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We analyze the exchange of information in different cosmological backgrounds when sender and
receiver are timelike separated and communicate through massless fields (without the exchange of light
signals). Remarkably, we show that the dominance of a cosmological constant makes the amount of
recoverable information imprinted in the field by the sender extremely resilient: it does not decay in time or
with the spatial separation of the sender and receiver, and it actually increases with the rate of expansion of
the Universe. This is in stark contrast with the information carried by conventional light signals and with
previous results on timelike communication through massless fields in matter-dominated cosmologies.
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I. INTRODUCTION

In recent years, there have been a number of results
highlighting the relationship between the physics of infor-
mation and fundamental topics in quantum field theory and
gravitation. For example, quantum entanglement in vacuum
fluctuations has been linked to phenomena like Hawking
radiation and the Unruh effect [1]. Entanglement in the
vacuum state of a quantum field can also be viewed as a
resource in protocols of quantum energy teleportation [2,3]
and can be harvested [4–10], or farmed [11], by particle
detectors which locally couple to the field. These detectors
can become entangled with one another, even if they are
spacelike separated. Interestingly, entanglement harvesting
has been proven to be sensitive to spacetime curvature
[12–18] and even spacetime topology [19]. However,
although two spacelike separated detectors may become
correlated just out of their interaction with the vacuum,
superluminal broadcasting of information between them is,
of course, not possible.
In this context, it is relevant to ask what the information

carrying capacity of a quantum field is. From a fundamental
point of view, when we want to transmit information
through a quantum field—whether in telecommunication
or in an attempt to gather information about the early
Universe—a necessary (but not sufficient) condition for
communication is that the field commutator between the
spacetime events of sending and receiving the message
does not vanish [20–22].
The (expectation value of the) commutator of a quantum

field is given by the classical radiation Green’s function
[23] (difference between the retarded and the advanced
Green’s functions). In this regard, the strong Huygens
principle [24] states that the support of the radiation
Green’s function of a massless field is restricted to lightlike
separated events, implying that only lightlike signaling is
possible. This is consistent with our everyday intuition; if
we beam an empty chair with a laser and no one is there to

receive the message, the information is gone, and it is not
recoverable by a late receiver that sits on the chair the next
day. However, for general spacetimes, the strong Huygens
principle can be violated [24–30]. In these cases, massless
field commutators can have support for timelike separated
events. In fact, even for a simple massless scalar field, these
violations are extremely common; the strong Huygens
principle is violated in almost any curved spacetime and
in flat spacetimes of (1þ 1) and (2nþ 1) dimensions
[23,24,31].
Note that violations of the strong Huygens principle are

not enough to guarantee timelike separated observers the
ability to communicate. It was shown in Ref. [31], however,
that if, additionally, the observers operate quantum anten-
nas initialized to coherent superpositions of ground and
excited eigenstates, a timelike signaling protocol can be
established. Furthermore, this protocol allows for the
possibility of broadcasting a message to an arbitrary
number of timelike receivers, with the energy cost of
transmitting the message being paid for by the receivers
themselves. Because of this, this protocol received the
name quantum collect calling.
This method of information broadcasting has been

studied in great detail in Refs. [23,32] for a polynomially
expanding Fridmann-Robertson-Walker (FRW) cosmology
generated by matter, in which two comoving observers
reside: an early time signal emitter, Alice, and a later time
receiver, Bob. It was shown that in this universe the
timelike communication channel capacity is independent
of the spatial separation between the observers, but decays
with the time that Bob attempts to retrieve Alice’s message
by coupling his antenna to the field.
In the present work, we analyze the ability of timelike

separated observers to communicate in an FRW universe
dominated by a cosmological constant, which expands
exponentially in comoving time, and we compare this to the
matter-dominated case. We consider (3þ 1) dimensions
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and minimal coupling of the massless scalar quantum field
to the geometry. We supply Alice with a particle detector
with which she can couple to the field, thereby leaving
behind information which Bob can recover at a later time
by coupling his own detector to the field.
We will show that timelike communication in an

exponentially expanding universe displays unexpected
and remarkable features that fundamentally impact the
channel capacity. Namely, while we may expect that in an
exponential expansion less information will reach Bob than
in a polynomial one—due to the information being dis-
persed more in the more quickly expanding case—we show
that, in fact, the opposite occurs. In the exponentially
expanding universe, Bob’s ability to recover Alice’s mes-
sage remains the same regardless of how long he waits
before reading it out, in stark contrast with the decay
present in the polynomially expanding cosmology. What is
more, we find that Alice can broadcast more information to
Bob the faster the exponential expansion of space is.
Not only does this imply that in principle more infor-

mation is available to Bob through the timelike channel
than through a light signal (which was proven in
Refs. [23,32] to decay with the distance from the source),
but it also means that Bob’s ability to access Alice’s
information remains the same no matter how long Bob
waits to switch on his antenna.
The outline of this article is as follows. Section II

introduces the field-detector setup, along with the back-
ground spacetime geometry. In Sec. III, the communication
protocol is defined, and the ability of Alice to signal Bob is
quantified through their channel capacity. Section IV
particularizes the channel capacity in each cosmology to
the case of timelike separated observers and compares the
two models within this causal regime. In this section, we
also look at the dependence of the channel capacity on
whether we keep constant the proper or the comoving
distance separating Alice and Bob. In Sec. V, we present
our conclusions. Natural units ℏ ¼ c ¼ 1 are used
throughout.

