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In this work, we study linearized gravitational fields on the entire Minkowski spacetime including
spacelike infinity. The generalized conformal field equations linearized about a Minkowski background are
utilized for this purpose. In principle, this conformal representation of Einstein’s equations can be used to
carry out global simulations of Minkowski spacetime. We thoroughly investigate this possibility.
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I. INTRODUCTION

The recent direct observation of gravitational waves [1]
demonstrated conclusively the predictive power of numeri-
cal relativity in problems of high complexity where the
known analytical methods cannot be applied. Since there
are no analytical expressions for the waveforms expected
from binary black hole mergers, like the one observed by
LIGO, they were obtained numerically and then compared
to the actual findings of [1]. The fact that the observed
waveforms agree to a high level of accuracy with the
theoretically expected ones marks another success of
general relativity.
Numerical relativity experienced a rapid advance in the

last couple of decades, fueled mainly by the urge to model
binary systems of massive compact objects. The standard
way of describing a system of this kind is as an isolated
system, i.e., a compact self-gravitating astrophysical object
embedded in an asymptotically flat spacetime. Although
this approximation provides a rigid basis for the analytical
and numerical study of self-gravitating systems, it puts a
huge burden especially on the numerical side since now the
infinite span of the asymptotically flat spacetime must be
somehow simulated with finite computational resources.
Several approaches have been developed over the years to
deal with this problem.
The most common approach is based on the Cauchy

formulation of Einstein’s equations. In this approach the
spacelike hypersurfaces of constant time are truncated at a
finite distance where an artificial timelike boundary is
introduced. To ensure that the resulting initial boundary
value problem is mathematically well posed and numeri-
cally stable, appropriate boundary conditions must be
imposed at this boundary. The boundary conditions must
satisfy the constraints on every time slice and must be
absorbing, i.e., purely outgoing, in order to minimize the

amount of spurious reflections on the boundary. During the
last decade, following the seminal works [2–4], more and
more sophisticated codes were developed based on this
approach. An indication of the high quality of these
numerical schemes is the fact that the numerically com-
puted waveforms with which the actual waveforms
detected by LIGO [1] have been compared were modeled
upon [3]. Despite its successes, and the fact that there is
definitely space for further improvement, the Cauchy
approach has certain limitations emanating mainly from
the fact that, in general relativity, local expressions for the
gravitational energy density and flux do not exist. This in
turn makes it impossible to construct completely absorbing
boundary conditions for boundaries that stand at a finite
distance. In addition, as shown in [5], when gravity is
coupled to (e.g., scalar or Yang-Mills) fields, the location
where information is extracted from is of essential physical
importance as the decay rates of the fields depend on the
location of the observer. One also has to bear in mind that
while the Cauchy approach is very well adapted to the
study of binary and other isolated systems, it cannot be
used to answer questions that require the inclusion of
spacetime infinity into the computational domain like the
feasibility of global simulations of entire spacetimes, the
stability of black hole spacetimes, and the cosmic censor-
ship conjecture. Strictly speaking, even the aim of comput-
ing the exact gravitational waveforms emitted from an
isolated system necessitates the inclusion of the entire
spacetime. However, for the accuracies needed for the
current detectors, this does not seem to be an issue.
Apossibleway to extend the standardCauchy approach all

the way out to infinity is by combining it with the so-called
characteristic approach [6,7]. This approach uses lightlike,
instead of spacelike, hypersurfaces that reach all the way out
to null infinity through a compactification of the spatial
coordinate. In the resulting Cauchy-characteristic matching
method [8], the interior region is treated with the standard
Cauchy techniques, while the distant asymptotically flat
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region is left to the characteristic approach. (In [9] the
characteristic method has also been used successfully to
treat the inner boundary of the Cauchy domain in a similar
way with the outer boundary.) The two approaches are
matched along a transparent, continuous (and at least once
differentiable) timelike boundary that has the dual role of
providing anouter (inner) boundary condition for theCauchy
(characteristic) evolution. The data flow at the boundary is a
two-way flow with the Cauchy and characteristic codes
providing exact boundary values for each other. The con-
struction of such a two-way boundary is not so trivial as the
whole (analytical and numerical) setup changes at the
interface. This complexity calls for the development of
highly sophisticated techniques that could enable the con-
struction of such a boundary. Although considerable
progress has been made in that direction [10], the current
implementation of the boundary is still one way [11].
Specifically, absorbing boundary conditions are imposed
on the interface between the two codes with data flowing
only from theCauchy to the characteristic region, but not vice
versa. Thus, in its current status the Cauchy-characteristic
matching suffers from the same limitations as the standard
Cauchy method.
It seems that the inclusion of infinity into the computa-

tional domain demands a more sophisticated approach than
just the introduction of a boundary at finite distance.
Penrose’s concept of conformal infinity [12] provides an
unexpectedly simple and mathematically sound way to deal
with the difficulties related to the infinite span of asymp-
totically flat spacetimes. In this picture the spacetime metric
g is conformally transformed, g ¼ Ω−2g, with an appro-
priately chosen conformal factor Ω. In this way spacetime
infinity is brought to a finite distance. In the conformal
spacetime g, the outer boundary of the computational
domain (that now lies at infinity) emerges naturally as
the locus where Ω ¼ 0, and thus it does not have to be
artificially introduced. In addition, as it lies at infinity, it is
completely absorbing, and thus no boundary conditions
have to be imposed there. Research in this setting has taken
two different but closely related directions.
In the first approach the spacetime is foliated with

spacelike hyperboloidal hypersurfaces that reach null
infinity in order to avoid the singular nature of spacelike
infinity. A number of different formulations of Einstein’s
equations in the context of the hyperboloidal foliation have
appeared through the years. In [13] Friedrich managed to
express Einstein’s equations for the conformal metric as a
manifestly symmetric hyperbolic system that is regular all
the way to null infinity. With this set of equations, hyper-
boloidal initial data have been successfully evolved along
null infinity, and even up to timelike infinity, in several
different scenarios [14–16]. An alternative approach by
Moncrief and Rinne [17] employs the standard ADM
formulation to express the conformally transformed
Einstein equations on hyperboloidal hypersurfaces of

constant mean curvature. Although formally singular, the
resulting equations are actually regular at null infinity
provided that certain regularity conditions hold there.
Based on this formulation, long-term stable numerical
evolution was achieved in axial and spherical symmetry
with [18,19] and without [20] matter. Recently, the first
extensive numerical implementation [21] of yet another
formulation of Einstein’s equations on constant mean
curvature slices by Zenginoğlu [22] has appeared with
very encouraging results.
The main motivation for using hyperboloidal hypersur-

faces is the avoidance of spacelike infinity. Thus, any
approach based on a hyperboloidal foliation is only capable
of evolving data along future null infinity and not along past
null infinity as this would require going through the singular
spacelike infinity. So, global simulations are not possible in
this approach. Another implication of excluding spacelike
infinity is that phenomena, such as scattering of gravitational
waves, related to the inflow of gravitational radiation from
null infinity cannot be studied. To address such questions,
spacelike infinity must be brought into the picture. Recently,
it was proposed in [23] that this could be done by extending
the hyperboloidal approaches [17] in a way such that
spacelike infinity is taken into account. The basic idea is
to use a standardCauchyevolution scheme to obtaindata on a
first hyperboloidal slice by evolving initial data that extend to
spacelike infinity and then use these data as initial data for an
already existing hyperboloidal code [20]. The feasibility of
this idea crucially depends on the possibility of constructing
Cauchy initial data that are static in the neighborhood of
spacelike infinity and nonstatic in the interior. The static
character of the data close to spacelike infinity guarantees
that during the short Cauchy evolution, the boundary con-
dition imposed on the outer boundary, which is placed well
inside the static region, is exact. These kinds of initial data
have recently been constructed in [23,24].
Another way of introducing spacelike infinity into the

conformal picture is by employing the so-called general-
ized conformal field equations presented by Friedrich in
[25]. In this approach the spacetime is foliated with generic
spacelike hypersurfaces and Einstein’s equations are refor-
mulated as a symmetric hyperbolic system that is regular at
spacelike and null infinity. The basic ingredient of this
approach is the blowing up of spacelike infinity to a
cylinder I ¼ ½−1; 1� × S2 of finite length that serves as a
link between past and future null infinity. An extremely
pleasant feature of the generalized conformal field equa-
tions is that they reduce to an intrinsic set of evolution
equations on I; i.e., I is a total characteristic of the system,
and thus no boundary conditions are needed there. In
addition, although high in number, the generalized con-
formal field equations have an extremely simple form as the
majority of them are ordinary differential equations and
the rest can be written in a symmetric hyperbolic form.
The first attempt to implement this approach numerically
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appeared in [26] for asymptotically flat, axisymmetric,
radiative spacetimes. The Otago relativity group followed
with an extensive study of the behavior of linearized
gravitational fields on a Minkowski background [27–31].
Therein, a stable and convergent code was developed that
can successfully evolve several different types of initial
data along (and in the neighborhood of) the cylinder I.
Recently, the generalized conformal field equations have
been used to compute a simulation of the response of a
Schwarzschild black hole to the impact of gravitational
waves [32] on a computational domain that includes the
interior of the horizon and parts of null infinity, but not I.
In the present work the generalized conformal field

equations [25] will be used to study gravitational pertur-
bations on Minkowski spacetime, not only in the neighbor-
hood of spacelike infinity but also on the entire Minkowski
spacetime M. To do so, we first conformally embedM into
the Einstein static universe E (see Sec. II A). Then, in
Sec. II B, by appropriately rescaling this finite representa-
tion of M, spacelike infinity is blown up to a cylinder in
accordance with Friedrich’s construction. But now the
range of the equations covers the entire Minkowski
spacetime and not only the regions close to I. Since we
explicitly make use of the spherical symmetry of the
underlying Minkowski spacetime by using polar coordi-
nates, some terms of the generalized conformal field
equations are now singular at the origin (see Sec. III).
We express them as a system of first-order (Sec. III A) and
second-order (Sec. III B) partial differential equations and
choose to implement numerically the latter as it behaves
better numerically [33]. In order to provide initial data for
the latter and to guarantee that the solutions they provide
are the same, a correspondence is established between the
two systems in Sec. III C. In Sec. IV B we describe the way
in which the singular terms of the system (3.21) have been
implemented at the origin. The above setting, in principle,
could be used to carry out global simulations of M if the
expected degeneracy of the evolution equations at the
interface of I with null infinity I could somehow be
circumvented. The conformal compactification of Fig. 2(b)
resulting from the rescaling (2.16) could serve this purpose.
This possibility is thoroughly investigated in Sec. IV D 2.

