 and a=10...14, (3.6)

so that Tglsh) is the unit tensor up to a factor of 4 which will
be determined shortly by the four-loop calculation. Reading

off the coefficients dﬁ,” from Eq. (2.5), and substituting

Eq. (3.6) into Eq. (3.4), we find AEZ) and AEZY) in Eq. (3.3)
are given by

Ay :EAAEI

Ay = 21547 + 24 —360(A)) + A)) - 604

’

7)
1

—204)) — 447 — 60A]] +360(A}7) - A}])

hy

+720(A) +24)))). (3.7)
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hiy

FIG. 4. Contributions to Ag) and Afy)

In the main text we shall henceforth consider the ungauged

case and omit AZ)—AEB,

purpose of providing evidence for the a theorem in three
dimensions. One piece of this evidence, presented already
in Ref. [10], is the consistency check mentioned earlier,

arising from the fact that AE,? is determined by both ﬁf) and

in order to focus on our main

ﬂgf). However, if we regard the three-dimensional a
theorem as sufficiently established, we can use Eq. (3.7)
in conjunction with Eq. (3.2) to obtain a prediction for a
hitherto-unknown part of the four-loop Yukawa f-function
in the general gauged case. We shall postpone this to
Appendix C.

Turning now to Eq. (3.2) in the ungauged case, we need

to consider in Eq. (3.3) AEZ)—A% in AEZY), together with the

pure Yukawa contributions, A(Y7). We expand Ag) as

52
AP =3"aAd, (3.8)
a=1

where the tensor structures A{(]) are depicted in Figs. 5

and 6. At this order we shall not give explicit expressions
for the terms in the a-function since these are often quite
unwieldy and may easily be reconstructed from the dia-
grams. In order to avoid having to specify all four-loop
Yukawa p-function tensor structures explicitly, we have
simply labeled every vertex in every a-function diagram in
Figs. 4-6. We now label each Yukawa p-function term
according to the vertex which, when differentiated, yields

that structure, denoting mixed gauge-Yukawa contributions
from Fig. 4 by US:

Figs. 5 and 6 as V((f). For instance, we have

and pure Yukawa contributions from

0 7 4 0 7 4
Y “Aglz) = 2(U§'11))“bij’ oY ._Ag )= 6(Vg ))abij’
abij abij
(3.9)
where
4
(U;I]))abij = hikmnpthlmnpq Yabklv
4
(Vg ))abij = YaclecdmnYdeijyefklyfbmn' (310)

An X in Figs. 5 and 6 corresponds to a structure which
cannot occur in the p-function (for instance by virtue of
being one-particle reducible). The full four-loop Yukawa
p-function accordingly takes the form

6 105
A= en U+ e Vi, (3.11)
a=1 a=1

writing separately the mixed scalar-Yukawa and pure
Yukawa terms. Similarly, the associated next-to-leading-
order metric takes the form

18
5 5 5
=3,

a=1

(3.12)

025010-7



I. JACK and C. POOLE

o o
‘m MD?’ N‘m
> = N o

X
X
5
(7)
A7
18
13 13 15 15 19
14 14 16 16
19
13 13 17 17 18
(7) (7)
AH A13

26

%) ) j’i
= > e
[S)
S

PHYSICAL REVIEW D 95, 025010 (2017)

X X
X X
X X
(7)
A5
10 10
11 11
12 12
(7)
Al()
20 22
19 21 21 23 23
19 21 21 23 23
20 22
(7) (M)
A Ars

)
Ay
36 42
37 37 5 S p N
43 4
40 40 46 48
X X 44 43
38 41 41 42 47 X
() (M) (7 (1) (7)
AQl A22 A23 A24 A'ZD
149 49 52 57 61 61
50 50 53 ‘ ' 62 62
51 51 54 55 61 61
(7) () (7)
AQéj A'ZT ASO
12
FIG. 5. Contributions to A7), terms 1-30.
where the tensor structures T&S) are depicted in Fig. 7 (which diagrams in Fig. 7; this was also the case at next-to-leading

for convenience show TS) contracted with dY and pSy,

denoted by a cross and a lozenge, respectively). At this order
T;; is manifestly symmetric, as can easily be seen from the

order in both four [7,20] and six [21] dimensions.
At two loops, in the nongauge case, Eq. (1.1) imposed

no constraints on the pure Yukawa contributions. By
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10

