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Recently, the existence of a candidate a-function for renormalizable theories in three dimensions was
demonstrated for a general theory at leading order and for a scalar-fermion theory at next-to-leading order.
Here we extend this work by constructing the a-function at next-to-leading order for an N ¼ 2

supersymmetric Chern-Simons theory. This increase in precision for the a-function necessitated the
evaluation of the underlying renormalization-group functions at four loops.
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I. INTRODUCTION

Following Cardy’s suggestion [1] that Zamolodchikov’s
two-dimensional c-theorem [2] might have an analogue in
four dimensions, considerable progress has been made in
proving the so-called a-theorem in even dimensions [3–15]
(for a review see Ref. [16]). The Weyl anomaly played a
central role in the derivation of the c-theorem and the
a-theorem in even dimensions, and therefore it seems
unlikely that the a-theorem could be extended to odd
dimensions where there is no Weyl anomaly. An alternative
candidate for a function which evolves monotonically
along renormalization group (RG) flows in odd dimensions
is the so-called F-function [17–20]. This is the Euclidean
path integral of the theory (or “free energy”) conformally
mapped (in the case of three dimensions) to S3. It has been
shown to increase between UV and IR fixed points for a
variety of theories. However, an additional important
feature of the a-function in even dimensions is the gradient
flow property; for theories with couplings gI and corre-
sponding RG β functions βI, it satisfies

∂Ia≡ ∂
∂gI a ¼ TIJβ

J ð1:1Þ

for a function TIJ. A crucial consequence of Eq. (1.1) is that
we then have

μ
d
dμ

a ¼ βI
∂
∂gI a ¼ GIJβ

IβJ ð1:2Þ

where GIJ ¼ TðIJÞ, ðIJÞ denoting symmetrization. The
a-theorem then follows immediately if GIJ is positive
definite. There is, however, so far no evidence that F
possesses the gradient flow property except in simple

cases at leading order, where its existence is trivial in
the sense that no conditions are imposed on the β-function
coefficients.
Accordingly a different approach has recently been taken

[21,22] in which a function with the gradient flow property
(1.1) has been constructed order by order, using as a
starting point the β functions for a range of three-
dimensional theories. The method was essentially that
employed in four dimensions in the classic work of
Ref. [23]. Initially [21] the leading-order (two-loop) β
functions computed by Avdeev et al. in Refs. [24,25] were
used to construct a solution of Eq. (1.1) for Abelian and
non-Abelian [for the case SUðnÞ] Chern-Simons theories at
leading order. Moreover the “metric” GIJ was indeed
positive definite at this order. The Yukawa and scalar
couplings in these theories were of a restricted form.
However, it was then shown [21,22] that the results
extended at leading order to completely general Abelian
Chern-Simons theories (and there was no reason to doubt
that the extension to the non-Abelian case would be fairly
immediate). The extension to next-to-leading order
involves the four-loop β functions (recall that there are
no divergences at odd loop orders in odd dimensions). The
four-loop Yukawa β function for a general (ungauged)
fermion/scalar theory was therefore computed [22] and it
was shown that the definition of the a-function in Eq. (1.1)
could be extended to this order as well. In the general
gauged case at leading order, and in the ungauged case at
next-to-leading order, Eq. (1.1) imposes stringent condi-
tions on the β-function coefficients. Clearly (in the absence
of a general proof of the gradient flow property) the next
natural step would be to extend the calculation for a general
gauge theory to next-to-leading order. The β-function
computation for a general theory at four loops would be
very involved; however, the supersymmetric case is much
more tractable and consequently we consider here the case
of N ¼ 2 supersymmetry. Here we can avail ourselves of
the superspace formalism to simplify the calculations and

*gracey@liverpool.ac.uk
†dij@liverpool.ac.uk
‡c.poole@liverpool.ac.uk
§yschroeder@ubiobio.cl

PHYSICAL REVIEW D 95, 025005 (2017)

2470-0010=2017=95(2)=025005(11) 025005-1 © 2017 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.95.025005
http://dx.doi.org/10.1103/PhysRevD.95.025005
http://dx.doi.org/10.1103/PhysRevD.95.025005
http://dx.doi.org/10.1103/PhysRevD.95.025005


furthermore as a consequence of the nonrenormalization
theorem [26], the Yukawa β function is determined by the
chiral field anomalous dimension. Another motivation
for consideration of the supersymmetric case is that the
F-theorem has mostly been studied in this context and
therefore a comparison might be facilitated. In order to
check the validity of Eq. (1.1), it is sufficient to compute
only the contributions to the anomalous dimension which
contain Yukawa couplings. This is because Eq. (1.1) places
constraints on the Yukawa-dependent contributions (which
we shall show are satisfied) but not on the Yukawa-
independent terms. This is a fortunate situation since it
saves us a great deal of arduous computation.
We find that indeed we can construct the a-function

