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Recently, evidence was provided for the existence of an a-function for renormalizable quantum field
theories in three dimensions. An explicit expression was given at lowest order for general theories involving
scalars and fermions and shown to be related to the β-functions by a gradient flow equation with positive-
definite metric as in four dimensions. Here, we extend this lowest-order calculation to a general Abelian
Chern-Simons gauge theory coupled to fermions and scalars and derive a prediction for part of the four-
loop Yukawa β-function. We also compute the complete four-loop Yukawa β-function for the scalar-
fermion theory and show that it is entirely consistent with the gradient flow equations at next-to-leading
order.
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I. INTRODUCTION

Following Cardy’s suggestion [1] that Zamolodchikov’s
two-dimensional c theorem [2] might have an analogue in
four dimensions, considerable progress has been made in
proving the so-called a theorem in even dimensions [3–9].
In a recent paper [10] we provided evidence that for a wide
range of renormalizable quantum field theories in three
dimensions we can similarly define a function A which
satisfies the equation

∂IA ¼ TIJβ
J; ð1:1Þ

for a function TIJ; we denote the function by A since the
notation a is often used in four dimensions for the Euler
density coefficient in the Weyl anomaly. A crucial conse-
quence of Eq. (1.1) is that we then have

μ
d
dμ

A ¼ βI
∂
∂gI A ¼ GIJβ

IβJ; ð1:2Þ

where GIJ ¼ TðIJÞ, thus demonstrating a function with
monotonic behavior under renormalization group (RG)
flow and providing a three-dimensional version of the
strong a theorem so long as GIJ is positive definite. This
is remarkable, since attempts [11] to extend the methods
[6] used to prove the strong a theorem to three
dimensions did not appear to lead to a relation of the
desired form. In Ref. [10] we firstly used the leading-
order (two-loop) β-functions computed in Refs. [12,13] to
construct a solution of Eq. (1.1) for Abelian and non-
Abelian [for the case SUðnÞ] Chern-Simons theories at
leading order. Our method was essentially that employed
in four dimensions in the classic work of Ref. [14]. The
“metric” GIJ was indeed found to be positive definite at

this order, at least perturbatively. The Yukawa and scalar
couplings in these theories were of a restricted form.
However, by considering completely general scalar and
fermion theories (but without gauge interactions) we were
able to argue that the existence of the a-function was
somewhat trivial for these theories at leading order, but
that predictions for the scalar-coupling-dependent contri-
butions to the next-to-leading-order (four-loop) Yukawa
β-function emerged and could be verified by an explicit
computation.
In this paper our purpose is first of all to extend the

general leading-order calculation to the gauged case (we
present results for the Abelian case, but the extension to
the non-Abelian case is straightforward) and secondly to
complete the four-loop computation1 of the Yukawa
β-function [10] for a general scalar or fermion theory
and show that we can extend the definition of the
a-function in Eq. (1.1) to this order. It turns out that
in the gauged case the existence of the a-function is
nontrivial even at leading order; it imposes constraints on
the β-function coefficients which we will show are
satisfied. A by-product of our extended leading-order
computation is a prediction for the scalar-coupling-
dependent contribution to the four-loop Yukawa
β-function for a completely general (i.e. gauged) renor-
malizable theory in three dimensions.
It has already been proposed that the free energy F in

three dimensions may have similar properties to the four-
dimensional a-function, leading to a conjectured “F
theorem” [15–18]. It has been shown that for certain
theories in three dimensions the free energy does indeed
decrease monotonically along RG trajectories. It has also
been shown that F obeys a gradient flow equation at
leading order for theories which may be regarded as a
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1Modulo the anomalous dimensions for which we do not have
a fully independent computation, as we shall explain later.
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perturbation around a conformal field theory. This covers
theories with a scalar potential, which may be regarded a
perturbation around a free field theory. However the only
nontrivial example at leading order, namely a gauged
scalar-fermion theory, does not fall into this class. This is
the reason why we have pursued the computation beyond
leading order despite its complexities. On the other hand,
our method does not provide any general insight as to the
origin of the gradient flow, so it would be interesting to
investigate the relation between the “F-function” and our
a-function.
The structure of the paper is as follows. In Sec. II we

discuss the construction of the a-function at leading order,
corresponding to the two-loop Yukawa β-function. Here we
consider a completely general Chern-Simons gauge theory
coupled to fermions and scalars, and we show that in this
gauged case Eq. (1.1) imposes nontrivial constraints on the
β-function coefficients which are indeed satisfied. In
Sec. III we proceed to the next-to-leading order, but for
a general ungauged scalar or fermion theory. Here the
a-function is determined by the two-loop scalar β-function
and the four-loop Yukawa β-function. We show that
Eq. (1.1) imposes a plethora of constraints upon the
four-loop Yukawa β-function coefficients; and we compute
the four-loop β-function to demonstrate that these are all
satisfied. Various remarks are offered in a conclusion.
Finally, a number of technical details are postponed to
Appendixes: namely, an explicit list of the tensor structures
in which we expressed the β-function results, together with
an explanation of our choice of these structures, and the full
set of consistency conditions and four-loop Yukawa
β-function results at next-to-leading order. We also discuss
there the scheme dependence of our results. We present in a
final Appendix our prediction for the scalar-coupling-
dependent contribution to the general four-loop Yukawa
β-function, as mentioned above.

II. LEADING-ORDER RESULTS

In this section we define the general three-dimensional
Abelian Chern-Simons theory, present its β-functions at
lowest order (two loops) and construct the leading term in
the a-function. The Lagrangian is given by

L ¼ 1

2
½ϵμνρAμ∂νAρ þ ðDμϕiÞ2 þ iψ̄aDψa�

þ 1

4
Yabijψaψbϕiϕj −

1

6!
hijklmnϕiϕjϕkϕlϕmϕn; ð2:1Þ

where we employ a real basis for both scalar and fermion
fields andDμ ¼ ∂μ − iEAμ, where E is a charge matrix (Eϕ

and Eψ for scalar and fermion fields, respectively). Recall
that in d ¼ 3, ψ̄ ¼ ψ�T , and there is no obstacle to
decomposing ψ into real Majorana fields. Gauge invariance
entails the identities

Eψ
acYcbij þ Eψ

bcYacij þ Eϕ
imYabmj þ Eϕ

jmYabim ¼ 0;

Eϕ
iphpjklmn þ perms ¼ 0: ð2:2Þ

The L-loop Yukawa and scalar β-functions take the
respective forms

ðβðLÞY Þabij ¼
XnL
α¼1

cðLÞα ðUðLÞ
α Þabij;

ðβðLÞh Þijklmn ¼
XmL

α¼1

dðLÞα ðVðLÞ
α Þijklmn; ð2:3Þ

where UðLÞ
α and VðLÞ

α denote L-loop tensor structures. In the
interest of brevity, in the main body of the text we shall
simply give a diagrammatic representation of the various
tensor structures appearing here; to avoid any ambiguity the
full expressions will be given in Appendix A. In these
diagrams the Yukawa and scalar couplings will be repre-
sented by vertices, with the fermion and scalar legs
indicated thus, with lines indicating contracted indices:

At two loops, the number of tensor structures appearing
in the Yukawa β-function in Eq. (2.3) is given by n2 ¼ 29,
and the two-loop tensor structures are displayed in Fig. 1
and written explicitly in Eqs. (A1)–(A3). A small circle
represents a single gauge matrix Eϕ or Eψ , and a square
represents a product of two Eϕ or Eψ. Each tensor structure
is defined so as to have a “weight" of one, as explained in
Appendix A, where we also explain our choice for these
structures, which is not unique since tensor structures
containing gauge matrices may be related through the
gauge-invariance identity Eq. (2.2). We note here that

Uð2Þ
22 –U

ð2Þ
25 correspond to anomalous dimension contribu-

tions and consequently we may simply read off the

corresponding values of cð2Þ22 –c
ð2Þ
25 from the results of

Ref. [12] with no further calculation. In the case of Uð2Þ
24

and Uð2Þ
25 , there is also a graph with a fermion loop which is

not depicted but whose contribution may be seen in
Eq. (A3). We have assumed that the contributions from
single fermion loops and single scalar loops are equal; this
is consistent with our other explicit calculations but in any
case does not affect any of our conclusions.
The computation of the two-loop Yukawa β-function is

very straightforward and we simply quote the result,
namely
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βð2ÞY ¼ 8Uð2Þ
1 þ 2ðUð2Þ