II. BACKGROUND SETUP

We will consider a spatially flat Friedmann-Robertson-
Walker cosmology given by the metric

ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dΩ2Þ
¼ aðηÞ2ð−dη2 þ dr2 þ r2dΩ2Þ; ð1Þ

where we define the conformal time η in terms of the
comoving time t (proper to observers comoving with
the Hubble flow, also called cosmological time) as
dη ¼ dt=aðtÞ. The scale factor aðtÞ quantifies the spatial
expansion of the Universe, and its precise form depends on
the stress-energy density which generates the spacetime.
We will consider a universe generated by a perfect

fluid with density ρ and pressure p ¼ wρ. Specifically, we
will focus on the two cases w ¼ 0 and w ¼ −1, which
correspond to (dust) matter- and cosmological constant-
dominated universes, respectively. From the Friedmann
equations, we obtain for the matter-dominated case that

aðtÞ ¼ ð9κ1t2Þ1=3; ηðtÞ ¼
�
3t
κ1

�
1=3

; ð2Þ

where t; η ∈ ½0;∞Þ. Doing the same for the cosmological
constant-dominated case, we get

aðtÞ ¼ κ2e
ffiffiffiffiffi
jΛj

p
t; ηðtÞ ¼ −

1ffiffiffiffiffiffijΛjp
κ2

e−
ffiffiffiffiffi
jΛj

p
t; ð3Þ

where t ∈ ð−∞;∞Þ and η ∈ ð−∞; 0Þ. κ1 and κ2 are
constants of integration. We see that the matter-dominated
universe is born out of a big bang singularity and it
experiences a polynomial spatial expansion. On the other
hand, the cosmological constant-dominated universe does
not originate with a big bang [understood as a cancellation
of aðtÞ for a finite value of t] and expands exponentially in
comoving time t.
Let us introduce a test massless scalar quantum field ϕ.

The equation of motion for the field is

ð□ − ξRÞϕ ¼ 0; ð4Þ

where ξ is the coupling to the Ricci scalar

R ¼ 6

a3
d2a
dη2

; ð5Þ

and where the d’Alambertian operator in the FRW space-
time is given by

□ ¼ −
1

a4
d
dη

�
a2

d
dη

�
þ 1

a2
∇2: ð6Þ

The same as in Ref. [23], for computational purposes, we
will choose the quantization scheme that corresponds to the
adiabatic vacuum (see, e.g., Refs. [33,34]). This quantiza-
tion scheme is particularly useful since the adiabatic
vacuum corresponds to the field state for which the creation
of particles due to the expansion of spacetime is finite and
the smallest possible [34]. Furthermore, as rigorously
discussed in Refs. [35–37], for conformally flat compact
spacetimes, there exist natural criteria that select a unique
equivalence class of vacua, which includes the adiabatic
vacuum. Notice, however, that we do not assume that the
field is initially prepared in the adiabatic vacuum and
instead allow the field to be in any (non-ill-defined) state.
Indeed, for the same reasons as in Refs. [23,31,32], the
results in this paper will be independent of the initial state
of the field, as long as it is well defined.
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It was shown in Ref. [23] that if the field is minimally
coupled to the curvature (ξ ¼ 0), two timelike separated
observers gain the ability to communicate through the
massless field without exchanging field quanta, taking
advantage of the violations of the Strong Huygens
Principle [31]. In fact, this is true not only for minimal
coupling but rather for any coupling to curvature that
breaks conformal invariance. For concreteness, in this
paper, we will focus on the minimally coupled case.

III. COMMUNICATION THROUGH DETECTORS
COUPLED TO THE FIELD

Let us consider the following communication scenario:
An observer in the early Universe, Alice, wants to com-
municate with an observer living at a later cosmological
epoch, Bob. We suppose that both Alice and Bob are
fundamental (comoving) observers, meaning that they
move with the Hubble flow and experience the Universe
to be isotropic through its evolution. This assumption
seems reasonable considering that all distant galaxies have
small peculiar velocities with respect to local fundamental
observers. Significantly, Earth-bound observers are nearly
fundamental as is evident by the observed dominant
isotropy of the cosmic microwave background and of
galactic densities on large scales. Hence, in the above-
described picture, we can think of ourselves as Bob, trying
to detect a signal from an early Universe emitter Alice.
Let us assume that Alice operates a radio emitter that

locally couples to the field and Bob operates a radio
receiver with which he tries to recover the information
encoded in the field by Alice. We will model Alice’s and
Bob’s antennas as two-level quantum systems (particle
detectors) that couple locally to the quantum field through
the Unruh-DeWitt interaction Hamiltonian [38]

