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We develop numerical tools and apply them to solve the relativistic Yang-Mills-Higgs equations in a
model where the SUðNÞ symmetry is spontaneously broken to its center. In SUð2Þ and SUð3Þ, we obtain
the different field profiles for infinite and finite center strings, with end points at external monopole sources.
Exploration of parameter space permits the detection of a region where the equations get Abelianized.
Finally, a general parametrization of the color structure of SUð2Þ fields leads us to a reference point where
an Abelian-like Bogomol'nyi-Prasad-Sommereld (BPS) bound is reconciled with N-ality.
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I. INTRODUCTION

Over the years, many lattice studies have been oriented
toward obtaining the static potential from the Wilson loop
average in pure Yang-Mills (YM) theories, for quarks in
different representations. Asymptotic linearity [1], string-
like behavior [2], and N-ality at asymptotic distances [3]
are among the observed properties. The third one refers to
the fact that string tensions depend on how the center ZðNÞ
is realized in a given SUðNÞ quark representation.
Based on the idea of dual superconductivity [4–6], these

properties have been explored by means of lattice calcu-
lations and effective models in a Higgs phase. In the former,
the possibility to capture the path-integral measure by
quantum ensembles of magnetic configurations is analyzed
(see [7–16], and references therein). In the latter, phenom-
enological dimensionful scales are introduced from the
beginning, proposing a dual superconductor where the
confining string is a smooth vortex solution to the classical
equations of motion. This is a magnetic object in the dual
description that is supposed to effectively represent the
chromoelectric confining string. The detailed knowledge
we have about interquark lattice potentials, for different
groups and representations, makes us wonder what the
natural dual superconductor could be. In this context,
gauge models with the SUðNÞ → ZðNÞ spontaneous sym-
metry breaking (SSB) pattern have been considered (see
Refs. [17–22], and references therein). In this case, the
manifold of vacua is the coset M ¼ SUðNÞ=ZðNÞ ¼
AdðSUðNÞÞ [the adjoint representation of SUðNÞ], whose
first homotopy group is Π1ðMÞ ¼ ZðNÞ. Then, the con-
fining string would be represented by a smooth center
vortex, hereafter referred to as a “center string” to avoid
confusion with the center vortices in pure YM ensembles.

This SSB scenario is attractive because it naturally leads to
N-ality (see the discussion in [21,22], and in Sec. V B).
With these ideas in mind, the initial objective of this work

is to look for and test appropriate numerical methods to solve
the center string field equations. These tools will permit one,
in a forthcoming work, to contrast different proposals with
existing lattice data obtained from Monte Carlo simulations.
A part of the data could be used to adjust the parameters, and
then we could make predictions to be compared with other
data. This type of analysis has already been considered in
Refs. [23–29]. In Refs. [26–28], an Abelian Higgs model
that essentially describes a condensate of Abelian monopoles
was analyzed. For example, in Ref. [28], the internal
structure of the flux tube, within Abelian-projected SUð2Þ
lattice gauge theory, sets the system in the borderline
between type I and type II superconductors. The masses
of the dual gauge and Higgs fields turned out to be quite
close, again a typical property associated with a BPS point.
In the case of SUð3Þ, the fitted parameters in an effective
dual QCD model led to a similar limiting behavior (see
Refs. [17] and [25]), while in Ref. [27] an Abelian-like
type-II superconductor was favored. However, an Abelian
description cannot explain N-ality nor related properties (for
N ≥ 4) such as the lattice k-string tensions [30].
In the second part of this work, we show that there exists

a choice of parameters, in the SUðNÞ → ZðNÞ model we
proposed in Ref. [22], where the center string field profiles
for N ¼ 2, 3 satisfy Nielsen-Olesen equations, thus con-
ciliating Abelian-like behavior with N-ality. Furthermore,
in the SUð2Þ case, a BPS bound is obtained, showing the
fundamental BPS vortex is a minimum with respect to any,
possibly non-Abelian, field deformation. This special point
will certainly serve as a place to start exploring the model
parameter space and verify its suitableness to accommodate
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the various lattice data. BPS bounds in a non-Abelian
context were previously obtained in the bosonic sector of
N ¼ 2 supersymmetric theories. The embedding of Uð1Þ
vortices in a UðNÞ gauge model with one adjoint and N
fundamental scalar fields was done in Ref. [31]. With
regard to center strings, previous attempts to derive
relativistic BPS equations required an appropriate limit
in the parameters, in order to be compatible with the
original theory [32].

II. PHYSICAL MOTIVATION FOR
CENTER STRINGS

Assuming that the confining states of pure YM can be
described by an effective field model, we review here why
considering an SUðNÞ → ZðNÞ SSB pattern is attractive, as
well as some natural phenomenological choices.

A. A view from magnetic ensembles

Confinement scenarios based on magnetic ensembles in
SUðNÞ pure YM theory have been analyzed on the lattice
(for a detailed discussion, see [33,34] and references
therein). Center vortices are essentially obtained by decom-
posing the link variables as UμðxÞ ¼ PμðxÞZμðxÞ, where
ZμðxÞI is the center element of SUðNÞ closest toUμðxÞ, and
then discarding the perturbative part PμðxÞ. The configu-
rations thus obtained correspond to center vortex defects
located at plaquettes where

Q
ZμðxÞ ≠ 1. In the continuum,

center vortex configurations for the gluon gauge field Aμ

have been parametrized in Ref. [10]. This parametrization
can be rewritten in terms of a local frame in color space (uA)
that contains defects (see Ref. [22]),

Aμ ¼ ðPA
μ − ZA

μ ÞuA;
ZA
μ ¼ −ð1=geÞfeABChuB; ∂iuCi;

uA ¼ STe
AS

−1; ð1Þ

S ∈ SUeðNÞ, and Te
A, A ¼ 1;…; N2 − 1, are the generators

of the chromoelectric group. A closed center vortex is

described by S ¼ eiχ~η·~T
e
, where χ is a multivalued function,

changing by 2π when we go around a path linking the
center vortex world sheet Σ, and ~η is 2N times a weight ~w
of the fundamental representation. The dot product is
understood as ~η · ~Te ¼ ~ηjqTe

q, a combination of the
Cartan generators Te

q, q ¼ 1;…; N − 1, while the weights
~w are (N − 1)-tuples of eigenvalues for a common eigen-
vector. With these definitions, the Wilson loop is given by

WC½A�¼ zðCÞWC½P�; zðCÞ¼e−
i
2

R
d4xgesμν ~we· ~F μνðZÞ; ð2Þ

−F q
μνðZÞ ¼ 2π

ge
~ηjq

I
d2σμνδð4Þðx − ȳðσ1; σ2ÞÞ; ð3Þ

where d2σμν integrates over Σ, parametrized by ȳðσ1; σ2Þ
(see [10,35]), and ~we is any weight of the given quark
representation. The source sμν is localized on any surface
SðCÞ whose border is the Wilson loop and is constructed
to give the intersection number between SðCÞ and the
world sheet Σ. While center vortices are good at describing
N-ality, and have a physical lattice density scaling, the
Lüscher term associated with transverse fluctuations of the
string has not been observed in the center-projected data. In
the pure YM context, monopoles alone do not scale toward
a physical density, so they should be considered together
with open center vortices, forming closed chains. Indeed,
these objects have also been detected and are considered
very promising to explain the different properties of the
confining quark potential. As a two-dimensional object is
naturally associated with an effective string theory [36],
modeling the center vortex component in four-dimensional
(4D) ensembles is a hard task. On the other hand, monopole
ensembles can be described by a field theory. How to treat
both types of degrees of freedom in a unified setting is an
open problem. Here, we comment on some possible
choices for the effective fields that could describe the
monopole component.
Different phenomenological properties and correlations

will lead to a variety of effective field models exhibiting
different phases [37–41]. For example, in Ref. [41], after
assuming Abelian dominance (disregarding off-diagonal
fluctuations in Pμ), a model based on a set of complex
scalar fields was obtained. In this case, the following
nonzero contribution to the divergence of the dual tensor
in the continuum,

−∂νF
q
μνðZÞ ¼ 2π

ge
2N~αjq

I
C
dyμδð4Þðx − yÞ þ � � � ; ð4Þ

is initially considered. Here, C is the loop where a
monopole is localized, and ~α is given by the difference
of the fundamental weights carried by the pair of attached
vortices, which corresponds to a root of suðNÞ. If monop-
ole correlations were turned off, the averaged Wilson loop
would be

hWi ¼
Z

½DΛ�e−
R

d4xζ
4
ð∂μ ~Λν−∂ν ~Λν−~JμνÞ2Zα1Zα2 � � � ; ð5Þ

Zα ¼
X
N

1

N!

YN
k¼1

½Dxk�e−m
P

N
k¼1

Lke
i2πge

R
Ck

dxμ~α·~Λμ ;

~Jμν ¼ ge~βesμν; ð6Þ

~βe ¼ 2N~we. The Abelian gauge field ~Λμ is originated
from the linearization of the YM action, while the labels
α1; α2;… refer to the positive roots ~α1; ~α2;… of suðNÞ
[NðN − 1Þ=2 possibilities].
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As shown in Refs. [37–40], the right hand side in Eq. (6)
is a functional determinant for a vacuum to vacuum
amplitude in “particle” representation. This means that
Zα can be cast in the form

Zα ¼
Z

½Dϕα�½Dϕ̄α�e−
R

d4xϕ̄α½−D2
αþm2�ϕα ;

Dα
μ ¼ ∂μ − i

2π

ge
~α · ~Λμ: ð7Þ

The SSB phase, which supports Nielsen-Olesen vortices,
is observed for m2 < 0 after including density-density
monopole interactions [41].
Now, the inclusion of non-Abelian information in the

monopole ensemble naturally leads to the embedding of
Eq. (5) in a non-Abelian context. This requires an SUðNÞ
gauge field Λμ, with coupling constant g ¼ 2π=ge, and a
Higgs sector containing at least NðN − 1Þ real adjoint
scalars ψα, ψᾱ. When the fields get Abelianized by the
identifications [22],

Λμ ¼ ~Λ
q
μTq; Jμν ¼ ~JμνjqTq; ð8aÞ

ψα þ iψᾱffiffiffi
2

p ¼ ϕαEα;
ψα − iψᾱffiffiffi

2
p ¼ ϕ̄αE−α; ð8bÞ

the average (5) should be reproduced. Here, Eα denotes a
root vector of suðNÞ (~α positive),

½Tq; Eα� ¼ ~αjqEα; q ¼ 1;…; N − 1: ð9Þ

In Sec. V, we will see (for N ¼ 2, 3) that, in the
flavor symmetric model described in Sec. II A 2, this
Abelianization will be dynamically driven at a special
point in parameter space. Besides the fields ψα, ψᾱ, that
model contains a set of adjoint fields with a Cartan label ψq,
q ¼ 0;…; N − 1. With a total number of flavors given by
N2 − 1, the fields will be denoted by ψA, with the global
flavor SUðNÞ symmetry acting on index A. (See Sec. II A
1.) In the next section, we review the effective description
of a monopole loop carrying non-Abelian (magnetic) color
degrees of freedom.

