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We present a calculation of the decay rate of the electroweak vacuum, fully including all gravitational
effects and a possible nonminimal Higgs-curvature coupling ξ, and using the three-loop Standard Model
effective potential. Without a nonminimal coupling, we find that the effect of the gravitational backreaction
is small and less significant than previous calculations suggested. The gravitational effects are smallest, and
almost completely suppressed, near the conformal value ξ ¼ 1=6 of the nonminimal coupling. Moving ξ
away from this value in either direction universally suppresses the decay rate.
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I. INTRODUCTION

Since the discovery of the Higgs boson in 2012 [1,2],
there has been considerable interest in the phenomenon of
vacuum decay, motivated by calculations which suggest
that the Standard Model effective potential is unstable for
the observed value of the Higgs boson and top quark
masses [3–5]. The observed masses place the Standard
Model firmly in the metastability zone, i.e., there exists a
second minimum of the potential at much larger field
values, to which the electroweak vacuum can decay via the
nucleation of bubbles of true vacuum, with the expected
lifetime of the visible Universe being longer than its age by
many orders of magnitude [6]. The nonoccurrence of such a
bubble nucleation event is not inconsistent with this long
lifetime; however, the possibility of vacuum decay places
constraints on high-energy phenomena which might result
in the nucleation of true vacuum bubbles. The implications
for inflation with a high Hubble rate, for example, have
been investigated by many authors [7–11].
Lately, there has also been renewed interest in the effect

of gravitational backreaction on vacuum decay in the
Standard Model. Calculations show that vacuum decay
is dominated by the formation of bubbles with a scale only
a single order of magnitude below the Planck scale [12],
where the effect of gravity might be expected to start
appearing. The Standard Model effective potential in this
regime is negative, and thus the space-time at the center of
such a bubble is locally anti–de Sitter (AdS), albeit with a
sub-Planckian energy density. It was shown by Coleman
and de Luccia [13], using the thin-wall approximation, that
a transition from a zero-energy-density, false vacuum to a
negative-energy-density, true vacuum leads to a suppres-
sion of the decay rate, due to the warped geometry of the
nucleated bubbles. An early paper by Isidori et al. [14] used
a perturbative series in the gravitational coupling to try and
estimate the size of this effect. However, it was pointed out
recently by Branchina et al. [15] that the boundary
conditions of the perturbative bounce solution are not
satisfied to first order (see discussion section).

Additionally, Gregory and Moss et al., in three recent
papers [16–18], investigated vacuum decay in a black-hole
background, finding that a black hole can effectively “seed”
vacuum decay, in analogy with phase transitions in con-
densed matter systems.
Recent papers have investigated gravitational effects

using quartic model potentials; these have the advantage
of being easy to compare to the thin-wall results.
Branchina et al. [15] found that the suppression effect
was much less significant, when compared to the thin-wall
approximation, for properly treated thick-wall bubbles.
Masoumi, Paban, and Weinberg also investigated the thin-
wall approximation [19]; they showed that energy argu-
ments for when bubbles may form in the presence of
gravitational backreaction can be extended to thick-wall
bubbles and also demonstrated that the tunneling rate is
not affected by the presence of a Gibbons-Hawking-York
boundary term in the action.
Another factor, when gravity is included, is the possible

presence of a nonminimal coupling between the Higgs field
and space-time curvature. It cannot be consistently omitted
because—even if it is zero or near zero at present scales—it
will run and become nonzero at higher energies. Therefore
it is required for the renormalizability of a scalar field in
curved space-time [20]. Previously this has been inves-
tigated in an inflationary background [10]. So far, however,
these results have not been extrapolated to the case of a flat-
space false vacuum. Fortunately, the effect of nonminimal
coupling with only a small cosmological constant, as in the
present day, can be approximated by treating the false
vacuum as flat space-time. In this paper we calculate
bounce solutions for the Standard Model effective poten-
tial, with a nonminimal coupling term ξϕ2R=2 included in
the action. We compute the solutions for the three-loop
Standard Model effective potential by making use of the
three-loop beta functions (with two-loop pole-matching)
available in the literature [21,22], with which we construct
an interpolated potential that can be computed quickly at
each step in a numerical integration. We find that the effect
of backreaction on the boundary between instability and
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metastability is small. Furthermore, for a flat-space false
vacuum, nonminimal coupling always suppresses Standard
Model vacuum decay relative to the flat-space calculation
without backreaction, regardless of the sign of ξ. We also
find that the conformal value of the coupling, i.e., ξ ¼ 1=6
rather than ξ ¼ 0, leads to near cancellation of the back-
reaction, producing a bounce nearly identical to the flat-
space bounce. The conformal coupling is found to be a
(near) minimum of the decay exponent when ξ is varied,
and an exact minimum for the λϕ4=4 potential. We show
that if the running of the Higgs coupling did not break the
conformal symmetry of the λϕ4=4 potential then this near
cancellation would be exact and the resulting bounces
would be identical to flat space. Finally, we present a
comparison of our results with the perturbative method
of Ref. [14].

II. BOUNCES WITH NONMINIMAL COUPLING

The decay rate of a metastable vacuum state is given,
in the semiclassical approximation, by the Coleman
formula [23]:

Γ ¼ Ae−B; ð1Þ

where B ¼ S − S0 is the difference in Euclidean action
between two solutions of the Euclidean field equations of
the theory. S is the action of a so-called bounce solution
which interpolates between the false and true vacua (though
it does not in general reach the true vacuum), while S0 is the
action of a constant solution sitting at the false vacuum. The
prefactor A is determined, at the semiclassical level, by a
functional determinant and is known in the flat-space case
(see Ref. [12]), but has yet to be computed in a curved
background. The Euclidean action for a scalar (Higgs) field
nonminimally coupled to gravity is

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
1

2
∇μϕ∇μϕþ VðϕÞ þ 1

2
ξϕ2R −

M2
P

2
R

�
;

ð2Þ

where MP ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
is the reduced Planck mass. This

modifies the original action considered by Coleman and de
Luccia [13] to include a possible nonminimal coupling
between the scalar field and gravity. This is required to be
present for the theory to be renormalizable [10,20]. A
cosmological constant can also be included, but here it has
been absorbed into the definition of the potential VðϕÞ. We
neglect boundary terms, which can be dealt with by adding
a Gibbons-Hawking-York term to the action [24], and they
do not contribute to the decay rate because the two
solutions are identical on the boundary of the Euclidean
space-time, if it has a boundary: see Ref. [19] for a recent
discussion of these boundary terms.