102

FIG. 6. Contributions to A7), terms 31-52.

contrast, we shall find that Eq. (3.2) imposes a large set
of consistency conditions on the four-loop pS-function
coefficients, which we shall confirm by direct compu-
tation. The full system of equations derived using (3.2)
is highly nontrivial. Firstly we obtain immediately from

inserting A%)

Eq. (3.11)

into Eq. (3.2) and comparing with

o) =ad?, ) =adY. o) =2d),

X =

) =21dy), o) =22y, ) =21dy”,

) = .= (3.13)
relating four-loop Yukawa f-function coefficients to two-loop
scalar f-function coefficients. These relations were checked
already in Ref. [10]; they are satisfied provided 4 = %.
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The terms in A(Y7> have been arranged such that sub-

stituting into (3.2) produces conditions in the follow-
ing order.
(i) Diagrams 1-6 simply relate the a-function coeffi-
cients aié to the ,Bgf) coefficients and give no
consistency conditions.

(i) Diagrams 7 and 8 relate tensor structures that appear

in ﬁgﬁl) to tensor structures that do not appear in ﬁ(;‘>,
hence setting the corresponding f-function coeffi-
cients to zero.
(iii) Diagrams 9-21 relate tensor structures that appear in
5,4) but not in any metric contributions, giving
simple consistency conditions.
(iv) Diagrams 22-47 relate tensor structures which

appear both in ﬂy) and in metric contributions,
giving nontrivial consistency conditions.

PHYSICAL REVIEW D 95, 025010 (2017)

(P

@
(Tio))yy

(2)
Ty

@
vy (ngj)yy

(5)

Contributions to Ty,.

. : . 5
(v) Diagrams 48-52 along with metric terms ),‘(16)_18 form

a closed system of equations independent of the rest

of the system.

(3)

With our choice of leading-order metric T,3 =9y,

examples from the first four categories are the
following.
6) Sug?tituting A gives 64\ = 4¢!? so that o\ =
2

5¢;’ in a similar manner to the lowest-order
calculation.

(ii) Substituting Ag) gives 2a§7) = 2cg4) and 4a§7) =0;
hence, c<54) =0.

(iii) Substituting Ag) gives 2a§7) = 4634), 2a§7) = 4Cé4>
and 2a§7) = 4cé4) ; hence, c§4) = c§4) = cé4>.

(iv) Substituting Ag) and A(ZQ gives a set of nine

equations:

025010-10
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7 4 7 4 7 4
=l D =add ol add
=8, 16 44, o) s,

2a) =4cly,  2a%) =847, 245) =167 + 81, (3.14)

leading to the consistency conditions 1Y) =0 and cfé) = cffé) = c‘(f;) = c‘(é) = cg?.

() (5)

Deriving the full system of equations and eliminating the a,’ and f;’ coefficients therefore leaves a large set of

consistency conditions on the ﬁ<y4) coefficients, which are given in full in Appendix B. We have computed these four-loop
coefficients and checked that they satisfy all these conditions; again, the details are given in Appendix B. Finally, using
the MS values in Eqs. (B6) and (B7), the coefficients a57) defined in Eq. (3.8) may all be computed. Combining with the

nongauge parts of Eq. (3.7) and substituting into Eq. (3.3), our final result for the a-function at next-to-leading order in the
general scalar-fermion theory is