1. Monopole ensembles with non-Abelian
degrees of freedom

Among the phenomenological information to be con-
sidered in magnetic ensembles, the introduction of non-
Abelian degrees of freedom is an interesting possibility. In
Ref. [42], we considered an ensemble of looplike monop-
oles in 4D with the coupling to the diagonal gauge field in
Eq. (6) replaced by

uμðsÞIAΛA
μ ðxðsÞÞ; IA ¼ TA

cdz̄czd; uμ ¼ _xμ:

This coupling was introduced in Ref. [43] to describe a
classical relativistic particle interacting with a non-Abelian
gauge field. The za’s are complex variables that can be
thought of as those labeling coherent states jz1;…; zDi in a
linear space of general (magnetic) color states [42] (a
ranges from 1 to D, the dimension of the group represen-
tation). In fact, in the context of YM monopole ensembles,
using the nonlinear space of Gilmore-Perelemov group
coherent states is more natural (see Ref. [44]). However,
when the linear state calculations are projected on the
sector with total occupation number one, both descriptions
coincide. This is indeed the procedure followed in our
previous work, which is briefly reviewed here.
The non-Abelian coupling, together with the simplest

properties that characterize a loop (length and curvature),
which are physically manifested through a tension τ and
stiffness 1=ξ, leads to the ensemble

Z ¼
Z

½Dϕ�½DϕA�e−W½ϕ;ϕA�
X
n

Zn;

Zn ¼
Z

½Dm�n exp
�
−S0 þ

Xn
k¼1

I
Lk

ds
�
ig_xðkÞμ IAΛA

μ ðxðkÞÞ

− ϕðxðkÞÞ − IAϕAðxðkÞÞ
��

;

S0 ¼
Xn
k¼1

I
Lk

ds

�
τ þ 1

2
ðz̄c _zc − _̄zczcÞ þ

1

2ξ
_uðkÞμ _uðkÞμ

�
;

where n sums over the number of loops. W encodes some
correlations among them; in particular, excluded volume
effects (density-density interactions) are implemented with
a ϕ2 term. Similarly, (magnetic) color-dependent density
interactions are introduced by means of a ϕ2

A term in W.
Note that ϕ and ϕA; A ¼ 1;…;D, are real fields coupled
with ρ and ρA, respectively,

ρðxÞ ¼
Xn
k¼1

I
Lk

dskδð4Þðx − xkðskÞÞ;

ρAðxÞ ¼
Xn
k¼1

I
Lk

dskIAðskÞδð4Þðx − xkðskÞÞ:

The measure ½Dm�n must integrate over all possible n
closed monopole worldlines. This ensemble can be com-
puted in terms of a building block qðx; x0; u; u0; z̄; z0; LÞ
that gives the end-to-end probability for a line of length L to
start at x0, with tangent u0 and internal variable z0, and end
at x, with u, z. The weight for an open curve has a path-
integral representation that can be obtained as the con-
tinuum limit of a polymer growth process [45]. This is
controlled by a Chapman-Kolmogorov recurrence relation
for diffusion in x and in tangent u space, thus leading q to
satisfy a Fokker-Plank equation [42]. Upon identifying the
initial and final points of the line, we get the weight for a

EXPLORING CENTER VORTICES IN SUð2Þ AND … PHYSICAL REVIEW D 95, 025001 (2017)

025001-3



closed loop. As is customary for ensembles of loops, the
partition function depends on the trace of the operator
appearing in the diffusion equation. Besides the trace over
the values of x and u at the identified end points, there is
one over coherent states that can be rewritten as a trace over
occupation number states jn1;…; nDi. In what follows,
we concentrate on the contribution originated from states
where all but one of the entries vanish, with the nontrivial
entry being na ¼ 1, a ¼ 1;…;D. Other sectors will pro-
duce effective fields carrying product representations of the
original D-dimensional representation. In other words, the
monopole measure is taken to be

½Dm�n ≡ 1

n!

Z
∞

0

dL1

L1

dL2

L2

� � � dLn

Ln

Z
ℜ4

d4x1d4x2 � � � d4xn

×
Z

½Dxð1ÞðsÞ�ðx1;L1Þ � � � ½DxðnÞðsÞ�ðxn;LnÞ

×
Z X

a1

½Dzð1ÞðsÞ�ða1;a1Þ � � �
X
an;an

½DzðnÞðsÞ�ðan;anÞ;

ð10Þ

where ½DxðsÞ�ðx;LÞ integrates over loops of fixed length L,
starting and ending at x, while ½DzðsÞ�ða;aÞ is designed to
compute end-to-end probabilities, starting and ending in a
state where mode a has occupation number one. For
smooth loops,

Z ¼
Z

½Dϕ�e−We
R

∞
0

dL
L

R
ℜ4 d

4x
P

a
Qaaðx;x;LÞþ…;

Qaaðx; x; LÞ ¼
Z

d3uQaaðx; x; u; u; LÞ;

where Qbaðx; x0; u; u0; LÞ is obtained by projecting
qðx; x0; u; u0; z̄; z0; LÞ, and gives the end-to-end probability
for a line of length L to start at x0, with tangent u0 and color
a, and end at x, with u, b. This weight satisfies the projected
Fokker-Plank equation,

½ð∂L − ðξ=πÞL̂2
u þ ðτ þ ϕÞ1þ u ·D�Qðx; x0; u; u0; LÞ ¼ 0;

Qðx; x0; u; u0; 0Þ ¼ δðx − x0Þδðu − u0Þ1;

where Qjcd ¼ Qcd, 1 is a D ×D identity matrix, and
Dμ ¼ 1∂μ − igΛA

μTA. In the semiflexible limit, we can
disregard the angular momenta l ≥ 2 in an expansion of
spherical harmonics on S3 (memory loss), obtaining,

Z ¼
Z

½Dϕ�e−WðDetOÞ−1;

O ¼ −
π

12ξ
DμDμ þ ðϕþ τÞ1þ TAϕA: ð11Þ

For an ensemble of loops carrying adjoint charges in
SUðNÞ (D ¼ N2 − 1), the matrix elements of TA are
proportional to the suðNÞ structure constants. In this case,
ðDetOÞ−1 can be represented as a path-integral over
complex fields ζA, with action density ζ̄AOjABζB. The
integrations over ϕ, ϕA can easily be done as they involve a
Gaussian weightW and linear terms ϕζ̄AζA, ϕAζ̄BTAjBCζC.
For example, the second term is ∝ ϕAfABCψB

1ψ
C
2 , where

fABC are structure constants of suðNÞ and ψA
1 (ψA

2 ) is the
real (imaginary) part of ζA. Then, the integration over ϕA
originates a term hψ1∧ψ2;ψ1∧ψ2i in the effective action.
Here, we grouped the color components to form real adjoint
fields ψ1;ψ2 ∈ suðNÞ.1 Proceeding similarly with the
other terms, we obtained

Z ¼
Z

½Dψ �e−
R

d4xLðψ ;ΛÞ;

Lðψ ;ΛÞ ¼ 1

2
hDμψ I; Dμψ Ii þ

μ2

2
hψ I;ψ Ii

þ λ

4
hψ I∧ψJ;ψ I∧ψJi þ

η

4
hψ I;ψ IihψJ;ψJi;

where ψ I , I ¼ 1, 2, Dμ acts as shown in Eq. (12), and
μ2 ∝ τξ. These are precisely typical terms involving a pair
of flavors α; ᾱ in the effective Yang-Mills-Higgs (YMH)
model that we review below.

2. The Yang-Mills-Higgs model

To drive SUðNÞ → ZðNÞ SSB, at least N adjoint Higgs
fields ψ I , I ¼ 1;…; d, d ≥ N, are required [46–49]. A
natural class is given by (see Ref. [22]),

L ¼ ζ

4
hFμν; Fμνi þ 1

2
hDμψ I; Dμψ Ii − VHiggsðψ IÞ;

Dμ ¼ ∂μ þ gΛμ∧;
Fμν ¼ ∂μΛν − ∂νΛμ þ gΛμ∧Λν; ð12Þ

where Λμ is a (dual) gauge field, and I is a flavor index. The
Higgs potential is constructed with the natural SUðNÞ
invariant terms, up to quartic order,

hψ I;ψJi; hψ I;ψJ∧ψKi;
hψ I∧ψJ;ψK∧ψLi; hψ I;ψJihψK;ψLi:

The construction of a flavor symmetric model can be
motivated in analogy with that followed for a single SUð2Þ
adjoint Higgs field ψ undergoing SUð2Þ → Uð1Þ SSB.
This pattern is obtained from a Higgs potential whose vacua
are points on S2,

1We are also using the Lie algebra product X∧Y ¼ −i½X; Y�,
and the internal product hX; Yi ¼ TrðAdðXÞ†AdðYÞÞ, with Adð·Þ
a linear map into the adjoint representation.
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hψ ;ψi − v2 ¼ 0:

A natural Higgs potential, with up to quartic terms, is then
obtained by squaring the vacuum condition,

VHiggs ¼
λ

4
ðhψ ;ψi − v2Þ2:

Now, to get a flavor symmetric model with SUðNÞ → ZðNÞ
SSB, we take d ¼ N2 − 1, so that the range of the flavor
index coincides with that of color. Replacing I → A ¼
1;…; N2 − 1, we denote the Higgs fields as ψA and initially
propose a Higgs potential whose vacua satisfy

ψA∧ψB − vfABCψC ¼ 0:

The vacua are given by a trivial point ψA ¼ 0 plus a
manifold of nontrivial vacua, where ψA form a Lie basis. Of
course, the space of vacua is invariant under the adjoint
action of SUðNÞ gauge transformations. In addition, a
given Lie basis is invariant under this action iff U ∈ ZðNÞ.
Then, a natural potential would be obtained by squaring the
condition above. Using the notation hXi2 ¼ hX;Xi,

VHiggs ¼
λ

4
hψA∧ψB − fABCvψCi2: ð13Þ

However, for this potential the trivial and nontrivial vacua
are degenerate. This can be lifted by initially expanding the
squares and then introducing general couplings for the
quadratic, cubic, and quartic terms,2

VHiggs¼cþμ2I2þκI3þλI4; I2¼
1

2
hψAi2;

I3¼
1

3
fABChψA;ψB∧ψCi; I4¼

1

4
hψA∧ψBi2: ð14Þ

Besides being gauge invariant, this potential is flavor sym-
metric under AdðSUðNÞÞ transformations, ψA → RABψB.
The constant c is chosen in order for VHiggs to be zero when
the Higgs fields assume their asymptotic vacuum values. In
this manner, the asymptotic energy density of the vortex will
tend to zero, and the total energywill be finite.Atμ2 ¼ 2

9
κ2

λ the

degenerate case is reobtained, while for μ2 < 2
9
κ2

λ the absolute
minimaaregiven only by nontrivial vacua. For κ < 0, they are

ϕA ¼ vSTAS−1; v ¼ −
κ

2λ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
κ

2λ

�
2

−
μ2

λ

s
;

which verify

μ2vþ κv2 þ λv3 ¼ 0: ð15Þ

According to Sec. II A, it is natural to introduce the quark
sources in the form

S ¼
Z

d4x

�
ζ

4
hFμν − Jμν; Fμν − Jμνi þ

1

2
hDμψA;DμψAi

þ VHiggsðψAÞ
�
; ð16Þ

where, for a given quark representation, Jμν is given by

Eqs. (6) and (8a). The quark pair, with charges ~βe and −~βe,
will be placed on the x1 axis, at x1 ¼ −L=2 and
x1 ¼ þL=2, with the associated Dirac strings Jij running
between the monopole locations and infinity.