One way to deal with this system is to perform a
nonlinear field transformation ðϕ; gμνÞ → ð ~ϕ; ~gμνÞ, to the
Einstein frame (see the Appendix for details), in which the
action takes the form

S ¼
Z

d4x
ffiffiffiffiffi
j~gj

p �
1

2
~gμν∇μ

~ϕ∇ν
~ϕþ Vðϕð ~ϕÞÞ

ð1 − ξϕð ~ϕÞ2
M2

P
Þ2

−
M2

P

2
~R
�
:

ð3Þ

It should be emphasized that this transformation does not
change the action, since by definition it is a transformation
of the fields alone: Eq. (3) is obtained by a transformation
of the field variables in Eq. (2), which does not affect the
value of the integral. Since, at the semiclassical level, the
action is the quantity of interest for computing a decay rate,
the frame in which the action is computed does not matter.
The Einstein frame makes clearer the link between bounce
solutions with a nonminimal coupling term, and the
original formulation of Coleman–de Luccia bounces which
are defined in terms of an action resembling Eq. (3) [13]. In
particular, if a bounce is Oð4Þ symmetric in the Einstein
frame, then it will be Oð4Þ symmetric in the Jordan frame
[as the transformations (A1) and (A4) do not transform an
Oð4Þ-symmetric solution into a non-Oð4Þ-symmetric sol-
ution]. It is assumed here that bounces are Oð4Þ symmetric
in the Einstein frame. This is strictly speaking only a
conjecture for Coleman–de Luccia bounces: it has been
proven in flat space [25], but we know of no proof in the
curved-space case. Several studies, however, have indicated
that it is likely to hold [26,27].
For computational purposes, however, the Einstein frame

is inconvenient. The principle reason for this is that
evaluation of the Einstein-frame potential

~V(ϕð ~ϕÞ) ¼ V(ϕð ~ϕÞ)
ð1 − ξϕð ~ϕÞ2=M2

PÞ2
; ð4Þ

requires evaluating ϕð ~ϕÞ, the inverse of Eq. (A4). This
inverse is not known in closed form, so each call to the
potential requires inverting Eq. (A4) numerically.
Consequently, it is more convenient to perform the calcu-
lation in the Jordan frame. The resulting (Jordan-frame)
Euclidean field equations are

Rμν −
1

2
gμνR ¼ Tμν þ ξ½−∇μ∇νϕ

2 þ gμν∇λ∇λϕ2�
M2

Pð1 − ξ ϕ2

M2
P
Þ

; ð5Þ

Tμν ≡∇μϕ∇νϕ − gμν

�
1

2
∇λϕ∇λϕþ VðϕÞ

�
;

∇μ∇μϕ ¼ V 0ðϕÞ þ ξϕR: ð6Þ
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Note that Einstein’s field equations acquire an additional
term on the RHS, arising from the δRμν term in the variation
of the action which does not immediately form a total
derivative term (as is the case in the variation of the usual
Einstein-Hilbert action) due to the position-dependent
prefactor 1 − ξϕ2=M2

P. Under the assumption of Oð4Þ
symmetry, there is a coordinate system in which the metric
takes the form

ds2 ¼ dχ2 þ a2ðχÞdΩ2
3; ð7Þ

where dΩ2
3 is the unit metric on a 3-sphere. The coordinate

χ is the radial distance from the origin, while aðχÞ is the
radius of curvature of a 3-sphere at fixed radius χ. Using
this coordinate system, the equations of motion take the
form

ϕ̈ ¼ −
3_a
a

_ϕþ V 0ðϕÞ þ ξϕR; ð8Þ

_a2 − 1 ¼ −
a2½− _ϕ2

2
þ VðϕÞ − 6ξ _aϕ _ϕ

a �
3M2

Pð1 − ξϕ2

M2
P
Þ

; ð9Þ

ä ¼ −
a½ _ϕ2 þ VðϕÞ − 3ξð _ϕ2 þ ϕϕ̈þ _a

aϕ
_ϕÞ�

3M2
Pð1 − ξϕ2

M2
P
Þ

; ð10Þ

R ¼
_ϕ2ð1 − 6ξÞ þ 4VðϕÞ − 6ξϕV 0ðϕÞ

M2
P½1 − ξð1−6ξÞϕ2

M2
P

�
; ð11Þ

where dots indicate differentiation with respect to χ.
Equation (10) is equivalent to the derivative of Eq. (9);
however, we include it here as it is more reliable for
numerics (see Sec. III). The boundary conditions for the
bounce are imposed so that the action difference is finite,
and they depend on the asymptotic behavior of aðχÞ:
(1) If there exists χmax > 0 such that aðχmaxÞ ¼ 0, the

Euclidean space-time is compact; we impose _ϕð0Þ ¼
_ϕðχmaxÞ ¼ 0 to prevent ϕ from diverging due to the
1=a coordinate singularity when a → 0.

(2) If aðχÞ does not cross zero as χ → ∞, the Euclidean
space-time is noncompact and ϕðχÞ → ϕfv at infinity
(where ϕfv is the field in the false vacuum) in order
that S − S0 remains finite.

The boundary condition að0Þ ¼ 0, required to solve
Eq. (9), is imposed in both cases. The two scenarios are
qualitatively different; the compact space-time of the first
gives rise to an effective temperature, and corresponds to a
combination of thermal excitation and tunneling in a de
Sitter-like space-time (see Ref. [28] for a discussion). In
this paper we focus on the second case, which is the
behavior in the Standard Model if the false vacuum is
exactly flat space-time.