II. MINKOWSKI SPACETIME

In this section we discuss the details of the setting in
which Minkowski spacetime will be used in the following.
The finite representation of Minkowski spacetime as part
of the Einstein static universe will be briefly presented, and
the blowing up of spacelike infinity to a finite cylinder
pioneered in [25] will be described.

A. Conformal compactification

In the present work we perform a similar conformal
transformation and coordinate change as we did in [27,28].

However, this time we are not only interested in the
neighborhood of spacelike infinity i0 but also in the entire
Minkowski space M. We do not perform a coordinate
inversion to get i0 to be the new origin, but we use the well-
known conformal embedding of M into the Einstein static
universe E to obtain a finite representation of M.
Recall that E is the manifold R × S3 with metric

gE ¼ dT2 − dR2 − sin2Rðdθ2 þ sin2θdϕ2Þ; ð2:1Þ

where the coordinates range in the intervals

−∞ < T < ∞; 0 < R < π; 0 < θ < π;

−π < ϕ < π: ð2:2Þ

Following [34], we briefly show how the entire
Minkowski spacetime can be conformally compactified
and represented as a finite part of the Einstein static
universe. Our starting point will be the Minkowski metric
expressed in spherical coordinates

gM ¼ dt2 − dr2 − r2ðdθ2 þ sin2θdϕ2Þ; ð2:3Þ

which, when expressed in advanced u ¼ tþ r and retarded
w ¼ t − r null coordinates, becomes

gM ¼ dudw −
1

4
ðu − wÞ2ðdθ2 þ sin2θdϕ2Þ;

where −∞ < w ≤ u < ∞. To employ Penrose’s technique
[12] of bringing infinity into finite distance, new null
coordinates that assign finite values to the infinities of u, w
must be defined. A possible choice is p ¼ arctanu and
q ¼ arctanw with −π=2 < q ≤ p < π=2. Notice that the
infinities�∞ of u, w have been mapped to the finite values
�π=2 of p, q. In these coordinates the Minkowski metric
takes the form

gM ¼ Ω−2½4dpdq − sin2ðp − qÞðdθ2 þ sin2θdϕ2Þ�;

where the conformal factor Ωðp; qÞ ¼ 2 cosp cos q is
positive definite in the domain p; q ∈ ð−π=2; π=2Þ and
has the appropriate behavior at infinity, i.e., Ωð�π=2;
�π=2Þ ¼ 0. Thus, the metric gM has been conformally
transformed to the metric

gM ¼ 4dpdq − sin2ðp − qÞðdθ2 þ sin2θdϕ2Þ:

Finally, effecting the transformation ðT; RÞ ¼ ðpþ q;
p − qÞ, the conformal metric gM can be brought into the
form (2.1), namely,

gM ¼ dT2 − dR2 − sin2Rðdθ2 þ sin2θdϕ2Þ; ð2:4Þ

where the coordinates now must satisfy the relations
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−π < T þ R < π; − π < T − R < π; − π < T < π;

0 < R < π; 0 < θ < π; −π < ϕ < π: ð2:5Þ

Conditions (2.5) restrict the whole of Minkowski spacetime
M to a finite open subset of the Einstein static universe
E—compare with (2.1) and (2.2). In fact, the conformal
infinity of Minkowski spacetime lies at the boundary of
this region. The location of this boundary is given by the
vanishing of the conformal factor Ω, which in the coor-
dinates ðT; R; θ;ϕÞ, reads

ΩðT; RÞ ¼ 2 cos

�
T þ R

2

�
cos

�
T − R
2

�
: ð2:6Þ

Thus, the structure of conformal infinity is as follows (see
Fig. 1). Past timelike infinity i−, spacelike infinity i0, and
future timelike infinity iþ are located at the coordinate
points ðT; RÞ ¼ ð−π; 0Þ, ðT; RÞ ¼ ð0; πÞ, and ðT; RÞ ¼
ðπ; 0Þ, respectively. Past null infinity I− and future null
infinity Iþ are given by the hypersurfaces T ¼ R − π and
T ¼ π − R with 0 < R < π, respectively.

B. Blowing up of spacelike infinity to a cylinder

Although the metric (2.4) extends smoothly to spacelike
infinity, reconstructing the Minkowski spacetime described
by it, from initial data that satisfy the conformal constraints,
is not trivial at all, as some of the initial data exhibit a
singular behavior at the point i0. Following the discussion
in [25], one can render the initial data regular by performing
an appropriate rescaling of (2.4). In this new picture

spacelike infinity i0 has a finite representation as a cylinder
(see Fig. 2). In the following we describe how to blow up
the point ðT; RÞ ¼ ð0; πÞ that represents spacelike infinity
i0 on the Einstein static universe.
First, in accordance with [25], the spacetime metric (2.4)

is rescaled to

g ¼ κ−2gM ¼ κ−2½dT2 − dR2 − sin2Rðdθ2 þ sin2θdϕ2Þ�;

and then new time t and spatial r coordinates are introduced
by the transformation ðT; RÞ ¼ ðκðrÞfðtÞ; πrÞ to get

g ¼ _f2dt2 þ 2κ0f _f
κ

dtdr −
ðπ2 − f2κ02Þ

κ2
dr2

−
sin2ðπrÞ

κ2
ðdθ2 þ sin2θdϕ2Þ; ð2:7Þ

where · and 0 denote differentiation with respect to t and r,
respectively. Notice that (2.7) is spherically symmetric and
that the new spatial coordinate is in the interval 0 < r < 1.
As we will see below, the functions κðrÞ and fðtÞ control
the shape and the location of the cylinder and of null
infinity I� with respect to the coordinates t and r.
Specifically, as we will see in the next section, the

rescaling function κ multiplies the spatial derivatives in the
evolution equations. Thus, according to [25], κ must vanish
on the cylinder, i.e., at r ¼ 1. In addition, κ must be even
with respect to r ¼ 0 to maintain a regular center. There is a
plethora of functions that satisfy these criteria; in the
following we will work with the choice

FIG. 1. Conformal compactification of Minkowski spacetime into the Einstein static universe. Conformal diagrams of (a) Minkowski,
(b) the Einstein static universe (2.1) and (2.2), and (c) Minkowski embedded in the Einstein static universe (2.4) and (2.5) on the ðT; RÞ
plane are shown. The usual rules apply: Every point in these diagrams represents a 2-sphere, except for those on dotted lines, which
represent points. Points on solid lines are points at infinity. The structure of conformal infinity is clearly visible.
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κðrÞ ¼ cos

�
πr
2

�
: ð2:8Þ

The time-dependent function f, on the other hand, appears
in the coefficients of the time derivatives of the evolution
equations; thus, it controls the size of the cylinder and the
shape of null infinity I�. It turns out that the vanishing of
the overall conformal factor Θ ¼ κ−1Ω between the metrics
(2.3) and (2.7), i.e., g ¼ Θ2gM, dictates the choice of fðtÞ.
Observing (2.6) and (2.8), the conformal factor Θ in the
new ðt; rÞ coordinates reads

Θðt; rÞ ¼ Ω
κ
¼ 1

κ
½cos ðκfÞ þ cos ðπrÞ�: ð2:9Þ

As before, the vanishing of (2.9) locates the position of
conformal infinity. Notice that now spacelike infinity is not
represented as a point but as a cylinder of finite temporal
extension with respect to the time coordinate t. For 0 ≤
r < 1 the condition Θ ¼ 0 is equivalent to

t ¼ �f−1
�
πð1 − rÞ

κ

�
; ð2:10Þ

where f−1 is the inverse of the time-dependent function
fðtÞ. The position of I� immediately follows,

I� ¼
�
0 ≤ r < 1; t ¼ �f−1

�
πð1 − rÞ

κ

��
: ð2:11Þ

In addition, at r ¼ 1 the condition Θ ¼ 0 is always
satisfied, indicating the presence of the cylinder at this
location. As expected, at the limit r → 1, future and past
null infinity do not meet at the same point as they do in the
conventional picture (see Fig. 2). [Notice that (2.10) for
r → 1 gives t ¼ �f−1ð2Þ.] Now null and spacelike infinity
meet at the so-called critical sets

I� ¼ fr ¼ 1; t ¼ �f−1ð2Þg ð2:12Þ
which are 2-spheres representing the bases of the cylinder.
So the sets (2.12) are bounding from above and below the
cylinder, and consequently, its position is given by the set

I ¼ fr ¼ 1;−f−1ð2Þ < t < f−1ð2Þg: ð2:13Þ
It is noteworthy that the height of the cylinder I is
HI ¼ 2f−1ð2Þ.
In the rest of the section, we will justify the choices of the

time-dependent function f that are going to be employed in
the present work. One of the simplest possible choices for
fðtÞ is

fðtÞ ¼ 2t; ð2:14Þ
whose inverse is the function f−1ðyÞ ¼ y=2. Therefore, the
structure of conformal infinity for the choice (2.14) follows
from (2.11)–(2.13):

I ¼ fr ¼ 1;−1 < t < 1g;
I� ¼ fr ¼ 1; t ¼ �1g;

I� ¼
�
0 ≤ r < 1; t ¼ � πð1 − rÞ

2κ

�
: ð2:15Þ

A graphic representation of (2.15) is depicted in Fig. 2(a).
If one wants to make I� horizontal, then the function f−1

in (2.10) must be chosen in such a way that it is constant in
its domain of definition. A possible choice of f that has this
property is

fðtÞ ¼ 1

20
arctanhðtÞ: ð2:16Þ

Notice that the inverse of (2.16), i.e., f−1ðyÞ ¼ tanhð20yÞ,
is constant within machine accuracy in its domain

FIG. 2. Conformal compactification of Minkowski spacetime into the Einstein static universe with spacelike infinity i0 blown up to a
cylinder of finite size. The Einstein static universe E spans the area between the dotted vertical lines at r ¼ 0 and r ¼ 1. We give
conformal diagrams of Minkowski spacetime embedded in the Einstein static universe (2.7) on the ðt; rÞ plane for the choices κðrÞ ¼
cosðπr

2
Þ and (a) fðtÞ ¼ 2t and (b) fðtÞ ¼ 1

20
arctanhðtÞ. The shaded areas denote the part of E that is conformal to Minkowski spacetime.