B. A view from phenomenology

In Sec. II A, we discussed how models with adjoint
Higgs fields effectively describe ensembles of loops with
adjoint charges. These are in turn the type of loops that
interpolate center vortices in YM ensembles. The Abelian-
like models in Ref. [41] suggest that, to describe the
monopole correlations, a pair of real adjoint scalars should
be included for every positive root. We also anticipated that
additional flavors, for every Cartan index, will be needed to
(dynamically) make contact with the Abelian-like models.
Here, we review the discussion in Ref. [22] about how this
class of models, when realized in an SUðNÞ → ZðNÞ SSB
phase, can accommodate important lattice information
regarding the confining gluon states in pure YM.
Initially, we note that in this phase the manifold of vacua

is M ¼ SUðNÞ=ZðNÞ ¼ AdðSUðNÞÞ, that is, it points in
the adjoint representation of SUðNÞ. As a consequence,
(dual) topological degrees, with a mathematical description
similar to center vortices and monopoles in pure YM, but
with a completely different physical interpretation, will
enter the scene. Similar to Eq. (1), they can be described by
a local frame nA as follows [50]:

Λμ ¼ ðAA
μ − CA

μ ÞuA;
CA
μ ¼ −ð1=gÞfABChnB; ∂inCi;

nA ¼ STAS−1; ð17Þ

Fij ¼ ðFA
ijðAÞ − FA

ijðCÞÞnA;
FA
ijðCÞ ¼ ði=gÞtrðMAR−1½∂i; ∂j�RÞ; ð18Þ

where FA
ijð·Þ denotes the components of the non-Abelian

field strength, and R ¼ AdðSÞ is the adjoint representation
of the map S ∈ SUðNÞ. In particular, FA

ijðCÞ is concen-
trated at the frame defects. Locally, in the asymptotic region
where AA

μ → 0, Λμ is a pure gauge that is globally non-
trivial when nA contains defects.

2The terms hψA;ψBihψA;ψBi and hψA;ψAihψB;ψBi could
also be added, although the subsequent analysis will not be
essentially modified.
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1. Confining fundamental center strings

Because of Π1ðAdðSUðNÞÞÞ ¼ ZðNÞ, the model sup-
ports smooth (dual) center vortex solutions, or center
strings. A detailed analysis of the relation between center
string charges and magnetic weights, for different groups
and representations, was carried out in Ref. [21]. ZðNÞ
center strings can be labeled by the weights of the different
group representations,

S ¼ eiφ~β·~T; ~β ¼ 2N~w: ð19Þ

A weight ~w is defined by the eigenvalues of diagonal
generators corresponding to one common eigenvector,

½Tq; Tp� ¼ 0; Tqeigenvector ¼ ~wjqeigenvector:

When external quark sources in a given quark repre-
sentation are introduced by means of the Jμν-coupling in
Eqs. (16), (8a), and (6), a minimum energy configuration
will be induced between them. For fundamental quarks,
~βe is 2N times a fundamental weight, and a finite
string characterized by a phase S in Eq. (19), and one

of the N possible fundamental colors ~βi (which satisfy
~β1 þ � � � þ ~βN ¼ ~0), will be induced (see Sec. III). These
weights are associated with the simplest center strings, as

ei2π~βi·~T ¼ ei2π=NI is the ZðNÞ generator.
For example, in SUð3Þ, for three external fundamental

quark sources, the induced phase for the dynamical fields
that form a baryon in a Y-junction configuration is

S ¼ eiχ1~β1·~Teiχ2~β2·~T; ð20Þ

where χ1 and χ2 are multivalued when we go around a pair
of curves C1 and C2. These curves coincide on a branch, so

that if a center string with charge ~β1 (respectively ~β2) is
leaving a pair of external monopoles (representing the

green and red quarks, respectively), then a flux ~β1 þ ~β2 will
enter the third monopole, whose charge is therefore given

by −~β1 − ~β2 ¼ ~β3, thus representing the blue quark. Note in
passing that the interaction between a pair of strings with

fundamental weights ~β1, ~β2 is expected to be attractive, as
when they exactly overlap they could form an antifunda-
mental string, lowering the energy. The analysis when
strings are at a finite distance would require a non-Abelian
ansatz.

2. Hybrid mesons

In addition to normal mesons and baryons, lattice
calculations predict a rich spectrum of exotic objects.
Some of them correspond to qgq̄0 hybrid mesons where
a nonsinglet color pair and a valence gluon form a colorless
state. For a review, see Ref. [51]. A collaboration based at

the Jefferson Lab (GlueX) is aimed at mapping gluonic
excitations by searching hybrid states generated by photo-
production. In a world of heavy quarks, a successful
effective model should accommodate these hybrid excita-
tions, and, besides the normal qq̄ potential, it should also
reproduce the lattice hybrid potentials [52]. Now, if normal
strings are to be seen as fundamental center strings, valence
gluons should be (dual) monopolelike objects, with adjoint
charges, interpolating them (color adaptors). Indeed, as
explained in Ref. [22] (see also [20] and [53]), there is an
exact homotopy sequence that gives support to solutions
formed by different center strings interpolated by a non-
Abelian monopole. The mapping required to describe this
situation is

S ¼ eiφ~β1·~TWðxÞ; WðxÞ ¼ eiθ
ffiffiffi
N

p
Tα :

Around the North Pole,

SðxÞ ∼ eiφ~β1·~T:

Close to the South Pole, WðxÞ ∼Wα ¼ eiπ
ffiffiffi
N

p
Tα becomes a

Weyl reflection, so for ~α ¼ ~w1 − ~w2 we get the behavior,

SðxÞ ∼Wαeiφ
~β2·~T;

and the charge of the interpolating monopole is

~Qm ¼ 2π

g
ð~β1 − ~β2Þ ¼

2π

g
2N~α:

As the roots are the weights of the adjoint representation,
which acts via commutators [cf. Eq. (9)], this monopole
is naturally identified with a valence gluon with adjoint
color ~α (see also Ref. [19]). A pair of external fundamental
quarks in a nonsinglet color state will induce a finite hybrid
solution.

3. Confinement of (valence) gluons

The confinement of a valence gluon (adjoint dual
monopole) is not only due to the fact that it is part of
finite energy solutions that form confined quark/
gluon/antiquark states. In fact, the second homotopy group
of a compact group is trivial, thus implying Π2ðMÞ ¼
Π2ðAdðSUðNÞÞÞ ¼ 0. As a consequence, our model does
not have finite energy solutions for the isolated smooth
adjoint monopole. This is interpreted as the absence of
gluons in asymptotic states.

4. Lüscher terms and non-Abelian strings

Non-Abelian strings in UðNÞgauge × SUðNÞflavor models
with N flavors of colored fundamental scalars, undergoing
SSB to a flavor-locking phase with global SUðNÞCþF, have
been introduced in Refs. [19,54,55]. They possess attractive
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features such as decay rates of quasistable k strings [56]
similar to those present in large N pure YM. Non-Abelian
vortices have a nontrivial moduli space where an energy
scale is generated due to quantum effects. For N → ∞, the
internal orientational degrees in large enough strings are
frozen out, and the Lüscher coefficient approaches the
standard value due to transverse fluctuations. For smaller
strings there is a window where light orientational modes
modify this coefficient [57]. However, at finite N, these
massless states are not expected [58], suggesting that non-
Abelian strings can be compatible with the Lüscher term
observed in SUð3Þ lattice YM, which is only due to
transverse fluctuations [2]. This behavior was also con-
firmed in SUð2Þ, with very good accuracy [59], and up to
N ¼ 6 for the fundamental string ground state [60].
Our model in Eq. (14) is based on N2 − 1 flavors of

colored adjoint scalars and has an SUðNÞgauge ×SUðNÞflavor
symmetry, realized in the adjoint representation. In
the SSB phase the vacuum displays a global ZðNÞ ×
AdðSUðNÞÞCþF symmetry. Then, properties similar to
those previously discussed are expected; a careful analysis
of these aspects will be deferred to a future work. Here, we
would like to emphasize that, in view of II A, a model based
on adjoint rather than fundamental Higgs fields is a natural
choice. We also note that the flavor symmetry is introduced
as it restricts the possible terms in the potential, and it
simplifies the mathematical structure, the reduction to
Abelian-like equations, as well as the search for a BPS
point. However, at this stage, we have no additional
motivation for this symmetry, so we should be open to
also consider nonflavor symmetric models with fewer
adjoint Higgs fields and the same SSB pattern. Before
proceeding, in order to avoid confusion between the various
objects discussed in the effective model, it is convenient to
give a brief list of them:
dual fields, effective fields aimed at describing magnetic
YM ensembles;
center string, confining YM string represented in dual
language;
quarks, fundamental monopole sources at string ends
(external);
adjoint quarks, adjoint monopole sources (external);
valence gluons, dynamical adjoint monopoles (internal).
They interpolate center strings with different weights.

III. THE CENTER STRING BETWEEN
A QUARK-ANTIQUARK PAIR

In the presence of sources, the energy functional is
[cf. Eq. (16)],3

E ¼
Z

d3xðρB þ ρK þ VHiggsÞ; ð21Þ

ρB ¼ 1

4
hFij − Jiji2; ρK ¼ 1

2
hDiψAi2: ð22Þ

This is minimized by the static equations,

DjðFij − JijÞ ¼ ig½ψA;DiψA�; ð23aÞ

DiDiψA ¼ μ2ψA þ κfABCψB∧ψC

þ λψB∧ðψA∧ψBÞ: ð23bÞ

Let us consider a center string, ending at external monop-

olelike sources, with fundamental weight ~β. Because of
cylindrical symmetry, all field profile functions in our
ansatz are required to be φ independent. Taking in Eq. (17),

S ¼ eiφ~β·~T; ð24Þ

Aq
μ ¼ ða−1Þ

g ∂iφ~βjq, and the other components as zero, the
gauge field ansatz is

Λi ¼
1

g
a∂iφ~β · ~T: ð25Þ

For SUð2Þ and SUð3Þ, the magnetic weights are one- and

two-component tuples; they can be chosen as ~β ¼ ffiffiffi
2

p

and ~β ¼ ð ffiffiffi
3

p
=2; 1Þ, respectively. Besides the Cartan

generators, the Lie algebra basis is completed with the
off-diagonal generators Tα ¼ ðEα þ E−αÞ=

ffiffiffi
2

p
, T ᾱ ¼

−iðEα − E−αÞ=
ffiffiffi
2

p
, where E�α are the root vectors asso-

ciated with the positive and negative roots�~α, respectively.
For the Higgs field ansatz, using that STqS−1 ¼ Tq, and

STαS−1 ¼ cosð~α · ~βÞφTα − sinð~α · ~βÞφT ᾱ;

ST ᾱS−1 ¼ sinð~α · ~βÞφTα þ cosð~α · ~βÞφT ᾱ; ð26Þ

we propose the form
(i) SUð2Þ:

ψ1¼h1T1; ψα1 ¼hSTα1S
−1; ψᾱ1 ¼hST ᾱ1S

−1;

ð27Þ

(ii) SUð3Þ:

ψq¼hqpTp; hqp¼
1

4
h1~βjq~βjpþ3h2~α2jq~α2jp;

ð28Þ3By a redefinition of the coupling constant g, the ζ factor can
be set to 1.
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ψα1 ¼hSTα1S
−1; ψα2 ¼h0Tα2 ; ψα3 ¼hSTα3S

−1;

ð29Þ

ψᾱ1 ¼hST ᾱ1S
−1; ψᾱ2 ¼h0T ᾱ2 ; ψᾱ3 ¼hST ᾱ3S

−1:

ð30Þ
Note that for SUð2Þ there is a single positive root
α1 ¼ 1=

ffiffiffi
2

p
, so that the pair ψα1, ψᾱ1 rotates once when

we go around the center string. On the other hand, in

SUð3Þ, the three positive roots satisfy ~α1 · ~β ¼ 1,

~α2 · ~β ¼ 0, ~α3 · ~β ¼ 1. Then, in this case there is a pair
ψα2 , ψᾱ2 that does not rotate, while the others rotate once. In
both cases, finite energy solutions require the asymptotic
boundary conditions,

a → 1; h → v; h1 → v ð31Þ

[in SUð3Þ, we also have h0 → v, h2 → v]. There are also
regularity conditions to be satisfied. The field strength
tensor is