2 þ Uð2Þ
3 Þ þ 2

3
ðUð2Þ

4 þUð2Þ
5 Þ þ 8ðUð2Þ

6 þ Uð2Þ
7 þUð2Þ

8 Þ

− 16Uð2Þ
9 þ 24Uð2Þ

13 þ 4Uð2Þ
14 þ 24Uð2Þ

15 − 16Uð2Þ
16 − 8ðUð2Þ

17 þUð2Þ
18 þ Uð2Þ

19 Þ

þ 2ðUð2Þ
20 þ Uð2Þ

21 Þ −
40

3
Uð2Þ

22 −
4

3
Uð2Þ

23 −
8

3
Uð2Þ

24 −
2

3
Uð2Þ

25

− 32ðUð2Þ
26 þ Uð2Þ

27 Þ − 8ðUð2Þ
28 þ Uð2Þ

29 Þ: ð2:4Þ

Here and elsewhere we suppress a factor of ð8πÞ−1 for each loop order. The individual coefficients cð2Þα defined in Eq. (2.3)

may then easily be read off, e.g. cð2Þ1 ¼ 8, etc. The coefficients cð2Þ1 , cð2Þ4 , and cð2Þ5 differ by factors from the corresponding
results in Ref. [10] due to our slightly different choice of basis tensors here, as described above. Note further that with our

choice of basis for Uð2Þ
6 –Uð2Þ

12 , as explained in Appendix A, each nonvanishing term here corresponds to a single Feynman
diagram.
There are m2 ¼ 14 tensor structures in the two-loop scalar β-function defined in Eq. (2.3), and they are of the form

depicted in Fig. 2 and defined precisely in Eq. (A4). Once again, in the case of Vð2Þ
8 there is also a graph with a fermion loop

FIG. 1. Two-loop tensor structures appearing in βð2ÞY .
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which is not depicted but whose contribution may be seen in Eq. (A4). The computation of the two-loop scalar β-function is
again straightforward and it is given by

βð2Þh ¼ 20

3
Vð2Þ
1 þ 30Vð2Þ

2 þ 4Vð2Þ
3 − 360ðVð2Þ

4 þ Vð2Þ
5 Þ − 120Vð2Þ

6

− 40Vð2Þ
7 − 8Vð2Þ

8 − 120Vð2Þ
9 þ 360ðVð2Þ

10 − Vð2Þ
11 Þ þ 720ðVð2Þ

13 þ 2Vð2Þ
14 Þ: ð2:5Þ

Once again, the individual coefficients dð2Þα defined in
Eq. (2.3) may easily be read off when required later.
We now turn to the construction of the a-function at

lowest order. As discussed in Ref. [10], we impose Eq. (1.1)
in the form

∂Að5Þ

∂Yabij
¼ βð2Þabij; ð2:6Þ

where we define

∂
∂Yabij

Ya0b0i0j0 ¼
1

4
ðδaa0δbb0 þ δab0δba0 Þðδii0δjj0 þ δij0δji0 Þ:

ð2:7Þ

The corresponding (lowest-order) contribution to the metric
TIJ is therefore effectively chosen to be the unit matrix in
coupling space. The most general lowest-order a-function
which may satisfy Eq. (2.6) is given by

Að5Þ ¼
X9
α¼1

að5Þα Að5Þ
α þ

X29
α¼13

að5Þα Að5Þ
α ; ð2:8Þ

where the Að5Þ
α , α ¼ 1…9, are given in Eq. (A5) and

depicted in Fig. 3.

The terms Að5Þ
13 –A

ð5Þ
29 are defined by

Að5Þ
α ¼ ðUð2Þ

α ÞabijYabij; ð2:9Þ

with Uð2Þ
α as defined in Eq. (A3); we choose not to display

the corresponding diagrams which are of a very simple
symmetric form. The reader will note that we have not

defined structures corresponding to Að5Þ
10 –A

ð5Þ
12 . This is

purely for notational convenience, in order to ensure that

Að5Þ
α corresponds with Uð2Þ

α in Eq. (2.9). Differentiating the
terms in Að5Þ with respect to Yabij corresponds to removing
each vertex in turn, leaving a structure which may be

expressed in terms of one or possibly several of the Uð2Þ
α .

For instance,

FIG. 2. Two-loop tensor structures appearing in βð2Þh .
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We then find immediately upon comparison of the

coefficients of Uð2Þ
α in Eq. (2.6) that

að5Þα ¼ 1

4
cð2Þα ; α ¼ 1;…5: ð2:10Þ

There is no constraint on the two-loop coefficients cð2Þ1 –cð2Þ5

in Eq. (2.4). This is because the symmetries of the
corresponding tensor structures appearing in Eq. (A5)
imply a one-to-one relation between a-function contribu-
tions and Yukawa β-function contributions. This may be

seen in Fig. 3 where in each of the diagrams Að5Þ
1 –Að5Þ

5 the
removal of any vertex leads to the same β-function
contribution. These a-function coefficients can thus be
tailored term by term to match any values for the β-function

coefficients. The same is true of Að5Þ
13 –A

ð5Þ
29 , and again we

immediately find

að5Þα ¼ 1

2
cð2Þα ; α ¼ 13;…25;

að5Þα ¼ cð2Þα ; α ¼ 26;…29: ð2:11Þ

However, the situation is different for Að5Þ
6 –Að5Þ

9 . There are
four of these independent a-function structures, fewer than
the seven β-function structures in our basis. Differentiation
of each of these structures with respect to Yabij leads to two

distinct β-function structures, which in turn should be
written in terms of our basis. Consequently we find a

nontrivial set of equations relating að5Þ6 –að5Þ9 with cð2Þ6 –cð2Þ10

whose solution is

að5Þ6 ¼ að5Þ8 ¼ cð2Þ6 ; að5Þ7 ¼ 0; að5Þ9 ¼ cð2Þ8 ; ð2:12Þ

subject to the three consistency conditions

cð2Þ6 ¼ cð2Þ7 ¼ −
1

2
cð2Þ9 ; cð2Þ8 ¼ cð2Þ7 þ 1

2
cð2Þ10 ; ð2:13Þ

which are indeed satisfied by the coefficients in Eq. (2.4).
In obtaining these equations, we imposed the vanishing of

two of the seven potential coefficients, namely cð2Þ11 and cð2Þ12 ,
which are manifestly zero for reasons explained in
Appendix A. These consistency conditions correspond in
the obvious way to relations among the simple poles in the

Feynman diagrams corresponding to Uð2Þ
6 –Uð2Þ

10 . This is
because, with our basis choice, the nonbasis structures

which could potentially have contributed to cð2Þ6 –cð2Þ10 when
written in terms of the basis, in fact, correspond to
vanishing Feynman diagram contributions.

Combining Eqs. (2.10)–(2.12) with coefficients cð2Þα read
off from Eq. (2.4), we find that the lowest-order contribu-
tion to the a-function is

FIG. 3. Contributions to Að5Þ from Yukawa couplings.
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Að5Þ ¼ 2Að5Þ
1 þ 1

2
ðAð5Þ

2 þ Að5Þ
3 Þ þ 1

6
ðAð5Þ

4 þ Að5Þ
5 Þ þ 8ðAð5Þ

6 þ Að5Þ
8 þ Að5Þ

9 Þ

þ 12Að5Þ
13 þ 2Að5Þ

14 þ 12Að5Þ
15 − 8Að5Þ

16 − 4ðAð5Þ
17 þ Að5Þ

18 þ Að5Þ
19 Þ

þ Að5Þ
20 þ Að5Þ

21 −
20

3
Að5Þ
22 −

2

3
Að5Þ
23 −

4

3
Að5Þ
24 −

1

3
Að5Þ
25

− 32ðAð5Þ
26 þ Að5Þ

27 Þ − 8ðAð5Þ
28 þ Að5Þ

29 Þ: ð2:14Þ

We cannot extend this leading-order (i.e. five-loop)
a-function in order to generate the two-loop scalar
β-function in a similar way via Eq. (1.1), as was pointed
out in Ref. [10]. It is clear, on the analogy of the Yukawa
β-function, that in order to satisfy Eq. (1.1) with regard to
the two-loop scalar β-function the a-function must contain

terms such as ðVð4Þ
α Þijklmnhijklmn [with Vð4Þ

α as defined in
Eq. (2.3)] which correspond to seven-loop diagrams. We
therefore postpone this discussion to the next section where
we provide a full discussion of the seven-loop a-function.