Additionally, note the singularity appearing in the
Einstein-frame potential for ξ > 0 at ϕ ¼ MP=

ffiffiffi
ξ

p
. This

is not simply an artifact of the conformal transformation, as
it is also present in Eq. (10). Finite action bounce solutions
cannot touch higher field values than this. Since bounces in
the Standard Model neglecting gravity are controlled by a
scale an order of magnitude below the Planck scale [12], it
is reasonable to conclude that (a) gravitational backreaction
of the bounce may have an impact, and (b) nonminimal
coupling will necessarily distort the peak of the bounce
solution. As is clear from Eq. (4), the effect of nonminimal
coupling is negligible if ϕ ≪ MP=

ffiffiffiffiffijξjp
, but it is strong

above this.

III. NUMERICAL METHODS

An important numerical challenge for bounce calcula-
tions including gravitational effects is that the bounce
solutions in a dS-like background do not necessarily touch
the false vacuum [28,29]; this is a property allowed by the
compact nature of the Euclidean analogue of dS-like
spaces. As a result, large (and in the flat-space limit,
infinite) contributions to the decay exponent B ¼
S½ϕbounce� − S½ϕfv� do not cancel explicitly between the
bounce and false-vacuum actions (as is the case in the fixed
background approximation). Instead a “near cancellation”
must occur numerically, which is difficult to study without
very high-precision calculations. Fortunately, transitions
from flat false vacua to AdS true vacua do not suffer from
this problem as the Euclidean analogues are noncompact
and the bounce solution must touch the false vacuum. It
makes sense, therefore, to ignore the small observed
positive cosmological constant and consider transitions
from a flat false vacuum to an AdS-like true vacuum. In
this paper, we focus on the case of a flat false vacuum.
Physically, it is plausible that the decay rate does not
depend on the small cosmological constant, since the length
scale of the bounces we find is many orders of magnitude
smaller than the length scale associated to the small
observed cosmological constant. [One can make this more

quantitative by comparing the bounce energy density, E ¼
_ϕ2

2
− VðϕÞ to the cosmological constant energy density V0;

for our bounces we find V0=jEj ≪ 1 everywhere, indicat-
ing that solution is virtually unchanged.] The precise nature
of the V0 → 0 limit, however, will be investigated in a
future paper.
We use an overshoot/undershoot method to find the

bounce solution, as originally proposed in Ref. [13]. Note
that we solve Eq. (10) rather than Eq. (9) for the numerics in
this paper in order to avoid the square root ambiguity when
_a passes through zero, which happens in a de Sitter
background [for example, in a fixed de Sitter background
with Hubble rateH the solution is aðχÞ ¼ sinðHχÞ=H]. We
treat Eq. (9) as a constraint which imposes the second
boundary condition [ _að0Þ ¼ þ1] required by Eq. (10). This
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does not affect the results for transitions from flat false
vacua to AdS true vacua since _a > 0 everywhere for such
cases, but it is more generally applicable.
To solve the ordinary differential equations (ODEs) (8)

and (10), we made use of the Odeint library for C++ [30].
This library was chosen because it is highly modular in its
design and can support a range of different variable types;
in particular it naturally supports several types of variable
precision numbers. We used the MPFR implementation of
the GNU multiprecision library [31,32] as the variable-
precision back end. The code uses variable-precision
numbers for two reasons: (a) so that it can resolve the
vast range of scales (electroweak, barrier scale, λ mini-
mization scale, and Planck scale) present in the Standard
Model with sufficient precision, and (b) so that it can also
be used to study backreaction in a de Sitter background. In
de Sitter there is an additional numerical challenge because
the boundary conditions do not require ϕ to touch the false
vacuum; when backreaction is taken into account, S0 does
not cancel analytically in S − S0, as in the fixed background
approximation, and since jS0j ∼OðM4

P=VÞ ≫ jS − S0j
generically, rounding errors will wash out the backreaction
if not under stringent control.
To approximate the Standard Model potential, we use a

piecewise polynomial to interpolate the running of the self-
coupling, λ(tðμÞ) where t ¼ lnðμ2=M2Þ. Choosing μ ¼ ϕ,
the Higgs potential at large scales can be approximated as

VSMðϕÞ ¼
λ(tðϕÞ)ϕ4

4
: ð12Þ

We form an approximation of this potential starting from
N þ 1 discrete points λi ¼ λðtiÞ; i ¼ 0; 1; 2;…; N obtained
by solving the beta functions, which are available in the
literature [6,21,22], and then fitting N cubic polynomials
λnðtÞ; n ¼ 1; 2;…; N, each defined only between tn−1
and tn:

λnðtÞ ¼ ½1− xnðtÞ�λn−1þ xnðtÞλn
þ xnðtÞ½1− xnðtÞ�fan½1− xnðtÞ�þbnxnðtÞg; ð13Þ

xnðtÞ≡ t − tn−1
tn − tn−1

; ð14Þ

an ¼ kn−1ðtn − tn−1Þ − ðλn − λn−1Þ; ð15Þ

bn ¼ −knðtn − tn−1Þ þ ðλn − λn−1Þ: ð16Þ

The constants kn are the derivatives [with respect to
t ¼ lnðϕ2=M2Þ] of the polynomial, at tn. These are chosen
to equal the derivatives of λ, dλ=dt ¼ βλðtÞ, resulting in a
C1 continuous piecewise approximation of λðtÞ. An alter-
native choice is to pick kn such that the piecewise
polynomial is C2 continuous; such an approximation is
known as a cubic spline [33]. However, we found that this

led to unwanted oscillation effects in the potential. Figure 1
shows an example interpolated potential compared to the
exact values predicted by solving the beta functions. Using
this approximation, it is possible to create a model of the
Standard Model potential which is arbitrarily close to the
true Standard Model potential simply by taking more initial
points to interpolate between. Note that for nonlinearly
spaced points ti (e.g., the output of an adaptive ODE
solver), selecting the correct polynomial for an arbitrary
input ϕ may require an interpolative search: since such a
search requires on averageOðlog ( logðNÞ)Þ steps [34], this
is not generally a problematic bottleneck.

FIG. 1. Interpolated potential for Mt ¼ 173.34 GeV,
Mh ¼ 125.15 GeV, compared to “exact” values obtained by
solving the beta functions numerically.