Fij ¼
1

g
fð∂ia∂jφ − ∂ja∂iφÞ þ a½∂i; ∂j�φg~β · ~T; ð32Þ

where ½∂2; ∂3�φ ¼ 2πδð2Þðx2; x3Þ. Then, when approaching
the x1 axis, we require

a → 0; h → 0; when jx1j < L=2; ð33Þ

a → 1; h → v; when jx1j > L=2: ð34Þ

In this manner, the delta singularity in Eq. (32), present for
jx1j > L=2, is canceled against the Dirac string Jij, leaving
an energy density contribution ð1=4ÞðFij − JijÞ2 that is
smooth everywhere. On the other hand, the profile func-
tions h0, h1, and h2, associated with Higgs fields that do not
rotate, are finite on the x1 axis. They are not required to
vanish there.
Now, let us consider curvilinear coordinates ξ1, ξ2, ξ3 in

R3, x ¼ xðξÞ. To represent vectors A ¼ Aiei ¼ Aiei, we
can use either covariant or contravariant basis vectors ei or

ei, with Cartesian components, eijxj ¼ ∂xj
∂ξi , e

ijxj ¼ ∂ξi
∂xj. The

metric for contravariant and covariant coordinates satisfy
gijgjk ¼ δi

k,

dxkdxk ¼ gijdξidξj;
∂ψ
∂xk

∂ψ
∂xk ¼ gij

∂ψ
∂ξi

∂ψ
∂ξj :

In curvilinear coordinates, the total energy is4

E ¼
Z

d3ξ
ffiffiffi
g

p �
1

4
hFij; Fiji þ 1

2
hDiψA;DiψAi þ VHiggs

�

¼
Z

d3ξ
ffiffiffi
g

p �
1

4
gikgjlhFij; Fkli

þ 1

2
gijhDiψA;DjψAi þ VHiggs

�
;

while the components of the chromomagnetic field
B ¼ Biei are

Bi ¼
1

2
gij½det grs�12ϵjklFkl;

Fkl ¼
�∂Al

∂ξk −
∂Ak

∂ξl þ gAk∧Al

�
: ð35Þ

Let us consider any system of orthogonal coordinates,
where ξ3 is the polar angle with respect to the x1 axis,
ξ3 ¼ φ ∈ ½0; 2πÞ. That is, the gauge field ansatz (25) is

A ¼ 1

g
ae3~β · ~T; a ¼ aðξ1; ξ2Þ; ð36Þ

and the gauge field covariant components are

A1 ¼ 0; A2 ¼ 0; A3 ¼
a
g
~β · ~T: ð37Þ

Using the scale factors si ¼ jeij and the properties

jeij¼ s−1i ; gii¼ s2i ; gii¼ s−2i ;
ffiffiffi
g

p ¼ s1s2s3; ð38Þ

we obtain

B1¼
s1

gs2s3
∂2a~β · ~T; B2¼−

s2
gs1s3

∂1a~β · ~T; B3¼0;

ð39Þ

ρB ¼ ðN − 1Þ
g2ðs3Þ2

½ðs2Þ−2ð∂2aÞ2 þ ðs1Þ−2ð∂1aÞ2�: ð40Þ

In addition, the covariant components of the curl of B are
∇ × Bj1 ¼ ∇ × Bj2 ¼ 0,

∇×Bj3¼−
s3

gs1s2

�
∂1

�
s2
s1s3

∂1a

�
þ∂2

�
s1
s2s3

∂2a

��
~β · ~T:

ð41Þ

4In these equations, the indices i; j;…, refer to curvilinear
coordinates.
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Using our ansatz, it is easy to see that the right-hand side of
Eq. (23a) is also along the e3 direction and that after putting
hα ¼ hᾱ the Lie algebra directions on the left- and right-
hand sides of the equations also coincide. In both cases,
N ¼ 2, 3, we get

−
s3

gs1s2

�
∂1

�
s2
s1s3

∂1a

�
þ ∂2

�
s1
s2s3

∂2a

��
¼ gð1 − aÞh2:

ð42Þ

As hα ¼ hᾱ, after working out the algebra, the field
equations for ψα and ψᾱ give the same information.
They can be simplified using

∇ · A ∝ ∂2φ ¼ 0; ∇hðξ1; ξ2Þ ·∇φ ¼ 0:

In what follows, we detail the remaining equations and
information related with the kinetic and potential energy
densities for the Higgs fields. Defining

Ôh ¼ ∂2h −
ð1 − aÞ2
ðs3Þ2

h;

∂2f ¼ 1

s1s2s3

� ∂
∂ξ1

�
s2s3
s1

∂f
∂ξ1

�
þ ∂
∂ξ2

�
s3s1
s2

∂f
∂ξ2

��
;

SUð2Þ:

Ôh ¼ μ2hþ κhh1 þ ðλ=2Þhðh2 þ h21Þ; ð43Þ

∂2h1 ¼ μ2h1 þ ðκ þ λh1Þh2; ð44Þ

ρK ¼ ½ðs−11 ∂1hÞ2 þ ðs−12 ∂2hÞ2� þ ðs−13 hða − 1ÞÞ2

þ 1

2
½ðs−11 ∂1h1Þ2 þ ðs−12 ∂2h1Þ2�; ð45Þ

I2 ¼ h21=2þ h2; I3 ¼ h1h2; I4 ¼ h21h
2=2þ h4=4;

ð46Þ

c ¼ −½ð3=2Þμ2v2 þ κv3 þ ð3=4Þλv4�: ð47Þ

SUð3Þ:

Ôh ¼ μ2hþ ðκ=6Þhð2h0 þ 3h1 þ h2Þ
þ ðλ=12Þhð6h2 þ 2h20 þ 3h21 þ h22Þ; ð48Þ

∂2h0 ¼ μ2h0 þ ðκ=3Þð2h0h2 þ h2Þ
þ ðλ=3Þh0ðh20 þ h2 þ h22Þ; ð49Þ

∂2h1 ¼ μ2h1 þ κh2 þ λh2h1; ð50Þ

∂2h2 ¼ μ2h2 þ ðκ=3Þð2h20 þ h2Þ þ ðλ=3Þh2ð2h20 þ h2Þ;
ð51Þ

ρK ¼ 2½ðs−11 ∂1hÞ2 þ ðs−12 ∂2hÞ2 þ ðs−13 hða − 1ÞÞ2�

þ ðs−11 ∂1h0Þ2 þ ðs−12 ∂2h0Þ2 þ
1

2
½ðs−11 ∂1h1Þ2

þ ðs−12 ∂2h1Þ2 þ ðs−11 ∂1h2Þ2 þ ðs−12 ∂2h2Þ2�; ð52Þ

I2 ¼ 2h2 þ h20 þ h21=2þ h22=2; ð53Þ

I3 ¼ h1h2 þ h2h2=3þ ð2=3Þ½h2h20 þ h0h2�; ð54Þ

I4 ¼ h21h
2=2þ h22h

2=6þ h20ðh22 þ h2Þ=3þ h4=2þ h40=6;

ð55Þ

c ¼ −½4μ2v2 þ ð8=3Þκv3 þ 2λv4�: ð56Þ

IV. NUMERICAL ANALYSIS

A. Infinite center string

Let us initially consider the simpler case of an infinite
string. In this way we can gain a quick understanding of
how the solutions behave under the variation of parameters,
and we can also check the suitableness of the numerical
methods we will use. If the quarks are infinitely far apart,
the problem is invariant under translations along the x1

axis. In addition, because of rotational symmetry in the
ðx2; x3Þ plane, the problem becomes purely radial (and thus
one dimensional), strongly reducing the difficulty of the
numerical energy minimization. In this case, it is natural to
use cylindrical coordinates,

ξ1 ∈ ð−∞;∞Þ; ξ2 ¼ ρ ∈ ½0;∞Þ; ξ3 ¼ φ ∈ ½0;2πÞ;
x1 ¼ ξ1; x2 ¼ ξ2 cos ξ3; x3 ¼ ξ2 sinξ3;

s1 ¼ 1; s2 ¼ 1; s3 ¼ ξ2: ð57Þ

1. SUð2Þ
In this section we will focus on SUð2Þ; the case of

SUð3Þ is analogous and will be shortly touched upon in
Sec. IVA 2. For SUð2Þ, using Eqs. (40) and (45), the
energy density per unit length takes the form

2π

Z
∞

0

dρρ

�
1

g2ρ2
a0ðρÞ2 þ h0ðρÞ2 þ 1

2
h01ðρÞ2

þ 1

ρ2
hðρÞ2ð1 − aðρÞÞ2 þ VHiggs

�
: ð58Þ

To minimize this functional, we will use a Fourier finite
elements method. In short, the procedure is as follows:
Initially, we modify the problem until we have one on a
finite interval, with simpler boundary conditions, such that
all unknown functions go to zero at the boundaries. Next,
we use a Fourier series to expand them. Cutting off this
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series at a finite order, we plug the ansätze into the energy
and minimize with respect to the Fourier coefficients.
With this in mind, let us start by looking at the boundary

conditions. When ρ → 0, we must have a → 0, h → 0, and
h1 regular. In this limit, assuming the leading term of h is
proportional to ρi, the equation for h yields at lowest order
in ρ

iði − 1Þ þ i − 1 ¼ 0⇔i ¼ �1:

The solution i ¼ þ1 satisfies the boundary conditions.
Proceeding similarly with the equation for a, one finds
that the lowest order must be either ρ4 (in which case the
leading terms originating from a will cancel the one from
the h2 term) or ρ2 (in which case the leading terms from a
cancel amongst each other and are of lower order than that
of h2). We can simply assume that the Taylor series starts
with a term in ρ2, as this will cover both cases. Finally, no
condition on the leading-order term of h1 is obtained, but it
turns out that the term linear in ρ must vanish. We thus find
the following small ρ behaviors:

aðρÞ ≈ a2ρ2 þ a3ρ3 þ � � � ; ð59aÞ

hðρÞ ≈ b1ρþ b2ρ2 þ � � � ; ð59bÞ

h1ðρÞ ≈ c0 þ c2ρ2 þ � � � ; ð59cÞ

where the dots simply continue the Taylor expansions.
When ρ → ∞, we need a → 1, h → v, and h1 → v. As

the theory is massive, due to symmetry breaking, we can
expect the functions to reach their asymptotic values
exponentially fast. In particular, the asymptotic behavior
of a is found to be

aðρÞ ∼ 1þ γe−gvρ;

with an undetermined constant γ. Therefore, let us intro-
duce the variable t ¼ tanh gvρ with t ∈ ½0; 1�. In this new
variable, a will be linear when ρ → ∞ (and thus t → 1). In
general, the functions h and h1 will not have the same
exponential factor at infinity, but this will not cause any
problems as long as the correct asymptotic value is reached:
their behavior will simply be nonlinear in t. It is easily seen
that the small-ρ behavior in (59) will still be valid with the
replacement of ρ by t. In effect, we have the series

t ¼ gvρþ ðgvρÞ3
3

þ � � � ;

with a vanishing second-order term, so the leading terms
will remain leading, and the linear term in h1 will still be
absent.