HI;v ¼ λνχνðtÞμνðtÞ
Z

d3xaðtÞ3Fν½x − xνðtÞ; t�ϕ½x; ηðtÞ�

ð7Þ

(where d3x ¼ r2drdΩ and x is a spatial 3-vector), which
has been shown to capture the fundamental features of the
light-matter interaction when there is no exchange of
orbital angular momentum [10,39]. Here, ν ∈ fA;Bg
labels Alice’s and Bob’s detectors, and μνðtÞ is the
monopole moment of detector ν,

μνðtÞ ¼ σþν eiΩνt þ σ−ν e−iΩνt: ð8Þ

σþν ¼ jeνihgνj and σ−ν ¼ jgνiheνj are the SU(2) raising and
lowering operators, with jgνi and jeνi the ground and
excited states, separated by an energy gapΩν. The detector-
field coupling (for detector ν) is characterized by the
coupling strength λν and the switching function χν, which
for simplicity we consider to be the characteristic function

χνðtÞ ¼
�
1 t ∈ ½Tiν; Tfν�
0 t∈ ½Tiν; Tfν�

: ð9Þ

Fν½x − xνðtÞ; t� is a smearing function characterizing the
geometry of detector ν, centered along its trajectory xν.
We consider comoving detectors, xν ¼ const, and for now
keep the detector smearing general.
Let each detector start out in the pure state ρ0;ν ¼

jψ0;νihψ0;νj, where jψ0;νi ¼ ανjeνi þ βνjgνi, and let the
field start out in the arbitrary state ρ0;ϕ. Hence, the initial
state of the system is

ρ0 ¼ ρ0;A ⊗ ρ0;B ⊗ ρ0;ϕ: ð10Þ

Allowing the system to evolve under the full interaction
Hamiltonian HIðtÞ ¼ HI;AðtÞ þHI;BðtÞ for a time T results
in the state ρ

T
¼ Uρ0U†, where U is the time evolution

operator

U ¼ T exp

�
−i

Z
∞

−∞
dtHIðtÞ

�
ð11Þ

and T denotes time ordering of the exponential. The final
state of Bob’s detector is obtained by tracing out the
degrees of freedom corresponding to the field and the state
of Alice:

ρ
T;B

¼ Trϕ;AðρT
Þ: ð12Þ

The excitation probability of Bob’s detector at time T is
given by [22,31,32,40]

Pe ¼ heBjρT;B
jeBi ¼ jαBj2 þ Rþ S; ð13Þ

where R is the local correction to the excitation probability
of Bob (independent of λA) and S is the signaling term
(dependent on λA) that captures the influence of Alice’s
detector on the excitation probability of Bob [22,31]. We
call S the signaling contribution to Bob’s excitation
probability. A power series expansion in the coupling
strengths gives

S ¼ λAλBS2 þOðλ4νÞ; ð14Þ

where the lowest order term, S2, takes the form
1 [23,31,32]

S2 ¼ 4

Z
dv

Z
dv0χAðtÞχBðt0ÞFAðx − xA; tÞFBðx0 − xB; t0Þ

× Reðα�AβAeiΩAtÞReðα�BβBeiΩBt0 h½ϕðxA; tÞ;
ϕðxB; t0Þ�iρ

0;ϕ
Þ; ð15Þ

1For a step-by-step derivation of (15), see Ref. [22], Eqs. (5)
to (25).
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with dv ¼ aðtÞ3d3xdt being the FRW volume element.
Notice that, since the field commutator is a c-number
(multiple of the identity), its expectation value is indepen-
dent of ρ0;ϕ.
Let us now, for simplicity, particularize the discussion to

the limit of pointlike detectors, characterized by the
smearing function

Fνðx; tÞ ¼ δðxÞ: ð16Þ

Although the use of detectors in this limit along with
sudden switching functions is known to cause UV diver-
gences in the excitation probability [41], S2 was proven to
be UV safe [22,23]. In this limit, Eq. (15) becomes

S2 ¼ 4

Z
dt
Z

dt0χAðtÞχBðt0ÞReðα�AβAeiΩAtÞ

× Reðα�BβBeiΩBt0 h½ϕðxA; tÞ;ϕðxB; t0Þ�iρ
0;ϕ
Þ; ð17Þ

For matter- and cosmological constant-dominated uni-
verses in the case of minimal coupling of the field to the
geometry, the field commutator between two events, x ¼
ðxA; tÞ and x0 ¼ ðxB; t0Þ, is (see the details in the Appendix)

h½ϕðxÞ;ϕðx0Þ�iρϕ ¼
i
4π

�
δðΔηþ RÞ − δðΔη − RÞ

aðtÞaðt0ÞR

þ θð−Δη − RÞ − θðΔη − RÞ
aðtÞaðt0ÞjηðtÞηðt0Þj

�
; ð18Þ

where Δη ¼ η − η0 ¼ ηðtÞ − ηðt0Þ and R ¼ ∥xA − xB∥.
Immediately, due to the presence of the Heaviside θ-
function, we see that the support of the field commutator
is not limited solely to boundaries of the light cone
Δη ¼ �R, and so we expect timelike signaling to be
possible.
Let us set the initial states of the detectors to be