satisfying Eq. (1.1) at next-to-leading order in the case of a
general N ¼ 2 supersymmetric Chern-Simons theory. On
the one hand there are far fewer constraints (only two, in
fact) on the RG coefficients than we found even in the
ungauged nonsupersymmetric case at next-to-leading
order, so that the imposition of supersymmetry itself must
guarantee that most of the original constraints are satisfied.
On the other hand, one of the remaining constraints is
highly nontrivial since it involves a constraint on a
Feynman diagram which had not hitherto been computed
and which required advanced techniques to evaluate.
The structure of the paper is as follows. In Sec. II we

describe the N ¼ 2 Chern-Simons theory and its quanti-
zation, recall the lowest-order (two-loop) result for the
anomalous dimension and use it to construct the leading-
order terms in the a-function. In Sec. III we consider the
a-function at next-to-leading order, and show how its
existence imposes consistency conditions on some of the
coefficients in the next-to-leading-order (four-loop) anoma-
lous dimension. In Sec. IV we present our calculation of the
Yukawa-dependent terms in the four-loop anomalous
dimension (as explained earlier, these are all we need),
in particular checking that the consistency conditions are
satisfied. We explain in some detail the computation of the
particular diagram mentioned above. Finally, some closing
remarks are offered in Sec. V. Details of the superspace
conventions and some explicit results for momentum
integrals are deferred to appendixes.

II. GENERAL PROCEDURE
AND LOWEST-ORDER RESULTS

In this section we describe the N ¼ 2 Chern-Simons
theory and the general framework for our calculations. We
also review the two-loop anomalous dimension calculation
and construct the corresponding a-function. The action for
the theory can be written as

S ¼ SSUSY þ SGF ð2:1Þ

where SSUSY is the usual supersymmetric action [27]

SSUSY ¼
Z

d3x
Z

d4θ

�
k
Z

1

0

dtTr½D̄αðe−tVDαetVÞ�

þ ΦjðeVARAÞijΦi

�

þ
�Z

d3x
Z

d2θWðΦÞ þ H:c:

�
: ð2:2Þ

Here V is the vector superfield, Φ is the chiral matter
superfield and WðΦÞ is the superpotential (quartic for
renormalizability in three dimensions); see Appendix A
for our N ¼ 2 superspace conventions. We take WðΦÞ to
be given by

WðΦÞ ¼ 1

4!
YijklΦiΦjΦkΦl: ð2:3Þ

[We use the convention that Φi ¼ ðΦiÞ�, and also denote
Ȳijkl ¼ ðYijklÞ�.] We assume a simple gauge group, though
we comment later on the extension to nonsimple groups.
Gauge invariance requires the gauge coupling k to be
quantized, so that 2πk is an integer. The vector superfield V
is in the adjoint representation, V ¼ VATA where TA are the
generators of the fundamental representation, satisfying

½TA; TB� ¼ ifABCTC;

TrðTATBÞ ¼ δAB: ð2:4Þ
The chiral superfield can be in a general representation,
with gauge matrices denoted RA satisfying

½RA; RB� ¼ ifABCRC;

TrðRARBÞ ¼ TRδAB: ð2:5Þ
In three dimensions the Yukawa couplings Yijkl are
dimensionless and (as mentioned earlier) the theory is
renormalizable. In Eq. (2.1) the gauge-fixing term SGF is
given by [28]

SGF ¼ −
k
2ξ

Z
d3xd2θtr½ff̄� − k

2ξ

Z
d3xd2θ̄tr½ff̄�; ð2:6Þ

where ξ is a gauge-fixing parameter, and we introduce into
the functional integral a corresponding ghost termZ

DfDf̄ΔðVÞΔ−1V ð2:7Þ
with

ΔðVÞ ¼
Z

dΛdΛ̄δðFðV;Λ; Λ̄Þ − fÞδðF̄ðV;Λ; Λ̄Þ − f̄Þ;

ð2:8Þ
and F̄ ¼ D2V, F ¼ D̄2V. With the gauge-fixing parameter
ξ ¼ 0 this results in a gauge propagator

hVAð1ÞVBð2Þi ¼ −
1

k
1

∂2
D̄αDαδ

4ðθ1 − θ2ÞδAB: ð2:9Þ
The gauge vertices are obtained by expanding SSUSY þ

SGF as given by Eqs. (2.2) and (2.6):
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SSUSY þ SGF → −
i
6
fABC

Z
d3xd4θD̄αVADαVBVC

−
1

24
fABEfCDE

Z
d3xd4θD̄αVAVBDαVCVD þ � � � :