The structure of conformal infinity for the (a) nonhorizontal (2.15) and (b) horizontal (2.17) cases is clearly visible.
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Df−1 ¼ ½40; 20π�. Specifically, the expression (2.10) for the
choice (2.16) reads t ¼ �1, and consequently, conformal
infinity [see Fig. 2(b)] has the following structure:

I ¼ fr ¼ 1;−1 < t < 1g;
I� ¼ fr ¼ 1; t ¼ �1g;
I� ¼ f0 ≤ r < 1; t ¼ �1g: ð2:17Þ

The main advantage of the horizontal representation (2.17)
is that the whole of Minkowski spacetime has been
mapped to a rectangle of finite size [see Fig. 2(b)]. As
we will see in Sec. IV, this representation is numerically
very advantageous.

III. GENERALIZED CONFORMAL
FIELD EQUATIONS

Here the generalized conformal field equations [25] will
be linearized on Minkowski spacetime. On a Minkowski
background, such as the one described in the previous
section, their linearization simplifies considerably. Namely,
the so-called structural equations defining the torsion and
the curvature are trivially satisfied [31,35]; thus, one is left
with the remaining Bianchi identity for the perturbation of
the rescaled Weyl tensor. In the present section the spinor
version of this equation, i.e., the so-called spin-2 zero-rest-
mass equation [36], will be studied analytically as a system
of first- and second-order partial differential equations
(PDEs). Therefore, in the rest of this work the 2-spinor
formalism [37] will be used. We employ this formalism as it
simplifies our arguments and makes the manipulation of the
quantities relevant to our study—which also emerge more
naturally in this formalism—easier.

A. Spin-2 zero-rest-mass equation

Here we describe how to obtain a coordinate represen-
tation of the spin-2 zero-rest-mass equation as a system
of first-order PDEs and thoroughly study its analytical
properties.

1. Basis, connections, and spin coefficients

We start by defining a basis and a connection compatible
with (2.7). To do so, we first introduce a spin frame ðoA; ιAÞ,
with the usual normalization condition oAιA ¼ 1, and then
form a coordinate basis by defining the nonorthonormal
null tetrad ðlμ; nμ; mμ; mμÞ with

lμ ¼ 1ffiffiffi
2

p ðA;B; 0; 0Þ;

nμ ¼ 1ffiffiffi
2

p ðC;−B; 0; 0Þ;

mμ ¼ 1ffiffiffi
2

p
gr

ð0; 0; 1;−i csc θÞ;

mμ ¼ 1ffiffiffi
2

p
gr

ð0; 0; 1; i csc θÞ; ð3:1Þ

where the functions Aðt; rÞ; Bðt; rÞ Cðt; rÞ, and gðrÞ are
uniquely defined in terms of the metric coefficients of (2.7),
i.e.,

A ¼ 1

_f

�
1 −

κ0f
π

�
; B ¼ κ

π
; C ¼ 1

_f

�
1þ κ0f

π

�
;

g ¼ sinðπrÞ
κr

: ð3:2Þ

It can be readily confirmed that the null vectors (3.1) satisfy
the correct inner product conditions, lμnμ ¼ −mμmμ ¼ 1,
and all the remaining combinations vanish.
The directional derivatives along the null vectors (3.1)

immediately follow:

D ¼ lμ∂μ ¼
1ffiffiffi
2

p ðA∂t þ B∂rÞ;

D0 ¼ nμ∂μ ¼
1ffiffiffi
2

p ðC∂t − B∂rÞ;

δ ¼ mμ∂μ ¼
1ffiffiffi
2

p
gr

ð∂θ − i csc θ∂ϕÞ;

δ0 ¼ mμ∂μ ¼
1ffiffiffi
2

p
gr

ð∂θ þ i csc θ∂ϕÞ; ð3:3Þ

where A, B, C, g are the same as above. The commutation
relations among the directional derivatives (3.3) provide us
with the spin coefficients corresponding to (2.7) and (3.1).
The nonvanishing spin coefficients are listed below:

α ¼ −β ¼ cot θ

2
ffiffiffi
2

p
gr

; γ ¼ ϵ ¼ −
κ0

2
ffiffiffi
2

p
π
;

ρ ¼ −ρ0 ¼ κ0 − πκ cotðπrÞffiffiffi
2

p
π

: ð3:4Þ

Next, we define the weighted differential operators of the
Geroch-Held-Penrose (GHP) formalism in terms of the
directional derivatives (3.3) and the spin coefficients (3.4):

Þη ¼ ðD − 2wγÞη; Þ0η ¼ ðD0 − 2wγÞη;
ðη ¼ ðδþ 2sαÞη; ð0η ¼ ðδ0 − 2sαÞη; ð3:5Þ

where η is a fp; qg-scalar quantity with boost weight
w ¼ pþq

2
and spin weight s ¼ p−q

2
(see [37]).

2. Derivation

Having defined a basis, derivatives, and spin coefficients
compatible with the metric (2.7), we proceed further and
express the spin-2 zero-rest-mass equation as a system of
first-order PDEs. Our starting point is the spinor version of
the Bianchi identity for the Weyl tensor on a general
spacetime with metric ~g, which in the absence of matter
reads
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~∇A
A0 ~ΨABCD ¼ 0; ð3:6Þ

where ~ΨABCD is the spinor counterpart of the Weyl tensor
for the metric ~g; ΨABCD is called the Weyl spinor and is
totally symmetric in its indices ~ΨABCD ¼ ~ΨðABCDÞ; and
~∇AA0 is the spinor covariant derivative (see [37]). The
generalized conformal field equations are concerned with
the conformal structure of a spacetime, i.e., the structure
that remains invariant under conformal rescalings of the
metric ~g ↦ g ¼ Θ2 ~g. Under these transformations theWeyl
spinor remains invariant,ΨABCD ¼ ~ΨABCD. The behavior of
the spinor Bianchi identity (3.6) under this kind of
conformal transformation reads [37]

∇A
A0 ðΘ−1ΨABCDÞ ¼ Θ−2 ~∇A

A0 ~ΨABCD;

which through (3.6) results in

∇A
A0ΔABCD ¼ 0; ð3:7Þ

the so-called Bianchi equation for the rescaled Weyl
spinor ΔABCD ¼ Θ−1ΨABCD.
Now, in order to obtain the weak field limit of (3.7), i.e.,

the equation for a small perturbation of a Minkowski
spacetime, we consider, as in [37], that our spacetime
metric is a smoothly varying function gðuÞ of a single
parameter u such that gð0Þ is conformal to the Minkowski
spacetime. Similarly, one expects that the rescaled Weyl
spinor ΔABCDðuÞ for any nonzero value of u satisfies (3.7)
and tends smoothly to zero as u → 0. The latter guarantees
that the totally symmetric spinor quantity u−1ΔABCDðuÞ has
a well-defined limit, say, ΦABCD, as u → 0 and satisfies the
equation

∇A
A0ΦABCD ¼ 0; ð3:8Þ

where the totally symmetric spinor ΦABCD is called the
spin-2 zero-rest-mass field. The spin-2 zero-rest-mass
equation (3.8) is the spinor version of the Bianchi equation
for the rescaled Weyl tensor.

3. Coordinate representation

In order to proceed further in our study of (3.8), we have
to decompose it into its components. To do so, one first has
to express the spinor covariant derivative in (3.8), as in [31],
in terms of the weighted differential operators (3.5) of the
GHP formalism:

∇A
A0 ¼ ιAιA0Þþ oAoA0Þ0 − ιAoA0ð − oAιA0ð0; ð3:9Þ

we then substitute this expression in (3.8) and expand the
spin-2 field in terms of its five independent components
ðΦ0;Φ1;Φ2;Φ3;Φ4Þ; finally, we take the components of the
resulting expression to get

ÞΦk − ð0Φk−1 ¼ ð5 − kÞρΦk;

Þ0Φk−1 − ðΦk ¼ −kρΦk−1; ð3:10Þ

where k ¼ 1, 2, 3, 4 and ρ is given by (3.4). Next, by using
(3.5) and (3.3) it is possible to obtain a coordinate
representation of the system (3.10),

A∂tΦkþB∂rΦk−
ffiffiffi
2

p
½ð5−kÞρþ2ð2−kÞϵ�Φk ¼

ffiffiffi
2

p
ð0Φk−1;

C∂tΦk−1−B∂rΦk−1þ
ffiffiffi
2

p
½kρ−2ð3−kÞϵ�Φk−1¼

ffiffiffi
2

p
ðΦk;

ð3:11Þ

where k ¼ 1, 2, 3, 4, the functions A, B, C are given by
(3.2), and the spin coefficients ρ, ϵ by (3.4). Observing
(3.3)–(3.5), the ð; ð0 operators can be expressed on the unit
sphere through the transition

ð ↦
1ffiffiffi
2

p
gr

ð0 and ð0 ↦
1ffiffiffi
2

p
gr

ð00; ð3:12Þ

where ð0 ¼ ∂θ − i csc θ∂ϕ þ s cot θ and ð00¼ ∂θþ
icscθ∂ϕ− scotθ denote the “eth” operators on the unit
sphere. Finally, we use the spherical symmetry of the metric
(2.7) to expand the components ϕk of the spin-2 field as a
sum of spin-weighted spherical harmonics sYlm in the
following way:

ϕkðt; r; θ;ϕÞ ¼
X
lm

ϕlm
k ðt; rÞ2−kYlmðθ;ϕÞ; ð3:13Þ

where s ¼ 2 − k is the spin weight of ϕk and the integers s,
l, m satisfy the inequalities jsj ≤ l and jmj ≤ l. Since the
operators ð0; ð00 act on the spin-weighted spherical har-
monics sYlm as

ð0ðsYlmÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − sðsþ 1Þ

p
sþ1Ylm;