FIG. 2. Difference between the action as a function ofN and the
action at large N (used as a proxy for N → ∞). For small N,
the behavior deviates from power-law behavior as the shape of the
potential settles down. Beyond this, the sampling intervals are
smaller than the variations in the potential, and the action settles
down, approaching the large-N action with a difference decreasing
as a negative power ofN. The apparent deviation at largeN is due to
the floating-point double-precision limit for the action (around
10−13 for S ∼ 103, as is the case here), which is stored at double
precision for data processing, and is not a real effect.
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To check how reliable this interpolated potential is, we
can compute the action for different numbers of interpolat-
ing functions,N. Figure 2 shows the difference between the
action as a function of N and the action for the highest N
considered, Sinf , which is used as a proxy for the unknown
action as N → ∞. This demonstrates that the evolution of
S − Sinf with N is very well approximated by power-law
convergence. In this paper, we use N ∼Oð104Þ (the precise
number is chosen by an adaptive integration routine for the
beta functions, and thus varies).

IV. RESULTS

Figure 3 illustrates a few example bounce solutions for
different values of ξ, compared with the flat-space equiv-
alent. Most notable is ξ ¼ 1=6, which is almost (but as the
inset plot shows, not quite) identical to the flat-space case.
The boundary value ϕð0Þ for each bounce is constrained by

the overshoot/undershoot method to a range of width
∼10−15, much smaller than the difference between the
initial values for ξ ¼ 0 and ξ ¼ 1=6, while the solutions are
computed with an absolute error tolerance of 10−20 using
arbitrary precision variables. This verifies that the small
difference between the ξ ¼ 1=6 and ξ ¼ 0 solutions is not
simply a numerical artifact. The effects of positive and
negative ξ on the bounce are qualitatively similar.
Figure 4 shows how this affects the decay rate. As with

the bounce, the ξ ¼ 1=6 case is virtually identical to the
flat-space case, and represents the approximate minimum
decay exponent. For both positive and negative values of ξ
away from ξ ¼ 1=6, the decay rate is suppressed, increas-
ingly so as ξ is increased. This trend continues to much
larger values of ξ, until around ξ ∼ 1018, where the barrier is
erased in Eq. (4). Figure 5 shows the same curve as Fig. 4
but around the minimum, demonstrating the slight deflec-
tion from ξ ¼ 1=6 and that the curve always lies above the
flat-space case. To verify that this is not a numerical artifact,
this figure is generated using 56 642 interpolating poly-
nomials for the running of λ, with the bounce equations
solved at an absolute tolerance of 10−20 using arbitrary
precision variables.
We also computed the effect of varying ξ on the

boundary between metastability and instability. Lacking
a complete analysis of the A coefficient in Eq. (1), which
requires a computation of the functional determinant
including graviton loops, we estimate the lifetime by
assuming A ∼ 1=R̄4 where R̄ is the full-width-half-maxi-
mum of the bounce (this is a good approximation of the
quantum corrections in the flat-space case [12,35]). This
results in a lifetime of [35]

τ

TU
¼

�
R̄
TU

�
4

eB; ð17Þ

FIG. 3. Bounce solutions as a function of distance χ from the
center of the bounce, computed for various values of ξ. The
ξ ¼ 1=6 solution is extremely close to the flat-space solution
(though not identical to it). A larger jξj tends to flatten and broaden
the bounce, as does the inclusion of backreaction for ξ ¼ 0.

FIG. 4. Decay exponent for different values of ξ at
Mt ¼ 173.34 GeV, Mh ¼ 125.15 GeV, compared with the
flat-space result. Left: Variation around the minimum near
ξ ¼ 1=6. Right: Large-scale variation of BðξÞ.

FIG. 5. High-resolution data around the minimum of BðξÞ for
Mt ¼ 173.34 GeV, Mh ¼ 125.15 GeV. This demonstrates that
the true minimum is slightly deflected from ξ ¼ 1=6 and that the
decay, even at the minimum, is suppressed relative to the flat-
space case.
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where TU is the age of the visible Universe. Although a full
analysis of the functional determinant in the flat-space case
is available [12], we use Eq. (17) as an estimate in the flat-
space case in order to separate out the effect of backreaction
alone. As a consequence, our bounds on the metastability/
instability regions sacrifice accuracy in order to demon-
strate the effect of backreaction. The resulting change in the
instability/metastability boundary, which we define as the
curve where τ ¼ TU, is plotted in Fig. 6.

V. DISCUSSION

A. Backreaction

Figure 6 appears to suggest that the effect of gravitational
backreaction on vacuum decay is almost negligible when
ξ ¼ 0. Even near the instability boundary, the lifetime of
the vacuum would not shift significantly due to gravita-
tional effects, despite the change in the shape of the bounce.
This appears to support the findings of the authors of
Ref. [15], who studied the effect of backreaction on vacuum
instability in a quartic model potential. They found that the
thin-wall approximation overestimated the effect of back-
reaction in suppressing vacuum decay compared to the true
thick-wall bubbles and argued that the inclusion of gravi-
tational backreaction would not stabilize the potential
against decay, even in a strong gravity regime. The bounces
we calculated for the actual Standard Model potential are
thick-wall bubbles and appear to bear this out; the gravi-
tational backreaction corrections (for ξ ¼ 0) in the Standard
Model potential are indeed small. Figure 7 verifies for

ξ ¼ 0 that the gradient contribution to R is significant in the
interior of the bubble; R peaks at the positive value
R=M2

P ¼ 2.213 × 10−8 when ϕðχpeakÞ ≈ 1017 GeV, at
which point V < 0. This suggests a physical explanation
for why the thin-wall approximation overestimates the
suppression of vacuum decay: in the interior of the bubble
the thin-wall approximation assumes that the only contri-
bution to _a is from the true vacuum, i.e.,

_a2 ≈ 1 −
a2VðϕtvÞ
3M2

p
: ð18Þ

This would correspond to R < 0 and so the R > 0 region of
Fig. 7 demonstrates that the approximation has completely
broken down. Physically speaking, the backreaction due to
the energy density in the interior of the bubble suppresses
the decay rate because it decreases the bubble’s volume-to-
surface-area ratio compared to flat space (see Ref. [13]);
this means an energy-conserving bubble must be larger. As
a result, nucleating such a bubble requires overcoming a
greater gradient barrier and so the decay rate is suppressed.
However, the backreaction of the bubble walls, which the
thin-wall approximation neglects, counteracts this effect
since for R > 0 the opposite is true; the volume-to-surface-
area ratio of the bubble increases. The net result is that the
interior backreaction wins, but with a much reduced
suppression of the decay rate. This is in addition to the
fact that thick-wall bubbles do not touch the true vacuum,
which also reduces jRj.