ð2:10Þ

The ghost action resulting from Eq. (2.8) has the same
form as in the four-dimensional N ¼ 1 case [26,29]; we
refrain from quoting it explicitly since we do not need to
consider diagrams with ghost propagators. Finally the chiral
propagator and chiral-gauge vertices are readily obtained by
expanding Eq. (2.2); the chiral propagator is given by

hΦið1ÞΦjð2Þi ¼ −
1

∂2
δ4ðθ1 − θ2Þδij: ð2:11Þ

The regularization of the theory is effected by replacing V,
Φ, Y by corresponding bare quantities VB, ΦB, YB, with the
bare and renormalized fields related by

VB ¼ Z
1
2

VV; ΦB ¼ Z
1
2

ΦΦ: ð2:12Þ
Since the Chern-Simons level k is expected to be unrenor-
malized for a generic Chern-Simons theory due to the
topological nature of the theory (so that kB ¼ k), the only
β functions are those for the superpotential coupling and its
conjugate. These will be given according to the nonrenorm-
alization theorem [26] by

βijklY ¼ ðγΦÞmðiYjklÞm; βȲijkl ¼ ȲmðijkðγΦÞlÞm ð2:13Þ
where the anomalous dimension γΦ is defined by

γΦ ¼ 1

2
μ
d
dμ

lnZΦ: ð2:14Þ

Using dimensional regularization with d ¼ 3 − ϵ dimen-
sions, we have

ZΦ ¼
X

L even;m¼1…L
2

ZðL;mÞ
Φ

ϵm
ð2:15Þ

where L is the loop order. γΦ is determined by the simple
poles in ZΦ according to

γðLÞΦ ¼ −
L
2
ZðL;1Þ
Φ : ð2:16Þ

The anomalous dimension of the chiral superfield is given at
two loops by [28,30]

ð8πÞ2γð2ÞΦ ¼ 1

3
Y2 −

2

k2
CRCR −

1

k2
~TCR ð2:17Þ

where

ðY2Þij ¼ ȲiklmYjklm;

CR ¼ RARA;

CGδAB ¼ fACDfBCD;

~T ¼ TR − CG; ð2:18Þ

and TR is defined in Eq. (2.5). This result may readily be
obtained by N ¼ 2 superfield methods [24,28,30,31]: see
Appendix A for our N ¼ 2 superfield conventions.
Henceforth we set k ¼ 1 for simplicity, and also neglect
factors of ð8πÞ2 (one for each loop order); these factors of k
and ð8πÞ2 may easily be restored if desired. The two-loop
results for general Chern-Simons theories obtained in
Ref. [25] are not directly comparable since they were
computed in the N ¼ 1 framework.
The β functions βY and βȲ are given at lowest order by

inserting Eq. (2.17) into Eq. (2.13). It is then clear that
Eq. (1.1) is satisfied to this order in the form1

∂
∂Yijkl A ¼ βȲijkl;

∂
∂Ȳijkl

A ¼ βijklY ; ð2:19Þ

[hence effectively with a unit TIJ on the right-hand side of
Eq. (1.1)] by taking

Að5Þ ¼ að5Þ1 Að5Þ
1 þ að5Þ2 Að5Þ

2 þ að5Þ3 Að5Þ
3 ð2:20Þ

where

Að5Þ
1 ¼ ðY2ÞijðY2Þji;

Að5Þ
2 ¼ ðY2ÞijðC2

RÞji;
Að5Þ
3 ¼ CGðY2ÞijðCRÞji; ð2:21Þ

with Y2 given by Eq. (2.18), and

að5Þ1 ¼ 2

3
; að5Þ2 ¼ −8; að5Þ3 ¼ −4 ~T: ð2:22Þ

Notice that at this order the construction of the a-function
imposes no constraints on the anomalous dimension
coefficients, since there is a one-to-one correspondence
between a-function structures and anomalous dimension
structures. For later convenience it will be useful to rewrite
Eq. (2.19) in the form

dYA≡ dY∘∂YA ¼ dY∘βȲ ;
dȲA≡ dȲ∘∂ ȲA ¼ dȲ∘βY; ð2:23Þ

where ∘ is a scalar product on Yukawa couplings so that for
instance Y∘Ȳ ≡ YijklȲijkl.

III. CONSISTENCY CONDITIONS FOR
FOUR-LOOP ANOMALOUS DIMENSION

In this section we derive the consistency conditions on
the four-loop anomalous dimension coefficients required
for Eq. (1.1) to be satisfied at next-to-leading order. We
assume an a-function at this order of the general form

1We prefer to use the notation A (rather than a) in three
dimensions in the absence of any connection to a conformal
anomaly coefficient.
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Að7Þ ¼
X14
i¼1

að7Þi Að7Þ
i þ ~aðβð2ÞY Þ∘ðβð2ÞȲ Þ ð3:1Þ

where the structures Að7Þ
i are depicted in Fig. 1, except for

Að7Þ
14 which it is more convenient simply to define explicitly,

viz.