jψ0;Ai ¼
1ffiffiffi
2

p ðjeAi − jgAiÞ;

jψ0;Bi ¼
1ffiffiffi
2

p ðjeBi þ ijgBiÞ: ð19Þ

We make this choice since it maximizes the signaling
estimator (17) in the case of zero gap detectors.
Nevertheless, this choice is arbitrary, and any other ini-
tialization of detectors would lead to the same qualitative
results.
Using the initial detector states (19) and the field

commutator (18), the expression for S2 (15) becomes

S2 ¼
1

4π
ðIδ þ IθÞ; ð20Þ

where

Iδ ¼
1

R

Z
ηfB

ηiB

dηχAðη − RÞ cos½ΩBtðηÞ� cos½ΩAtðη − RÞ�;

ð21Þ

Iθ ¼
Z

ηfB

ηiB

dη2
jη2j

θ½minðηfA; η2 − RÞ − ηiA� cos½ΩBtðη2Þ�

×
Z

minðηfA;η2−RÞ

ηiA

dη1
jη1j

cos½ΩAtðη1Þ�: ð22Þ

Here, ηiν ¼ ηðTiνÞ, and ηfν ¼ ηðTfνÞ.
Let us analyze the simple communication protocol laid

out in Refs. [31,32]: Alice encodes the bit “1” by coupling
her detector to the field at time TiA and decoupling at time
TfA ¼ TiA þ Δ and the bit “0” by remaining uncoupled. To
later decode the message, Bob couples to the field at time
TiB, decouples at time TfB ¼ TiB þ Δ, and measures his
energy eigenstate. If he is excited, he interprets it as 1, and 0
otherwise. Notice that for simplicity we are keeping Alice’s
and Bob’s detectors switched on for an equal proper time
interval Δ, and recall that we are considering sudden
switching of detectors, as given in (9). The number of
bits per use of this binary communication channel that
Alice can transmit to Bob is given by the Shannon capacity
[42], which was shown in Ref. [31] to be

C ¼ λ2Aλ
2
B

8 ln 2

�
S2

jαBjjβBj
�

2

þOðλ6νÞ: ð23Þ

For a matter- or cosmological constant-dominated universe,
with minimal coupling of the field to the curvature and with
initial detector states (19), S2 is given by (20). Hence, the
channel capacity (23) becomes

C ¼ λ2Aλ
2
B

32π2 ln 2
ðIδ þ IθÞ2 þOðλ6νÞ: ð24Þ

We will study the form of the channel capacity (24) when
Alice and Bob are strictly timelike separated. The matter-
dominated case was thoroughly analyzed in Refs. [23,32].
However, the cosmological constant-dominated scenario
remains unexplored. Despite the mathematical similarities
between them, we will show that there are fundamental and
unintuitive physical differences in the abilities of timelike
separated observers to communicate within the two cos-
mologies. Namely, timelike signals can carry considerably
more information about the early Universe when the spatial
expansion is exponential as opposed to polynomial.

IV. TIMELIKE COMMUNICATION IN
POLYNOMIALLY AND EXPONENTIALLY

EXPANDING COSMOLOGIES

The form of Alice and Bob’s communication channel
capacity (24) depends on the causal relationship between
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the supports of their switching functions. Figure 1 shows
the five possible causal relationships. When Bob is strictly
spacelike separated fromAlice, as in B1, both Iδ (21) and Iθ
(22) in the channel capacity vanish, and hence superluminal
communication between the observers is indeed impos-
sible. In the cases B2, B3, and B4, there is partial lightlike
contact with Alice, so Iδ does not vanish entirely. As
expected, lightlike communication is possible through a
massless scalar field. Note that in the case of B4, the Iθ term
also contributes to the channel capacity, meaning that
communication is due to both lightlike and timelike signals.
Timelike signaling is most evident when we consider
detector B5, which is strictly within Alice’s future light
cone. Here, while Iδ vanishes, Iθ does not; in matter- and
cosmological constant-dominated universes with minimal
coupling of the field to the curvature, slower-than-light
communication is possible.

A. Signal timing

Before we study the channel capacity of timelike
separated observers, let us discuss when Alice and Bob
are timelike separated. We hold constant the switching
times of Alice’s detector and ask the following question:
where and when can Bob switch his detector on such that
during his interaction with the field he is strictly within
Alice’s future light cone? That is, we fix TiA and TfA and
look for the values of TiB and R for which the two
detectors, while switched on, are strictly timelike separated.
From Fig. 1, it is evident that this occurs when

ηiB > ηfA þ R: ð25Þ

If we keep the comoving separation between the detectors
(R) constant, then

TR
min ¼ tðηðTiA þ ΔÞ þ RÞ ð26Þ

is the smallest value of TiB at which there is strict timelike
contact between the detectors. If instead we keep constant
the time TiB at which Bob switches on his detector, then