B. Effect of nonminimal coupling

The situation for ξ ≠ 0 is somewhat different. Most
notable is the near cancellation of the backreaction when
ξ ¼ 1=6, for which the bounce closely resembles the flat-
space solution (see Fig. 3). Figure 4 demonstrates that
ξ ¼ 1=6 is near the minimal value for the decay exponent;
the decay rate is virtually identical to flat space. The reason
for this is that ξ ¼ 1=6 restores a near conformal symmetry
to the bounce equations. Consider the situation where

FIG. 6. Instability/metastability boundaries computed for dif-
ferent values of ξ. With ξ ¼ 0, the bounds hardly shift at all from
the flat-space bound (see the inset which shows that the nearly
coincident flat-space and ξ ¼ 0 with backreaction boundaries are
in fact separate, albeit very close). With increasing jξj, the
instability region is pushed back; notice that this is true for both
positive and negative ξ—the boundaries for ξ ¼ �1000 are
nearly coincident. The Standard Model parameter uncertainty
region around Mh ¼ 125.09 GeV, Mt ¼ 173.21 GeV [36] with
1, 2, and 3 sigma bounds is shown for reference.

FIG. 7. Ricci scalar with distance from the center of the bounce,
in the ξ ¼ 0, ξ ¼ 1=6 and ξ ¼ 1=3 cases withMt ¼ 173.34 GeV,
Mh ¼ 125.15 GeV. For ξ ¼ 1=3, R is positive in the interior of
the bounce.
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VðϕÞ ¼ λϕ4=4, for constant λ < 0. Such a potential has a
conformal symmetry and for ξ ¼ 1=6 the equations are,
therefore, exactly conformal. The Ricci scalar satisfies
Eq. (11) and for ξ ¼ 1=6 the _ϕ2ð1 − 6ξÞ term vanishes.
Additionally, the second and third terms cancel:

4VðϕÞ − 6ξϕV 0ðϕÞ ¼ λϕ4 −
6

6
ϕ · λϕ3 ¼ 0: ð19Þ

Thus R ¼ 0 holds everywhere for this exactly conformal
situation and the backreaction cancels exactly. It is a simple
matter to show that the 3_a

a term in Eq. (8) reduces to the flat-
space case as well:

R ¼ 6ð1 − _a2Þ
a2

−
6ä
a

¼ 0 ⇒ 1 − _a2 − äa

¼ 1 −
d
dχ

ð _aaÞ ¼ 0

⇒ _aa ¼ χ þ C ⇒

1

2

d
dχ

ða2Þ ¼ χ þ C ⇒ aðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 2Cχ þD

q
;

where C and D are integration constants. To match the
boundary conditions að0Þ ¼ 0; _að0Þ ¼ 1, it is clear that
aðχÞ ¼ χ. Thus, the bounce equations reduce to

ϕ̈þ 3

χ
_ϕþ jλjϕ3 ¼ 0: ð20Þ

This is exactly the flat-space bounce equation. Therefore, in
the case of ξ ¼ 1=6 an analytic expression for the solution
can be found in the form of the flat-space Lee-Weinberg
bounce [37]:

ϕðχÞ ¼
ffiffiffiffiffi
2

jλj

s
2R̄

ðχ2 þ R̄2Þ ; ð21Þ

where R̄ is an arbitrary scale arising due to the exact
conformal symmetry. In the case of the Standard Model, the
running of λ breaks this conformal symmetry. However, the
contribution to the Ricci scalar still nearly cancels:

4VðϕÞ − 6ξϕV 0ðϕÞ ¼ −λ0ðϕÞϕ
5

4
¼ −

dλ
d lnðϕ2=M2Þ

ϕ4

2
;

ð22Þ

it is straightforward to verify numerically that
dλ=d lnðϕ2=M2Þ is small. For example, at Mh¼
125.15GeV, Mt¼173.34GeV, jβλj ¼ jdλ=d lnðϕ2=M2Þj <
1.1 × 10−2 over the whole range of μ up to the Planck scale.
Also, since the scale of the peak of the bounce is dominated
by the scale at which βλ vanishes, βλ is by definition tiny in
the vicinity of the peak; this is precisely the region when ϕ

is close to the Planck mass and gravitational effects would
matter most. Thus, the bounce for ξ ¼ 1=6 in the Standard
Model should have R ≈ 0 and thus be approximately the
same as the flat-space case. This is precisely what our
numerical results show; the bounce is almost identical to
the flat-space bounce except for a small difference near the
peak (see inset Fig. 3), where the slightly broken conformal
symmetry leads to small backreaction effects.
To compare the level of backreaction in each case, we

plot the Ricci-scalar for the ξ ¼ 0; ξ ¼ 1=6, and ξ ¼ 1=3
cases in Fig. 7. This demonstrates a significant suppression
of the backreaction, quantified by R. For ξ ¼ 1=6, the
backreaction is not entirely suppressed, due to the running
of λ breaking the conformal symmetry. Away from
ξ ¼ 1=6, Fig. 4 shows that B increases in both directions;
this indicates that the effect of ξ is always to suppress
vacuum decay, if the false vacuum is flat. As mentioned in
the results section, this effect persists to larger values of jξj.
The degree of suppression is evident in Fig. 6, which shows
the boundary between stability and instability is pushed
back as jξj increases (middle region). The effect of pure
backreaction (ξ ¼ 0) is also to push back the boundary,
although the effect is small.
It is worth noting that since the 3-sigma bounds on the