Að7Þ
14 ¼ 1

4
trðY2fRA; RBgÞtrðY2fRA; RBgÞ; ð3:2Þ

and the final term represents the usual arbitrariness [10] in
defining the a-function. Our convention for the chiral lines
is that the arrows point from a Y vertex to a Ȳ vertex;
furthermore, a box represents an insertion of CR, and an A
or B represents an insertion of a gauge generator RA or RB
respectively. At this order we expect

dYAð7Þ ¼ dY∘Tð3Þ∘βð4ÞȲ þ dY∘Tð5Þ∘βð2ÞȲ

þ dY∘Kð5Þ∘βð2ÞY ð3:3Þ

where as we saw in the previous section, Tð3Þ is effectively
the unit matrix and we write

Tð5Þ ¼
X7
i¼1

tð5Þi Tð5Þ
i ; Kð5Þ ¼

X2
i¼1

kð5Þi Kð5Þ
i ; ð3:4Þ

where the individual contributions dY∘Tð5Þ
i ∘dȲ,

dY∘Kð5Þ
i ∘dY are depicted in Figs. 2 and 3, with a cross

denoting dY and a diamond denoting dȲ. The

corresponding expression for dȲ may be obtained by
conjugation and is not given explicitly. Finally the four-
loop anomalous dimension is expected to take the form

ð8πÞ4γð4ÞΦ ¼
X12
i¼1

giγ
ð4Þ
i þ � � � ð3:5Þ

where the invariants involving Yukawa couplings are
given by

ðγð4Þ1 Þij ¼ ȲilmnðY2ÞklYkmnj;

ðγð4Þ2 Þij ¼ ȲipqrYpqmnȲmnklYklrj;

γð4Þ3 ¼ Y2CRCR;

ðγð4Þ4 Þij ¼ ȲiklnðCRCRÞnmYklmj

ðγð4Þ5 Þij ¼ ȲiklmðCRÞnmYpklnðCRÞpj;
ðγð4Þ6 Þij ¼ ȲiklmðCRÞnlðCRÞpmYknpj;

ðγð4Þ7 Þij ¼ ȲiklmðRARBÞnmYpklnðRBRAÞpj;
ðγð4Þ8 Þij ¼ ȲiklmðRARBÞnlðRARBÞpmYknpj;

γð4Þ9 ¼ Y2CR;

ðγð4Þ10 Þij ¼ ȲiklmðCRÞnmYklnj;

ðγð4Þ11 Þij ¼
1

2
trðY2RARBÞðfRA; RBgÞij;

ðγð4Þ12 Þij ¼ ȲiklmðRACRÞnlðRAÞpmYknpj: ð3:6Þ

FIG. 1. Contributions to Að7Þ (for notation, see Sec. III).
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The structures γð4Þ1−11 form a basis for 2nd rank tensors with

four gauge matrices; γð4Þ12 is not independent but has been
retained since it appears naturally in diagrammatic calcu-
lations (and in fact ultimately cancels). The ellipsis in
Eq. (3.5) indicates Yukawa-independent terms which we
have not computed. We then find that Eq. (1.1) entails

að7Þ1 þ 1

3
~a ¼ tð5Þ1 ¼ 2gð4Þ1 þ 1

2
ðtð5Þ2 þ kð5Þ1 Þ;

að7Þ2 ¼ 4gð4Þ2 ¼ 2

3
tð5Þ3 ¼ 2

3
tð5Þ3 þ 4

3
kð5Þ2 ;

að7Þ3 þ 1

9
~a ¼ 1

9
ðtð5Þ1 þ tð5Þ2 þ kð5Þ1 Þ;

að7Þ4 − 4

3
~a ¼ 2gð4Þ3 − tð5Þ1 − tð5Þ2 − kð5Þ1 þ 1

6
tð5Þ4 ;

að7Þ5 − 4~a ¼ 4gð4Þ4 − 6tð5Þ2 − 6kð5Þ1 ¼ −6tð5Þ1 þ tð5Þ4 ;

að7Þ6 ¼ 4gð4Þ5 ¼ 2

3
tð5Þ5 ;

að7Þ7 ¼ 4gð4Þ6 ¼ 2

3
tð5Þ5 ;

að7Þ8 ¼ 4gð4Þ7 ¼ 2

3
tð5Þ6 ;

að7Þ9 ¼ 4gð4Þ8 ¼ 2

3
tð5Þ6 ;

að7Þ10 ¼ −4tð5Þ3 ¼ −4tð5Þ3 − 8kð5Þ2 ;