Rmax ¼ ηðTiBÞ − ηðTiA þ ΔÞ ð27Þ

is the largest comoving separation between Alice and Bob
for which the two are fully timelike separated. One can
trivially particularize TR

min and Rmax for the cosmologies
generated by matter and a cosmological constant by using
the appropriate forms of ηðtÞ from (2) and (3)—and their
inverses tðηÞ—in Eqs. (26) and (27).
The comoving distance, RðtÞ, is not usually the measure

considered when discussing the spatial separation between
us and distant cosmic objects. In astronomical terms, such
separations are typically given in terms of the proper
distance (i.e. the physical length of a measuring tape
extended between us and the distant object as measured
by us at time t). As a function of the comoving distance, the
proper distance is given by

PðtÞ ¼ aðtÞRðtÞ: ð28Þ

While the comoving distance between observers moving
with the Hubble flow is independent of time, the proper
distance between these observers increases as the Universe
expands.
Alternatively to what was done in Refs. [23,32], instead

of keeping the comoving distance between Alice and Bob
constant, we can keep constant the proper distance. This
requires at least one of Alice or Bob to be noncomoving.
However, it is convenient to assume that both observers are
comoving during their interaction time with the field, in
order to obtain an analytic expression for the field com-
mutator (18). For this reason, we approximate the channel
capacity at a constant proper separation, P, by the capacity
at a constant comoving separation,

RðTiBÞ ¼
P

aðTiBÞ
: ð29Þ

This is a valid approximation as long as Alice’s and Bob’s
detector-field interaction times are much shorter than their
temporal separation (Δ ≪ TiB − TfA). That is, we consider
the expansion of the Universe during the interaction time
of the detectors with the field to be negligible, but we
consider the full dynamics of the background spacetime
between the emission and reception events. This is rea-
sonable to expect if Bob is us and Alice is an early Universe
observer.
The earliest time TP

min that Bob can switch on his detector
while remaining strictly in Alice’s timelike future and
maintaining a constant proper separation P is found by
solving

FIG. 1. The five possible causal relationships between the
switching periods of Alice’s and Bob’s detectors. In conformal
time η and comoving distance R, the boundaries of the light cones
(diagonal lines) have slopes of c ¼ 1.
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ηðTP
minÞ ¼ ηðTiA þ ΔÞ þ P

aðTP
minÞ

: ð30Þ

In a matter-dominated universe (2), the solution is given by
the single real root of the cubic equation

�
TP
min −

R0

3

�
3

¼ TfAðTP
minÞ2; ð31Þ

while in a cosmological constant-dominated universe (3),
the solution to (30) is

TR
min ¼

1ffiffiffiffiffiffijΛjp ½lnð1þ P
ffiffiffiffiffiffi
jΛj

p
Þ þ TfA�: ð32Þ

Finally, we can keep TiB constant and vary the proper
distance between Alice and Bob. The largest value of P for
which the observers are strictly timelike separated is given
by multiplying the comoving distance Rmax (27) by the
appropriate scale factor (2) or (3).

B. Channel capacity

The capacity of Alice and Bob’s communication channel
is given in expression (24). In the region of strict timelike
contact of the detectors, the Iδ integral (21) vanishes
identically, while Iθ (22) becomes

Iθ ¼
Z

ηfA

ηiA

dη1
cos½ΩAtðη1Þ�

jη1j
Z

ηfB

ηiB

dη2
cos½ΩBtðη2Þ�

jη2j
: ð33Þ

Changing the integration variable to comoving time, one
obtains

Iθ ¼
Z

TiAþΔ

TiA

dt1
cosðΩAt1Þ
aðt1Þjηðt1Þj

Z
TiBþΔ

TiB

dt2
cosðΩBt2Þ
aðt2Þjηðt2Þj

:

ð34Þ

We will particularize this expression to the two cosmolo-
gies that we are considering.

1. Matter-dominated cosmology

In the matter-dominated universe (w ¼ 0), using (2), we
obtain

aðtÞjηðtÞj ¼ 3t; ð35Þ
which is the proper particle horizon of the observer at time
t, i.e. the maximal proper distance that light could have
traveled to the observer in the age of the Universe. Notice
that in this case, Eq. (35) also corresponds to twice the
Hubble radius at time t. For the case of nonzero gap
detectors, Ων > 0, Eq. (34) becomes

Iw¼0
θ ¼ 1

9
ðCi½ΩAðTiA þ ΔÞ� − Ci½ΩATiA�Þ

× ðCi½ΩBðTiB þ ΔÞ� − Ci½ΩBTiB�Þ; ð36Þ

where Ci is the cosine integral function,

CiðzÞ ¼
Z

∞

z
dt
cos t
t

: ð37Þ

If we assume that Δ ≪ TiA < TiB, Eq. (36) simplifies to

Iw¼0
θ ≃ Δ2

9

cosðΩATiAÞ
TiA

cosðΩBTiBÞ
TiB

: ð38Þ

This assumption is reasonable since, as mentioned above,
we expect the time scale of the detectors being switched on
to be much smaller than the cosmological time scale on
which the Universe evolves.
Note that taking the limit Ων → 0 in (36), one obtains

lim
Ων→0

ðIw¼0
θ Þ ¼ 1

9
ln

�
TiA þ Δ
TiA

�
ln

�
TiB þ Δ
TiB

�
; ð39Þ

which is the result derived in Ref. [23] for gapless detectors.
Therefore, for strictly timelike separated observers in the

matter-dominated universe, the channel capacity (24)
becomes

Cw¼0
Ων>0

¼ λ2Aλ
2
B

2592π2 ln 2
ðCi½ΩAðTiA þ ΔÞ� − Ci½ΩATiA�Þ2

× ðCi½ΩBðTiB þ ΔÞ� − Ci½ΩBTiB�Þ2

≃ λ2Aλ
2
BΔ4

2592π2 ln 2

�
cosðΩATiAÞ

TiA

cosðΩBTiBÞ
TiB

�
2

;