III. HIGHER-ORDER RESULTS

In this section we consider the seven-loop a-function,
which will be determined via Eq. (1.1) by the two-loop
scalar β-function and the four-loop Yukawa β-function.
This hierarchy of loop orders for different couplings was
first noticed in the four-dimensional context [19]. At this
order we need to consider also next-to-leading-order
contributions on the right-hand side of Eq. (1.1).
Including all relevant terms, we obtain (using a somewhat
schematic notation)

dhAð7Þ ¼ dhTð5Þ
hh β

ð2Þ
h ; ð3:1Þ

dYAð7Þ ¼ dYTð5Þ
YYβ

ð2Þ
Y þ dYTð3Þ

YYβ
ð4Þ
Y : ð3:2Þ

Here Tð3Þ
YY is the leading-order contribution to TIJ which as

mentioned before is effectively a unit tensor, and Tð5Þ
YY is a

potential higher-order contribution described in detail later;

we can easily see that no Tð5Þ
Yh or Tð5Þ

hY contributions are
possible. We write

Að7Þ ¼ Að7Þ
h þ Að7Þ

hY þ Að7Þ
Y þ aðβð2ÞY Þabijðβð2ÞY Þabij: ð3:3Þ

Here Að7Þ
h , Að7Þ

hY and Að7Þ
Y are the pure scalar, mixed scalar

and Yukawa and pure Yukawa contributions to Að7Þ,
respectively, while the last term represents the usual
arbitrariness [7] in the definition of A satisfying
Eq. (1.1). We remark that since the β-functions are
renormalization scheme dependent beyond one loop, the
A-function we construct will also be scheme dependent. We
analyze the scheme dependence in more detail at the end of
Appendix B. Here we simply note that in any particular

scheme, at a critical point where the β-functions vanish, the
dependence on a in Eq. (3.3) disappears and the A-function
is universal at the critical point (up to a numerical factor
which we have fixed by requiring that the metric is the unit
matrix at leading order).

We can see how βð2Þh will determine Að7Þ
h and Að7Þ

hY through

Eq. (3.1) while βð4ÞY will determine Að7Þ
Y through Eq. (3.2).

Equation (3.2) will also provide consistency checks on the

mixed a-function terms Að7Þ
hY . Starting with Eq. (3.1), then,

we expand

Að7Þ
h ¼ að7Þh1

Að7Þ
h1
; Að7Þ

hY ¼
X14
α¼2

að7Þhα
Að7Þ
hα
; ð3:4Þ

as depicted in Fig. 4, while Að7Þ
Y will be defined later.

Notice that, as suggested at the end of Sec. II, we have

Að7Þ
hα

¼ ðVð4Þ
α Þijklmnhijklmn; ð3:5Þ

with Vð4Þ
α as defined in Eq. (2.3). The significance of the

labels H1–H13 on the diagrams will be explained shortly.
Equations (2.3), (3.1), and (3.4) then imply

að7Þh1
¼ 1

3
λdð2Þ1 ;

að7Þhα
¼ 1

2
λdð2Þα ; α ¼ 2; 3 and α ¼ 6;…9;

að7Þhα
¼ λdð2Þα ; α ¼ 4; 5 and α ¼ 10…14; ð3:6Þ

so that Tð5Þ
hh is the unit tensor up to a factor of λ which will

be determined shortly by the four-loop calculation. Reading

off the coefficients dð2Þα from Eq. (2.5), and substituting

Eq. (3.6) into Eq. (3.4), we find Að7Þ
h and Að7Þ

hY in Eq. (3.3)
are given by

Ah ¼
20

9
λAð7Þ

h1
;

AhY ¼ λ½15Að7Þ
h2

þ 2Að7Þ
h3

− 360ðAð7Þ
h4

þ Að7Þ
h5
Þ − 60Að7Þ

h6

− 20Að7Þ
h7

− 4Að7Þ
h8

− 60Að7Þ
h9

þ 360ðAð7Þ
h10

− Að7Þ
h11
Þ

þ 720ðAð7Þ
h13

þ 2Að7Þ
h14
Þ�: ð3:7Þ
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In the main text we shall henceforth consider the ungauged

case and omit Að7Þ
h6
–Að7Þ

h14
, in order to focus on our main

purpose of providing evidence for the a theorem in three
dimensions. One piece of this evidence, presented already
in Ref. [10], is the consistency check mentioned earlier,

arising from the fact that Að7Þ
hY is determined by both βð2Þh and

βð4ÞY . However, if we regard the three-dimensional a
theorem as sufficiently established, we can use Eq. (3.7)
in conjunction with Eq. (3.2) to obtain a prediction for a
hitherto-unknown part of the four-loop Yukawa β-function
in the general gauged case. We shall postpone this to
Appendix C.
Turning now to Eq. (3.2) in the ungauged case, we need

to consider in Eq. (3.3) Að7Þ
h1
–Að7Þ

h14
in Að7Þ

hY , together with the

pure Yukawa contributions, Að7Þ
Y . We expand Að7Þ

Y as

Að7Þ
Y ¼

X52
α¼1

að7Þα Að7Þ
α ; ð3:8Þ

where the tensor structures Að7Þ
α are depicted in Figs. 5

and 6. At this order we shall not give explicit expressions
for the terms in the a-function since these are often quite
unwieldy and may easily be reconstructed from the dia-
grams. In order to avoid having to specify all four-loop
Yukawa β-function tensor structures explicitly, we have
simply labeled every vertex in every a-function diagram in
Figs. 4–6. We now label each Yukawa β-function term
according to the vertex which, when differentiated, yields

that structure, denoting mixed gauge-Yukawa contributions

from Fig. 4 by Uð4Þ
Hα

and pure Yukawa contributions from

Figs. 5 and 6 as Vð4Þ
α . For instance, we have

∂
∂Yabij

Að7Þ
h2

¼ 2ðUð4Þ
H1
Þabij;

∂
∂Yabij

Að7Þ
3 ¼ 6ðVð4Þ

3 Þabij;

ð3:9Þ

where

ðUð4Þ
H1
Þabij ¼ hikmnpqhjlmnpqYabkl;

ðVð4Þ
3 Þabij ¼ YacklYcdmnYdeijYefklYfbmn: ð3:10Þ

An X in Figs. 5 and 6 corresponds to a structure which
cannot occur in the β-function (for instance by virtue of
being one-particle reducible). The full four-loop Yukawa
β-function accordingly takes the form

βð4ÞY ¼
X6
α¼1

cHα
Uð4Þ

Hα
þ
X105
α¼1

cαV
ð4Þ
α ; ð3:11Þ

writing separately the mixed scalar-Yukawa and pure
Yukawa terms. Similarly, the associated next-to-leading-
order metric takes the form

Tð5Þ
YY ¼

X18
α¼1

tð5Þα ðTð5Þ
α ÞYY; ð3:12Þ

FIG. 4. Contributions to Að7Þ
h and Að7Þ

hY .
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where the tensor structures Tð5Þ
α are depicted in Fig. 7 (which

for convenience show Tð5Þ
α contracted with dY and βY ,

denoted by a cross and a lozenge, respectively). At this order
TIJ is manifestly symmetric, as can easily be seen from the

diagrams in Fig. 7; this was also the case at next-to-leading

order in both four [7,20] and six [21] dimensions.
At two loops, in the nongauge case, Eq. (1.1) imposed

no constraints on the pure Yukawa contributions. By

FIG. 5. Contributions to Að7Þ, terms 1–30.
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contrast, we shall find that Eq. (3.2) imposes a large set
of consistency conditions on the four-loop β-function
coefficients, which we shall confirm by direct compu-
tation. The full system of equations derived using (3.2)
is highly nontrivial. Firstly we obtain immediately from

inserting Að7Þ
hY into Eq. (3.2) and comparing with

Eq. (3.11)

cð4ÞH1
¼ λdð2Þ2 ; cð4ÞH2

¼ λdð2Þ3 ; cð4ÞH3
¼ 2λdð2Þ8 ;

cð4ÞH4
¼ 2λdð2Þ8 ; cð4ÞH5

¼ 2λdð2Þ9 ; cð4ÞH6
¼ 2λdð2Þ9 ; ð3:13Þ

relating four-loopYukawaβ-function coefficients to two-loop
scalar β-function coefficients. These relations were checked
already in Ref. [10]; they are satisfied provided λ ¼ 1

90
.