Recapitulating, we can propose the ansätze

aðtÞ ¼ t2 þ tαðtÞ; ð60aÞ

hðtÞ ¼ vtþ ηðtÞ; ð60bÞ

h1ðtÞ ¼ vt2 þ h1ð0Þ
2

ð1þ cos πtÞ þ tη1ðtÞ; ð60cÞ

where αðtÞ, ηðtÞ, and η1ðtÞ are smooth functions in the
interval t ∈ ½0; 1� that vanish both at t ¼ 0 and at t ¼ 1.
Then, these new functions can be represented by means of a
Fourier series only in terms of sin nπt, n ∈ Nnf0g. In other
words, the most general profiles can be expanded as

aðtÞ ¼ t2 þ t
X∞
n¼1

an sin nπt; ð61aÞ

hðtÞ ¼ vtþ
X∞
n¼1

bn sin nπt; ð61bÞ

h1ðtÞ ¼ vt2 þ c0
2
ð1þ cos πtÞ þ t

X∞
n¼1

cn sin nπt: ð61cÞ

Then, approximate static stable solutions are found by
limiting the previous expressions to some finite order,
plugging the functions into the energy density and
minimizing with respect to the unknown coefficients.
These steps can easily be performed using the computer
algebra package Mathematica. We would like to empha-
size that it is not necessary to transform the energy
integral (58) to the new variable t, as we can simply plug
t ¼ tanh gvρ into our ansätze and do the computations
using ρ as a variable.
Figure 1 shows the results of the numerical minimization

for a certain set of parameter values. The continuous lines
include six Fourier modes for each of the unknown
functions. For reference, the approximation with one
Fourier mode less, for each profile function, is shown in
a dashed line. One can see that the approximation is already
quite good and the two curves differ noticeably only in the
case of a.

2. SUð3Þ
As mentioned before, the SUð2Þ and SUð3Þ cases are

completely analogous. The main difference is that there
are two more unknown profiles, h0 and h2 [cf. Eqs. (48)
and (51)], and they behave exactly like h1 in Eq. (59c).
Figure 2 shows our results for SUð3Þ; again, convergence is
quite good and only in the case of a do the approximations
with three or four Fourier modes noticeably differ from
each other.
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B. Finite center string

For finite strings, it is convenient to use prolate sphe-
roidal coordinates with foci on the x1 axis,

x1 ¼ L
2
cosh ξ1 cos ξ2;

x2 ¼ L
2
sinh ξ1 sin ξ2 cos ξ3;

x3 ¼ L
2
sinh ξ1 sin ξ2 sin ξ3;

where ξ1 is non-negative, ξ2 ∈ ½0; π�, ξ3 ∈ ½0; 2πÞ. The
scale factors are

s1 ¼ s2 ¼ s ¼ L
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðξ1Þ þ sin2ðξ2Þ

q
;

s3 ¼
L
2
sinh ξ1 sin ξ2: ð62Þ

Defining σ ¼ sinh ξ1 ∈ ½0;∞Þ, together with ξ2 ¼ ν and
ξ3 ¼ φ, the quark and antiquark are located at the foci
described by σ ¼ 0, ν ¼ 0 and σ ¼ 0, ν ¼ π, respectively.
The line joining them is given by σ ¼ 0, ν ∈ ½0; π�. The
semi-infinite lines extending from x1 ¼ L=2 to þ∞ and
from x1 ¼ −L=2 to −∞, on the x1 axis, are given by
σ ∈ ð0;∞Þ, ν ¼ 0 and σ ∈ ð0;∞Þ, ν ¼ π, respectively.
Then, the asymptotic boundary conditions, when

σ → ∞, are as follows:

aðσ; νÞ → 1; hðσ; νÞ → v; h1ðσ; νÞ → v: ð63Þ

The regularity conditions, when σ → 0, ν ∈ ½0; π�, are

aðσ; νÞ → 0; hðσ; νÞ → 0; ð64Þ

while for ν → 0 or ν → π, with σ ∈ ð0;∞Þ, we require

aðσ; νÞ → 1; hðσ; νÞ → v: ð65Þ
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FIG. 1. [SUð2Þ, g ¼ 0.1, μ ¼ 1, κ ¼ −2, λ ¼ 1, v ¼ 1.] The plots show the infinite string profiles. The dashed lines include Fourier
coefficients up to the fifth order (the term with sin 5πt), while the continuous ones include one more Fourier mode. Each of the plots is
accompanied by a zoomed-in plot (which zooms in on the part marked with a box in the main plot) to see more clearly how far the two
lines are from each other. One can see that the numerics have converged quite well and the two successive approximations are almost on
top of each other.
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Finally, for σ ∈ ½0;∞Þ, h1 is finite. The SUð2Þ Eqs. (42)–(44) become

ð1þ σ2Þ∂2
σaþ ∂2

νa −
�∂σa

σ
þ ∂νa
tan ν

�
¼ L2

4
g2ðσ2 þ sin2νÞh2ða − 1Þ; ð66aÞ
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FIG. 2. [SUð3Þ, g ¼ 0.1, μ ¼ 1.8, κ ¼ −4, λ ¼ 1, v ¼ 2.87.] The plots show, in that order, the infinite string profiles a, h, h0, h1, and
h2, as functions of ρ, with accompanying zoom on the marked region. In this case the dashed lines include three Fourier modes for each
of the unknown functions, while the continuous ones include four.
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ð1þ σ2Þ∂2
σhþ ∂2

νhþ ð1þ 2σ2Þ ∂σh
σ

þ ∂νh
tan ν

−
σ2 þ sin2 ν
σ2 sin2 ν

hða − 1Þ2 ¼ L2

4
ðσ2 þ sin2 νÞðμ2hþ κhh1

þ ðλ=2Þhðh2 þ h21ÞÞ; ð66bÞ

ð1þ σ2Þ∂2
σh1 þ ∂2

νh1 þ ð1þ 2σ2Þ ∂σh1
σ

þ ∂νh1
tan ν

¼ L2

4
ðσ2 þ sin2νÞðμ2h1 þ ðκ þ λh1Þh2Þ: ð66cÞ

Now, expanding around σ ¼ 0 with ν-dependent coeffi-
cients, and around ν ¼ 0 with σ-dependent coefficients, we
obtain

aðσ; νÞ ≈ a2ðνÞσ2 þ a3ðνÞσ3 þ � � � ;
aðσ; νÞ ≈ 1þ a2ðσÞν2 þ � � �
hðσ; νÞ ≈ b1ðνÞσ þ b2ðνÞσ2 þ � � � ;
hðσ; νÞ ≈ vþ b2ðσÞν2 þ � � �
h1ðσ; νÞ ≈ c0ðνÞ þ c2ðνÞσ2 þ � � � ;
h1ðσ; νÞ ≈ c0ðσÞ þ c2ðσÞν2 þ � � � ;

and similar expressions around ν ¼ π, in powers of (ν − π).
Around the quarks, the situation is more subtle. Setting
σ ¼ r cos α, ν ¼ r sin α and considering series expansions
around r ¼ 0, with α-dependent coefficients, we get

aðr; αÞ ≈ cos2α

�
1 − r2sin2α

�
1

6
sin2αþ 1

2
cos2α

�

þ a4ðαÞr4 þ � � �
�
;

hðr; αÞ ≈ b0ðαÞ þ � � � ;
h1ðr; αÞ ≈ c0ðαÞ þ � � � :

The following functions obey all these regularity and
boundary conditions:

aðσ; νÞ ≈ σ2

σ2 þ sin2ν

�
1 −

1

2
sin2ν

�
þOðσ2ν2Þ; ð67aÞ

hðσ; νÞ ≈ vσ2

σ2 þ sin2ν
þOðσν2Þ; ð67bÞ

h1ðσ; νÞ ≈ cðσ; νÞ; ∂c
∂σ ð0; νÞ ¼ 0;

∂c
∂ν ðσ; 0Þ ¼ 0:

ð67cÞ

Note that the first term in Eq. (67a) can be rewritten as

σ2

σ2þsin2ν

�
1−

1

2
sin2ν

�
¼x1−L=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−L=2Þ2þρ2

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1−L=2Þ2þρ2

p
þOððdistance to quarkÞ4Þ

for the quark at x1 ¼ þL=2, and a similar expression,
with x1 − L=2 replaced by x1 þ L=2, for the quark at
x1 ¼ −L=2. The corresponding contributions to the
energy are

2π

Z
∞

0

dρ
Z þ∞

−∞
dx1

1

4g2
ρ

ððx1 ∓ L=2Þ2 þ ρ2Þ2 : ð68Þ

These are L-independent divergences, which obviously
correspond to the quark self-energies. As usual, we will
subtract them to get a finite total energy.
Now, we can follow a procedure similar to that used for

infinite vortices. Initially, we observe that, when σ → ∞, a
behaves like ∼1þ γðνÞe−Lgvσ=2. Then, introducing the
variable t ¼ tanhLgvσ=2, and defining

fðt; νÞ ¼ t2ð1 − t2Þ−1 − 1
3
t4

t2ð1 − t2Þ−1 þ ðLgv
2
Þ2sin2ν − 1

3
t4
;

gðt; νÞ ¼
�
1 −

1

2
ð1 − t2Þsin2ν

�
;

we can introduce the ansätze,

aðt; νÞ ¼ fðt; νÞgðt; νÞ þ t sin ναðt; νÞ; ð69aÞ

hðt; νÞ ¼ vfðt; νÞ þ sin νηðt; νÞ ð69bÞ

(note that the meaning of t used here is different from that
used in Sec. IVA 1). The new unknown functions αðt; νÞ
and ηðt; νÞ are smooth in the region ðσ; νÞ ∈ ½0;∞Þ ×
½0; π� and must vanish when σ ¼ 0, σ → ∞, ν ¼ 0, or
ν ¼ π. In terms of the variables ðt; νÞ, they vanish on the
border of the square ½0; 1Þ × ½0; π�, so they can be Fourier
expanded in terms of the basis elements sinðnπtÞ sinmν,
that is,

aðt; νÞ ¼ fðt; νÞgðt; νÞ þ t sin ν
X∞
n;m¼1

anm sinðnπtÞ sinmν;

hðt; νÞ ¼ vfðt; νÞ þ sin ν
X∞
n;m¼1

bnm sinðnπtÞ sinmν: ð70Þ

Similarly, h1ðt; νÞ − v vanishes when t ¼ 1 and is finite
when t ¼ 0, ν ¼ 0, or ν ¼ π, so it can be expanded in the
basis (p, m ∈ Z),

sin

�
pπ
2
ðtþ 1Þ

�
sinmν; sin

�
pπ
2
ðtþ 1Þ

�
cosmν;
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however, the conditions in (67c) select the latter basis
elements, with p ¼ ð2nþ 1Þ, n ∈ Z. That is, we can
expand

h1ðt;νÞ¼vþc0kðt;νÞþ
X∞
n;m¼0

cnmcos

��
nþ1

2

�
πt

�
cosmν;

where we defined

kðt; νÞ ¼ ðLgv
2
Þ2 sin2 ν

t2ð1 − t2Þ−1 þ ðLgv
2
Þ2 sin2 ν − 1

3
t4
; ð71Þ

which is one between the quarks [ν ∈ ð0; πÞ, t ¼ 0], thus
allowing one to shift the value of h1 there and zero on the
other three edges. We note that terms with even m, in the
expansions for a and h, and with odd m, in the expansion
for h1, will always vanish due to reflection symmetry
through the ðx2; x3Þ plane.
Finally, minimizing with respect to the first several

Fourier coefficients, we obtained the profiles shown in
Fig. 3. There, we can see a, h, h1, and the energy density,
in normal Cartesian coordinates ðz; ρÞ (the mesh lines on
the plotted surfaces are the elliptic coordinates used
during the computations). In Fig. 3, we included the
Fourier coefficients a11, a13, a15, a21, a23, a31, b11, b13,
b21, c0, c00, c02, and c10. Rerunning the minimization but
only including a11, a13, and a21 for a, keeping the
previous h and h1 coefficients, the results are almost
unchanged. Figure 4 displays (in percent) the relative
errors defined as 2ðamore − afewÞ=ðamore þ afewÞ, with
amore and afew the approximation to a with more,
respectively, fewer, Fourier coefficients (and analogously
for h and h1). Applying these methods, we also obtained
approximate solutions in SUð3Þ. In these initial compu-
tations, we included only the (1,1) mode in a and h, and
only the mode multiplying k and the (0,0) mode for h0, h1,
and h2. The first two profiles, a and h, are qualitatively
similar to those obtained in SUð2Þ, while the last three are
similar to h1.