Cw¼0
Ων¼0 ¼

λ2Aλ
2
B

2592π2 ln 2

�
ln

�
TiA þ Δ
TiA

�
ln

�
TiB þ Δ
TiB

��
2

;

ð40Þ
where we used equations (36), (38), and (39) for Iw¼0

θ .

2. Λ-dominated cosmology

In the cosmological constant-dominated universe
(w ¼ −1), we see from (3) that the denominators of the
integrands of (34) become

aðtÞjηðtÞj ¼ 1ffiffiffiffiffiffijΛjp ; ð41Þ

which in this case coincides with both the Hubble radius
and the proper event horizon of the observer at time t,
i.e. the proper distance that light emitted at time t would
travel in the lifetime of the Universe. Critically, as opposed
to the particle horizon in the matter-dominated universe
(35), Eq. (41) does not depend on time. In the Λ-dominated
cosmology, Eq. (34) becomes
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Iw¼−1
θ ¼ 4jΛj

ΩAΩB
sin

�
ΩAΔ
2

�
sin

�
ΩBΔ
2

�

× cos

�
ΩA

�
TiA þ Δ

2

��
cos

�
ΩB

�
TiB þ Δ

2

��
;

ð42Þ

and the channel capacity (24) acquires the form

Cw¼−1 ¼ λ2Aλ
2
BΛ

2

162π2 ln 2Ω2
AΩ2

B
sin2

�
ΩAΔ
2

�
sin2

�
ΩBΔ
2

�

× cos2
�
ΩA

�
TiA þ Δ

2

��
cos2

�
ΩB

�
TiB þ Δ

2

��
:

ð43Þ

We are now ready to compare the abilities of timelike
separated observers to communicate within the two
cosmologies.

C. Results

Let us now compare the communication channel
capacities between an early Universe signal emitter,
Alice, and a late-time receiver, Bob, in cosmologies
generated by matter and a cosmological constant.
Wewill focus on the channel capacities when Alice’s and

Bob’s detectors are strictly timelike separated. We recall
that, since the real quanta of the massless scalar field travel
at the speed of light, one may intuitively have expected that
the channel capacities in this causal regime are zero.
However, as explained above, this is the relevant case of
quantum collect calling, where slower-than-light commu-
nication through the massless scalar field is possible if
Alice’s and Bob’s detectors are prepared in coherent
superpositions of their excited and ground states in scenar-
ios where the strong Huygens principle is violated [23,31],
as is the case for minimally coupled fields in FRW
backgrounds [23,32].
The initial states of the qubit detectors with which Alice

and Bob couple to the field are defined in (19). To facilitate
a comparison with the results in Refs. [23,32], the initial-
ization is chosen to maximize the channel capacity in the
case of zero-gap detectors. We will not particularize to
the zero-gap case, but we will for simplicity consider the
energy gaps of the two detectors to be equal:
ΩA ¼ ΩB ¼ Ω. Recall that the detectors are switched on
and off suddenly, according to (9).
To elucidate the effects of cosmological expansion on the

ability of observers to communicate, we use our freedom to
choose a reference scale for the constant factors to set the
two spacetimes and their rates of expansion to be equal at a
given initial time, which in our case will be the time at
which Alice’s detector is switched on, TiA. To that effect,
we set

aw¼0ðTiAÞ ¼ aw¼−1ðTiAÞ ¼ 1;

_aw¼0ðTiAÞ ¼ _aw¼−1ðTiAÞ ¼ 1: ð44Þ
This is done by setting κ1 ¼ 1=4, κ2 ¼ expð−2=3Þ,ffiffiffiffiffiffijΛjp ¼ 1, and TiA ¼ 2=3. The effects of this choice in
both dynamics can be seen in Fig. 2.
The comoving time for which each detector is switched

on is set to Δ ¼ 1=100. For the values of TiB that we will
work with, this ensures that Δ ≪ TiB − TfA, which we
require in order to approximate a constant proper separation
between the detectors, as discussed in Sec. IVA.
We see from Eqs. (40) and (43) that the timelike channel

capacities in the two cosmologies are both independent of
the distance (proper or comoving) separating Alice and
Bob. It was pointed out in Refs. [23,32] (for the matter-
dominated case) that this fact allows timelike channels to
potentially convey more information from spatially distant
events than light signals due to the fact that the timelike
channel capacity does not decay with the distance to the
source. We see that this is also true in the cosmological
constant-dominated universe.
Remarkably, we find critical differences in the ability of