FIG. 6. Contributions to Að7Þ, terms 31–52.
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The terms in Að7Þ
Y have been arranged such that sub-

stituting into (3.2) produces conditions in the follow-
ing order.

(i) Diagrams 1–6 simply relate the a-function coeffi-

cients að7Þ1–6 to the βð4ÞY coefficients and give no
consistency conditions.

(ii) Diagrams 7 and 8 relate tensor structures that appear

in βð4ÞY to tensor structures that do not appear in βð4ÞY ,
hence setting the corresponding β-function coeffi-
cients to zero.

(iii) Diagrams 9–21 relate tensor structures that appear in
βð4ÞY but not in any metric contributions, giving
simple consistency conditions.

(iv) Diagrams 22–47 relate tensor structures which

appear both in βð4ÞY and in metric contributions,
giving nontrivial consistency conditions.

(v) Diagrams 48–52 along with metric terms tð5Þ16−18 form
a closed system of equations independent of the rest
of the system.

With our choice of leading-order metric Tð3Þ
IJ ¼ δIJ,

examples from the first four categories are the

following.

(i) Substituting Að7Þ
1 gives 6að7Þ1 ¼ 4cð4Þ1 , so that að7Þ1 ¼

2
3
cð4Þ1 in a similar manner to the lowest-order

calculation.
(ii) Substituting Að7Þ

7 gives 2að7Þ7 ¼ 2cð4Þ5 and 4að7Þ7 ¼ 0;

hence, cð4Þ5 ¼ 0.
(iii) Substituting Að7Þ

9 gives 2að7Þ7 ¼ 4cð4Þ7 , 2að7Þ7 ¼ 4cð4Þ8

and 2að7Þ7 ¼ 4cð4Þ9 ; hence, cð4Þ7 ¼ cð4Þ8 ¼ cð4Þ9 .

(iv) Substituting Að7Þ
25 and Að7Þ

28 gives a set of nine
equations:

FIG. 7. Contributions to Tð5Þ
YY .
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að7Þ25 ¼ 4cð4Þ45 ; að7Þ25 ¼ 4cð4Þ46 ; að7Þ25 ¼ 4cð4Þ47 ;

að7Þ25 ¼ 8tð5Þ5 ; að7Þ25 ¼ 16tð5Þ4 þ 4cð4Þ48 ; að7Þ25 ¼ 8tð5Þ5 ;

2að7Þ28 ¼ 4cð4Þ58 ; 2að7Þ28 ¼ 8tð5Þ5 ; 2að7Þ28 ¼ 16tð5Þ4 þ 8tð5Þ5 ; ð3:14Þ

leading to the consistency conditions tð5Þ4 ¼ 0 and cð4Þ45 ¼ cð4Þ46 ¼ cð4Þ47 ¼ cð4Þ48 ¼ cð4Þ58 .

Deriving the full system of equations and eliminating the að7Þα and tð5Þα coefficients therefore leaves a large set of

consistency conditions on the βð4ÞY coefficients, which are given in full in Appendix B. We have computed these four-loop
coefficients and checked that they satisfy all these conditions; again, the details are given in Appendix B. Finally, using

the MS values in Eqs. (B6) and (B7), the coefficients að7Þi defined in Eq. (3.8) may all be computed. Combining with the
nongauge parts of Eq. (3.7) and substituting into Eq. (3.3), our final result for the a-function at next-to-leading order in the
general scalar-fermion theory is

Að7Þ ¼ 20

9
Að7Þ
h1

þ 15Að7Þ
h2

þ 2Að7Þ
h3

− 360ðAð7Þ
h8

þ Að7Þ
h9
Þ − 4

3
Að7Þ
1 þ 16

3
Að7Þ
2 −

2

3
Að7Þ
3 −

1

3
Að7Þ
4 −

7

162
Að7Þ
5 þ 11

162
Að7Þ
6

þ ð2π2 − 16ÞAð7Þ
9 þ 8Að7Þ

10 − 2Að7Þ
11 þ 2π2Að7Þ

12 þ ðπ2 − 8ÞAð7Þ
13 þ

�
8

3
− 16π2

�
Að7Þ
14 þ π2

2
Að7Þ
15

þ 4Að7Þ
16 þ 8Að7Þ

17 þ π2

2
Að7Þ
19 þ π2Að7Þ

20 þ 2Að7Þ
21 þ π2Að7Þ

22 −
16

3
Að7Þ
23 −

28

3
Að7Þ
24 þ 2π2Að7Þ

25 −
4

3
Að7Þ
26 −

56

3
Að7Þ
27 þ π2Að7Þ

28

−
10

9
Að7Þ
29 −

28

3
Að7Þ
30 −

16

9
Að7Þ
31 −

8

9
Að7Þ
32 −

7

3
Að7Þ
33 −

1

54
Að7Þ
34 þ 8

9
Að7Þ
35 þ 2

9
Að7Þ
36 −

14

3
Að7Þ
37 −

2

9
Að7Þ
38 þ 10

27
Að7Þ
39 −

2

9
Að7Þ
40

þ 11

54
Að7Þ
41 þ π2

6
ðAð7Þ

42 þ Að7Þ
43 Þ −

8

3
Að7Þ
44 þ π2Að7Þ

45 −
4

3
Að7Þ
46 þ 1

9
Að7Þ
47 þ 2π2Að7Þ

48 þ π2

12
Að7Þ
49 þ π2

4
Að7Þ
50 þ π2

12
Að7Þ
51 þ π2

4
Að7Þ
52 :

ð3:15Þ
The next-to-leading-order metric coefficients in Eq. (3.12) are likewise given by

tð5Þ1 ¼ −
28

3
þ 3a; tð5Þ2 ¼ −

40

3
þ 3a; tð5Þ3 ¼ −

16

3
þ 3a;

tð5Þ4 ¼ 0; tð5Þ5 ¼ π2; tð5Þ6 ¼ −
1

9
þ 1

4
a;

tð5Þ7 þ tð5Þ8 ¼ −
2

3
þ 1

2
a; tð5Þ9 ¼ −

13

3
þ 3

4
a; tð5Þ10 ¼ −

14

3
þ 3

2
a;

tð5Þ11 ¼ −
1

3
þ 3

4
a; tð5Þ12 ¼ −

20

3
þ 1

2
a; tð5Þ13 ¼ 11

9
þ 3

4
a;

tð5Þ14 þ tð5Þ15 ¼ 1

2
a; tð5Þ16 ¼ π2

4
; tð5Þ17 ¼ 0; tð5Þ18 ¼ π2

4
: ð3:16Þ

As in previous calculations in four [7,20] and six [21]
dimensions, we find that at each order the a-function is
determined up to the expected freedom parametrized by a in
Eq. (3.3).However, in the case of themetric, only the sumsof

tð5Þ7 , tð5Þ8 , and tð5Þ14 , t
ð5Þ
15 are determined, leading to an additional

arbitrariness. tð5Þ4 vanishes identically, whereas tð5Þ17 is propor-

tional to cð4Þ103–c
ð4Þ
105 and hence vanishes by Eq. (B4).

IV. CONCLUSIONS

We have shown that Eq. (1.1) is valid at next-to-leading
order for a general scalar-fermion theory. It seems possible

that effectively we are constructing the F-function, defined
in Refs. [15–18] as the free energy for the theory defined on
S3. A proof was given in Ref. [16] that the F-function
satisfies Eq. (1.1) in the neighborhood of a conformal field
theory at leading order; but our explicit results here provide
further evidence beyond leading order [where, except as we
have shown here for a gauge theory, the existence of an a-
function with the properties of Eq. (1.1) is in any case
trivial]. We have also shown that the two-loop scalar
coupling β-function determines part of the next-to-lead-
ing-order a-function which in turn gives a prediction for the
scalar-coupling-dependent sector of the four-loop Yukawa
β-function, as displayed in Eq. (C3). We already checked
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the nongauge part of this prediction in Ref. [10], but we
have now extended this calculation to include the
gauge terms.
We also note that there has been considerable recent

attention devoted to three-dimensional UðNÞ Chern-
Simons theories in the large-N ’t Hooft limit where there
appear to be interesting duality properties [22–24]; see also
Ref. [25] and further references therein. The A-function
which we have constructed might have a role in elucidating
the phase structure of these theories. The free energy also
plays an important role here, but for the theory defined on
R2 × S1 corresponding to finite temperature.
A natural next step would be to investigate the case of