20 4 16 2 1 7 11
9 + 2 (Apy +Ai) = 3 +3 3% 3 162 +162
+ (222 = 16)AY) +84) =241 + 22241 4 (22 - 8)A\}) + (— — 1672
2
7 7 T 7 7 7 16 28 4 7 56
+ 4A(16) + 8A§7> +3A§9) + ”2'4%0) + 2‘421) + zAgz) - §Ag3) 3 £4) +2 2A§5) - §A§6) - ?A%) + ”2A<28)
10 28 16 8 m 7 1 8 2 14 2 7 10 2 7
A A A A A ST S AT =S
11 77.'2 7 7 8 7 7 4 7 1 7
+ 5414( '+ 3 (Afn) +A4(t3)) - gAé(m) + ”zAz(ts) - gAz(te) + §A4(l7) + 27[2‘44(18) + 12‘44(19) + 4 Ago) + 12Agl) + 4 Agz)
(3.15)
The next-to-leading-order metric coefficients in Eq. (3.12) are likewise given by
5 28 5 40 5 16
t(l)z—?+3a, t;):—?—&—&l, tg):—?+3a,
5) (s 5) 11
) 1Y) =22, i =-5t1%
5) 5) 2 1 5 13 3 5) 1 3
t7 +té ——§+§Cl, g)_—?+zd, 20:—?—{-50,
5 1 3 5 20 1 5 11 3
l(ll):—g‘f‘za, 152)_—?4—50, l§3>:?+za7
5 55 1 5) 7 5 s 7
t§4> + tEs) =54 t(16) =4 t(17) =0, t(18) = (3.16)

As in previous calculations in four [7,20] and six [21]
dimensions, we find that at each order the a-function is
determined up to the expected freedom parametrized by a in
Eq. (3.3). However, in the case of the metric, only the sums of
th), tés), and z‘g?, t(155> are determined, leading to an additional

arbitrariness. tf) vanishes identically, whereas t(157) is propor-

tional to c(l?)é—cg‘(% and hence vanishes by Eq. (B4).

IV. CONCLUSIONS

We have shown that Eq. (1.1) is valid at next-to-leading
order for a general scalar-fermion theory. It seems possible

that effectively we are constructing the F-function, defined
in Refs. [15—18] as the free energy for the theory defined on
S3. A proof was given in Ref. [16] that the F-function
satisfies Eq. (1.1) in the neighborhood of a conformal field
theory at leading order; but our explicit results here provide
further evidence beyond leading order [where, except as we
have shown here for a gauge theory, the existence of an a-
function with the properties of Eq. (1.1) is in any case
trivial]. We have also shown that the two-loop scalar
coupling p-function determines part of the next-to-lead-
ing-order a-function which in turn gives a prediction for the
scalar-coupling-dependent sector of the four-loop Yukawa
p-function, as displayed in Eq. (C3). We already checked
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FIG. 8.

the nongauge part of this prediction in Ref. [10], but we
have now extended this calculation to include the
gauge terms.

We also note that there has been considerable recent
attention devoted to three-dimensional U(N) Chern-
Simons theories in the large-N ’t Hooft limit where there
appear to be interesting duality properties [22-24]; see also
Ref. [25] and further references therein. The A-function
which we have constructed might have a role in elucidating
the phase structure of these theories. The free energy also
plays an important role here, but for the theory defined on
R? x S' corresponding to finite temperature.

A natural next step would be to investigate the case of
N = 2 supersymmetry, where partial results are available
for the four-loop Yukawa p-function [26]. This would
potentially extend the verification of Eq. (1.1) at next-to-
leading order beyond the simple scalar-fermion case; and
then assuming the equation applied more generally, it might
be possible to deduce or at least strongly constrain the four-
loop p-functions for a general gauge theory. One could
further look for evidence for an all-orders form for the
a-function in the N/ = 2 supersymmetric case, such as was
found in the four-dimensional case in Refs. [7,20,27-30].
The discussion in Ref. [31] may provide some pointers in
this direction.

An interesting corollary of our calculations is that
the consistency conditions yield a set of relationships
among the divergent contributions from three-dimensional
Feynman integrals. As we have seen, for Ag)—Ag) these
conditions relate the simple poles in the diagrams obtained
by deleting one of the vertices in a single a-function
contribution. It was shown in Ref. [32] that the Feynman
diagrams obtained in the A = 2 supersymmetric calcula-
tion could be expressed in terms of a relatively small set of
integrals; and in fact this set can be further reduced using
simple integration by parts. On the other hand in the current
nonsupersymmetric case additional basic integrals are
required with double propagators. In Fig. 8 we display
the minimal required set of integrals from Ref. [32], namely

PHYSICAL REVIEW D 95, 025010 (2017)

INIGOE

Lypop Lyopbe

Lyobb1de

Frequently occurring Feynman integrals.