ð00ðsYlmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − sðs − 1Þ

p
s−1Ylm; ð3:14Þ

the system (3.11) decouples into separate systems for each
mode of the fixed pair ðl; mÞ, i.e.,

A∂tΦk þ B∂rΦk −
ffiffiffi
2

p
½ð5 − kÞρþ 2ð2 − kÞϵ�Φk

¼ αð2−kÞð3−kÞ
gr

Φk−1;

C∂tΦk−1 − B∂rΦk−1 þ
ffiffiffi
2

p
½kρ − 2ð3 − kÞϵ�Φk−1

¼ −
αð2−kÞð3−kÞ

gr
Φk; ð3:15Þ

where k ¼ 1, 2, 3, 4, αn ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − n

p
, the functions A,

B, C, g are given by (3.2), and the spin coefficients ρ, ϵ by
(3.4). The eight equations (3.15), for the five independent
components Φk of the spin-2 field, comprise a coordinate
representation of (3.8) on the background spacetime (2.7).
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4. Evolution and constraint equations

The system (3.15) can be readily split into five evolution
equations,

C∂tΦ0 ¼ B∂rΦ0 þ 4
ffiffiffi
2

p
ϵΦ0 −

ffiffiffi
2

p
ρΦ0 −

α2
gr

Φ1;

ðAþ CÞ∂tΦ1 ¼ 4
ffiffiffi
2

p
ϵΦ1 þ 2

ffiffiffi
2

p
ρΦ1 þ

α2
gr

Φ0 −
α0
gr

Φ2;

ðAþ CÞ∂tΦ2 ¼
α0
gr

Φ1 −
α0
gr

Φ3;

ðAþ CÞ∂tΦ3 ¼ −4
ffiffiffi
2

p
ϵΦ3 − 2

ffiffiffi
2

p
ρΦ3 þ

α0
gr

Φ2 −
α2
gr

Φ4;

A∂tΦ4 ¼ −B∂rΦ4 − 4
ffiffiffi
2

p
ϵΦ4 þ

ffiffiffi
2

p
ρΦ4 þ

α2
gr

Φ3;

ð3:16Þ

and three constraints,

C1 ≡ 2ðAþ CÞB∂rΦ1 þ 4
ffiffiffi
2

p
Aðϵ − ρÞΦ1

− 4
ffiffiffi
2

p
Cð2ρþ ϵÞΦ1 −

2α0
gr

AΦ2 −
2α2
gr

CΦ0 ¼ 0;

C2 ≡ 2ðAþ CÞB∂rΦ2 − 6
ffiffiffi
2

p
ðAþ CÞρΦ2 −

2α0
gr

CΦ1

−
2α0
gr

AΦ3 ¼ 0;

C3 ≡ 2ðAþ CÞB∂rΦ3 þ 4
ffiffiffi
2

p
Cðϵ − ρÞΦ3

− 4
ffiffiffi
2

p
Að2ρþ ϵÞΦ3 −

2α0
gr

CΦ2

−
2α2
gr

AΦ4 ¼ 0: ð3:17Þ

Notice that the evolution system (3.16) acquires a very
simple form on the cylinder I (i.e., at r ¼ 1). The radial
derivatives are multiplied by the function B defined in (3.2),
which for the choice (2.8) vanishes at r ¼ 1. Thus, the radial
derivatives drop out from the equations controlling the
dynamics of the components Φ0, Φ4, and the cylinder I
becomes a total characteristic of the system (3.16). This
feature, together with the fact that I, as can be seen in Fig. 2,
lies on the boundary located at r ¼ 1 of the computational
domain and indicates that we are not allowed to impose
boundary conditions at points lying on I.
To check the well-posedness of the Cauchy problem

described by the system (3.16) and (3.17), one has to write
the evolution equations in a matrix form for the vector
Φ≡ ðΦ0;Φ1;Φ2;Φ3;Φ4ÞT:

A0∂tΦþA1∂rΦ ¼ A2Φ;

where A0 ¼ diagðA; Aþ C;Aþ C;Aþ C;CÞ and A1 ¼
diagð−B; 0; 0; 0; BÞ are obviously Hermitian matrices, and

A0 is positive definite when the conditions _fðtÞ > 0 and
jfj < π=jκ0j hold simultaneously. Therefore, the evolution
system is symmetric hyperbolic, and consequently well
posed, in the range jtj < f−1ðπ=jκ0jÞ—given that the
condition _f > 0 is also satisfied in this range.
To prove that the constraints (3.17) are preserved during

the evolution, one has to derive the subsidiary system for
the constraint quantities Ck appearing in (3.17):

∂tC1 ¼ −κ _f cotðπrÞC1 −
1

2
α0κ _f cscðπrÞC2;

∂tC2 ¼
1

2
α0κ _f cscðπrÞC1 −

1

2
α0κ _f cscðπrÞC3;

∂tC3 ¼
1

2
α0κ _f cscðπrÞC2 þ κ _f cotðπrÞC3;

where, for the sake of simplicity, the functions κ, f were
used here instead of the A, B, C, g functions and the spin
coefficients ρ, ϵ. The above system can be written in the
symmetric hyperbolic form ∂tC ¼ A3C for the vector
C≡ ðC1; C2; C3ÞT, where the entries of the 3 × 3 matrix
A3 consist of the coefficients of the rhs of the above
subsidiary system. The eigenvalues of A3 read
λ ¼ 0;�i cscðπrÞκ _f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α20 − 2 cos2ðπrÞ

p
=

ffiffiffi
2

p
. The imagi-

nary nature of the nontrivial eigenvalues guarantees that
the unavoidable initial violation of the constraints does not
grow exponentially during the evolution.

5. Characteristic curves

It is extremely useful to study the behavior of the
characteristic curves of the evolution system (3.16) as their
form provides a qualitative insight on the behavior of the
solutions of (3.16). For first-order PDEs with a principal
part of the form aðt; rÞ∂tuðt; rÞ þ bðt; rÞ∂ruðt; rÞ, like the
ones in (3.16), the slope of the characteristics is given by
dt=dr ¼ a=b. For the components Φ1, Φ2, Φ3 of the spin-2
field, the characteristics are straight lines of constant r as b
vanishes in the corresponding evolution equations. The
slopes of the remaining two components Φ0 and Φ4 read

dt
dr

¼ −
C
B

and
dt
dr

¼ A
B
;

respectively. As expected, the behavior of the above
characteristics depends entirely on the choice of the
functions κ and f [see (3.2)]. Figure 3 depicts the form
of the characteristic curves for Φ0 and Φ4. Therein, the
characteristics for the choices (2.14) and (2.16) of the time-
dependent function f are presented.
Specifically, Fig. 3(a) depicts the characteristic curves of

Φ0 (blue solid lines) and Φ4 (red dashed lines) for the
choice (2.14). Notice that Iþ (upper black thick solid line)
confines the characteristics of Φ0 from above, while I−

(lower black thick solid line) bounds the characteristics of
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Φ4 from below. This observation is related to the well-
known fact [25] that the evolution equations of Φ0 and Φ4

degenerate at the corresponding critical sets Iþ and I−. The
reason for this expected behavior of the evolution equations
is clearly visible in Fig. 3(a). Namely, by trying to go
beyond the critical sets I�, one enters the domain of
nonhyperbolicity of the equations: shaded areas bounded
by the green thick dashed lines. In the remaining nonshaded
area the system (3.16) is symmetric hyperbolic—this is the
domain for which the condition of symmetric hyperbolicity
jtj < f−1ðπ=jκ0jÞ is satisfied. Therefore, the whole of the
conformally compactified Minkowski spacetime [see
shaded region of Fig. 2(a) and compare with Fig. 3(a)]
is situated entirely in the symmetric hyperbolic region of
(3.16). As was also mentioned above, the shape of the
characteristic curves clearly shows that the cylinder I is a
total characteristic of our system.
The situation is quite similar for the choice (2.16)

illustrated in Fig. 3(b). The parts of E that are conformal
to Minkowski spacetime are located entirely inside the
domain jtj < 1 of symmetric hyperbolicity, which now
coincides with the interior of the black thick solid lines
representing conformal infinity. Thus, there is no reason for
going beyond the critical sets I� and entering the region of
nonhyperbolicity, as now by reaching I�, one actually
reaches timelike infinity i�. The behavior of the character-
istics here is more universal in the sense that the character-
istics for both fieldsΦ0 andΦ4 are bounded from above and
below by null infinity. Thus, the evolution equations for Φ0

and Φ4 degenerate at both critical sets I�.

B. Spin-2 zero-rest-mass wave equation

In the current section, we present a coordinate repre-
sentation of the spin-2 zero-rest-mass equation as a system
of second-order PDEs and discuss its analytical properties.

1. Derivation

Our starting point is the spin-2 zero-rest-mass equa-
tion (3.8). We apply the spinor covariant derivative ∇A0

A to
it and contract over the A0 index to get

∇A0A∇F
A0
ΦF

BCD ¼ 0;

where the indices have been moved appropriately in order
to be able to split the above differential operator into its
symmetric and skew symmetric parts in AF,

∇A0A∇F
A0
ΦF

BCD ¼ □AFΦF
BCD −

1

2
□ΦABCD ¼ 0;

where □AF ≡∇A0ðA∇FÞA
0
and □≡∇AA0∇AA0

. Next, using
the identities

□AFkC ¼
�
ΨAFE

C þ R
24

ðϵAEϵFC þ ϵFEϵA
CÞ
�
kE;

□AFkC ¼ −
�
ΨAFC

E þ R
24

ðϵACϵFE þ ϵFCϵA
EÞ
�
kE;

whereR is the scalar curvature andΨABCD is theWeyl spinor
of (2.7), the above expression simplifies considerably,

FIG. 3. Characteristic curves of the fields Φ0 (blue solid lines) and Φ4 (red dashed lines). The characteristic curves for the choices
(a) fðtÞ ¼ 2t and (b) fðtÞ ¼ 1

20
arctanhðtÞ are presented. The black thick solid lines represent conformal infinity, and the green thick

dashed lines represent the span of the symmetric hyperbolic region. The shaded areas mark the domain of nonhyperbolicity of (3.16). In
(b) conformal infinity and the boundary of the symmetric hyperbolic region coincide; thus, the system (3.16) is not symmetric
hyperbolic in the region exterior to conformal infinity (this area has not been shaded for presentational reasons).
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−
R
4
ΦABCD þ 3ΨEFðABΦCDÞEF −

1

2
□ΦABCD ¼ 0:

Now, taking into consideration that for the metric (2.7) the
Weyl spinor vanishes and the scalar curvature reads

R ¼ 3

2
κ2; ð3:18Þ

we finally arrive at the so-called spin-2 zero-rest-mass wave
equation

□ΦABCD þ 3κ2

4
ΦABCD ¼ 0; ð3:19Þ

which will be used to describe (3.8) as a system of second-
order PDEs.