að7Þ11 ¼ −2 ~Ttð5Þ3 ¼ −2 ~Ttð5Þ3 − 4 ~Tkð5Þ2 ;

að7Þ12 − 2

3
~T ~a ¼ 2gð4Þ9 −

1

2
~Tðtð5Þ1 þ tð5Þ2 þ kð5Þ1 Þ þ 1

6
tð5Þ7 ;

að7Þ13 − 2 ~T ~a ¼ 4gð4Þ10 − 3 ~Tðtð5Þ2 þ kð5Þ1 Þ ¼ −3 ~Ttð5Þ1 þ tð5Þ7 ;

að7Þ14 ¼ 2gð4Þ11 ; ð3:7Þ
(where ~a is the parameter introduced in Eq. (3.1)). The a-

function coefficients að7Þ2 , að7Þ6–9, a
ð7Þ
14 , are given directly in

terms of the anomalous dimension coefficients in Eq. (3.7);
while the remaining ones are given by

að7Þ1 ¼ 4

3
gð4Þ1 ;

að7Þ3 ¼ 0;

að7Þ4 ¼ 8

3
gð4Þ1 þ 2gð4Þ3 þ 2

3
gð4Þ4 ;

að7Þ5 ¼ 8gð4Þ1 þ 4gð4Þ4 ;

að7Þ10 ¼ −24gð4Þ2 ;

að7Þ11 ¼ −12 ~Tgð4Þ2 ;

að7Þ12 ¼ 4

3
~Tgð4Þ1 þ 2gð4Þ9 þ 2

3
gð4Þ10 ;

að7Þ13 ¼ 4 ~Tgð4Þ1 þ 4gð4Þ10 ; ð3:8Þ
together with

tð5Þ1 ¼ 1

3
ð4gð4Þ1 þ ~aÞ;

tð5Þ2 þ kð5Þ1 ¼ 2

3
ð−2gð4Þ1 þ ~aÞ;

tð6Þ3 ¼ 6gð4Þ2 ;

tð5Þ4 ¼ 16gð4Þ1 þ 4gð4Þ4 − 2~a;

tð5Þ5 ¼ 6gð4Þ5 ;

tð5Þ6 ¼ 6gð4Þ7 ;

tð5Þ7 ¼ 8 ~Tgð4Þ1 þ 4gð4Þ10 − ~T ~a;

kð5Þ2 ¼ 0; ð3:9Þ

FIG. 3. Contributions to Kð5Þ.

FIG. 2. Contributions to Tð5Þ.
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subject to the consistency conditions

gð4Þ5 ¼ gð4Þ6 ; gð4Þ7 ¼ gð4Þ8 : ð3:10Þ

Turning to the Yukawa-independent terms, it is clear that
we may satisfy Eq. (1.1) if for each Yukawa-independent
term Xi

j, we add to Að7Þ a term YijklXmðiYjklÞm, and
therefore there will be no further constraints.
As we have observed already in four dimensions [10,32]

and six dimensions [33], and indeed at lower orders in three
dimensions [21,22], the a-function coefficients are deter-
mined completely (within a given renormalization scheme)
up to the arbitrariness parametrized by the coefficient ~a.

IV. FOUR-LOOP CALCULATION

In this section we describe the diagrammatic computa-
tion of the four-loop anomalous dimension, again focusing
on contributions containing Yukawa couplings. We are
therefore concerned with the calculation of four-loop two-
point diagrams. Two large classes of diagrams may be
immediately discarded as giving no contribution to the
anomalous dimension [31]. The first consists of those
diagrams in which the first (last) vertex encountered along
the incoming (outgoing) chiral line has a single gauge line.
In this case after performing the superspaceD-algebra2 one
is left with a diagram which is finite by power counting.
These diagrams are shown schematically in Fig. 4(a). The
second class consists of those diagrams which contain a
one-loop subdiagram with one gauge and one chiral line,
depicted in Fig. 4(b); in this case one finds that one is left
with fewer than two D’s and two D̄’s on the loop shown,
hence giving a vanishing contribution.
The diagrams which do potentially give nontrivial

contributions to the four-loop anomalous dimension are
depicted in Fig. 5. With the exception of Fig. 5(h) (which
will be discussed in more detail shortly), the momentum
integrals obtained after performing the superspace
D-algebra in these diagrams may be expressed using
integration by parts in terms of a relatively small basis
of momentum integrals [34,35] which are depicted in
Fig. 6, and whose divergences are also listed in
Appendix B. (The graph labeled X in Fig. 6 will also be
discussed in more detail shortly.) The massless four-loop
two-point functions depicted in Fig. 6 are assumed to have
their UV subdivergences subtracted; the “dot” on the
propagator in ~Y in Fig. 6 represents a double propagator.
The results given later, and also most of these conventions
for labeling the diagrams, are taken from Refs. [34,35],
except for ~Y which was defined (without the tilde, used here
to avoid confusion with the Yukawa coupling) in Ref. [22].
Our results for the diagrams of Fig. 5 are listed in Table I.