Alice to communicate with Bob through timelike channels
in the two cosmologies. Namely, the timelike afterglow of
Alice’s interaction with the field remains constant (up to
oscillations) before reaching Bob in the Λ-dominated
universe, in stark contrast with the time decay present in
the matter-dominated case.
This can be seen in Fig. 3, where we plot the channel

capacities as functions of the instant that Bob’s detector is
switched on, TiB. We consider two different situations: 1)
constant comoving separation between Alice and Bob,

w 1

w 0

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

t

a(
t)

TiA Tmin
P Tmin

R

FIG. 2. Scale factors governing the expansion of the matter-
(w ¼ 0) and cosmological constant-dominated (w ¼ −1) uni-
verses, plotted as functions of time. The four rightmost vertical
lines show the earliest times TiB for which Alice and Bob are
strictly timelike separated, while keeping constant their spatial
separation. When comoving separation is held constant,
R ¼ 1=2, and when proper separation is approximated as con-
stant, PðTiBÞ ¼ 1=2. Here, TiA ¼ 2=3, Δ ¼ 1=100, κ1 ¼ 1=4,
κ2 ¼ expð−2=3Þ, and ffiffiffiffiffiffijΛjp ¼ 1.
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R ¼ 1=2, as in Refs. [23,32], and 2) constant proper
separation, PðTiBÞ ¼ 1=2. We see that there are no relevant
qualitative differences between situations 1 and 2. The only
difference in communication that the choice of distance
measure affects is the values of TiB for which the detectors
are strictly timelike separated. Namely, keeping constant the
proper separation results in strictly timelike separated
detectors at lower TiB than when maintaining the same
comoving distance constant. This is due to our choice of
reference scale when normalizing the scale factors (44):
since aðTiBÞ > 1, at time TiB, a given comoving separation
is physically larger (and hence takes light longer to traverse)
than the same proper separation. The distance measure that
we choose to keep constant therefore affects the relative
spacetime positioning of Alice and Bob, displacing the
positions of the timelike connected regions in Fig. 3.
Notice that the magnitudes of the channel capacities in

Fig. 3(a) are much smaller than those reported in Ref. [23].
This is mainly due to us considering a detector-field
interaction time, Δ, that is several orders of magnitude less
than that in Ref. [23] [note from (40) that Cw¼0 ∝ Δ4].
Indeed, as expected, the longer Alice interacts with the field,
the more information she encodes for Bob to later recover.
If we look at Fig. 3(a), we see that in the matter-

dominated universe, the channel capacity has a polynomial
decay in time: Bob’s ability to retrieve Alice’s signal is
suppressed the longer he waits to do so.
Remarkably, Fig. 3(b) shows that the channel capacity in

the exponentially expanding cosmology does not decay as
the time that Bob waits to read out the signal increases;
even if Bob waits the age of the Universe to recover the
signal, the channel capacity between him and Alice will
remain the same (up to oscillations).
The behavior shown in Fig. 3 stems from the time

dependence of the equations for the channel capacities in
the matter- and Λ-dominated cosmologies, Eqs. (40) and
(43), respectively. If, for illustration, we look at the
approximated form of (40) (which applies to the results
in the figures since Δ ≪ TiA < TiB), we see that
Cw¼0 ∝ T−2

iB . The capacity in the Λ-dominated case exhibits
no such decay with TiB.
This result seems contrary to the physical intuition that,

since an exponential expansion is faster than a polynomial
one, the information encoded in the field by Alice in the
former case should get dispersed more, resulting in a faster
decaying channel capacity, as is the case with lightlike
signals. What is more, not only does the channel capacity in
the Λ-dominated cosmology not decay, but it actually
grows as Λ2, meaning that more information can in
principle be broadcast from Alice to Bob the faster the
exponential expansion of the Universe is.
Along with the decay (or lack thereof) discussed above,

both channel capacities also exhibit oscillations with TiA
and TiB at frequencies equal to the energy gap of the
detectors, Ω.

V. CONCLUSIONS

By using the protocols of quantum collect calling
[23,31], it is possible to detect signals broadcast by early
Universe observers in our timelike past (when there is no
light contact), greatly increasing both the volume of
observable spacetime and the amount of recoverable
information from that available through classical observa-
tional methods. This ability of timelike separated observers
to communicate is fundamentally dependent on 1) the
coupling of the field to the underlying geometry, 2) the
dimensionality of spacetime, and 3) the geometry of
spacetime. We focused here on the case of minimal
coupling in (3þ 1) dimensions, which was shown in

1.0 1.2 1.4 1.6 1.8 2.0

0

2

4

6

8

10

12

TiB

(a)
Proper Comoving

1.0 1.2 1.4 1.6 1.8 2.0

0

2

4

6

8

TiB

Proper Comoving

(b)