2. Coordinate representation

Now we obtain a coordinate representation of (3.19). As
before, we express the differential operator □ in terms of
the weighted differential operators (3.5) of the GHP
formalism:

□ ¼ 2ρðÞ − Þ0Þ þ ÞÞ0 þ Þ0Þ − ðð0 − ð0ð:

Substitute this expression into (3.19), expand the spin-2
field in terms of its components, and take the components
of the resulting expression to obtain the system of five
equations,

ÞÞ0Φλ þ Þ0ÞΦλ þ 2ρðÞ − Þ0ÞΦλ − 2ðλ2 − 4λ − 2Þρ2Φλ

þ 3

4
κ2Φλ

¼ ðð0Φλ þ ð0ðΦλ þ 2ð4 − λÞρðΦλþ1 − λρð0Φλ−1; ð3:20Þ

where λ ¼ 0, 1, 2, 3, 4, κ is the rescaling function (2.8) and
ρ is given by (3.4). In a similar fashion as in Sec. III A 2
and [31], one can use the map (3.12), the expansion (3.13),
and the identities (3.14) to decouple (3.20) on the unit
sphere into separate systems for each admissible pair ðl; mÞ.
Then, by using (3.5) and (3.3), a coordinate representation
of (3.20) can be obtained:

AC∂ttΦλ þ BðC − AÞ∂trΦλ − B2∂rrΦλ þ Bð2
ffiffiffi
2

p
ρ − 2

ffiffiffi
2

p
ϵ − B0Þ∂rΦλ

þ 1

2
ðBðC0 − A0Þ þ 2

ffiffiffi
2

p
½ðA − CÞρþ ð2λ − 5ÞAϵþ ð2λ − 3ÞCϵ� þ _ACþ A _CÞ∂tΦλ

þ 3κ2

4
Φλ − 2ðλ2 − 4λ − 2Þρ2Φλ þ 8ðλ − 2Þ2ϵ2Φλ ¼ −

α2ðλ−1Þðλ−2Þ þ α2ðλ−2Þðλ−3Þ
2g2r2

Φλ

−
ffiffiffi
2

p ð4 − λÞαðλ−1Þðλ−2Þρ
gr

Φλþ1 −
ffiffiffi
2

p
λαðλ−2Þðλ−3Þρ

gr
Φλ−1; ð3:21Þ

where λ ¼ 0, 1, 2, 3, 4, the functions A, B, C, g are given by
(3.2), and the expansion coefficients ρ, ϵ by (3.4). The above
system of five equations is the coordinate representation of
the spin-2 zero-rest-mass wave equation (3.19) on a back-
ground of the form (2.7). Notice that, as in the case of (3.16),
all the radial derivatives drop out from the above system
when the equations are restricted to the cylinder I at r ¼ 1.
Thus, the cylinder is again a total characteristic of (3.21).
To classify the system of second-order PDEs (3.21), we

have to look at its symbol. The associated symmetric matrix
of the principal part of the symbol of (3.21) reads

�
AC 1

2
BðC − AÞ

1
2
BðC − AÞ −B2

�

with eigenvalues

λ� ¼ 1

2

	
ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ε2

p 

where ω ¼ AC − B2 and

ε ¼ BðAþ CÞ:

The system (3.21) is symmetric hyperbolic whenever the
above eigenvalues have opposite signs. Obviously, λþ is
always positive, while λ− is always negative. So the only
case where the system (3.21) fails to be symmetric hyper-
bolic is when at least one of the eigenvalues vanishes. For
λ− that happens when ε ¼ 0, while λþ vanishes when ε ¼ 0
and ω ¼ 0. The hyperbolicity of the system (3.21) for the
choice (2.16) breaks down when t ¼ �1 and r ¼ 1, i.e.,
when ε ¼ 0 and consequently λ− ¼ 0. Thus, in this case,
the system (3.21) is symmetric hyperbolic in the rectan-
gular f0 < r < 1; jtj < 1g. [Recall that the domain of
symmetric hyperbolicity of the first-order system (3.16)
for the choice (2.16) is exactly the same.] For the choice
(2.14), the condition ε ¼ 0 entails that the hyperbolicity of
(3.21) breaks down ar r ¼ 1. In addition, ω ¼ 0 leads to
t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − κ2

p
=jκ0j. Combining the last two results, one

concludes that the symmetric hyperbolicity of the system
(3.21) for the choice (2.14) is guaranteed in the domain
f0 < r < 1; jtj <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 − κ2

p
=jκ0jg. Notice that the domain

of hyperbolicity of (3.21) is now slightly larger than the one
of the spin-2 zero-rest-mass equation (3.16). But, close to
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the cylinder I at r ¼ 1, their behavior coincides as the
rescaling function (2.8) tends to zero there.
In order to prescribe initial data and constrain the

evolved data on each time slice of constant t, we supple-
ment the five evolution equations (3.21) with the con-
straints (3.17) of the first-order system of PDEs. The details
of this procedure will be discussed in Sec. III C.

3. Characteristic curves

Because of its hyperbolic nature, the system (3.21) has
two real characteristic curves. The slope of the character-
istic curves for second-order partial differential equations
like (3.21) with the principal part of the form
aðt; rÞ∂ttuðt; rÞ þ bðt; rÞ∂truðt; rÞ þ cðt; rÞ∂rruðt; rÞ reads
dt=dr ¼ ðb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 − 4ac

p
Þ=2c. Substituting a, b, c accord-

ing to (3.21), the slope of the characteristics follows,

dt
dr

¼ −
C
B

and
dt
dr

¼ A
B
:

Interestingly, the nonlinear characteristics of the spin-2
zero-rest-mass equation are identical to those of the spin-2
zero-rest-mass wave equation. Thus, Fig. 3 can be used to
visualise them. Figure 3 must be read with care though
because of a small but substantial difference in the behavior
of the characteristics. Now, their behavior is more universal
in the sense that the characteristics of all the components of
the spin-2 field, and not only of some specific components
like in the case of the spin-2 zero-rest-mass equation,
behave in the way depicted by Fig. 3. Therefore, the (solid)
blue and (dashed) red lines are not characteristics of
different field components but of all components of the
spin-2 field simultaneously. In addition, the characteristics
of all five independent components of the spin-2 field
exhibit the behavior illustrated in Fig. 3. One also has to
keep in mind that, as mentioned above, the symmetric
hyperbolic region is now a little bit larger; i.e., the shaded
area is a little bit smaller, but close to the critical sets I�, it
coincides with the one represented by the green thick
dashed lines of Fig. 3. Thus, as in the case of the spin-2
zero-rest-mass equation, the entire compactified
Minkowski spacetime lies wholly in the symmetric hyper-
bolic region of (3.21). The remaining features of Fig. 3 also
apply, as they are, to the second-order system of
PDEs (3.21).

C. Relating the first- and second-order PDE systems

As the solution space of the second-order PDE system
(3.19) is larger than that of the first-order system (3.8), it
would be highly desirable if one could know under which
conditions the solutions of the two systems are the same. In
order to do this, we have to somehow establish a corre-
spondence between the two systems that would unveil these
conditions.

Following [28,31], we first define the spinor

ΣA0BCD ≡∇F
A0ϕFBCD; ð3:22Þ

which is nothing other than the lhs of (3.8); we then act
upon it with another spinor covariant derivative to obtain

∇AA0ΣA0
BCD ¼ ∇AA0∇FA0

ϕFBCD:

In accordance with the discussion in Sec. III B 1, the rhs of
the above expression is given by the lhs of (3.19); therefore,

∇AA0ΣA0
BCD ¼ □ΦABCD þ 3κ2

4
ΦABCD: ð3:23Þ

Now, assuming that ΦABCD is a solution of (3.8), the spinor
(3.22) vanishes, and thus (3.23) reduces to (3.19); i.e.,
ΦABCD is also a solution of the spin-2 zero-rest-mass wave
equation (3.19).
Conversely, assuming that the spin-2 field ΦABCD is a

solution of (3.19), the expression (3.23) reduces to

∇AA0ΣA0
BCD ¼ 0: ð3:24Þ

The above system can guarantee that ΦABCD is also a
solution of (3.8), i.e., ΣA0BCD ¼ 0, in the case that (3.8)
holds initially and (3.24) is well posed. As the condition
ΣA0BCDjS ¼ 0 can always be satisfied on an initial hyper-
surface S, one just has to prove that the system (3.24) is
well posed in order for ΣA0BCD ¼ 0 to hold throughout
the evolution. To do so, we have to look at the symbol of
the first-order differential expression (3.24). Taking into
account the fact that the components of (3.9) are ∇AA0 ¼
ð∇000 ¼ Þ;∇010 ¼ ð;∇100 ¼ ð0;∇110 ¼ Þ0Þ, the expansion
(3.13) of the components of ΣA0BCD in terms of the spin-
weighted spherical harmonics, and the relation (3.3)–(3.5)
between the remaining GHP operators Þ; Þ0 and the
coordinate derivatives ∂t; ∂r, one can write the principal
part of the symbol of (3.24) as follows:

Lp ¼
X1
α¼0

Σαðt; rÞDα with Dα ¼ ð∂t; ∂rÞ;

where Σα are N × N square matrices, with N ¼ 8 being the
number of independent components of the spinor ΣA0BCD.
Due to the fact that the first-order system of PDEs (3.24) is
symmetric under the spinor prime operation [37], each of
the GHP operators Þ; Þ0 will act on an equal number of
components of ΣA0BCD, i.e., N=2. Therefore, the Σ matrices
read

Σ0 ¼
1ffiffiffi
2

p diagðA;…; A|fflfflfflffl{zfflfflfflffl}
N=2

; C;…; C|fflfflfflffl{zfflfflfflffl}
N=2

Þ;

Σ1 ¼
Bffiffiffi
2

p diagð1;…; 1|fflfflffl{zfflfflffl}
N=2

;−1;…;−1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N=2

Þ;
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where A, B, C are given by (3.2). As the Σ matrices are
obviously Hermitian and Σ0 is positive definite in the range
jtj < f−1ðπ=jκ0jÞ with _f > 0, the system (3.24) is sym-
metric hyperbolic in this range and defines a well-posed
problem for ΣA0BCD.
In summary, we proved that the spin-2 field is a solution

of both (3.8) and (3.19) if and only if the initial data for
both systems satisfy the constraints (3.17) of the first-order
system (3.8). Therefore, in the numerical implementation
of (3.19), the initial data will be determined by (3.17) and
subsequently evolved with (3.21). In this way we ensure
that the obtained numerical solutions are also solutions
of (3.8).