The central columns of Table I show the divergent
contribution from each diagram [again, except Fig. 5(h)]
expressed in terms of this basis. These momentum integrals
multiply a variety of group structures, as defined in
Eqs. (2.18) and (3.6), which are tabulated in the final
column of Table I. Finally the first column of Table I
contains an overall symmetry factor. The resulting con-
tribution to the two-point function for each diagram is
therefore obtained by adding the momentum integrals with
the coefficients listed in the appropriate row and multiply-
ing the resulting sum by the corresponding symmetry factor
and group structure. For instance, row (j) of Table I denotes
a contribution

ðþ1Þð−2I4 þ I4bbbÞ
�
γð4Þ7 −

1

12
CGγ

ð4Þ
9

�
: ð4:1Þ

We note here the cancellation of γð4Þ12 between rows (e) and
(i), as mentioned in the previous section.
We now return to Fig. 5(h). After performing the

superspace D-algebra, this results in the momentum inte-
gral labeled X in Fig. 6. In it there is an implicit spinor trace
over the momenta of the rim propagators, k, where we use
three-dimensional γ matrices with TrI ¼ 2. This particular
integral provided us with a technical challenge compared to
the other graphs we had to evaluate. Accordingly we
describe our method for evaluating it in more detail than
usual. First, by power counting it is straightforward to see
that the graph is primitively divergent, which provides a
shortcut to finding the divergence. Either we can reroute the
external momentum through the diagram in such a way that
it becomes simpler to compute, or we can use a vacuum
bubble expansion, such as that discussed in Refs. [36,37].
In the former case one has to be careful that infrared
divergences are not introduced. However, we have chosen
to follow the latter course as it is more systematic and
accessible to recently developed integration-by-parts algo-
rithms. In converting the massless four-loop two-point
function to vacuum bubbles we recursively apply the
identity

1

ðk − pÞ2 ¼
1

½k2 þm2� þ
2kp − p2 þm2

ðk − pÞ2½k2 þm2� ð4:2Þ

to all propagators, where k can be regarded as a loop
momentum. The recursion terminates when all resulting

(a) (b)

FIG. 4. Classes of diagrams that do not contribute.

2See Appendix A for conventions and definitions.

GRACEY, JACK, POOLE, and SCHRÖDER PHYSICAL REVIEW D 95, 025005 (2017)

025005-6



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

(s) (t) (u) (v)

FIG. 5. Four-loop diagrams contributing to the Yukawa-dependent part of the anomalous dimension, with pole terms listed in Table I.

FIG. 6. The basis of massless two-point momentum integrals. For definitions and results, see Appendix B as well as the main text. The
dotted propagator is squared, and the arrows on the last integral denote numerator factors of k.
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integrals involving the external momentum are finite by
Weinberg’s theorem. In our case one in effect replaces the
scalar propagators of the graph by the first term of the
identity. What remains is an integral with products of scalar
products of internal and external momenta after the trace
has been taken. To proceed we have applied the Laporta
algorithm [38]. This constructs identities based on integra-
tion by parts for all such scalar product integrals and then
reduces these to a base set of what is termed master
integrals. Specifically these are four-loop massive vacuum
diagrams. In particular they have been evaluated numeri-
cally to very high precision in three dimensions in Ref. [39]
using the approach of Ref. [40], running parallel to the
same calculation in four dimensions [41]. Therefore for our
particular graph we have constructed a database of relations
between all possible integrals within that of graph X of
Fig. 6 using the REDUZE formulation [42] of the Laporta
algorithm. We have used FORM [43,44] to handle the
resulting algebra. One aspect of the integration-by-parts
approach is that one has to substitute terms from the
masters beyond the poles in ϵ. This is because factors of
1=ðd − 3Þ will appear as coefficients of the master integrals

in the decomposition of the original integral. In addition, as
several of the masters have double poles in ϵ then in order
to have an answer which corresponds to a primitive the
poles higher than the simple one have to cancel. It is
reassuring to find that this is indeed the case when we
perform the actual computation, giving us a strong check.
Interestingly it transpires that integral X of Fig. 6 is in fact
finite.
The simple pole contributions in Table I may now be

summed using Eq. (B3) and we obtain the Yukawa-
dependent contribution to the four-loop anomalous dimen-
sion using Eq. (2.16). Our final result is