FIG. 3. Variations of the channel capacity with the instant TiB
when Bob’s detector is switched on in a universe dominated by a)
matter and b) a cosmological constant. We study the case when
the detectors are strictly timelike separated; the vertical lines
indicate the earliest TiB for which this occurs, while the proper/
comoving separation is kept constant. Notice that the plots only
show the correct channel capacity for values of TiB that ensure
timelike separation (to the right of each dashed vertical line)
since (36) and (42) are only valid for timelike separation between
Alice and Bob. Here, TiA ¼ 2=3, Δ ¼ 1=100, κ1 ¼ 1=4,
κ2 ¼ expð−2=3Þ, and ffiffiffiffiffiffijΛjp ¼ 1. When comoving separation is
held constant, R ¼ 1=2. When proper separation is approximated
as constant, PðTiBÞ ¼ 1=2. Various values of the detectors’
energy gap Ω are considered.
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Refs. [23,32] to be a viable setup for timelike signaling in
the case of a polynomially expanding, matter-dominated
cosmology. In this paper, we have analyzed the exponen-
tially expanding, cosmological constant-dominated uni-
verse, and we found unexpected fundamental differences
between the two cases.
We quantified the ability of timelike separated observers,

Alice and Bob, to exchange information in the two
cosmologies. To do so, we computed a lower bound to
the Shannon capacity of the channel established when they
communicate using antennas coupled to the quantum field.
We showed that, as in the matter-dominated cosmology, the
channel capacity in the Λ-dominated case is independent of
the spatial and temporal separations between Alice and
Bob.
Most interestingly, we also found that in the exponen-

tially expanding Universe, there is no decay of the channel
capacity with Alice’s and Bob’s individual coupling times.
This means that Bob can wait as long as he wants and the
amount of information that he can recover from Alice will
not change. What is more, we find that the channel capacity
is proportional to Λ2. This implies that the faster the
expansion of the Universe is, the greater the ability of
Bob to recover the information sent by Alice through
timelike communication.
This is contrary to the polynomial decay present in the

matter-dominated universe and studied in previous liter-
ature [23,32], and it challenges the—perhaps intuitive—
physical expectation that a faster spatial expansion results
in less information reaching an observer, since it would be
dispersed as the Universe expands.
The unintuitive lack of decay in a Λ-dominated cosmol-

ogy is made even more interesting when we note that our
own Universe seems to have been exponentially expanding
at very early times in its history and appears to be currently
dominated by a cosmological constant as well. This opens
up fascinating possibilities of applying the theory presented
here, at least in principle, to observe our distant timelike
past, or to send signals to observers in our timelike future.
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APPENDIX: FIELD COMMUTATOR FOR
MINIMAL COUPLING OF THE FIELD

TO THE GEOMETRY

In this Appendix, we review the calculations originally
outlined in Refs. [23,32,43]. We start with the expression

for the expectation value of the field commutator between
two events, x ¼ ðxA; tÞ and x0 ¼ ðxB; t0Þ, in terms of the
advanced and retarded Green functions, G− and Gþ,
respectively:

h½ϕðxÞ;ϕðx0Þ�i ¼ i
G−ðx; x0Þ −Gþðx; x0Þ

4π
: ðA1Þ

The G� are solutions to the wave equation (4) with a
pointlike source

ð□ − ξRÞG�ðx; x0Þ ¼ −
4π

aðηÞ4 δðη − η0Þδ3ðx − x0Þ: ðA2Þ

Rescaling by aðηÞaðη0Þ and introducing the Fourier trans-
form ĝ, we can rewrite G� as

G�ðx; x0Þ ¼
�θð�η ∓ η0Þ
ð2πÞ3aðηÞaðη0Þ

Z
d3keik·ðx−x0Þĝðη; η0; kÞ;

ðA3Þ

which upon substitution into (A2) gives the auxiliary
differential equation

�
d2

dη2
þ k2 − ð1 − 6ξÞ α

2 − 1=4
η2

�
ĝðη; η0; kÞ ¼ 0; ðA4Þ

with boundary conditions

ĝðη ¼ η0; kÞ ¼ 0;
dĝ
dη

ðη ¼ η0; kÞ ¼ 4π: ðA5Þ

Here, we have defined α ¼ jð3 − 3wÞ=ð6wþ 2Þj, where we
recall that w ¼ p=ρ is the pressure-to-density ratio of the
perfect fluid generating our spacetime.
In the case of minimal coupling, ξ ¼ 0. Then, the

solution ĝαðη; η0; kÞ (where we have explicitly denoted
the α dependence) to (A4) is given by Eq. (55) in
Ref. [23]. The commutator (A1) then becomes

h½ϕðxÞ;ϕðx0Þ�i ¼ i
θð−ΔðηÞÞ − θðΔðηÞÞ

π2aðtÞaðt0ÞR
×
Z

∞

0

dk sinðkRÞĝαðηðtÞ; ηðt0Þ; kÞ; ðA6Þ

where ΔðηÞ ¼ ηðtÞ − ηðt0Þ and R ¼ ∥xA − xB∥. In both
matter- (w ¼ 0) and Λ-dominated (w ¼ −1) cosmologies,
α ¼ 3=2, and the integral in (A6) can be solved analyti-
cally, yielding expression (18).
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