IV. NUMERICAL IMPLEMENTATION
AND RESULTS

Here we give a detailed description of the numerical
setting that will be used to numerically study the systems
(3.16)–(3.17) and (3.21). In the present work we mainly
focus on the second-order PDE system (3.21) as its
numerical solutions have better properties than those of
the corresponding first-order system (see, e.g., Ref. [33]).
According to [33], numerical approximations based on
second-order PDEs lead to better accuracy than the ones
based on first-order PDEs and, in addition, they prevent the
occurrence of spurious high-frequency waves traveling
against the characteristics. As these claims were also
confirmed numerically in [28,31], in Sec. IV D we only
present our findings concerning (3.21).

A. Numerical preliminaries

The method of lines will be used to discretize the 1þ 1
system (3.21). Accordingly, the PDE system (3.21) is
reduced to a system of ordinary differential equations by
discretizing the spatial coordinate r with finite difference
techniques. In accordance with the setting of Sec. II B, our
computational domain is D ¼ ½0; 1�. To obtain a finite
representation of D, an equidistant grid ri ¼ ih of grid
spacing h is introduced, where i ¼ 0;…; N, rN ¼ 1, and
thus h ¼ 1=N. The spin-2 field is discretized in a similar
way, ðΦλÞi ¼ ΦλðriÞ. Next, we have to approximate the
spatial derivatives with appropriate finite difference oper-
ators. We choose to use fourth-order central difference
operators to approximate the first and second derivatives
appearing in (3.21) on the entire computational domain D
except for the grid points lying in the vicinity of the
cylinder I at r ¼ 1. There, we use one-sided summation-
by-parts finite difference operators as in [27,28,31].
(Therein, a lengthy discussion about the advantages of
using the summation-by-parts operators can be found.) The
reasons for this “inconsistency” will become apparent in
Sec. IV B and are related to difficulties in the numerical
implementation of the system (3.21) at the origin r ¼ 0,
where some terms of (3.21) become singular.

Now one has to decide how to solve the resulting
semidiscrete system of ordinary differential equations. In
order to implement the system (3.21) numerically, we
reduce it to a system that is first order in time and second
order in space by introducing the first derivatives Ψλ ¼∂tΦλ of the spin-2 field Φλ as additional variables. Then the
reduced system can be evolved in time with standard
explicit fourth-order Runge-Kutta schemes. When higher
accuracy is required, especially in studies near the region
Iþ like in the case depicted in Fig. 3(b), time-step adaptive
Runge-Kutta schemes that adapt the time step to the speed
of the characteristic curves will be employed. The adaptive
time step allows us to approach Iþ arbitrarily closely, but
not exactly, as the time step then becomes arbitrarily small.
A point that usually needs special attention is the

imposition of boundary conditions at the boundaries of
the computational domain. The mathematical framework
developed in the previous sections makes the treatment of
the boundaries a little bit easier. Specifically, as already
mentioned in Sec. III A 4, the cylinder is a total character-
istic of our system. Therefore, we are not allowed to
prescribe boundary conditions at the points that lie there. At
the boundary r ¼ 0, on the other side of the computational
grid, things are a little bit more complicated. As expected,
the source of all our problems is related to the presence of r
in the denominator of some terms of (3.21), which blow up
at r ¼ 0. Although the spin-2 fields Φλ are expected to be
regular at r ¼ 0, the numerical implementation of the
(singular at the origin) equations governing their evolution
is a highly nontrivial task. In the following section we
discuss the way we chose to numerically implement the
system (3.21) at the origin.
It is worth mentioning that the precision of Python’s

floats limits the spatial resolution that can be used in our
simulations. Specifically, it imposes an upper limit on the
number of grid points we can use. This upper limit will be
determined by the initial data as follows. The spatial
resolution for which Python’s double precision that we
are using has been exceeded will mark the maximum
number of grid points that can be used. This claim follows
naturally from the fact that evolutions of initial data of
higher resolution than that maximally allowed cannot be
trusted as the numerical precision has already been
exceeded on the initial slice. In the following the highest
resolution that we are allowed to use is 1600 grid points in
the nonhorizontal case (Sec. IV D 1) and 600 grid points in
the horizontal case (Sec. IV D 2).
Now, in order to check the convergence of our numerical

solutions, we define the convergence rate as follows,

CR ¼ log2ðE0=E1Þ
log2ðh0=h1Þ

; ð4:1Þ

where E0 and E1 are the normalized l2 error norms for
simulations of resolution h0 and h1, respectively. (Notice
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that h0 < h1.) The errors E will be computed against the
numerical simulation of the highest resolution, which as
discussed above will consist of 1600 grid points in the
nonhorizontal case and 600 grid points in the horizontal case.
The code has been written in Python and is based on the

Otago relativity group’s conformal field equations solver,
which has been appropriately amended and supplemented
to fit the specific conformal problem we study in the
present work.

B. Treatment of the origin

At first, the 1=r and 1=r2 terms must be expressed
explicitly in (3.21). Observing (3.2) and (3.4) it is apparent
that the quantities g and ρ introduce the singular terms in
(3.21). As they stand, these terms are of the form cscðπr

2
Þ

and csc2ðπr
2
Þ. To express them in a more manageable form,

we introduce the maps

ρ ↦ SðrÞ − κffiffiffi
2

p
πr

and
1

g
↦ rCðrÞ þ κ

π
; ð4:2Þ

where κ is the rescaling function (2.8) and S, C are the
regular functions

S ¼ rκ0 þ κ − πrκ cotðπrÞffiffiffi
2

p
πr

and C ¼ κ

�
cscðπrÞ − 1

πr

�

with Sð0Þ ¼ Cð0Þ ¼ 0. Expressing (3.21) through (4.2) in
terms of S and C, the 1=r and 1=r2 terms appear explicitly
in (3.21).
In order to render the singular terms regular, certain

conditions must be satisfied at r ¼ 0. These regularity
conditions follow naturally from the system (3.21). There
are two sets of regularity conditions obtained from the
requirement that the coefficients of the terms 1=r and 1=r2

must vanish linearly and quadratically, respectively.
Specifically, these conditions read

∂rΦλ ¼ 0jr¼0 and

c1ðλÞΦλ þ c2ðλÞΦλþ1 þ c3ðλÞΦλ−1jr¼0 ¼ 0; ð4:3Þ

where fc1; c2; c3g≡ fðλ2 − 4λ − 2Þ − ðα21;2 þ α22;3Þ=2;
ð4 − λÞα1;2; λα2;3g with αx;y ≡ αðλ−xÞðλ−yÞ and λ ¼ 0, 1, 2,
3, 4. We must mention here that the 1=r terms multiplied by
the functions C; S; κ0 are regular at the origin as these
functions also vanish at r ¼ 0; thus, such terms do not
contribute to the first regularity condition. Notice also that
with (4.3) at hand, one can use l’Hopital’s rule to evaluate
the singular terms.
As it was mentioned in Sec. IVA, fourth-order central

difference operators will be used to approximate the first
and second derivatives at (and near) r ¼ 0. To do so, we
have to introduce a couple of ghost points by extending the
numerical grid to negative r. Now, in order to evaluate the

components of the spin-2 field at the ghost points, we take
advantage of the fact that the system (3.21) is symmetric
under a simultaneous reflection r ↦ −r and spinor prime
operation Φ0

λðt;−rÞ ↦ Φ4−λðt; rÞ. Therefore, at the grid
points r0, r1, r2, the first spatial derivatives will be
approximated by

∂rΦλ½r0� ¼
1

12h
ðΦ4−λ½r2� − 8Φ4−λ½r1� þ 8Φλ½r1� − Φλ½r2�Þ;

∂rΦλ½r1� ¼
1

12h
ðΦ4−λ½r1� − 8Φ4−λ½r0� þ 8Φλ½r2� − Φλ½r3�Þ;

∂rΦλ½r2� ¼
1

12h
ðΦ4−λ½r0� − 8Φλ½r1� þ 8Φλ½r3� − Φλ½r4�Þ;

ð4:4Þ

where h is the grid spacing. Similarly, at the grid points r1,
r2 (the point r0 will be discussed separately in the following
paragraph), the second spatial derivatives will be approxi-
mated by

∂2
rΦλ½r1� ¼

1

12h2
ð−Φ4−λ½r1� þ 16Φ4−λ½r0� − 30Φλ½r1�

þ 16Φλ½r2� − Φλ½r3�Þ;

∂2
rΦλ½r2� ¼

1

12h2
ð−Φ4−λ½r0� þ 16Φλ½r1� − 30Φλ½r2�

þ 16Φλ½r3� − Φλ½r4�Þ: ð4:5Þ

Let us now describe the numerical implementation of the
system (3.21) at r ¼ 0. Up to this point our numerical
considerations have been quite standard. It turns out that in
order to obtain stable and convergent numerical solutions,
the second spatial derivatives and the terms 1=r and 1=r2

have to be treated in a special way at the origin.
Specifically, F=r terms with F ≡ fC; S; κ0g, where