Iy, Inoy Lappps Laspbes Laopprae together with the most
frequently occurring additional integrals, denoted X and Y.

Our consistency conditions from Ag)—Agl) imply the
extra relations
1
Lipppe = 1y —5122 =-2X=-2Y, lppprae = _§I4bbbv
(4.1)

so that everything can be expressed in terms of 1,4, I, and
L41p5- These relations cannot be obtained by any simple
process of integration by parts and appear to be entirely
new. They are also very easy to phrase diagrammatically at

least for Af;)—Agl). The diagrams of Fig. 8 are in any case
straightforward to compute using standard methods.
However, it seems likely that the calculation for a general
gauge theory would impose further relations among dia-
grams, possibly including those which are otherwise
difficult to evaluate. It would be interesting to investigate
whether there is any underlying topological explanation for
these relations.
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APPENDIX A: TENSOR STRUCTURES

In this appendix we give the exact expression for the
various tensor structures which were described pictorially
in the main text and also explain in detail our choice of
these tensor structures in view of relations among them
resulting from gauge invariance as in Eq. (2.2).
The contributions to the two-loop Yukawa p-function
defined in Eq. (2.3) were depicted in Fig. 1. The explicit
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expressions for pure Yukawa terms are given by

)

)

(Uz )abij =

2
(Ug >)abij

2
(Ué(t >)abij

2
(Ug >)abij =

abij —

1
4

Yaclm chij delmv

= YcaiY aprtY caij»

1
2 [Yaczj chlm delm + YadledclecbijL
1

5 [YabikYCdechlj + chiIchlkYabkj]’

those with two gauge insertions are given by

1
2 , o
(Ué ))abij =1 Y acit (BY?) qY apij + (@ < b, i < j)],
1
2 .
(Ug >)abij = Z [YacilEZ/dE;ﬁmdemj + (a < b, I < ])}’
1
2 .
(Ué ))abij =7 (EGeY cairY aetiEp, + (a <> b, i< )],
WD), = MELY B Y+ (@ b, i< )]
9 Jabij 4 act cdil &1t dbmj s J)ls
1
2 o
(U(IO))abij =1 (EGcY caiEg Y epij + (a < b, i< )],
1
2 .
(U )apiy = 3 EP)inYaem¥ iy + (@ o b i j)),
1
2 . .
(U(l2>)ahl] Z [EI‘IJICEszc'eleeblj + ((1 <~ b’ <> .])]7

and those with four or six are given by

2
(U(13>)abij

1
2
@, _1
(UIS)abij_Z
@, _1
<U16)abij_1

2
(UD) iy =

)

S

~
—_— DN =

— ~[(E") YeaiEly + (a < b)), (UD)

2
= w(EV)ELY caijEy, (U§2))abij =

abij —

N —

[(E(pz)ikEltll/CchkjElllyld +(a<b, i< j),
[<E¢2)ik(EW2>acchkj +(a<b, i< j)

(U apij = E™) i E®) Y apits (U ais = (E?)1:(E?)10Y apias
= (Ev

2
Da B )ea caiy (Uéo))“hij:tr(E¢2)EZICYcz!ijEllé/d’

[(E?) Y apij + (i < j)].

N =

[(E") 0o Y cpij + (a <> b)),
=3 [tr(E??) + tr(EV2)][(E?) Y apij + (i < J)],

= % [tr(E??) + tr(sz)][(sz)ucYchij ¥ (a< b,

(U(26))abij = (E¢2)“(EW4)(117’ (Ug7))abl] (E(M) ‘(sz)ab’
(U avi; = WEPYEP) (B e (US)api; = (EV2)(EP) i (EY2)
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FIG. 9. Feynman integrals for terms undetermined by (3.2).