top quark and Higgs masses do not place the Standard
Model near the instability boundary, the effect of non-
minimal coupling does not qualitatively change the decay
behavior of the Higgs field, other than increasing its
lifetime. In our analysis, the boundary between stability
and metastability does not change, because whether or not
the electroweak vacuum is false is determined in the
Einstein frame by Eq. (4). With ξ ¼ 0 the electroweak
vacuum is stable if VðϕÞ is nowhere negative, and meta-
stable (or unstable) otherwise. Equation (4) does not affect
the sign of V, nor where it changes sign (the instability
scale, ϕinst), and so the only effect of ξ is to change (in this
case decrease) the actual decay rate, if the vacuum is not
stable. A completely stable vacuum remains stable when
nonminimal coupling is included. Note that this is not the
case in a nonflat background, i.e., VðϕfvÞ ≠ 0, since there
the criterion for stability is that VðϕÞ ≥ VðϕfvÞ everywhere,
rather than VðϕÞ ≥ 0. So, for example, if ϕfv ¼ 0; ξ > 0

and Vð0Þ > 0 is sufficiently large, then ~Vð0Þ ¼ Vð0Þ and
the difference

~VðϕÞ − ~Vð0Þ ¼
ΔVðϕÞ þ ½1 −

�
1 − ξϕ2

M2
P

�
2�Vð0Þ�

1 − ξϕ2

M2
P

�
2

; ð23Þ

where ΔVðϕÞ ¼ VðϕÞ − VðϕfvÞ, can always be made
positive for any negative ΔVðϕÞ, if Vð0Þ is sufficiently
large. In the Jordan frame, this manifests as an extra mass

term 1
2

4Vð0Þ
M2

P
ϕ2 in the potential. For VðϕfvÞ ¼ 0, however,

this effect is not present and ξ > 0 will not render the false
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vacuum absolutely stable unless ξ > M2
P=ϕ

2
inst, i.e., the

instability scale ϕinst is above the threshold for which a
singularity appears in the equations of motion. There is a
caveat to the above, however; the stability/metastability
boundary can in fact shift from the estimate based on the
sign of the potential, since in the strong gravity limit it is
possible for the gravitational effects of bounces to AdS true
vacua to fully quench vacuum decay. This was investigated
recently in Ref. [19], where it was found that the quenching
effect present in the thin-wall approximation persisted for
thick-wall bubbles, and when all gravitational effects were
taken into account. We do not investigate this effect here,
but it can in principle lead to shifts in the stability/
metastability boundary.

C. Exact minimum under ξ variation

The form of Fig. 4 appears to suggest a minimum near
ξ ¼ 1=6. Assuming that BðξÞ and ϕξðχÞ (the bounce
solution with nonminimal coupling ξ) vary smoothly with
ξ, we can construct an analytic expression for B0ðξÞ. Recall
that B ¼ S − Sfv where Sfv is the false vacuum action.
Assuming that the false vacuum lies at ϕ ¼ 0 for all ξ, then
Sfv is independent of ξ because R ¼ 0 for that solution (this
would not be the case for a transition from a de Sitter false
vacuum, however). Consequently, we can write

dB
dξ

¼ ∂Sξ½ϕξ; gξ;μν�
∂ξ

				
ϕ;gμν

þ δSξ½ϕξ; gξ;μν�
δϕ

				
ξ;gμν

∂ϕξ

∂ξ

þ δSξ½ϕξ; gξ;μν�
δgμνξ

				
ξ;ϕ

∂gμνξ
∂ξ ð24Þ

where ϕξ and gξ;μν are the scalar field and metric bounce
solutions respectively, when the action is Sξ defined by

Sξ½ϕ;gμν�≡
Z

d4x
ffiffiffi
g

p �
1

2
∇μϕ∇μϕþVðϕÞþ1

2
ξϕ2R−

M2
P

2
R

�
:

ð25Þ

Defining a new functional

∂Sξ
∂ξ

				
ϕ;gμν

¼ ΔS½ϕ; gμν�≡
Z

d4x
1

2
ϕ2R; ð26Þ

and using the fact that the first functional derivatives of Sξ
at ϕξ; gξ;μν vanish (as these are stationary points of Sξ), we
find

dB
dξ

¼ π2
Z

∞

0

dχa3ξðχÞϕ2
ξðχÞRξðχÞ: ð27Þ

All the quantities in the integrand can be evaluated from the
bounce solution, once it is found. We confirmed that this
prediction for the derivative of BðξÞ agrees with numerical

differentiation of the data in Fig. 4. Equation (27), however,
yields useful analytic insight into the shape of Fig. 4. In
particular, it reveals that ξ ¼ 1=6 would be the exact
minimum of the potential for a constant λ quartic potential,
since Eq. (19) shows that the Ricci scalar vanishes every-
where for ξ ¼ 1=6, and hence B0ðξÞ ¼ 0. In the Standard
Model, the conformal symmetry of the large-scale Higgs
potential is broken by the running of λ, which manifests in
the nonvanishing of R (see Fig. 7). Consequently, the
minimum shifts to a value slightly different from ξ ¼ 1=6.
The near vanishing of R for ξ ¼ 1=6, however, explains the
observation that Fig. 4 has a minimum very close to
ξ ¼ 1=6. The exact minimum can be found by a root-
finding algorithm using Eq. (27). For example, if Mh ¼
125.15 GeV and Mt ¼ 173.34 GeV the minimum lies at
ξmin ¼ 0.16676, a shift of ξmin − 1=6 ¼ 9.3354 × 10−5.

D. Comparison to previous results

The authors of Ref. [14] previously computed an analytic
correction to the bounce action via a perturbation expansion
in the gravitational coupling, κ ¼ 1

M2
P
, or more precisely, the

dimensionless quantity 1=ðR̄2M2
PÞ where R̄ is the bounce

length scale [see Eq. (21)]:

ϕðχÞ ¼ ϕ0ðχÞ þ κϕ1ðχÞ þOðκ2Þ; ð28Þ

aðχÞ ¼ a0ðχÞ þ κa1ðχÞ þOðκ2Þ ð29Þ

where a0ðχÞ ¼ χ, and ϕ0 is the flat-space bounce in the
constant λ potential (which is more convenient to
quantize around). Note for comparison that we define
M2

P ¼ 1=8πGN , whereas the authors of Ref. [14] used
M2

P ¼ 1=GN . However, it was recently pointed out [15] that
when perturbed around the constant λ potential this
perturbation expansion fails to satisfy the boundary con-
ditions at first order in κ. This can be demonstrated by
considering the equations for the first-order perturbations.
Substituting the expansions into the bounce equations we
obtain, comparing the first order in κ,