N ¼ 2 supersymmetry, where partial results are available
for the four-loop Yukawa β-function [26]. This would
potentially extend the verification of Eq. (1.1) at next-to-
leading order beyond the simple scalar-fermion case; and
then assuming the equation applied more generally, it might
be possible to deduce or at least strongly constrain the four-
loop β-functions for a general gauge theory. One could
further look for evidence for an all-orders form for the
a-function in the N ¼ 2 supersymmetric case, such as was
found in the four-dimensional case in Refs. [7,20,27–30].
The discussion in Ref. [31] may provide some pointers in
this direction.
An interesting corollary of our calculations is that

the consistency conditions yield a set of relationships
among the divergent contributions from three-dimensional

Feynman integrals. As we have seen, for Að7Þ
9 –Að7Þ

21 these
conditions relate the simple poles in the diagrams obtained
by deleting one of the vertices in a single a-function
contribution. It was shown in Ref. [32] that the Feynman
diagrams obtained in the N ¼ 2 supersymmetric calcula-
tion could be expressed in terms of a relatively small set of
integrals; and in fact this set can be further reduced using
simple integration by parts. On the other hand in the current
nonsupersymmetric case additional basic integrals are
required with double propagators. In Fig. 8 we display
the minimal required set of integrals from Ref. [32], namely

I4, I22, I4bbb, I42bbc, I42bb1de together with the most
frequently occurring additional integrals, denoted X and Y.

Our consistency conditions from Að7Þ
9 –Að7Þ

21 imply the
extra relations

I42bbc ¼ I4 −
1

2
I22 ¼ −2X ¼ −2Y; I42bb1de ¼ −

1

2
I4bbb;

ð4:1Þ
so that everything can be expressed in terms of I4, I22 and
I4bbb. These relations cannot be obtained by any simple
process of integration by parts and appear to be entirely
new. They are also very easy to phrase diagrammatically at

least for Að7Þ
9 –Að7Þ

21 . The diagrams of Fig. 8 are in any case
straightforward to compute using standard methods.
However, it seems likely that the calculation for a general
gauge theory would impose further relations among dia-
grams, possibly including those which are otherwise
difficult to evaluate. It would be interesting to investigate
whether there is any underlying topological explanation for
these relations.
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APPENDIX A: TENSOR STRUCTURES

In this appendix we give the exact expression for the
various tensor structures which were described pictorially
in the main text and also explain in detail our choice of
these tensor structures in view of relations among them
resulting from gauge invariance as in Eq. (2.2).
The contributions to the two-loop Yukawa β-function
defined in Eq. (2.3) were depicted in Fig. 1. The explicit

FIG. 8. Frequently occurring Feynman integrals.
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expressions for pure Yukawa terms are given by

ðUð2Þ
1 Þabij ¼

1

4
½YacilYcdjmYdblm þ YaclmYcdjmYdbil þ YacjlYcdimYdblm þ YaclmYcdimYdbjl�;

ðUð2Þ
2 Þabij ¼ YaclmYcdijYdblm;

ðUð2Þ
3 Þabij ¼ YcdikYabklYcdlj;

ðUð2Þ
4 Þabij ¼

1

2
½YacijYcdlmYdblm þ YadlmYdclmYcbij�;

ðUð2Þ
5 Þabij ¼

1

2
½YabikYcdklYdclj þ YcdilYdclkYabkj�; ðA1Þ

those with two gauge insertions are given by

ðUð2Þ
6 Þabij ¼

1

4
½YacilðEψ2ÞcdYdblj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
7 Þabij ¼

1

4
½YacilE

ψ
cdE

ϕ
lmYdbmj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
8 Þabij ¼

1

4
½Eψ

acYcdilYdeljE
ψ
be þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
9 Þabij ¼

1

4
½Eψ

acYcdilE
ϕ
mlYdbmj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
10 Þabij ¼

1

4
½Eψ

acYcdilE
ψ
deYeblj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
11 Þabij ¼

1

4
½ðEϕ2ÞimYacmlYcblj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
12 Þabij ¼

1

4
½Eψ

acE
ϕ
imYcemlYeblj þ ða ↔ b; i ↔ jÞ�; ðA2Þ

and those with four or six are given by

ðUð2Þ
13 Þabij ¼

1

2
½ðEψ3ÞacYcdijE

ψ
bd þ ða ↔ bÞ�; ðUð2Þ

14 Þabij ¼
1

2
½ðEψ2ÞacYcdijðEψ2Þdb þ ða ↔ bÞ�;

ðUð2Þ
15 Þabij ¼

1

4
½ðEϕ2ÞikEψ

acYcdkjE
ψ
bd þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
16 Þabij ¼

1

4
½ðEϕ2ÞikðEψ2ÞacYcbkj þ ða ↔ b; i ↔ jÞ�;

ðUð2Þ
17 Þabij ¼ ðEϕ2ÞikðEϕ2ÞjlYabkl; ðUð2Þ

18 Þabij ¼ ðEϕ2ÞijðEϕ2ÞklYabkl;

ðUð2Þ
19 Þabij ¼ ðEψ2ÞabðEψ2ÞcdYcdij; ðUð2Þ

20 Þabij ¼ trðEϕ2ÞEψ
acYcdijE

ψ
bd;

ðUð2Þ
21 Þabij ¼ trðEψ2ÞEψ

acYcdijE
ψ
bd; ðUð2Þ

22 Þabij ¼
1

2
½ðEϕ4ÞikYabkj þ ði ↔ jÞ�;

ðUð2Þ
23 Þabij ¼

1

2
½ðEψ4ÞacYcbij þ ða ↔ bÞ�;

ðUð2Þ
24 Þabij ¼

1

2
½trðEϕ2Þ þ trðEψ2Þ�½ðEϕ2ÞikYabkj þ ði ↔ jÞ�;

ðUð2Þ
25 Þabij ¼

1

2
½trðEϕ2Þ þ trðEψ2Þ�½ðEψ2ÞacYcbij þ ða ↔ bÞ�;

ðUð2Þ
26 Þabij ¼ ðEϕ2ÞijðEψ4Þab; ðUð2Þ

27 Þabij ¼ ðEϕ4ÞijðEψ2Þab;
ðUð2Þ

28 Þabij ¼ trðEϕ2ÞðEϕ2ÞijðEψ2Þab; ðUð2Þ
29 Þabij ¼ trðEψ2ÞðEϕ2ÞijðEψ2Þab: ðA3Þ
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Note that each tensor structure is symmetrized on a, b and i, j
and has a “weight” of one. This is a different choice of basis
convention from that adopted in Ref. [10]; but it means that
differentiating a vertex in an a-function term gives a Yukawa
β-function term with a factor of 1. A word is in order
regarding the choice of tensor structures in Eq. (A2). There
are in fact 13 distinct tensor structures with two insertions of
E; however there are six identities among them resulting from
application of Eq. (2.2), so that we can select seven of the
structures as a basis. This will facilitate the construction of the
a-function as we shall see shortly. Each of the 13 structures
corresponds to a two-loop Feynman diagram. However, eight
of these manifestly give no β-function contribution, for the
following reasons. Firstly, several of them are one-particle
reducible. For the remainder, the corresponding Feynman
diagrams are logarithmically divergent so we can set the
external momenta to zero. Structures corresponding to a
Feynman diagram with only a single γ matrix then manifestly
give no contribution to the β-function by Lorentz invariance;
and diagrams with anEϕ (and therefore a gauge vertex) on an
external scalar line give no contribution due to antisymmetry
of the gauge propagator (resulting in a ϵμνρkμkν contribution).

We have therefore selected the seven structures Uð2Þ
6 –Uð2Þ

12 as
a convenient basis since it includes all the diagrams (namely

those corresponding to Uð2Þ
6 –Uð2Þ

10 ) with potentially non-
vanishing β-function contributions. Note that in the
Abelian case which we are currently considering, some of
them correspond to more than one Feynman diagram, with
different orderings of the gauge matrices.
In the case of contributions with four and six insertions

of Eϕ;ψ , we have not constructed a basis, since in this case
there is a one-to-one equivalence between β-function and
a-function contributions, and consequently the construc-
tion of the a-function is trivial. We have simply listed in
Eq. (A3) all the structures corresponding to nonvanishing
contributions from Feynman diagrams.