ð8πÞ4γð4ÞΦ ¼ 2

3
γð4Þ1 þ π2

4
γð4Þ2 þ 4

3

�
1 −

1

3
π2
�
γð4Þ3

−
�
4 −

2

3
π2
�
γð4Þ4 −

1

3
π2ðγð4Þ7 þ γð4Þ8 Þ

þ
�
2

�
1 −

1

8
π2
�
~T þ 1

8
π2CG

��
1

3
γð4Þ9 − γð4Þ10

�

−
4

3
γð4Þ11 þ � � � ; ð4:3Þ

where as before the ellipsis indicates Yukawa-independent

terms. We may now read off the coefficients gð4Þi as defined

in Eq. (3.5), and in particular we see that gð4Þ5 ¼ gð4Þ6 ¼ 0,

gð4Þ7 ¼ gð4Þ8 ¼ − 1
3
π2, in accord with Eq. (3.10).

V. CONCLUSIONS

We have demonstrated the existence of an a-function
having the gradient flow properties of Eq. (1.1) at next-to-
leading order, for a general three-dimensional N ¼ 2
supersymmetric gauge theory in this paper, and for a
completely general (nonsupersymmetric) ungauged three-
dimensional theory in Ref. [22]. It is worth emphasizing
that in our a-function construction we have had to compute
a new class of Feynman diagram at four loops to ensure full
consistency. For instance, we found by computation that
graph X of Fig. 6 was finite. Alternatively we could have
used properties of our a-function construction to have
predicted this a priori. That the two approaches tally is
indicative that our a-function and the field theories we have
examined are fully informed of each other. It seems highly
likely that the gradient flow property will extend to a
completely general three-dimensional Chern-Simons
theory coupled to scalars and fermions at next-to-leading
order and probably beyond; and again, based on this one
might obtain predictions for further Feynman diagrams
which would otherwise require advanced techniques to
evaluate.
It would be very desirable to find a general all-orders

proof, or to make contact with the F-function described in
Refs. [17–19] which has been argued to have similar
properties at least at leading order. In this connection it

TABLE I. Results for diagrams listed in Fig. 5 in terms of
master integrals (see Fig. 6) and invariants involving Yukawa
couplings of Eq. (3.6)

symm I4 I22 I4bbb ~Y overall group factor

(a) − 1
12

1 0 0 0 γð4Þ1

(b) − 1
8

0 0 1 0 γð4Þ2

(c) − 1
4

−2 0 0 0 γð4Þ4 − 1
4
CGγ

ð4Þ
10

(d) − 1
2

0 0 1 0 γð4Þ4 − 1
2
CGγ

ð4Þ
10

(e) −1 0 0 2
3

0 − 1
2
γð4Þ4 − 1

2
γð4Þ12 − 1

12
CGγ

ð4Þ
9 þ 1

4
CGγ

ð4Þ
10

(f) 1 0 0 − 2
3

0 γð4Þ8 þ 1
12
CGγ

ð4Þ
9 − 1

4
CGγ

ð4Þ
10

(g) − 1
4

0 0 −2 0 γð4Þ8 þ 1
12
CGγ

ð4Þ
9 − 1

4
CGγ

ð4Þ
10

(i) 1
2

0 0 − 2
3

0 1
2
γð4Þ4 þ 1

2
γð4Þ7 − γð4Þ8 þ γð4Þ12

(j) 1 −2 0 1 0 γð4Þ7 − 1
12
CGγ

ð4Þ
9

(k) − 1
2

−2 0 0 0 γð4Þ7 − 1
12
CGγ

ð4Þ
9

(l) 1 −2 0 4
3

0 1
6
γð4Þ3 − 1

2
γð4Þ7

(m) − 1
12

−2 0 0 0 γð4Þ3 − 1
4
CGγ

ð4Þ
9

(n) − 1
2

1 0 − 1
2

0 ð ~T þ 1
2
CGÞð16 γð4Þ9 − 1

2
γð4Þ10 Þ

(o) − 1
2

0 1
2

0 0 ð ~T þ 1
2
CGÞγð4Þ10

(p) 1
2

0 1
2

0 0 ð ~T þ 1
2
CGÞγð4Þ10

(q) − 1
12

0 1 0 −2 γð4Þ11

(r) 1
6

1 0 0 −1 γð4Þ11
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might be interesting to compute the a-function as in
Eqs. (3.1), (3.7), and (3.8) for the particular theories
considered in Refs. [17,18] in order to make a direct
comparison. It would be all the more desirable to relate our
a-function with the F-function since as we mentioned
earlier, it has been shown that the latter increases as
expected between IR and UV fixed points; whereas
although we have demonstrated monotonic behavior of
our a-function perturbatively, i.e. for weak couplings (since
our metric is the unit matrix at leading order), we currently
have no way to prove this in general.
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APPENDIX A: CONVENTIONS