Note that each tensor structure is symmetrized on a, b and i, j
and has a “weight” of one. This is a different choice of basis
convention from that adopted in Ref. [10]; but it means that
differentiating a vertex in an a-function term gives a Yukawa
p-function term with a factor of 1. A word is in order
regarding the choice of tensor structures in Eq. (A2). There
are in fact 13 distinct tensor structures with two insertions of
E; however there are six identities among them resulting from
application of Eq. (2.2), so that we can select seven of the
structures as a basis. This will facilitate the construction of the
a-function as we shall see shortly. Each of the 13 structures
corresponds to a two-loop Feynman diagram. However, eight
of these manifestly give no f-function contribution, for the
following reasons. Firstly, several of them are one-particle
reducible. For the remainder, the corresponding Feynman
diagrams are logarithmically divergent so we can set the
external momenta to zero. Structures corresponding to a
Feynman diagram with only a single y matrix then manifestly
give no contribution to the f-function by Lorentz invariance;
and diagrams with an E? (and therefore a gauge vertex) on an
external scalar line give no contribution due to antisymmetry
of the gauge propagator (resulting in a ¢**”k,,k, contribution).

We have therefore selected the seven structures U éz)—U (1? as

a convenient basis since it includes all the diagrams (namely
those corresponding to Uéz)—U (1%)) with potentially non-
vanishing f-function contributions. Note that in the
Abelian case which we are currently considering, some of
them correspond to more than one Feynman diagram, with
different orderings of the gauge matrices.

In the case of contributions with four and six insertions
of E#¥_ we have not constructed a basis, since in this case
there is a one-to-one equivalence between f-function and
a-function contributions, and consequently the construc-
tion of the a-function is trivial. We have simply listed in
Eq. (A3) all the structures corresponding to nonvanishing
contributions from Feynman diagrams.

AY =Y Y peiaY cain aai
Ags) = Yapij¥ caju¥ apur¥ caris
A§5) = YavicY bakj Y caitY actj»
A%S) =Y abij(E¢2)jkY bkt cati-

5
A = Y apif B Y cap B Y eai

PHYSICAL REVIEW D 95, 025010 (2017)

The contributions to the two-loop scalar f function, as
defined in Eq. (2.3), were depicted in Fig. 2 and are given
explicitly by

1

2
(V(l )ijklmn = a [hijkpqrhlmnpqr + perms],
VO Y Yo+ perms]
2 Jijklmn — 6! ijkipg® abmp* abng p s
vy gy oy
( 3 )ljklmn - 6! [ ijklmp* abpgt abng + Pel’ms],
(V(z))~ _1 (Y aviiYvertY camp Y dapn + perms]
4 Jijklmn 6! abijt beklt cdmp ! dapn p P
) T S —
5 Jijklmn — 6! abijt bempt cdkl! dapn p P
2 1 p. q
(Vé ))ijklmn = 5 [hijklpq(E(lz)pm (El)z)qn + perms],

1
2
(V; ))ijklmn = a [hijklmp<E¢4)pm + perms],

1
2
(Vé ))ijklmn sl [hijklmp<E¢2)pm{tf(E¢2) + tr(E¥?)}
+ perms],
2 1
(V((; ))ijklmn =6l hijeipg (E??),, (E??),,,, + perms],
(V2 = — [V i E”Y catY damm + perms]
10 )ijkimn = gy 1 abijbe L cdkit damn p )
2 1 y
(V(ll))ijklmn = a [YabijEll/;cchklEiIJIeYeamn + Perms],
2 1
(V(IZ))ijklmn = a [ ?;ZYabklEl},;czYcamn + perms],
2 )
(V§3))ijklmn = a{ ?3 YabklEl}l;lcchmnElga + Pefms],
2 1 p2 p2 p2
(V§4))ijklmn = a[ ;/j El{l YahmnEZa + perms], (A4)

where “+ perms” completes the 6! permutations of the indices
{ijklmn}. The choice of convention for the factors is similar
to the Yukawa fS-function terms. Once again, and for similar
reasons as in the case of Eq. (A3), we have not constructed a
complete basis of independent tensor structures but have
simply listed in Eq. (A4) all the structures corresponding to
nonvanishing contributions from Feynman diagrams.