ϕ̈1 ¼ −
3

χ

�
−
a1ðχÞ
χ

_ϕ0 þ _ϕ1 þ _a1 _ϕ0

�
þ V 00ðϕ0Þϕ1; ð30Þ

_a1¼
χ2

3

8R̄2

jλj
1

ðχ2þ R̄2Þ3 ;

ϕ0ðχÞ¼
ffiffiffiffiffi
2

jλj

s
2R̄

R̄2þχ2
; _ϕ0¼−

ffiffiffiffiffi
2

jλj

s
4R̄χ

ðR̄2þχ2Þ2 : ð31Þ

The equation for a1 can be integrated immediately. Setting
x ¼ χ=R̄ and y ¼ R̄3jλj3=2ϕ1 we find the equation for the
first-order perturbation of the field is
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y00ðxÞ þ 3

x
y0ðxÞ þ 24

ð1þ x2Þ2 yþ
~fðxÞ ¼ 0;

~fðxÞ≡ 4
ffiffiffi
2

p � ðx2 − 1Þ
ð1þ x2Þ4 þ

arctanðxÞ
xð1þ x2Þ2 −

8x2

ð1þ x2Þ5
�
: ð32Þ

The general solution to this equation is

yðxÞ¼C1ðx2−1Þ
ð1þx2Þ2

þC2½1−17x2−x2ð1−x2Þðx2þ12 lnxÞ�
2x2ð1þx2Þ2

þ 4
ffiffiffi
2

p

45x2ð1þx2Þ3
�
1þx2ð7−9x2Þ

−15x3ð1þx2ÞarctanðxÞþ6x2ð1−x4Þ ln
�
1þx2

x2

��
:

ð33Þ

In the limit as x → ∞ one finds yðxÞ → C2=2. When x → 0
however, we obtain the asymptotic form

yðxÞ →
�
C2

2
þ 4

ffiffiffi
2

p

45

��
1

x2
− 12 ln x

�

þ
�
−C1 −

19

2
C2 þ

16
ffiffiffi
2

p

45

�
þOðx2 ln xÞ: ð34Þ

Note that ϕ0 satisfies _ϕ0ð0Þ ¼ 0;ϕ0ðχ → ∞Þ → 0, and
ϕðχÞ is required to satisfy the same boundary conditions:
this implies that ϕ1ðχÞ [and therefore yðxÞ, which is related
to ϕ1 by a constant factor] must satisfy the same conditions.
Thus y0ð0Þ ¼ 0 and yðx → ∞Þ → 0 are required. It is clear
from the two limits of Eq. (33) that these boundary
conditions cannot be simultaneously satisfied. If yðxÞ is
regular at x ¼ 0 then it tends to −4

ffiffiffi
2

p
=45 as x → ∞ and if

it tends to zero (the false vacuum) at x → ∞ then it will fail
to be regular at x ¼ 0. This indicates that the perturbation
expansion, Eq. (28), always breaks down for some values
of χ and hence the solution seemingly cannot be trusted.
Note that after this paper was submitted, a more detailed
explanation of the perturbative procedure was published
which we feel alleviates this concern; see Ref. [38]. The
above argument demonstrates that the gravitationally cor-
rected perturbative bounce solution would not exist in a ϕ4

potential due to the breakdown of the perturbation theory at
late χ. In Ref. [38], however, it was pointed out that the ϕ1

correction should properly be determined in a quantum-
corrected potential, rather than the λϕ4 potential, for which
the behavior at large χ is different.
To compare with the perturbative prediction, assuming

minimal coupling, we use the perturbative formula for first-
order gravitational corrections to a generic flat-space
bounce, ΔSgrav ¼ Sgrav − Sflat (see Ref. [14]):

ΔSgrav ¼
6π2

M2
P

Z
∞

0

dχ

�
χ2
�
_ϕ2
0

2
þ Vðϕ0Þ

�
a1

þ ðχ _a21 þ 2a1 _a1 þ 2χa1ä1Þ
�

¼ 6π2

M2
P

Z
∞

0

dχ _a21χ

¼ π2

6M2
P

Z
∞

0

χ5
�
_ϕ0ðχÞ2
2

− V(ϕ0ðχÞ)
�
2

dχ; ð35Þ

where (see Ref. [14])

_a1 ¼
χ2

6

�
_ϕ2
0

2
− Vðϕ0Þ

�
; ð36Þ

ä1 ¼ −
χ

3
ð _ϕ2

0 þ Vðϕ0ÞÞ: ð37Þ

To compare the size of the gravitational corrections, we plot
(see Fig. 8) ΔSgrav ¼ Sgrav − Sflat, using the numerically
determined (flat-space) ϕ0 in Eq. (35) for different Mt, Mh,
and compare with the action predicted by numerically
solving for the bounce including gravity. Our results broadly
agree with this perturbative calculation: forMh ¼ 115 GeV
the agreement is excellent, as for this value of the Higgsmass
the gravitational corrections are small andwell approximated
by the perturbative results. ForMh ¼ 125.15 GeV, closer to
the best currentmeasurements, thenumerical results predict a
slightly smaller decay rate, as higher-order terms in the
gravitational perturbation series start to become important.