V. A SPECIAL POINT IN PARAMETER SPACE

After developing appropriate numerical methods to solve
the center string field equations, we have a tool that will
permit us to contrast the model with existing lattice data.
For this aim, we will also need some point in parameter
space to start the search for the best fit. In this respect, we
recall that in Ref. [26], the adjusted parameters in a dual
Abelian Higgs model, when fitting the lattice interquark
potential, turned out to be quite close to the BPS point.
Moreover, in Ref. [28], the internal structure of the flux
tube, within Abelian-projected SUð2Þ lattice gauge theory,
was reproduced by the dual Abelian lattice description. The
masses of the dual gauge and Higgs fields turned out to be
quite close, again a typical property associated with a BPS

point.5 In both works, small deviations from this point favor
a weakly type-I superconductor. However, these Abelian
descriptions cannot explain the observed N-ality of con-
fining strings. In this section, we will show how our
effective model permits us to reconcile both properties.

A. Center string BPS point

The SUð2Þ center string profiles display a particular
behavior when the mass parameter is varied. In Fig. 5, we
display aðρÞ, hðρÞ, and h1ðρÞ, for g ¼ 0.1, κ ¼ −2, λ ¼ 1,
v ¼ 2.87. The four cases correspond to μ ¼ 0.8, 0.6, 0.4,
0.2, respectively. We see that h1ðρÞ, the profile associated
with the Higgs field along the Lie algebra constant
direction T1, tends to a constant function when μ → 0

(see Fig. 5). Indeed, at μ2 ¼ 0, from Eq. (15), we have
v ¼ −κ=λ (κ < 0), and it can be verified, not only for
SUð2Þ but also for SUð3Þ, that Eqs. (44) and (51) are
satisfied by setting h1 ≡ v and h0 ¼ h1 ¼ h2 ≡ v, inde-
pendent of the form of h. That is, the field profiles for the
Higgs fields that are not required to vanish on the x1 axis
become frozen at the asymptotic value v. In addition, the
equations for the profile h, namely Eqs. (43) and (48), both
become

∂2h −
ð1 − aÞ2
ðs3Þ2

h ¼ ðλ=2Þhðh2 − v2Þ: ð72Þ

This, together with Eq. (42), shows that, at μ2 ¼ 0, a and h
exactly satisfy the equations for Nielsen-Olesen vortices.
As the equations for the non-Abelian model get

Abelianized, given that μ2 ¼ 0, we may wonder whether
the model (with x1-translation symmetry) has a BPS point.
This would permit us to discuss the stability of the
fundamental vortex, showing these solutions correspond
to energy minima with respect to any physical, possibly
non-Abelian, change. A BPS bound in the bosonic sector
of N ¼ 2 supersymmetric theory, based on a UðNÞ gauge
field, a complex adjoint, and N fundamental scalars, was
obtained in Ref. [31] (see also the review [61], and
references therein). The BPS solutions include not only
Abelian strings embedded in the non-Abelian description
but also monopoles attached to a pair of strings.
For center strings, the initial steps we shall follow are

similar to those given in Ref. [62], where we obtained a
BPS point in a model based on the Lagrangian (12), (14),
modified by the presence of a nonrelativistic term that tends
to align ψ1 and B1 along the same direction in the Lie
algebra. In that case, we used the condition μ2 ¼ 2

9
κ2

λ
[cf. Eq. (14)], where the Higgs potential becomes the
perfect square in Eq. (13), and the decrease in energy due to
the alignment term led all BPS solutions to have zero

5In SUð3Þ a similar analysis points to a type-II superconductor
[27].
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energy. Here, we shall consider μ2 ¼ 0 instead. In this
case, after a general parametrization of the field color
structure, the Higgs potential can also be written as a
perfect square, leading to a relativistic model that accepts a
BPS bound. This time, the minimum energy center string
states will be 2πv2 and 0, for fundamental and adjoint
charges, respectively.
Let us consider infinite center strings in SUð2Þ and the

complexified variable,

ζ¼ψ2þ iψ3ffiffiffi
2

p ; ψ2¼
ζþζ†ffiffiffi

2
p ; ψ3¼

ζ−ζ†ffiffiffi
2

p
i
: ð73Þ

In this section, we use Cartesian coordinates and assume
translation symmetry along the x1 axis. Then, using the
cyclicity property,

hX; ½Y; Z�i ¼ h½X; Z†�; Yi; ð74Þ

FIG. 3. [SUð2Þ, L ¼ 2, g ¼ 0.1, μ ¼ 0.9, κ ¼ −2, λ ¼ 1, v ¼ 1.47.] Here, we show the approximation with more Fourier coefficients
described in the text. The axes are x1, the radial distance to the x1 axis, and the different profiles. The mesh corresponds to the prolate
spheroidal coordinates used in the computations. (d) The energy density, after the quark self-energy density inside the integral in (68) has
been subtracted. (e) Its spatial distribution.
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the hermiticity of Ai, and the Jacobi identity, we have
(i ¼ 2, 3)

hDiX;DiXi ¼ hDX;DXi þ ghB1; ½X;X†�i
þ ∂3hX; iD2Xi − ∂2hX; iD3Xi; ð75Þ

where D ¼ D2 þ iD3. For example, taking X ¼ ζ, we
obtain

hDiζi2 ¼ hDζi2 þ gh½ζ; ζ†�; B1i þ ∂3hζ; iD2ζi
− ∂2hζ; iD3ζi; ð76Þ

and the energy per unit length becomes

E ¼
Z

d2xρ;

ρ¼ 1

2
hDiψ1i2 þ hDζi2 þ 1

2
hB1i2 þ gh½ζ; ζ†�;B1i þVHiggs;

ð77Þ

where we have used the boundary condition,

Diζ → 0 for ðx2; x3Þ → ∞; ð78Þ

needed for a finite E. Now, in the general parametrization
ψA ¼ ΨjABTB, the 3 × 3 real matrix Ψ can always be
decomposed as the product of a lower triangular matrix L

times an orthogonal matrix. If Ψ is invertible, requiring the
diagonal elements of L to be positive, the factorization
is unique. As a matrix in Oð3Þ is a sign times an SOð3Þ
matrix, and detL¼L11L22L33, when detΨ > 0 (detΨ < 0)
there is a unique decomposition Ψ ¼ þLRT (Ψ ¼ −LRT),
with RT ∈ SOð3Þ. That is, we can represent

ψ1 ¼ L11n1;

ψ2 ¼ L21n1 þ L22n2;

ψ3 ¼ L31n1 þ L32n2 þ L33n3; ð79Þ

where nA ¼ STAS−1 ¼ TBRBA. For SUð2Þ, in our con-
ventions, we have f123 ¼ 1=

ffiffiffi
2

p
. Then, setting μ2 ¼ 0,

using the asymptotic vacuum value v ¼ −κ=λ (κ < 0), and
c ¼ ð1=4Þλv4, needed to have zero potential energy at the
vacuum, the Higgs potential can be cast in the form

VHiggs ¼
λ

4
½L2

11ðL22 − L33Þ2 þ 2L22L33ðL11 − vÞ2

þ ðL22L33 − v2Þ2� þ λ

4
½ðL11L32Þ2 þ ðL21L33Þ2

þ ðL21L32 − L22L31Þ2�: ð80Þ

Finally, expanding

B1 ¼ B11n1 þ B12n2 þ B13n3; ð81Þ

FIG. 4. Relative errors, in percent, for the first three profiles in Fig. 3.
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we note that at λ ¼ g2 we can write

ρ ¼ 1

2
hDiψ1i2 þ hDζi2 þ 1

2

�
B11 þ

gffiffiffi
2

p ðL22L33 − v2Þ
�
2

þ gv2ffiffiffi
2

p B11 þ
1

2

�
B12 −

gffiffiffi
2

p L21L33

�
2

þ 1

2

�
B13 þ

gffiffiffi
2

p ðL21L32 − L22L31Þ
�
2

þ g2

4
½L2

11ðL22 − L33Þ2 þ 2L22L33ðL11 − vÞ2

þ ðL11L32Þ2�: ð82Þ

Setting the squares to zero, we get the BPS equations.
Among them, L11 ¼ v and Diψ1 ¼ 0 lead to the condition
Din1 ¼ 0. Using the fields CA

i defined in Eq. (17), the
general solution to this condition is (see Ref. [22] and
references therein)

Ai ¼ ain1 − Ca
i na; ð83Þ

a ¼ 2, 3, and the resulting magnetic field is along n1; that
is, B12 ¼ 0, B13 ¼ 0,

B11 ¼ ∂2a3 − ∂3a2 −
g
2
ϵ1jkf1abCa

jC
b
k: ð84Þ

For a finite energy, the asymptotic behavior ai → −C1
i is

required, as the combination −CA
i nA is locally a pure gauge

field. The associated field strength is

Fij¼−FA
ijðCÞnA; FA

ijðCÞ¼∂iCA
j −∂jCA

i þgfABCCB
i C

C
j :

If n1 is well defined everywhere, then the only nonzero
component is F1

ijðCÞ, and it is concentrated on the string
where n2, n3 are ill defined, as occurs at the center string
guiding center [cf. Eq. (26)]. Noting that

Z
d2xð∂2a3 − ∂3a2Þ ¼

I
dxiai ¼ −

I
dxiC1

i

¼
Z

d2xð∂2C1
3 − ∂3C1

2Þ;

5 10 15 20 25 30

0.5

1.0

1.5

2 4 6 8 10 12 14

0.5

1.0

1.5

2 4 6 8 10 12 14

0.5

1.0

1.5

2 4 6 8 10 12 14

0.5

1.0

1.5

2.0

FIG. 5. [SUð2Þ, g ¼ 0.1, κ ¼ −2, λ ¼ 1.] aðρÞ (lower blue line), hðρÞ (central red line), h1ðρÞ (upper yellow-green line).

EXPLORING CENTER VORTICES IN SUð2Þ AND … PHYSICAL REVIEW D 95, 025001 (2017)

025001-17



we obtain Z
d2xB11 ¼ −

1

2

Z
d2xϵ1jkF1

jkðCÞ: ð85Þ

Then, under the condition Din1 ¼ 0, the flux of B1

projected along n1 is topological and invariant under
regular gauge transformations. For a single center string,
this flux turns out to be 2π

ffiffiffi
2

p
=g (see [22]), and the energy

per unit length becomes E ¼ 2πv2. Setting the remaining
squares to zero gives

L22 ¼ L33 ¼ h; L21 ¼ L31 ¼ L32 ¼ 0;

Dζ ¼ 0; B11 ¼
gffiffiffi
2

p ðv2 − h2Þ: ð86Þ

Finally, using that Ai is locally given by Sðai þ C1
i ÞT1S−1þ

i
g S∂iS−1, we get

ai ¼
ffiffiffi
2

p

g
ϵij∂j ln h − C1

i ;

−∂2 ln hþ 2πδð2Þðx2; x3Þ ¼
g2

2
ðv2 − h2Þ: ð87Þ

It is important to underline that the compatibility of the
BPS and YMH equations is due to the fact that the energy
density (82) is bounded by (a constant times) the projection
hn1; B1i, hn1i2 ¼ 1. This would not be the case if the
projection were along the dynamical Higgs field ψ1, as
occurs at μ2 ¼ 2

9
κ2

λ , where it is necessary to redefine the
model by subtracting a nonrelativistic term proportional
to hψ1; B1i [62]. A similar field-dependent projection is
observed in the BPS center string bound of Ref. [32]. In that
case, to keep the equations compatible, an appropriate
limiting behavior of the parameters was needed.
As the BPS bound does not rely on cylindrical symmetry,

we can conclude that there are no forces between funda-
mental center strings carrying the same weight and sepa-
rated by a finite distance. This can easily be modified
by moving around in parameter space. For other
properties related with string interactions in SUðNÞ, see
Secs. II B 1 and V C.