The contributions to the two-loop scalar β function, as
defined in Eq. (2.3), were depicted in Fig. 2 and are given
explicitly by

ðVð2Þ
1 Þijklmn ¼

1

6!
½hijkpqrhlmnpqr þ perms�;

ðVð2Þ
2 Þijklmn ¼

1

6!
½hijklpqYabmpYabnq þ perms�;

ðVð2Þ
3 Þijklmn ¼

1

6!
½hijklmpYabpqYabnq þ perms�;

ðVð2Þ
4 Þijklmn ¼

1

6!
½YabijYbcklYcdmpYdapn þ perms�;

ðVð2Þ
5 Þijklmn ¼

1

6!
½YabijYbcmpYcdklYdapn þ perms�;

ðVð2Þ
6 Þijklmn ¼

1

6!
½hijklpqðEϕ2ÞpmðEϕ2Þqn þ perms�;

ðVð2Þ
7 Þijklmn ¼

1

6!
½hijklmpðEϕ4Þpm þ perms�;

ðVð2Þ
8 Þijklmn ¼

1

6!
½hijklmpðEϕ2ÞpmftrðEϕ2Þ þ trðEψ2Þg

þ perms�;

ðVð2Þ
9 Þijklmn ¼

1

6!
½hijklpqðEϕ2ÞqpðEϕ2Þmn þ perms�;

ðVð2Þ
10 Þijklmn ¼

1

6!
½YabijE

ψ2
bc YcdklYdamn þ perms�;

ðVð2Þ
11 Þijklmn ¼

1

6!
½YabijE

ψ
bcYcdklE

ψ
deYeamn þ perms�;

ðVð2Þ
12 Þijklmn ¼

1

6!
½Eϕ2

ij YabklE
ψ2
bc Ycamn þ perms�;

ðVð2Þ
13 Þijklmn ¼

1

6!
½Eϕ2

ij YabklE
ψ
bcYcdmnE

ψ
da þ perms�;

ðVð2Þ
14 Þijklmn ¼

1

6!
½Eϕ2

ij E
ϕ2
kl YabmnE

ψ2
ba þ perms�; ðA4Þ

where “þperms” completes the6!permutations of the indices
fijklmng. The choice of convention for the factors is similar
to the Yukawa β-function terms. Once again, and for similar
reasons as in the case of Eq. (A3), we have not constructed a
complete basis of independent tensor structures but have
simply listed in Eq. (A4) all the structures corresponding to
nonvanishing contributions from Feynman diagrams.
The lowest-order (five-loop) a-function structures were

depicted in Fig. 3 and given explicitly by

Að5Þ
1 ¼ YabijYbcklYcdikYdajl; Að5Þ

2 ¼ YabijYbcklYcdijYdakl;

Að5Þ
3 ¼ YabijYcdjkYabklYcdli; Að5Þ

4 ¼ YacijYcbijYbdlmYdalm;

Að5Þ
5 ¼ YabikYbakjYcdilYdclj; Að5Þ

6 ¼ YabijðEψ2ÞbcYcdjkYdaki;

Að5Þ
7 ¼ YabijðEϕ2ÞjkYbcklYcali; Að5Þ

8 ¼ YabijE
ψ
bcE

ϕ
jkYcdklYdali;

Að5Þ
9 ¼ YabijE

ψ
bcYcdjkE

ψ
deYeaki: ðA5Þ

FIG. 9. Feynman integrals for terms undetermined by (3.2).
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Note that we have for the nongauge terms

Að5Þ
α ¼ ðUð4Þ

α ÞabijYabij; α ¼ 1;…5: ðA6Þ

APPENDIX B: DETAILS OF FOUR-LOOP RESULTS

In this Appendix we list the full set of consistency conditions obtained by imposing Eq. (1.1) at next-to-leading order,
together with the detailed four-loop results for the Yukawa β-function coefficients. The simple consistency conditions

obtained from Að7Þ
9 –Að7Þ

21 are

cð4Þ5 ¼ 0; cð4Þ6 ¼ 0; cð4Þ7 ¼ cð4Þ8 ¼ cð4Þ9 ;

cð4Þ10 ¼ cð4Þ11 ¼ cð4Þ12 ; cð4Þ13 ¼ 2cð4Þ14 ; cð4Þ15 ¼ cð4Þ16 ¼ cð4Þ17 ;

2cð4Þ18 ¼ cð4Þ19 ; 2cð4Þ20 ¼ cð4Þ21 ; 2cð4Þ22 ¼ cð4Þ23 ;

cð4Þ24 ¼ 2cð4Þ25 ; 2cð4Þ26 ¼ cð4Þ27 ; cð4Þ28 ¼ cð4Þ29 ;

2cð4Þ30 ¼ cð4Þ31 ; 2cð4Þ32 ¼ cð4Þ33 ; cð4Þ34 ¼ 2cð4Þ35 ;

cð4Þ54 ¼ cð4Þ56 ; cð4Þ89 ¼ cð4Þ90 ; ðB1Þ

and those resulting from Að7Þ
22 –A

ð7Þ
47 are

cð4Þ40 − cð4Þ39 ¼ cð4Þ42 − cð4Þ44 ¼ cð4Þ50 − cð4Þ49

¼ cð4Þ52 − cð4Þ57 ¼ 3ðcð4Þ70 − cð4Þ72 Þ ¼ cð4Þ87 − cð4Þ86 ;

cð4Þ40 − cð4Þ41 ¼ cð4Þ42 − cð4Þ43 ¼ cð4Þ50 − cð4Þ51 ¼ cð4Þ52 − cð4Þ53

¼ 6ðcð4Þ70 − cð4Þ72 Þ − cð4Þ61 þ cð4Þ62 ¼ cð4Þ87 − cð4Þ88 ;

cð4Þ55 − 4cð4Þ67 ¼ 1

2
ðcð4Þ56 − 2cð4Þ68 Þ; 3ðcð4Þ70 þ cð4Þ72 Þ þ cð4Þ85 ¼ cð4Þ88 þ 12cð4Þ97 ;

cð4Þ75 ¼ 12ðcð4Þ80 − cð4Þ97 Þ; cð4Þ85 − cð4Þ89 ¼ 2ð2cð4Þ94 − cð4Þ95 Þ; ðB2Þ

and

cð4Þ52 − cð4Þ55 − 6cð4Þ63 þ 12cð4Þ65 þ 6cð4Þ70 þ cð4Þ85 − cð4Þ87 − 12cð4Þ97 ¼ 0;

3cð4Þ59 þ 3cð4Þ70 − 6cð4Þ77 − cð4Þ87 þ cð4Þ89 − 6cð4Þ97 ¼ 0;

6cð4Þ63 − 3cð4Þ70 þ 3cð4Þ72 − 12cð4Þ77 − cð4Þ85 − cð4Þ88 þ 2cð4Þ89 ¼ 0;

3cð4Þ65 þ cð4Þ74 − 3cð4Þ77 ¼ 0;

4cð4Þ67 − cð4Þ68 þ 2cð4Þ74 þ 6cð4Þ80 þ 4cð4Þ94 − 2cð4Þ95 − 6cð4Þ97 ¼ 0;

2cð4Þ36 ¼ cð4Þ37 ¼ 2cð4Þ38 ¼ cð4Þ45 ¼ cð4Þ46 ¼ cð4Þ47 ¼ cð4Þ48 ¼ cð4Þ58 ¼ 2cð4Þ91 ¼ cð4Þ92 ¼ 2cð4Þ93 : ðB3Þ

The condition resulting from Að7Þ
48 –A

ð7Þ
52 is

cð4Þ98 ¼ cð4Þ99 ¼ cð4Þ100 ¼ cð4Þ101 ¼ 6cð4Þ102 ¼ 4cð4Þ103 ¼ 6cð4Þ104 ¼ 4cð4Þ105: ðB4Þ

All anomalous dimension terms (except cð4Þ102 and cð4Þ104) have been eliminated from the above consistency
conditions; the consistency conditions which do involve anomalous dimension coefficients may be expressed in
the following form:
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cð4Þ60 ¼ cð4Þ59 − 2cð4Þ63 þ 12cð4Þ69 þ 2cð4Þ70 −
1