The lowest-order (five-loop) a-function structures were
depicted in Fig. 3 and given explicitly by

5 Y da
Aé ) = Yabinbckl Cdin ki
5 Y Y Y
A( ) = L gcij cbinbdlm dalm»

5
Aé) = Youpij(E")peY cajuY daki

5
Ag ) = YabijEllla/cE?kYCdledaH’

(AS)
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Note that we have for the nongauge terms

AY = (UD)pi¥aiy, @=1,..5. (A6)

abij

APPENDIX B: DETAILS OF FOUR-LOOP RESULTS

In this Appendix we list the full set of consistency conditions obtained by imposing Eq. (1.1) at next-to-leading order,
together with the detailed four-loop results for the Yukawa p-function coefficients. The simple consistency conditions
: (7 _A(
obtained from Ay ’-A,| are

@ _q “ _ 4 _ @

cs' = Ce = c; =cy =c¢q,
co = =i el =2l off =i = .
2e) =y, 2d =) 2dy =
ch =25, 2 = =l
2ef =il 2el =y b =2,
ki =k cig = cip- (B1)

and those resulting from A(272)—A£77) are

4 4 4 4 4 4
) -l = - = -

4 4 4 4 4 4
= ng) - 027) = 3(C§o) - ng)) = Cé(%7) - 62(36)’

(4) 4 4 4 (4) 4 4 (4
Cq0 — Cz(u) = Cz(tz) - C43) =C50 — 51(31) = ng) - C53)

4 4 4 4 4 4
= 6(c§0> - ng)) - Cél) + Céz) = cé7) - CE;S)’

4 s 1, @ 4 4 4 4 4 4
C:(ss> - 4027) = E(Cgé) - 2Cés)>7 3(C§0> + ng)) + Cés) = C2<38) + 12057)’
4 4 4 4 4 4 4
Cgs) = 12(Cé0> - ‘757))’ Cf(ss) - ‘72(39) = 2(2‘354) - Cgs))v (B2)

and

cg) - cg) - 6c<6? + 1202? + 6c%> + cg-) - cg) - 12654;) =0,

el 3l 6l — ¥+ ey~ —0

6cl) =3¢ +3¢8 — 1268 — ) — ) + 28 =0,
seld el ~3ed =0

el el 26+ 6l + 4kl 26D 6 =0,

4 4 4 4 4 4 4 4 4 4 4
chﬁ) = Cg7> = chs) = Cz(ts) = 04(16) = Cz(w) = Cz(ts) = Cgs) = 20&1) = ng) = 2C§3)- (B3)

The condition resulting from Ag) —Agz) is

4 4 4 4 4 4 4 4
Cfgs) = 059) = C<10)0 = C50>1 = 6050)2 = 4050)3 = 6c§0)4 = 4020)5- (B4)

All anomalous dimension terms (except c%)z and CE‘&) have been eliminated from the above consistency
conditions; the consistency conditions which do involve anomalous dimension coefficients may be expressed in

the following form:
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4 4 4 4 4 oy 1w 1w 4w 24 4
Céo) = Cg9) - 20553) + 12"539> + 2"%0) - gcéé) - —05(57) + —Céo) + §Cg4> - —Cgs) - 4057)7

6 3 3
) = =l 1265 + o)~ el + el + Sl -l - 26
cly = =gl + 6 +3e5) +gesl —g e + el —geld -5l
o) = 126 — elf) Lol + 2l ~ el — el
) = 126 ~ Lelf + )+ 2cll —elf ~ 2,
59 = = + 6+ + o + 3l - geld — 2l

4 I P B
Cgs) = _6623) + 2"29) "‘gcgo)’

@_1w_Lw. 50

€79 :6C63 —66’70 821

@_lw o 2w _ 1w @

€81 = 374 82 T 3 €04 T 3Cs T Co7

o = 5ot

ol = gt

k) = 6l 3l — el — el (B3)

We see that in this form these conditions have the effect of predicting the values of all the anomalous dimension

coefficients except two, namely cg;) and cg;). We need only calculate the two explicit Feynman integrals depicted

in Fig. 9 corresponding to cg) and cg) in order to obtain all 14 possible anomalous dimension coefficients. This

is useful since the Feynman diagrams corresponding to anomalous dimensions are typically harder to evaluate
than the others, being linearly or quadratically divergent.