B. N-ality

At the beginning of Sec. V, assuming cylindrical sym-
metry, Abelianized equations in SUð2Þ and SUð3Þ flavor
symmetric models were obtained at μ2 ¼ 0. More recently,
an extension of this property to SUðNÞ has also been
derived, including an ansatz for k strings6 with weight
given by k times a fundamental weight [63]. As our model
has an SUðNÞ → ZðNÞ SSB pattern, this Abelian-like

behavior coexists with N-ality. Take, for example, a pair
of external adjoint quarks. The minimum energy solution
will not be characterized by the Abelian-like phase in
Eq. (19) but rather by a non-Abelian phase. In effect, let us
consider the maps,

SAbe ¼ eiφ2N~α·~T; Snon−Abe ¼ eiφ~β1·~Teiγ
ffiffiffi
N

p
Tαe−iφ~β2·~T;

ð88Þ

where γ ∈ ½0; π� is the angle in a bipolar coordinate
system, with foci at the quark locations, on any plane that

contains the quarks. The fundamental weights ~βi are

chosen such that ~β1 − ~β2 ¼ 2N~α. On the x1 axis, when
x1 ∈ ð−∞;−L=2Þ or ðþL=2;þ∞Þ, γ vanishes and

Snon−Abe ¼ eiφð~β1−~β2Þ·~T: ð89Þ

On the other hand, between the quarks γ ¼ π, so that there
are no frame singularities in that region,

Snon−Abe ∼ eiπ
ffiffiffi
N

p
Tα : ð90Þ

In the Abelian case, the second term in the field strength
tensor (18) has a nontrivial contribution,

−FA
23ðCÞnA ¼ 2π

g
2N~αδð2Þðx2; x3Þ; ð91Þ

while in the non-Abelian case, this contribution is

−FA
23ðCÞnA ¼ 2π

g
2N~αδð2Þðx2; x3Þ½θðx1 − L=2Þ

þ θð−x1 − L=2Þ� ¼ Jij; ð92Þ

where θð·Þ is the Heaviside step function. Then, at points
with jx1j > L=2 on the x1 axis, taking the condition
AA

μ → 0, in both cases the external Dirac string Jij for
adjoint quarks is canceled. The difference is that, in the
Abelian case, to get a smooth energy density (22) at points
with jx1j < L=2 on the x1 axis, the condition AA

μ → CAμ is
needed, and profiles associated with off-diagonal gener-
ators rotated by SAbe should go to zero. On the other hand,
in that region, in the non-Abelian case, a smooth energy
density is compatible with the condition AA

μ → 0 and,
because of Eq. (90), no special regularity condition for the
Higgs field profiles is needed. Then, using the Abelian or
the non-Abelian phase, the energy minimization will return
a positive or zero value, respectively. This corresponds to
an excited adjoint string (local minimum) or the absence
of a confining string between adjoint quarks (global
minimum).6They can be found for N ≥ 4.
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C. Perspectives

Although a BPS bound for N ≥ 3 has not been derived
yet, it is clear that μ2 ¼ 0, λ ¼ g2, is a good point to start
exploring the parameter space and accommodate the field
transverse localization lengths in confining strings; at this
point, the magnetic and Higgs field localization lengths
coincide. Another important piece of information to be
accommodated was obtained in SUðNÞ lattice YM theory
(N ≥ 4) [30]. In particular, the ratios of k string to
fundamental string tensions are compatible with either a
sine law, σk=σf ¼ sin kπ

N = sin π
N, or a Casimir law, σk=σf ¼

kðN − kÞ=ðN − 1Þ. In both cases σ2 < 2σf , so it is expected
that the interaction between center strings with the same
fundamental weight is attractive. For large N, and finite k,
the ratios become linear, thus signaling they become
noninteracting in this limit. Starting at μ2 ¼ 0, λ ¼ g2,
attractive or repulsive interactions can be obtained by
changing the model parameters. For example, keeping
μ2 ¼ 0 and moving to λ < g2, k strings are expected to
be bound states of k fundamental strings. Studies about how
the above-mentioned properties depend on μ2, which in the
SSB region can go from negative values up to μ2 < 2

9
κ2

λ , the
fitting to sine or Casimir laws, as well as the interquark
potentials are in progress [63].
In particular, the comparison with lattice potentials will

be facilitated by the use of scaled variables,

L ¼ x=
ffiffiffi
σ

p
; fðxÞ ¼ ð1= ffiffiffi

σ
p ÞVðx= ffiffiffi

σ
p Þ; ð93Þ

where σ is the string tension, a natural scale in the problem,
which contains a pair of parameters with dimension of
mass, μ, κ (and a pair of adimensional ones g, λ). The
tension can be computed following the methods in Sec. IV
A, for given input parameters, and it can be fixed to be
σ ¼ ð440 MeVÞ2. For instance, the SUð2Þ lattice potential
was adjusted by

VðLÞ ≈ c − e=Lþ σL; ð94Þ

with e ∼ 0.256 (see Refs. [59,64]). This, together with the
BPS properties, can give an idea about typical input
parameters. At smaller distances our potential should be

Coulomb-like ∼ − Q2
m

4πL where Qm is the monopole charge
representing the fundamental quark. In our conventions, the
charge for a fundamental monopole is Qm ¼ 2π

g

ffiffiffi
2

p
. At

μ ¼ 0, where the equations get Abelianized, the vacuum
value is v ¼ −κ=λ, and at λ ¼ g2 the string tension is
σ ¼ 2πv2. Thus, merging all this information, typical
values are obtained from

g ¼
ffiffiffiffiffiffi
2π

e

r
; μ ¼ 0; κ ¼ −

ffiffiffiffiffiffiffiffi
2πσ

p

e
; λ ¼ 2π

e
;

ð95Þ

which implies

g ¼ 5.01; μ ¼ 0;

v ¼ −κ=λ ¼ 175.55 ðinMeVÞ; λ ¼ 25.13: ð96Þ

Finally, we note that the stringlike behavior is expected
for interquark separations much larger than both the
magnetic and the Higgs field localization widths, given
by ∼1=ðgvÞ and ∼1=ð ffiffiffi

λ
p

vÞ, respectively. However, it is
interesting to note that lattice calculations point to a static
potential that is well described by Eq. (94) over a large
range of L values, from asymptotic to smaller distances
where the flux tube picture is no longer valid. That is,
although the origin of the 1=L effects at small and large
distances are different, both regimes are described by a
single 1=L term.7 This type of “continuous” behavior was
also noted for SUðNÞ in Ref. [60] and could indicate that
the validity of the model could also be extended. In this
respect, it would also be interesting to analyze the hybrid
states and the effect of the adjoint dual monopole (valence
gluon) on the hybrid potential.

VI. CONCLUSIONS

The detailed knowledge we have about interquark lattice
potentials makes us wonder what the natural effective
description for the Yang-Mills vacuum could be. This
search can be guided by the symmetries, by the way they
are realized, by the identification of large distance relevant
terms in the functional energy, and, of course, by the lattice
data. Here, we analyzed a natural class of models with
SUðNÞ → ZðNÞ SSB. This is an interesting SSB pattern, as
the confining string would incorporate N-ality. Initially, we
tested a numerical method to solve the center string field
equations, obtaining the solutions for infinite and finite
center strings, the latter running between a monopole
and an antimonopole, representing the external quark
and antiquark, respectively.
In fact, the lattice interquark potential has already been

adjusted in different phenomenological models, and the
lattice data seem to set the parameters close to the interface
between type I and type II superconductors. For instance,
this has been observed in a dual Abelian Higgs model that
essentially describes a condensate of Abelian monopoles.
However, we know that in that case, N-ality cannot be
accommodated. In the second part of this work, we
reconciled both properties in our framework. We showed
numerically and analytically [for SUð2Þ and SUð3Þ] that
there is a region in parameter space where the field
equations freeze some Higgs profiles to a constant vacuum
value. In this region, the profiles for the gauge field along a
local Cartan direction, and for the Higgs fields that rotate,

7The lattice coefficient e ∼ 0.256, obtained by including
smaller separations, turns out to match the Lüscher value π=12.
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exactly satisfy Nielsen-Olesen equations. So we can
already conclude that in our non-Abelian context, the
fitting of lattice data will be as good as in the Abelian
one, with the advantage of implementing N-ality.
Moreover, in the case of SUð2Þ, after freezing one of the

Higgs fields at a local vacuum value, we derived a BPS
bound that is topological and gauge invariant under regular
gauge transformations. This point provides the type-I/type-
II superconductor interface. The steps followed are similar
to those previously given to derive a BPS point, at μ2 ¼ 2

9
κ2

λ ,
λ ¼ g2, by the inclusion of a nonrelativistic interaction that
tends to align the magnetic field and one of the Higgs fields
along the same Lie algebra direction. As a consequence, in
that work, all BPS solutions had zero energy. Here, we have
shown that to get a BPS bound at μ2 ¼ 0, λ ¼ g2, the model
requires no alignment term. This time, the minimum energy

center string states are 2πv2 and 0, for fundamental and
adjoint charges, respectively.
These are essential tools that will permit one to deter-

mine, in a forthcoming work, the appropriate model that is
compatible with the various observables already computed
in the lattice, as normal and hybrid potentials, and the
energy density profiles.

ACKNOWLEDGMENTS

We would like to thank Roman Höllwieser and Gabriel
Santos-Rosa for useful discussions. The Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq), the
Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior (CAPES), and FAPERJ are acknowledged for
the financial support.

[1] G. S. Bali, Phys. Rep. 343, 1 (2001).
[2] M. Lüscher and P. Weisz, J. High Energy Phys. 07 (2002)

049.
[3] S. Kratochvila and P. de Forcrand, Nucl. Phys. B671, 103

(2003).
[4] Y. Nambu, Phys. Rev. D 10, 4262 (1974).
[5] S. Mandelstam, Phys. Rep. 23C, 245 (1976).
[6] G. ’t Hooft, Nucl. Phys. B138, 1 (1978).
[7] G. S. Bali, V. Bornyakov, M. Muller-Preussker, and K.

Schilling, Phys. Rev. D 54, 2863 (1996).
[8] J. Greensite, K. Langfeld, S. Olejnik, H. Reinhardt, and T.

Tok, Phys. Rev. D 75, 034501 (2007).
[9] M. Faber, J. Greensite, and S. Olejnik, Phys. Rev. D 57,

2603 (1998).
[10] M. Engelhardt and H. Reinhardt, Nucl. Phys. B567, 249

(2000).
[11] J. M. Cornwall and B. Yan, Phys. Rev. D 53, 4638 (1996).
[12] L. Del Debbio, M. Faber, J. Greensite, and S. Olejnik, Phys.

Rev. D 55, 2298 (1997).
[13] K. Langfeld, H. Reinhardt, and O. Tennert, Phys. Lett. B

419, 317 (1998); 431, 141 (1998).
[14] Ph. de Forcrand and M. Pepe, Nucl. Phys. B598, 557 (2001).
[15] F. V. Gubarev, A. V. Kovalenko, M. I. Polikarpov, S. N.