6
cð4Þ86 −

1

6
cð4Þ87 þ 1

3
cð4Þ90 þ 4

3
cð4Þ94 −

2

3
cð4Þ95 − 4cð4Þ97 ;

cð4Þ64 ¼ −cð4Þ63 þ 12cð4Þ69 þ cð4Þ70 −
1

6
cð4Þ86 þ 1

6
cð4Þ90 þ 2

3
cð4Þ94 −

1

3
cð4Þ95 − 2cð4Þ97 ;

cð4Þ66 ¼ −
1

2
cð4Þ63 þ 6cð4Þ69 þ 1

2
cð4Þ70 þ 1

6
cð4Þ74 −

1

2
cð4Þ80 þ 1

3
cð4Þ94 −

1

6
cð4Þ95 −

1

2
cð4Þ97 ;

cð4Þ71 ¼ 12cð4Þ82 −
1

6
cð4Þ86 þ 1

6
cð4Þ90 þ 2

3
cð4Þ94 −

1

3
cð4Þ95 − 2cð4Þ97 ;

cð4Þ73 ¼ 12cð4Þ82 −
1

6
cð4Þ87 þ 1

6
cð4Þ90 þ 2

3
cð4Þ94 −

1

3
cð4Þ95 − 2cð4Þ97 ;

cð4Þ76 ¼ −cð4Þ63 þ 6cð4Þ69 þ cð4Þ70 þ cð4Þ77 þ 2

3
cð4Þ94 −

1

3
cð4Þ95 − 2cð4Þ97 ;

cð4Þ78 ¼ −
1

6
cð4Þ63 þ 2cð4Þ69 þ 1

6
cð4Þ70 ;

cð4Þ79 ¼ 1

6
cð4Þ63 −

1

6
cð4Þ70 þ 2cð4Þ82 ;

cð4Þ81 ¼ 1

3
cð4Þ74 þ 6cð4Þ82 þ 2

3
cð4Þ94 −

1

3
cð4Þ95 − cð4Þ97 ;

cð4Þ83 ¼ 1

6
cð4Þ92 ;

cð4Þ84 ¼ 1

6
cð4Þ92 ;

cð4Þ96 ¼ 6cð4Þ82 þ 1

3
cð4Þ94 −

1

6
cð4Þ95 − cð4Þ97 : ðB5Þ

We see that in this form these conditions have the effect of predicting the values of all the anomalous dimension

coefficients except two, namely cð4Þ69 and cð4Þ82 . We need only calculate the two explicit Feynman integrals depicted

in Fig. 9 corresponding to cð4Þ69 and cð4Þ82 in order to obtain all 14 possible anomalous dimension coefficients. This
is useful since the Feynman diagrams corresponding to anomalous dimensions are typically harder to evaluate
than the others, being linearly or quadratically divergent.
The nonanomalous dimension terms can all be calculated in MS via integration by parts, using master integrals computed

in Ref. [32]. The coefficients are

cð4Þ1 ¼ −8; cð4Þ2 ¼ 32; cð4Þ3 ¼ −4; cð4Þ4 ¼ −2; cð4Þ5 ¼ 0;

cð4Þ6 ¼ 0; cð4Þ7 ¼ 4ðπ2 − 8Þ; cð4Þ8 ¼ 4ðπ2 − 8Þ; cð4Þ9 ¼ 4ðπ2 − 8Þ; cð4Þ10 ¼ 16;

cð4Þ11 ¼ 16; cð4Þ12 ¼ 16; cð4Þ13 ¼ −8; cð4Þ14 ¼ −4; cð4Þ15 ¼ 4π2;

cð4Þ16 ¼ 4π2; cð4Þ17 ¼ 4π2; cð4Þ18 ¼ 2ðπ2 − 8Þ; cð4Þ19 ¼ 4ðπ2 − 8Þ; cð4Þ20 ¼ 16

�
π2

3
− 2

�
;

cð4Þ21 ¼ 32

�
π2

3
− 2

�
; cð4Þ22 ¼ π2; cð4Þ23 ¼ 2π2; cð4Þ24 ¼ 16; cð4Þ25 ¼ 8;

cð4Þ26 ¼ 32; cð4Þ27 ¼ 64; cð4Þ28 ¼ 0; cð4Þ29 ¼ 0; cð4Þ30 ¼ π2;

cð4Þ31 ¼ 2π2; cð4Þ32 ¼ 2π2; cð4Þ33 ¼ 4π2; cð4Þ34 ¼ 8; cð4Þ35 ¼ 4;

cð4Þ36 ¼ π2; cð4Þ37 ¼ 2π2; cð4Þ38 ¼ π2; cð4Þ39 ¼ 8; cð4Þ40 ¼ 16;

cð4Þ41 ¼ 0; cð4Þ42 ¼ 8; cð4Þ43 ¼ −8; cð4Þ44 ¼ 0; cð4Þ45 ¼ 2π2;

cð4Þ46 ¼ 2π2; cð4Þ47 ¼ 2π2; cð4Þ48 ¼ 2π2; cð4Þ49 ¼ 16; cð4Þ50 ¼ 24
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cð4Þ51 ¼ 8; cð4Þ52 ¼ 8; cð4Þ53 ¼ −8; cð4Þ54 ¼ 0; cð4Þ55 ¼ 16;

cð4Þ56 ¼ 0; cð4Þ57 ¼ 0; cð4Þ58 ¼ 2π2; cð4Þ59 ¼ 16

3
; cð4Þ61 ¼ 0;

cð4Þ62 ¼ 0; cð4Þ63 ¼ 8

3
; cð4Þ65 ¼ 8

3
; cð4Þ67 ¼ 4; cð4Þ68 ¼ 0;

cð4Þ70 ¼ 8; cð4Þ72 ¼ 16

3
; cð4Þ74 ¼ 4; cð4Þ75 ¼ 0; cð4Þ77 ¼ 4;

cð4Þ80 ¼ 8

3
; cð4Þ85 ¼ 0; cð4Þ86 ¼ 16; cð4Þ87 ¼ 24; cð4Þ88 ¼ 8;

cð4Þ89 ¼ 24; cð4Þ90 ¼ 24; cð4Þ91 ¼ π2; cð4Þ92 ¼ 2π2; cð4Þ93 ¼ π2;

cð4Þ94 ¼ −2; cð4Þ95 ¼ 8; cð4Þ97 ¼ 8

3
; cð4Þ98 ¼ 2π2; cð4Þ99 ¼ 2π2;

cð4Þ100 ¼ 2π2; cð4Þ101 ¼ 2π2; cð4Þ103 ¼
π2

2
; cð4Þ105 ¼

π2

2
: ðB6Þ

One can therefore see that these coefficients satisfy every equation in Eqs. (B1)–(B4). Evaluating the integrals in Fig. 9 and
subtracting the central two-loop subdivergences, we find that

cð4Þ69 ¼ 4

27
; cð4Þ82 ¼ 22

27
; ðB7Þ

and hence using (B5) the other anomalous dimension coefficients are predicted to be

cð4Þ60 ¼ 4

9
; cð4Þ64 ¼ −

8

9
; cð4Þ66 ¼ −

4

9
; cð4Þ71 ¼ 16

9

cð4Þ73 ¼ 4

9
; cð4Þ76 ¼ 8

9
; cð4Þ78 ¼ 32

27
; cð4Þ79 ¼ 20

27
;

cð4Þ81 ¼ −
4

9
; cð4Þ83 ¼ π2

3
; cð4Þ84 ¼ π2

3
; cð4Þ96 ¼ 2

9
;

cð4Þ102 ¼
π2

3
; cð4Þ104 ¼

π2

3
: ðB8Þ

We have checked most, though not all, of these predictions by explicit computation.
Finally, a word on scheme dependence. A change in scheme can be effected by a redefinition of the couplings. In our case

we may consider

δYð2Þ ¼
X5
α¼1

δαU
ð2Þ
α ; ðB9Þ

where the Uð2Þ
α are defined in Eq. (A1) (we continue to focus on the scalar-fermion case and omit potential gauge

contributions). The resulting changes in βð4ÞY and Að7Þ are given by

δAð7Þ ¼ −δYð2Þ ·
∂
∂Y Að5Þ;

δβð4ÞY ¼ βð2ÞY ·
∂
∂Y δYð2Þ − δYð2Þ ·

∂
∂Y βð2ÞY : ðB10Þ

Using the two-loop β-function (for the nongauged theory) as given by Eqs. (2.3), (A1), and (2.4), the induced changes in the
a-function coefficients as defined in Eq. (3.8) are given by

a-FUNCTION IN THREE DIMENSIONS: BEYOND THE … PHYSICAL REVIEW D 95, 025010 (2017)

025010-17



δað7Þ5 ¼ −
4

3
δ5; δað7Þ6 ¼ −

4

3
δ4; δað7Þ23 ¼ −8δ1;

δað7Þ24 ¼ −8δ1; δað7Þ26 ¼ −8δ1; δað7Þ27 ¼ −8ð4δ1 þ δ2Þ;