The nonanomalous dimension terms can all be calculated in MS via integration by parts, using master integrals computed
in Ref. [32]. The coefficients are

=32, =64, =0, =0 =,

cgﬁ) =212, cg? =272, cg? = 4n?, cg? =38, cg? =4,
cg? =, = 272, cg‘;) =, cg‘;) =38, cé(fg =16,
c‘(ﬁ) =0, Q(é) =8, cf‘) = -8, cﬁ) =0, W= 272,

cfé) =272, 6‘4(14) =272, W = 272, cfé) =16, cg(‘)) =24
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@ _g “ _g @ _ @ _

Cs51 = Csp Cg3 = -8, csy =0, css = 16,

oo Ao e =1 o

=0 =3 dl=3. 4= =0

G- =g dlma oo dP-s

i) = g =0 =16 =24, =3,

cé? =24, cg(l)) =24, cg;) =, cg;) = 2x?, cg;) =7,

cé? = -2, cg;) =38, cgf,) = g, cg;) =27°, cgé) =27,

do=2e - A= dh-T 9

One can therefore see that these coefficients satisfy every equation in Egs. (B1)—(B4). Evaluating the integrals in Fig. 9 and
subtracting the central two-loop subdivergences, we find that

4 4 4 22
Cé9) =57 Cé2) =57 (B7)

and hence using (BS) the other anomalous dimension coefficients are predicted to be

4y 4 4 8 4 4 4 16
Céo)zgv 024):—@ Cés):—g 651)23
4y 4 4 8 g 32 4 20
033) = § ’ c§6) = 6 ’ c%S) 27 ’ ng) 27 ’
4 4 71'2 (4 7T2 4 2
Cél):—g’ c§3):?, 034):§v c§6)25,
2
4 T 4 T
C<10)2 3 C(IOZL BER (B8)

We have checked most, though not all, of these predictions by explicit computation.

Finally, a word on scheme dependence. A change in scheme can be effected by a redefinition of the couplings. In our case
we may consider

5
Y =3"5,U (BY)
a=1

where the U512> are defined in Eq. (A1) (we continue to focus on the scalar-fermion case and omit potential gauge

contributions). The resulting changes in ﬂ<y4) and A7) are given by

sA0 = _sy@ . 2 a0,
Y
559 — 5. 2 sy0) _syer. 0 g2 (B10)
Y ) oy"Y

Using the two-loop f-function (for the nongauged theory) as given by Egs. (2.3), (A1), and (2.4), the induced changes in the
a-function coefficients as defined in Eq. (3.8) are given by
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4

o __4 (M) _
5615 ——555, 606 ——554,
sal) = -85,  sal]) = -85,
4
sal]) = ~3 01 + 165, sal) = -85,

8
sa]) = 302+ 855, sall) = -85,

4
sall) = ~3 01+ 165,
8
5(15’;) = —553 + 855,
7 _ _4
sa\) = —25,,
ayy 304

8
Saiy) = =303+ 83y,

sall) = —8(48, + 5,).

4
sal]) = ~3 01+ 165,

8
5a§7> = —g

sal) = —8(48, + 5;).
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sall) = -85,

)
4
sall) = ~ 31 + 1655,
4
-5,
3 5
8a) = —8(5, + ).

6a<31) =

and the corresponding changes in the ﬂgf‘) coefficients defined are found to be

5cl) =2(8, —48,), 8l =2(5, —45,),

5l =4(48,—5))., ot =2(5, —45,).

2

2

sclt) = 301~ 864, 5cl) =85, — =t
2 2

sclt) = 301~ 865, sclt) = 855 — =t

5c\) = 4(85-5,), Y =16(5, - 55),

4
sely =2 (8,-85),  ocly =335 =84).

5cly) =2(48,—8,),  Scll) = 2(5, —45;).