Cð0Þ ¼ Sð0Þ ¼ κ0ð0Þ ¼ 0, will be replaced in accordance
with l’Hopital’s rule, namely, F=rjr¼0 ↦ ∂rF jr¼0. The
remaining 1=r terms are proportional to κ2∂rΦλ and lead to
the first regularity condition in (4.3). According to
l’Hopital’s rule, these terms can be evaluated in the
following way: ∂rΦλ=rjr¼0 ↦ ∂2

rΦλjr¼0. Approximating
∂2
rΦλjr¼0 with central difference operators as above [see

(4.5)] did not lead to stable solutions. Interestingly,
introducing the auxiliary functions Xλ ≡ ∂rΦλ, one can
get stable and convergent numerical solutions by rewriting
the second spatial derivatives in the form ∂2

rΦλjr¼0 ¼∂rXλjr¼0 and approximating them by

∂2
rΦλ½r0� ¼

1

12h
ð−X4−λ½r2� þ 8X4−λ½r1�

þ 8Xλ½r1� − Xλ½r2�Þ; ð4:6Þ

where X0
λðt;−rÞ ↦ −X4−λðt; rÞ and Xλ½ri� ¼ ∂rΦλ½ri� are

given by (4.4). Furthermore, it turns out that the stability of
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the solutions is guaranteed iff all the second spatial
derivatives in (3.21), even the ones not arising from
l’Hopital’s rule, are approximated at r ¼ 0 by the above
finite difference operator (4.6).
To evaluate the 1=r2 terms at the origin, another set of

auxiliary functions ϒλ ≡ Φλ=r must first be introduced.
Subsequently, each 1=r2 term can be written as

Φλ=r2 ¼ ϒλ=r, and the formerly quadratically singular
terms now read ðc1ϒλ þ c2ϒλþ1 þ c3ϒλ−1Þ=r. As
before, by requiring the coefficient of 1=r to vanish linearly,
the second regularity condition in (4.3) can be expressed
in the alternative form c1ϒλ þ c2ϒλþ1 þ c3ϒλ−1jr¼0 ¼ 0.
Therefore, 1=r2 will be evaluated at the origin accor-
ding to the rule

c1Φλ þ c2Φλþ1 þ c3Φλ−1

r2

����
r¼0

↦ c1∂rϒλ þ c2∂rϒλþ1 þ c3∂rϒλ−1jr¼0

with the first spatial derivative being approximated by

∂rϒλ½r0� ¼
1

12h
ð−ϒ4−λ½r2�þ8ϒ4−λ½r1�þ8ϒλ½r1�−ϒλ½r2�Þ;

where ϒ0
λðt;−rÞ ↦ −ϒ4−λðt; rÞ and ϒλ½ri� ¼ Φλ½ri�=ri.

C. Initial data

In accordance with the results of Sec. III C, the initial
data must satisfy the conformal constraints (3.17) of

the first-order PDE system and subsequently be evolved
with (3.21). To do so, we first have to bring the
constraints (3.17) into a more manageable form.
Following [31], we construct initial data in terms of
the Φ2 component of the spin-2 field, which can be freely
specified, in a way such that no differential equations
have to be solved.
The constraints (3.17) on the initial hypersurface, where

t ¼ 0, reduce to

2κ∂rΦλþ1 − α1;2πCΦλ −
α1;2κ

r
Φλ − 6

ffiffiffi
2

p
πSΦλþ1 þ

6κ

r
Φλþ1 − α0;1πCΦλþ2 −

α0;1κ

r
Φλþ2 ¼ 0; ð4:7Þ

where αx;y ≡ αðλ−xÞðλ−yÞ and λ ¼ 0, 1, 2. Clearly, the system (4.7) is underdetermined and symmetric under the operation
Φλð0; rÞ ↦ Φ4−λð0; rÞ. One way of solving (4.7) is by specifying freely two of the components of the spin-2 field and
expressing the remaining three in terms of them. Alternatively, inspired by the aforementioned symmetry of (4.7), one can
require that Φλð0; rÞ ¼ Φ4−λð0; rÞ holds on the initial hypersurface. In this way, the unknowns have been reduced to three,
and the independent equations constraining them have been reduced to two. Therefore, by specifying freely the, e.g., Φ2

component of the spin-2 field, a specific family of solutions of (4.7) can be obtained algebraically:

Φ1ð0; rÞ ¼ Φ3ð0; rÞ ¼
κx∂rΦ2 þ 3πðκ − ffiffiffi

2
p

SxÞΦ2

α0πðκ þ xCÞ ;

Φ0ð0; rÞ ¼ Φ4ð0; rÞ ¼
1

π2α0α2ðκ þ xCÞ3 f2κ
2x2ðκ þ xCÞ∂2

rΦ2

þ 2κxðx2ðCðκ0 − 6
ffiffiffi
2

p
πSÞ − κC0Þ þ 6πκxðC −

ffiffiffi
2

p
SÞ þ 7πκ2Þ∂rΦ2

− 6π½κx2ðC0ðκ −
ffiffiffi
2

p
SxÞ þ

ffiffiffi
2

p
S0ðκ þ xCÞ − ðCþ

ffiffiffi
2

p
SÞκ0Þ

−πð6CS2x3 þ 6κSx2ðS −
ffiffiffi
2

p
CÞ þ κ2xð2C − 7

ffiffiffi
2

p
SÞ þ 3κ3Þ þ π

6
α20ðκ þ xCÞ3�Φ2g; ð4:8Þ

where x≡ πr. Hence, having specified the field Φ2

explicitly, the rest of the components of the spin-2 field
can be computed algebraically from the system (4.8).
In the following, we will choose the field Φ2 to initially

be a bump function of the form

Φ2ð0;rÞ¼
(	

4
ðr−aÞðr−bÞ
ðb−aÞ2



16

a≤ r≤b

0 r>b and r<a
ð4:9Þ

centered at r ¼ ðaþ bÞ=2. Then the rest of the components
of the spin-2 field are also bump functions and can be
computed from (4.8). In this work we choose a ¼ 0 and
b ¼ 1, which guarantees that the domain where (4.9) is
nontrivial coincides with our computational domain, i.e.,
0 ≤ r ≤ 1, and that the initial data vanish at the boundary.
In addition, because the system (3.21) is second order in

time, the values of the first temporal derivatives Ψλ of the
spin-2 field’s components must also be specified on the
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initial hypersurface. The evolution equations (3.16) of the
first-order system of PDEs, evaluated at t ¼ 0, will be used
for this purpose. The values of the fields on the rhs of (3.16)
can be evaluated from (4.8) and (4.9).

D. Results

The initial data constructed in the previous section will
be evolved now with the system of second-order PDEs
(3.21) in the two distinct conformal compactifications of
Minkowski spacetime presented in Fig. 2. We report that
our findings concerning the advantages of using the
second-order system (3.21) instead of the first-order system
of PDEs (3.16) to evolve the above initial data confirm the
respective ones in [28,30,31]. Namely, evolutions with
(3.21) lead to better accuracy and suppress the appearance
of the high-frequency waves that travel against the char-
acteristics and spoil the convergence of our numerical
simulations.

1. Nonhorizontal representation

First, we present our results for the nonhorizontal case of
Fig. 2(a), where f ¼ 2t. The lowest nontrivial mode l ¼ 2
will be considered here. Thus, Eqs. (4.8) and (4.9) together
with (3.16), evaluated at t ¼ 0, for the choice l ¼ 2 will be
our initial data. We evolve these data with (3.21) using an
explicit fourth-order Runge-Kutta scheme with a constant
time step Δt ¼ Ch, where C is the so-called CFL number.
The results of the present section are obtained with
C ¼ 0.05. Recall also that the boundary at r ¼ 1 does
not require boundary conditions as it is a total characteristic
of (3.21), while the boundary at r ¼ 0 is treated in the way
described in detail in Sec. IV B. The resulting numerical
solutions for the components Φ0 and Φ4 of the spin-2 field
are presented in Fig. 4. Clearly, Φ0 moves towards the
origin, while Φ4 moves in the opposite direction towards

the cylinder I at r ¼ 1. The other components behave in a
similar way.
Although, the numerical solutions displayed in Fig. 4

look quite smooth and stable, we have to conduct further
tests to conclude with certainty that they are stable and
convergent.
At first, we can look at their convergence rates (4.1). The

behavior of the convergence rates with time for each
component of the spin-2 field is illustrated in Fig. 5(a).
It is clearly visible that during the evolution the conver-
gence rates of all the components are a little bit above 4—a
result that is in good agreement with the expected
fourth-order convergence of our numerical scheme. This
expectation follows naturally from the fact that the time
integration is performed with a fourth-order Runge-Kutta
method and the spatial derivatives are approximated with
fourth-order finite difference operators.
Another way to test our numerical solutions is by

checking to see if the vanishing of the constraint quantities
(3.17) is satisfied during the evolution. As was mentioned
previously, it is almost impossible not to violate the
quantities (3.17) while numerically prescribing initial data
on the initial hypersurface. We cannot avoid initially
introducing some error into our system. Fortunately, as
was proven at the end of Sec. III A 4, the structure of the
subsidiary system of (3.17) does not allow these errors to
grow exponentially during the evolution. Thus, we have to
check if the numerical solutions of Fig. 4 confirm this
expectation. To do so, we evaluate, at each time step, the
three constraint quantities and compute their normalized l2

norms along the whole computational domain. Figure 5(b)
depicts the behavior of the three constraint quantities
during the evolution. Taking into account that the initial
violation of the constraints is, depending on the constraint
quantity, between 10−9 and 10−8; then the data of Fig. 5(b)
clearly indicate that the violation is contained at these levels
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FIG. 4. The numerical solutions for (a)Φ0 and (b)Φ4 resulting from the evolution of the initial data (4.8) and (4.9) in the representation
of Fig. 2(a). Notice that along the timeline of the origin, Φ0ðt; 0Þ ¼ Φ4ðt; 0Þ always holds. This is just a mere consequence of the
symmetry of the system (3.21) under transformations of the form Φλðt;−rÞ ↦ Φ4−λðt; rÞ, which were used in Sec. IV B to regularize the
singular terms of (3.21).
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during the evolution. This extremely pleasant feature is a
consequence of the linear nature of (3.21) and of the
comparatively short period of evolution. In addition, the
convergence of the constraint quantities with increasing
resolution has also been checked. Our findings agree with
the expected fourth-order convergence to zero.
It is expected that logarithmic singularities will develop

when our numerical simulations reach the critical set Iþ at
t ¼ 1. [Recall that beyond Iþ the domain of nonhyperbo-
licity of (3.21) starts; see Fig. 3(a).] Our findings confirm
this expectation. Namely, because we use an explicit
Runge-Kutta scheme, Iþ can be successfully reached,
but going beyond this leads immediately to instabilities
and code crash. This means that the part of Minkowski
spacetime beyond t ¼ 1 cannot be covered by our numeri-
cal simulations. So, it is not possible to cover the whole of
Minkowski spacetime in the representation of Fig. 2(a).
But, there is a possibility to achieve this in the horizontal
representation of Fig. 2(b) discussed in the following
section.