Syritsyna, and V. I. Zakharov, Phys. Lett. B 574, 136 (2003).
[16] G. Mack and V. B. Petkova, Ann. Phys. (N.Y.) 123, 442

(1979); 125, 117 (1980).
[17] M. Baker, J. S. Ball, and F. Zachariasen, Phys. Rev. D 41,

2612 (1990).
[18] M. Baker, J. S. Ball, and F. Zachariasen, Phys. Rev. D 44,

3328 (1991).
[19] A. Gorsky, M. Shifman, and A. Yung, Phys. Rev. D 71,

045010 (2005).
[20] K. Konishi, Lect. Notes Phys. 737, 471 (2008).
[21] K. Konishi and L. Spanu, Int. J. Mod. Phys. A 18, 249

(2003).
[22] L. E. Oxman, J. High Energy Phys. 03 (2013) 038.

[23] M. Baker, J. S. Ball, and F. Zachariasen, Phys. Rev. D 51,
1968 (1995).

[24] M. Baker, J. S. Ball, and F. Zachariasen, Phys. Rev. D 56,
4400 (1997).

[25] M. Baker, N. Brambilla, H. G. Dosch, and A. Vairo, Phys.
Rev. D 58, 034010 (1998).

[26] S. Maedan, Y. Matsubara, and T. Suzuki, Prog. Theor. Phys.
84, 130 (1990).

[27] Y. Koma, E. M. Ilgenfritz, H. Toki, and T. Suzuki, Phys.
Rev. D 64, 011501(R) (2001).

[28] Y. Koma, M. Koma, E. M. Ilgenfritz, and T. Suzuki, Phys.
Rev. D 68, 114504 (2003).

[29] A. M. Green, C. Michael, and P. S. Spencer, Phys. Rev. D
55, 1216 (1997).

[30] B. Lucini and M. Teper, Phys. Lett. B 501, 128 (2001).
[31] D. Tong, Phys. Rev. D 69, 065003 (2004).
[32] M. A. C. Kneipp and P. Brockill, Phys. Rev. D 64, 125012

(2001).
[33] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
[34] J. Greensite, An Introduction to the Confinement Problem

(Springer, Berlin-Heidelberg, 2011).
[35] H. Reinhardt, Nucl. Phys. B628, 133 (2002).
[36] M. Engelhardt, M. Quandt, and H. Reinhardt, Nucl. Phys.

B685, 227 (2004).
[37] K. Bardakci and S. Samuel, Phys. Rev. D 18, 2849 (1978).
[38] M. Kiometzis, H. Kleinert, and A. M. J. Schakel, Fortschr.

Phys. 43, 697 (1995).
[39] H. Kleinert, Path Integrals in Quantum Mechanics, Sta-

tistics, Polymer Physics, and Financial Markets (World
Scientific, Singapore, 2006).

[40] M. B. Halpern and W. Siegel, Phys. Rev. D 16, 2486 (1977).
[41] D. Antonov, Surveys High Energy Phys. 14, 265 (2000).
[42] L. E. Oxman, G. C. Santos Rosa, and B. F. I. Teixeira, J.

Phys. A 47, 305401 (2014).
[43] A. P. Balachandran, P. Salomonson, B. Skagerstam, and J.

Winnberg, Phys. Rev. D 15, 2308 (1977).

L. E. OXMAN and D. VERCAUTEREN PHYSICAL REVIEW D 95, 025001 (2017)

025001-20

http://dx.doi.org/10.1016/S0370-1573(00)00079-X
http://dx.doi.org/10.1088/1126-6708/2002/07/049
http://dx.doi.org/10.1088/1126-6708/2002/07/049
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.014
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.014
http://dx.doi.org/10.1103/PhysRevD.10.4262
http://dx.doi.org/10.1016/0370-1573(76)90043-0
http://dx.doi.org/10.1016/0550-3213(78)90153-0
http://dx.doi.org/10.1103/PhysRevD.54.2863
http://dx.doi.org/10.1103/PhysRevD.75.034501
http://dx.doi.org/10.1103/PhysRevD.57.2603
http://dx.doi.org/10.1103/PhysRevD.57.2603
http://dx.doi.org/10.1016/S0550-3213(99)00727-0
http://dx.doi.org/10.1016/S0550-3213(99)00727-0
http://dx.doi.org/10.1103/PhysRevD.53.4638
http://dx.doi.org/10.1103/PhysRevD.55.2298
http://dx.doi.org/10.1103/PhysRevD.55.2298
http://dx.doi.org/10.1016/S0370-2693(97)01435-4
http://dx.doi.org/10.1016/S0370-2693(97)01435-4
http://dx.doi.org/10.1016/S0370-2693(98)00583-8
http://dx.doi.org/10.1016/S0550-3213(01)00009-8
http://dx.doi.org/10.1016/j.physletb.2003.08.066
http://dx.doi.org/10.1016/0003-4916(79)90346-4
http://dx.doi.org/10.1016/0003-4916(79)90346-4
http://dx.doi.org/10.1016/0003-4916(80)90121-9
http://dx.doi.org/10.1103/PhysRevD.41.2612
http://dx.doi.org/10.1103/PhysRevD.41.2612
http://dx.doi.org/10.1103/PhysRevD.44.3328
http://dx.doi.org/10.1103/PhysRevD.44.3328
http://dx.doi.org/10.1103/PhysRevD.71.045010
http://dx.doi.org/10.1103/PhysRevD.71.045010
http://dx.doi.org/10.1007/978-3-540-74233-3
http://dx.doi.org/10.1142/S0217751X03011492
http://dx.doi.org/10.1142/S0217751X03011492
http://dx.doi.org/10.1007/JHEP03(2013)038
http://dx.doi.org/10.1103/PhysRevD.51.1968
http://dx.doi.org/10.1103/PhysRevD.51.1968
http://dx.doi.org/10.1103/PhysRevD.56.4400
http://dx.doi.org/10.1103/PhysRevD.56.4400
http://dx.doi.org/10.1103/PhysRevD.58.034010
http://dx.doi.org/10.1103/PhysRevD.58.034010
http://dx.doi.org/10.1143/ptp/84.1.130
http://dx.doi.org/10.1143/ptp/84.1.130
http://dx.doi.org/10.1103/PhysRevD.64.011501
http://dx.doi.org/10.1103/PhysRevD.64.011501
http://dx.doi.org/10.1103/PhysRevD.68.114504
http://dx.doi.org/10.1103/PhysRevD.68.114504
http://dx.doi.org/10.1103/PhysRevD.55.1216
http://dx.doi.org/10.1103/PhysRevD.55.1216
http://dx.doi.org/10.1016/S0370-2693(01)00097-1
http://dx.doi.org/10.1103/PhysRevD.69.065003
http://dx.doi.org/10.1103/PhysRevD.64.125012
http://dx.doi.org/10.1103/PhysRevD.64.125012
http://dx.doi.org/10.1016/S0146-6410(03)90012-3
http://dx.doi.org/10.1016/S0550-3213(02)00130-X
http://dx.doi.org/10.1016/j.nuclphysb.2004.02.036
http://dx.doi.org/10.1016/j.nuclphysb.2004.02.036
http://dx.doi.org/10.1103/PhysRevD.18.2849
http://dx.doi.org/10.1002/prop.2190430803
http://dx.doi.org/10.1002/prop.2190430803
http://dx.doi.org/10.1103/PhysRevD.16.2486
http://dx.doi.org/10.1080/01422410008229119
http://dx.doi.org/10.1088/1751-8113/47/30/305401
http://dx.doi.org/10.1088/1751-8113/47/30/305401
http://dx.doi.org/10.1103/PhysRevD.15.2308


[44] L. E. Oxman (to be published).
[45] G. H.Fredrickson,TheEquilibriumTheoryof Inhomogeneous

Polymers, 1st ed. (Clarendon Press, Oxford, 2006), p. 452.
[46] H. J. de Vega and F. A. Schaposnik, Phys. Rev. D 34, 3206

(1986).
[47] H. J. de Vega, Phys. Rev. D 18, 2932 (1978).
[48] H. J. de Vega and F. A. Schaposnik, Phys. Rev. Lett. 56,

2564 (1986).
[49] J. Heo and T. Vachaspati, Phys. Rev. D 58, 065011 (1998).
[50] L. E. Oxman, J. High Energy Phys. 07 (2011) 078.
[51] B. Ketzer, Proc. Sci., QNP2012 (2012) 025.
[52] K. J. Juge, J. Kuti, and C. J. Morningstar, Nucl. Phys. B,

Proc. Suppl. 63, 326 (1998).
[53] L. E. Oxman, arXiv:1506.05186.
[54] A. Hanany and D. Tong, J. High Energy Phys. 07 (2003) 037.
[55] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung,

Nucl. Phys. B673, 187 (2003).
[56] A. Armoni and M. Shifman, Nucl. Phys. B671, 67 (2003).

[57] M. Shifman and A. Yung, Phys. Rev. D 77, 066008
(2008).

[58] S. Monin, M. Shifman, and A. Yung, Phys. Rev. D 92,
025011 (2015).

[59] G. S. Bali, C. Schlichter, and K. Schilling, Phys. Rev. D 51,
5165 (1995).

[60] A. Athenodorou, B. Bringoltz, and M. Teper, Proc. Sci.,
LAT2009 (2009) 223; M. Teper, Acta Phys. Pol. B 40, 3249
(2009); A. Athenodorou, B. Bringoltz, and M. Teper, J.
High Energy Phys. 02 (2011) 030.

[61] D. Tong, Ann. Phys. (Berlin) 324, 30 (2009).
[62] L. E. Oxman, Adv. High Energy Phys. 2015, 494931

(2015).
[63] G. Moreira Simões, L. E. Oxman, and D. Vercauteren (to be

published); R. Höllwieser, L. E. Oxman, and D. Vercauteren
(to be published).

[64] G. S. Bali, K. Schilling, and A. Wachter, Phys. Rev. D 55,
5309 (1997).

EXPLORING CENTER VORTICES IN SUð2Þ AND … PHYSICAL REVIEW D 95, 025001 (2017)

025001-21

http://dx.doi.org/10.1103/PhysRevD.34.3206
http://dx.doi.org/10.1103/PhysRevD.34.3206
http://dx.doi.org/10.1103/PhysRevD.18.2932
http://dx.doi.org/10.1103/PhysRevLett.56.2564
http://dx.doi.org/10.1103/PhysRevLett.56.2564
http://dx.doi.org/10.1103/PhysRevD.58.065011
http://dx.doi.org/10.1007/JHEP07(2011)078
http://dx.doi.org/10.1016/S0920-5632(97)00759-7
http://dx.doi.org/10.1016/S0920-5632(97)00759-7
http://arXiv.org/abs/1506.05186
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.021
http://dx.doi.org/10.1103/PhysRevD.77.066008
http://dx.doi.org/10.1103/PhysRevD.77.066008
http://dx.doi.org/10.1103/PhysRevD.92.025011
http://dx.doi.org/10.1103/PhysRevD.92.025011
http://dx.doi.org/10.1103/PhysRevD.51.5165
http://dx.doi.org/10.1103/PhysRevD.51.5165
http://dx.doi.org/10.1007/JHEP02(2011)030
http://dx.doi.org/10.1007/JHEP02(2011)030
http://dx.doi.org/10.1016/j.aop.2008.10.005
http://dx.doi.org/10.1155/2015/494931
http://dx.doi.org/10.1155/2015/494931
http://dx.doi.org/10.1103/PhysRevD.55.5309
http://dx.doi.org/10.1103/PhysRevD.55.5309