5cly) =2(48y—8,), ekl =2(485—5)).

all the other coefficients remaining unchanged. Given the
method of derivation, it is expected that the consistency
conditions will be scheme independent. It is indeed easy to
verify that all consistency conditions, including the expres-
sions for the anomalous dimension coefficients, are invari-
ant under the changes in Eq. (B12) and hence hold in an
arbitrary renormalization scheme. This constitutes an addi-
tional check on the validity of these consistency conditions.
We finally remark that at this order and in the ungauged

case, we have from Egs. (2.8) and (2.10) that AB) =
1Y ab,-j(/}(yz))abij and then the freedom in A7) corresponds

simply to taking 5Y®) = —1 apP) tis in fact easy to check
from Egs. (B10) and (B11) that this reproduces at lowest
order the freedom expressed by the a term in Eq. (3.3) but

leaves ﬂ§,4> unchanged. This redefinition of course vanishes

(64 + 65), saly = —252 + 864,
sal)) = —85;,
(B11)
502? = 4(45, - 9,), 502? =2(46, = 6),
scly) = %51 ~85,, el =85, — %51,
sclt) = 252 —45,, 6l =45, - %52,
5cly) = %51 — 855,  octY =855 — %51,
5cly) =45, — %53, sty = %163 — 45,
sclp) = 252 — 455, el =455 — %‘52,
5l =2(5,—485). el =2(5, - 455).
Scly) = 455 — 253, scl) = 253 — 46, (B12)

at the fixed point and so the fixed-point coupling is
unchanged, as is the fixed-point value of the A-function.
More general coupling redefinitions will correspond to a
change in renormalization scheme with an attendant change
in the f-functions, and furthermore the fixed-point coupling
value and fixed-point A-function value will correspond-
ingly be redefined.

APPENDIX C: PREDICTION FOR GENERAL
YUKAWA-4-FUNCTION

As we explained in Sec. III, if we assume that the a
theorem in three dimensions does indeed hold, then we may
use it to derive a prediction for the part of the four-loop
Yukawa f-function involving factors of the scalar coupling
h, in the full gauged case. We now write
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Y =3 e Uy + . (C1)
a=1

extending the mixed scalar-Yukawa terms in Eq. (3.11) to

the gauged case. As explained earlier, the tensor struc-

tures UE;},)’ a = 1...13, may be read off from the vertices

in Fig. 4; the ellipsis in Eq. (C1) subsumes all the
contributions with no factors of 4. We computed the pure
Yukawa contributions in Sec. III, but of course there will

also be mixed Yukawa-gauge contributions in this general

case. The coefficients cg?—cgﬁ) were already given in

Eq. (3.13). We now examine the consequences of
Eq. (3.2). It is easy to see that there is no mixed scalar

and Yukawa contribution from the T@ terms, since there

is no possible contribution to T(ys,l itself containing & and

of course ﬁg/z) does not contain A either. Equations (3.4)
and (C1) now imply
o) = 1d3,

4 2 4 2
) =dy, ey =ady,

eyt =2dy, o)) =2dl). o) =244,
el = ad), (C2)
with no contribution to T(YSQ in Eq. (3.2). These coef-
ficients form a prediction for the part of the four-loop
Yukawa p-function involving scalar-coupling contribu-
tions; namely, combining Egs. (2.5), (3.13), and (C2) and
taking 1 = %,

PHYSICAL REVIEW D 95, 025010 (2017)

1 2
Y = S0+ 20+ a0l 20 20
+2Uf) - Uy - 20 + Ul + 20,

+aUy) 44U + .., (C3)

where we have included the nongauge terms US?—UE_‘}).

This subsumes all the contributions to ,Bg;” for a general
Abelian Chern-Simons theory involving a factor of 4; as
we mentioned, the purely Y-dependent terms were
obtained in Sec. III. Of course the computation of the
remaining mixed Yukawa-gauge terms would still require
considerable labor, even after exploiting any additional
consistency conditions which might arise.

Since there are many potential four-loop Yukawa
p-function structures involving 4 which are not included
in Eq. (C1), this prediction might appear to give a great
deal of additional information in the form of requirements
for vanishing coefficients; but we should also consider
the relations among these coefficients following from
Eq. (2.2). In the case of contributions with two gauge

matrices, the four structures US}—U%‘])O may be extended

to a basis by adding just one more structure, whose
coefficient in the p-function is easily seen to be zero
without any calculation. Therefore Eq. (1.1) effectively
yields only the four constraints expressed by the coef-
ficient predictions in Eq. (C2). Similar remarks would be
expected to apply to the contributions with four and six
gauge matrices.
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