VI. CONCLUSION

We have computed the full gravitational effects on
bounces in the Standard Model. For the region of interest,

FIG. 8. Comparison of the perturbative results, Eq. (35), to our
numerical calculations in the full Standard Model potential, for
Mh ¼ 125.15 GeV and Mh ¼ 115 GeV.
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the effect on the stability bounds of pure (ξ ¼ 0) back-
reaction is almost negligible. Our results are broadly in line
with the perturbative results. Furthermore, we have com-
puted, for what we believe is the first time, the effect on the
decay rate of including a nonminimal coupling term in the
action. (After this paper was submitted, a perturbative
calculation of the effect of nonminimal coupling was
presented in Ref. [38], using a perturbative analysis; this
gave broadly similar results.) We found that gravitational
effects suppress vacuum decay universally for all values of
the nonminimal coupling and push back the boundary
between instability and stability. The effect, however,
would not stabilize the potential completely because it
does not change the location of the boundary between the
stable/metastable regions of ðMh;MtÞ phase space. Our
calculations singled out the conformal value of ξ ¼ 1=6 as
being particularly special. For this value of the nonminimal
coupling the effect of backreaction was found to nearly
cancel, with the cancellation failing to be exact due to the
running of the Higgs self-coupling, λðμÞ, which breaks the
conformal symmetry. ξ ¼ 1=6 is also a near minimum of
the decay exponent as a function of ξ. We showed that in an
exactly conformal potential with ξ ¼ 1=6 (a) the back-
reaction completely cancels, (b) the bounce solution is
identical to the flat-space bounce, and (c) the decay
exponent is minimal under ξ variations. Each of these
properties is found to nearly hold in the full Standard
Model potential, as it is “nearly” conformal at large field
values.
Our results show that minimal-coupling gravitational

effects in computing Standard Model vacuum decay rates
are small, and provide a first analysis of the impact of
nonminimal coupling. There is still much to be understood
about the effect of gravity and nonminimal coupling on
vacuum decay, however. For example, our results do not
take into account the running of ξ, which should be present
in a complete description of its effect on vacuum decay. We
also do not take into account the effect of graviton loops on
the running of the Standard Model couplings. A proper
analysis of these issues will require a study of the
quantum corrections to the gravitational bounce in the
form of the functional determinant prefactor, A, in Eq. (1).
Additionally, as mentioned in the discussion, there may be
a shift in the stability/metastability boundary associated
with the quenching effect of AdS true vacua [19]. The
nature of this effect when nonminimal coupling is included
is a natural direction for further investigation. Finally, the
role of nonminimal coupling in nonflat backgrounds, for
example during inflation, is also an important avenue
for further study because it is possible for nonminimal
coupling to stabilize the Standard Model potential if
VðϕfvÞ > 0 [10]. Such an analysis could therefore provide
useful insight into the implications of vacuum metastability
for early Universe physics.
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APPENDIX: EINSTEIN FRAME ANALYSIS

The action and field equations in the Einstein frame are
obtained by a conformal transformation

~gμν ¼ Ω2gμν; ðA1Þ

Ω2 ≡
�
1 −

ξϕ2

M2
P

�
; ðA2Þ

and the field transformation

d ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1 − 6ξÞ ϕ2

M2
P

q
�
1 − ξϕ2

M2
P

� dϕ ðA3Þ

⇒ ~ϕðϕÞ ¼ MP

ffiffiffi
6

p
arctanh

0
B@ ξ

ffiffiffi
6

p
ϕ

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1−6ξÞϕ2

M2
P

q
1
CA

þMP

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6ξ

ξ

s
arcsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξð1 − 6ξÞ

p ϕ

MP

�
:

ðA4Þ

Under these transformations, Eq. (2) becomes [39,40]

S ¼
Z

d4x
ffiffiffiffiffi
j~gj

p "
1

2
~gμν∇μ

~ϕ∇ν
~ϕþ Vðϕð ~ϕÞÞ�

1 − ξϕð ~ϕÞ2
M2

P

�
2
−
M2

P

2
~R

#
:

ðA5Þ

Choosing an analogous coordinate system to Eq. (7) for the
conformally transformed metric gives the bounce equation:

d2 ~ϕ
d~χ2

þ 3

d ~a
d~χ

~a
d ~ϕ
d~χ

−
d

d ~ϕ

"
V(ϕð ~ϕÞ)�
1 − ξϕð ~ϕÞ2

M2
P

�
2

#
¼ 0; ðA6Þ

where

d~χ2 ¼ ð1 − ξϕ2=M2
PÞdχ2; ðA7Þ

~a2 ¼ ð1 − ξϕ2=M2
PÞa2; ðA8Þ
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d ~ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξð1 − 6ξÞϕ2=M2

P

p
ð1 − ξϕ2=M2

PÞ
dϕ: ðA9Þ

As mentioned previously, Eq. (A9) can be integrated to
obtain ~ϕðϕÞ, but the result cannot easily be inverted,
analytically, for arbitrary ξ. This makes Eq. (A6) of
limited use for numerics, but it can still reveal qualitative
features of the solution which are somewhat more opaque
in Eq. (8).
Making the variable changes (A7)–(A9) transforms

Eq. (8) into Eq. (A6). Furthermore, the locations of the
true and false vacua are determined by the Einstein frame
potential, rather than VðϕÞ. This is true in both the Einstein
and Jordan frames. To see this, consider ϕ00ð0Þ in both
frames:

ϕ00
Jordanð0Þ ¼

V 0ðϕ0Þð1 − ξϕ2
0

M2
P
Þ þ 4ξϕ0Vðϕ0Þ

M2
P

4
�
1 − ξð1−6ξÞϕ2

0

MP2

� ; ðA10Þ

~ϕ00
Einsteinð0Þ ¼

~V 0ð ~ϕ0Þ
4

¼
V 0ðϕ0ð ~ϕ0ÞÞ

�
1 − ξϕ0ð ~ϕ0Þ2

M2
P

�
þ 4Vðϕ0ð ~ϕ0ÞÞξϕ0ð ~ϕ0ÞÞ

M2
P

4
�
1 − ξϕ0ð ~ϕ0Þ2

M2
P

�
3

:

ðA11Þ
While these are different functions of ϕ0—as we would
expect—notice that they both have zeros at the same values
of ϕ0. For Coleman–de Luccia bounces, and in the Einstein
frame, these critical points aremerely the locations of the true
vacuum, false vacuum, and the top of the barrier of the
potential, respectively, as they are determined by the loca-
tions of the zeros of ~V 0ð ~ϕÞ. Importantly, however, this is not
the case if ξ ≠ 0 in the Jordan frame: a field sitting initially at
a point where V 0ðϕÞ ¼ 0 will generically start moving for
ξ ≠ 0 rather than staying constant. It is in fact the Einstein-
frame potential, Eq. (4), which determines the location of
these critical points. In the case of a fixed de Sitter back-
ground, this is equivalent to adding a 1

2
ξRϕ2 mass term.
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