2. Horizontal representation

Let us now turn to the horizontal representation of
Fig. 2(b), where the whole of Minkowski spacetime is
represented as a conformally equivalent region of the
Einstein static universe with a rectangular shape in the
chosen coordinates. This representation is numerically quite
advantageous as the critical set Iþ, future null Iþ and
timelike iþ infinity are located at the same time slice t ¼ 1.
Therefore, with the last time step, which takes us to t ¼ 1,
we not only reach Iþ but also Iþ and iþ. Thus, we do not
have to go beyond t ¼ 1 to cover the whole Minkowski
spacetime. But this comes at a price: The speed of the
characteristic curves at t ¼ 1 [see Fig. 3(b)] becomes infinite
—which makes our endeavor to reach t ¼ 1 extremely
challenging. In the following we investigate numerically the
possibility of reaching t ¼ 1 in this setting.

As above, our initial data consist of (4.8) and (4.9)
together with (3.16), evaluated at t ¼ 0, for the lowest
nontrivial mode l ¼ 2 and the choice (2.16). Again, we use
an explicit fourth-order Runge-Kutta scheme of constant
time step with CFL number C ¼ 0.1. The resulting numeri-
cal solutions for the components Φ0 and Φ4 of the spin-2
field are presented in Fig. 6. Notice that while Φ0 and Φ4

move slowly towards the origin and the cylinder, respec-
tively, at late times this indolent movement is accelerated. A
look at the characteristic curves of Fig. 3(b) suffices to
explain this behavior. The rapid shift of the orientation of
the characteristics from almost vertical to almost parallel at
late times is responsible for the observed increase of the
propagation speed of the evolved data. The remaining
components behave in a similar way.
By inspection of Fig. 6, the obtained solutions are

evidently smooth and stable during the whole evolution.
At first sight, this seemingly doubtful result, which implies
that our numerical solutions are smooth and stable even at
t ¼ 1, where the characteristic speed becomes infinity, can
be attributed to the explicit Runge-Kutta scheme we are
using and to the extremely steep characteristics of the
horizontal representation [see Fig. 3(b)]. Because of the
former, the evolution equations are actually never evaluated
at t ¼ 1. The latter now delays the violation of the CFL
condition, resulting from the increase of the characteristic
speed, to very late times. When appropriately combined,
these two features can lead to the smooth and stable
solutions of Fig. 6. It is noteworthy that when the character-
istic curves are less steep than the ones we are using, t ¼ 1
cannot be reached in a stable way and the solutions blow up
there. So, the steeper the characteristic curves are, the better
our numerical results. The numerical factor in (2.16)
controls the steepness of the characteristics; this explains
why the specific value appearing in (2.16) was chosen.
To study the convergence properties of the solutions of

Fig. 6, we take a look at their convergence rates (4.1).
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FIG. 5. For the numerical solutions of Fig. 4, we present the temporal evolution (a) of the convergence rates of each one of the
components of the spin-2 field and (b) of the violation of the vanishing of the constraint quantities (3.17). The critical set Iþ at t ¼ 1 can
be successfully reached, but as expected, we cannot go beyond it; i.e., we always maintain t < 1.
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Figure 7(a) illustrates the convergence rates for each
component of the spin-2 field as a function of time. We
have zoomed in to the interesting region where t → 1, as for
earlier times t < 0.992 the convergence rates are well above
4. For late times we lose convergence while approaching
t ¼ 1 and end up with convergence rates close to unity at
t ¼ 1. The observed loss of convergence can be ascribed to
the violation of the CFL condition caused by the increase of
the characteristic speed at late times [see Fig. 3(b)]. Thus,
by decreasing the CFL number C, the loss of convergence
can be significantly reduced and postponed to even later
times, but it cannot be avoided altogether as we approach
t ¼ 1 where the characteristic speed becomes infinite.
Now, let us study the behavior of the vanishing

of the constraint quantities (3.17) during the evolution.
Figure 7(b) depicts the temporal evolutions of the con-
straint quantities Cλ with time. The initial violation of the

constraints is of the order of 10−7 and is maintained at this
level, as can be seen in Fig. 7(b), until the quite late time
t ≈ 0.999. Thereafter, the constraints are increasingly
violated. This is again a consequence of the violation of
the CFL condition that follows from the increase of the
characteristic speed while approaching t ¼ 1. A decrease of
the CFL number C delays the phase of increasing violation
of the constraints but cannot suppress it.
Recall that all our results in the present section have

been obtained using a time integrator that marches at a
constant pace throughout the evolution. So, when using a
constant time step, our findings above show that, although
our numerical solutions do not blow up at t ¼ 1, t ¼ 1
cannot be reached without a loss of convergence and a
considerable violation of the constraints that are caused
by the unavoidable increase of the characteristic speed
while t → 1. If the latter is really the reason for the
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nonpreservation of the constraints is caused by the rapid increase of the characteristic speed at late times, which in turn leads to the
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underperformance of our code close to t ¼ 1, then by using
an explicit Runge-Kutta scheme with an adaptive time step,
t ¼ 1 could be approached arbitrarily close without losing
convergence and increasingly violating the constraints. A
time integrator of this type adjusts the time step and,
consequently, the CFL number C, according to the magni-
tude of the characteristic speed. in a way that the CFL
condition is always satisfied. In Fig. 8 the convergence
rates and the behavior of the constraint quantities (3.17)
resulting from an evolution with an adaptive time step are
compared to the corresponding results of Fig. 7 obtained
with a constant time step. Clearly, the use of an adaptive
time step restores the convergence rates and the preserva-
tion of the constraints to their expected values. In addition,
for the simulation of highest resolution, here 600 grid
points, we managed to advance to t ≈ 0.999999999999,
just 10−12 from t ¼ 1. We could not get closer to t ¼ 1 as
the time step becomes of the order of 10−17, exceeding
Python’s double precision. In principle, using higher
quadruple or octuple precision can get us even closer
to t ¼ 1.

V. DISCUSSION

In this work it was shown that the generalized conformal
field equations [25] can be used to study gravitational
perturbations on the whole of Minkowski spacetimeM and
not only in the regions close to spacelike infinity i0.
This has been achieved by slightly diverging from

Friedrich’s original formulation where spacelike infinity
i0 is first placed at the origin by a coordinate inversion and
then blown up to a cylinder by an appropriate rescaling of
the resulting spacetime. Here, a different strategy was
followed. Instead of inverting the coordinates, we first
conformally compactified M into the Einstein static uni-
verse E (see Sec. II A), and then by appropriately rescaling

the resulting conformal metric (2.4), spacelike infinity was
blown up to a cylinder in the spirit of Friedrich [see (2.7)].
The free functions κðrÞ and fðtÞ, introduced by the
rescaling, control the shape and the location of i0 and I .
Here, we chose to work in the two representations of Fig. 2.
The former representation is an example of the general
setting where the temporal positions of iþ; i0 and Iþ on M
are distinct, while the latter is quite special as all of
iþ; i0; Iþ are positioned on the same time slice.
The cost of including the whole of M into the computa-

tional domain is that some termsof thegeneralized conformal
field equations, in both their representation as a system of
first-order (3.16) and second-order (3.21) PDEs, are singular
at r ¼ 0. Note, however, that this is not due to a deficiency of
the conformal rescaling but to the use of polar coordinates
adapted to the spherical symmetry of the background
Minkowski spacetime. Therefore, although the spin-2 field
is regular at the origin, the numerical implementation of the
equations governing its dynamics is highly involved. In
Sec. IV B the numerical implementation of the system (3.21)
at the origin is described in detail.
In the nonhorizontal representation of Fig. 2(a), it is

possible to reach the critical set Iþ at t ¼ 1 without loss of
convergence and with the constraint quantities (3.17)
preserved (see Sec. IV D 1). This was made possible
because of the finite speed of the characteristic curves at
Iþ [see Fig. 3(a)] and because of the explicit Runge-Kutta
scheme we are using. But any attempt to go beyond Iþ, i.e.,
to enter the domain of nonhyperbolicity of (3.21), leads to
code crash almost immediately, as expected. Therefore, it is
not possible to cover parts ofM lying beyond the time slice
t ¼ 1 in this representation.
In the horizontal representation of Fig. 2(b), the whole of

Minkowski spacetime has been restricted conformally
between the time slices t ¼ −1 and t ¼ 1 (which are, in
fact, null hypersurfaces) that go through the critical sets I−
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FIG. 8. For the numerical solutions of Fig. 6, we present the behavior with time (a) of the convergence rate of the worst converging
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and Iþ, respectively. This feature leaves open the possibil-
ity of performing a global simulation of M, namely,
evolving data from past i− all the way to future timelike
infinity iþ. This possibility was extensively investigated in
Sec. IV D 2; the main source of our difficulties here is
related to the fact that the speed of the characteristics
becomes infinite at t ¼ 1 [see Fig. 3(b)]. A constant time
step throughout the evolution can get us to t ¼ 1 in a
smooth way (see Fig. 6) but with a considerable loss of
convergence and violation of the constraints (see Fig. 7).
We can get around this by using an adaptive time step. In
this case how close we can get to t ¼ 1 depends on the
available computational precision. With Python’s double
precision we managed to approach t ¼ 1 to a distance of

only 10−12 with the expected fourth-order convergence and
preservation of the constraints (see Fig. 8).
Having shown that our formulation can be successfully

applied for the Minkowski spacetime, we can move on and
apply it to spacetimes subject to less restrictive symmetry
conditions.
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