In this appendix we list our superspace and supersym-
metry conventions. We use a metric signature ðþ − −Þ so
that a possible choice of γ matrices is γ0 ¼ σ2, γ1 ¼ iσ3,
γ2 ¼ iσ1 with

ðγ0Þαβ ¼ ðσ2Þαβ; ðA1Þ
etc. We then have

γμγν ¼ ημν − iϵμνργρ: ðA2Þ
We have [28] a complex two-spinor θα (with conjugate
denoted θ̄α) with indices raised and lowered according to

θα ¼ Cαβθβ; θα ¼ θβCβα; ðA3Þ
with C12 ¼ −C12 ¼ i. We then have

θαθβ ¼ Cβαθ
2; θαθβ ¼ Cβαθ2; ðA4Þ

where

θ2 ¼ 1

2
θαθα: ðA5Þ

The supercovariant derivatives are defined by

Dα ¼ ∂α þ
i
2
θ̄β∂αβ; ðA6Þ

D̄α ¼ ∂̄α þ
i
2
θβ∂αβ; ðA7Þ

where

∂αβ ¼ ∂μðγμÞαβ; ðA8Þ
satisfying

fDα; D̄βg ¼ i∂αβ: ðA9Þ

We also define

d2θ ¼ 1

2
dθαdθα

d2θ̄ ¼ 1

2
dθ̄αdθ̄α;

d4θ ¼ d2θd2θ̄; ðA10Þ

so that

Z
d2θθ2 ¼

Z
d2θ̄θ̄2 ¼ −1: ðA11Þ

The vector superfield Vðx; θ; θ̄Þ is expanded in Wess-
Zumino gauge as

V ¼ iθαθ̄ασ þ θαθ̄βAαβ − θ2θ̄αλ̄α

− θ̄2θαλα þ θ2θ̄2D; ðA12Þ

and the chiral field is expanded as

Φ ¼ ϕðyÞ þ θαψαðyÞ − θ2FðyÞ; ðA13Þ

where

yμ ¼ xμ þ iθγμθ̄: ðA14Þ

APPENDIX B: INTEGRALS

Here, we list the UV divergences of our basis of
momentum integrals. As in Refs. [34,35], these are sub-
divergence-subtracted massless two-point functions,
depicted schematically in Fig. 6. The basic massless
one-loop integral (defined to be dimensionless here) is
given by3

Gða; bÞ ¼
Z

ddk
ð2πÞd

p2ðaþb−d=2Þ

k2aðk − pÞ2b

¼ Γðaþ b − d
2
ÞΓðd

2
− aÞΓðd

2
− bÞ

ð4πÞd=2Γðd − a − bÞΓðaÞΓðbÞ : ðB1Þ

A standard method is then to iteratively integrate out
massless subgraphs in higher-loop integrals in terms of
the function G, and this is indeed sufficient to evaluate the
first four of the integrals of Fig. 6. Due to dimensional
reasons, in odd dimensions the first logarithmic UV
divergence can only occur at even loop orders, which here
is parametrized by the two-loop massless sunset-type
integral

3The G-function notation was introduced in Ref. [45].
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I2 ¼
Z

ddk
ð2πÞd

Z
ddq
ð2πÞd

p2ð3−dÞ

k2q2ðkþ q − pÞ2

¼ Gð1; 1ÞG
�
2 −

d
2
; 1

�
: ðB2Þ

We are now ready to define our basis of momentum
integrals, using an operator K̂½fðϵÞ� that extracts the pole
parts of the function fðϵÞ. Recalling that we work in d ¼
3 − ϵ dimensions, we obtain

I4 ¼ K̂
�
I2

�
Gð1; 1ÞG

�
5 −

3d
2
; 1
�
− K̂½I2�

��
¼ 1

ð8πÞ4
�
−

2

ϵ2
þ 4

ϵ

�
;

I22 ¼ K̂½I2ðI2 − 2K̂½I2�Þ� ¼
1

ð8πÞ4
�
−

4

ϵ2
þ 0

ϵ

�
;

I4bbb ¼ K̂

�
G3ð1; 1ÞG

�
4 − d; 2 −

d
2

��
¼ 1

ð8πÞ4
�
π2

ϵ

�
;

~Y ¼ K̂

�
G2ð1; 1ÞG

�
2; 2 −

d
2

�
G

�
2 −

d
2
; 4 − d

��
¼ 1

ð8πÞ4
�
−
2

ϵ

�
; ðB3Þ

the first three of which agree with Refs. [34,35] after
adjusting for our definition of ϵ which differs by a factor
of 2. Furthermore, the integrals satisfy the consistency

condition 4 ~Y ¼ I22 − 2I4 given in Eq. (4.1) of Ref. [22].
We note that in fact the result for ~Y is not required since it
cancels between rows (q) and (r) of Table I.
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