δað7Þ29 ¼ −
4

3
δ1 þ 16δ5; δað7Þ30 ¼ −8δ1; δað7Þ31 ¼ −

4

3
δ1 þ 16δ5;

δað7Þ32 ¼ −
8

3
δ2 þ 8δ5; δað7Þ33 ¼ −8δ2; δað7Þ34 ¼ −

4

3
δ5;

δað7Þ35 ¼ −
4

3
δ1 þ 16δ4; δað7Þ36 ¼ −

4

3
δ1 þ 16δ4; δað7Þ37 ¼ −8ðδ2 þ δ3Þ;

δað7Þ38 ¼ −
8

3
δ3 þ 8δ5; δað7Þ39 ¼ −

8

3
ðδ4 þ δ5Þ; δað7Þ40 ¼ −

8

3
δ2 þ 8δ4;

δað7Þ41 ¼ −
4

3
δ4; δað7Þ44 ¼ −8ð4δ1 þ δ3Þ; δað7Þ46 ¼ −8δ3;

δað7Þ47 ¼ −
8

3
δ3 þ 8δ4; ðB11Þ

and the corresponding changes in the βð4ÞY coefficients defined are found to be

δcð4Þ52 ¼ 2ðδ1 − 4δ2Þ; δcð4Þ53 ¼ 2ðδ1 − 4δ2Þ; δcð4Þ54 ¼ 4ð4δ2 − δ1Þ; δcð4Þ55 ¼ 2ð4δ2 − δ1Þ;

δcð4Þ56 ¼ 4ð4δ2 − δ1Þ; δcð4Þ57 ¼ 2ðδ1 − 4δ2Þ; δcð4Þ59 ¼ 2

3
δ1 − 8δ4; δcð4Þ60 ¼ 8δ4 −

2

3
δ1;

δcð4Þ63 ¼ 2

3
δ1 − 8δ4; δcð4Þ64 ¼ 8δ4 −

2

3
δ1; δcð4Þ65 ¼ 4

3
δ2 − 4δ4; δcð4Þ66 ¼ 4δ4 −

4

3
δ2;

δcð4Þ70 ¼ 2

3
δ1 − 8δ5; δcð4Þ71 ¼ 8δ5 −

2

3
δ1; δcð4Þ72 ¼ 2

3
δ1 − 8δ5; δcð4Þ73 ¼ 8δ5 −

2

3
δ1;

δcð4Þ74 ¼ 4ðδ3 − δ2Þ; δcð4Þ75 ¼ 16ðδ2 − δ3Þ; δcð4Þ76 ¼ 4δ4 −
4

3
δ3; δcð4Þ77 ¼ 4

3
δ3 − 4δ4;

δcð4Þ78 ¼ 4

3
ðδ4 − δ5Þ; δcð4Þ79 ¼ 4

3
ðδ5 − δ4Þ; δcð4Þ80 ¼ 4

3
δ2 − 4δ5; δcð4Þ81 ¼ 4δ5 −

4

3
δ2;

δcð4Þ85 ¼ 2ð4δ3 − δ1Þ; δcð4Þ86 ¼ 2ðδ1 − 4δ3Þ; δcð4Þ87 ¼ 2ðδ1 − 4δ3Þ; δcð4Þ88 ¼ 2ðδ1 − 4δ3Þ;

δcð4Þ89 ¼ 2ð4δ3 − δ1Þ; δcð4Þ90 ¼ 2ð4δ3 − δ1Þ; δcð4Þ96 ¼ 4δ5 −
4

3
δ3; δcð4Þ97 ¼ 4

3
δ3 − 4δ5; ðB12Þ

all the other coefficients remaining unchanged. Given the
method of derivation, it is expected that the consistency
conditions will be scheme independent. It is indeed easy to
verify that all consistency conditions, including the expres-
sions for the anomalous dimension coefficients, are invari-
ant under the changes in Eq. (B12) and hence hold in an
arbitrary renormalization scheme. This constitutes an addi-
tional check on the validity of these consistency conditions.
We finally remark that at this order and in the ungauged

case, we have from Eqs. (2.8) and (2.10) that Að5Þ ¼
1
4
Yabijðβð2ÞY Þabij and then the freedom in Að7Þ corresponds

simply to taking δYð2Þ ¼ − 1
4
aβð2ÞY . It is in fact easy to check

from Eqs. (B10) and (B11) that this reproduces at lowest
order the freedom expressed by the a term in Eq. (3.3) but

leaves βð4ÞY unchanged. This redefinition of course vanishes

at the fixed point and so the fixed-point coupling is
unchanged, as is the fixed-point value of the A-function.
More general coupling redefinitions will correspond to a
change in renormalization scheme with an attendant change
in the β-functions, and furthermore the fixed-point coupling
value and fixed-point A-function value will correspond-
ingly be redefined.

APPENDIX C: PREDICTION FOR GENERAL
YUKAWA-β-FUNCTION

As we explained in Sec. III, if we assume that the a
theorem in three dimensions does indeed hold, then we may
use it to derive a prediction for the part of the four-loop
Yukawa β-function involving factors of the scalar coupling
h, in the full gauged case. We now write
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βð4ÞY ¼
X13
α¼1

cHα
Uð4Þ

Hα
þ…; ðC1Þ

extending the mixed scalar-Yukawa terms in Eq. (3.11) to
the gauged case. As explained earlier, the tensor struc-

tures Uð4Þ
hα
, α ¼ 1…13, may be read off from the vertices

in Fig. 4; the ellipsis in Eq. (C1) subsumes all the
contributions with no factors of h. We computed the pure
Yukawa contributions in Sec. III, but of course there will
also be mixed Yukawa-gauge contributions in this general

case. The coefficients cð4ÞH1
–cð4ÞH6

were already given in
Eq. (3.13). We now examine the consequences of
Eq. (3.2). It is easy to see that there is no mixed scalar

and Yukawa contribution from the Tð5Þ
YY terms, since there

is no possible contribution to Tð5Þ
YY itself containing h and

of course βð2ÞY does not contain h either. Equations (3.4)
and (C1) now imply

cð4ÞH7
¼ λdð2Þ10 ; cð4ÞH8

¼ 2λdð2Þ10 ; cð4ÞH9
¼ λdð2Þ11 ;

cð4ÞH10
¼ 2λdð2Þ11 ; cð4ÞH11

¼ 2λdð2Þ12 ; cð4ÞH12
¼ 2λdð2Þ13 ;

cð4ÞH13
¼ λdð2Þ14 ; ðC2Þ

with no contribution to Tð5Þ
YY in Eq. (3.2). These coef-

ficients form a prediction for the part of the four-loop
Yukawa β-function involving scalar-coupling contribu-
tions; namely, combining Eqs. (2.5), (3.13), and (C2) and
taking λ ¼ 1

90
,

βð4ÞY ¼ 1

3
Uð4Þ

H1
þ 2

45
Uð4Þ

H2
þ 4ð−2Uð4Þ

H3
− 2Uð4Þ

H4
þ 2Uð4Þ

H5

þ 2Uð4Þ
H6

− Uð4Þ
H7

− 2Uð4Þ
H8

þUð4Þ
H9

þ 2Uð4Þ
H10

þ 4Uð4Þ
H13

þ 4Uð4Þ
H14

Þ þ…; ðC3Þ

where we have included the nongauge terms Uð4Þ
H1
–Uð4Þ

H6
.

This subsumes all the contributions to βð4ÞY for a general
Abelian Chern-Simons theory involving a factor of h; as
we mentioned, the purely Y-dependent terms were
obtained in Sec. III. Of course the computation of the
remaining mixed Yukawa-gauge terms would still require
considerable labor, even after exploiting any additional
consistency conditions which might arise.
Since there are many potential four-loop Yukawa

β-function structures involving h which are not included
in Eq. (C1), this prediction might appear to give a great
deal of additional information in the form of requirements
for vanishing coefficients; but we should also consider
the relations among these coefficients following from
Eq. (2.2). In the case of contributions with two gauge

matrices, the four structures Uð4Þ
H7
–Uð4Þ

H10
may be extended

to a basis by adding just one more structure, whose
coefficient in the β-function is easily seen to be zero
without any calculation. Therefore Eq. (1.1) effectively
yields only the four constraints expressed by the coef-
ficient predictions in Eq. (C2). Similar remarks would be
expected to apply to the contributions with four and six
gauge matrices.
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