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Results are presented from numerical simulations of the Einstein-Maxwell-Higgs equations with a
broken U(1) symmetry. Coherent nontopological soliton solutions are shown to exist that separate an anti–
de Sitter (AdS) true vacuum interior from a Reissner-Nordstrom (RN) false vacuum exterior. The stability
of these bubble solutions is tested by perturbing the charge of the coherent solution and evolving the time-
dependent equations of motion. In the weak gravitational limit, the short-term stability depends on the sign
of ðω=QÞ∂ωQ, similar to Q-balls. The long-term end state of the perturbed solutions demonstrates a rich
structure and is visualized using “phase diagrams.” Regions of both stability and instability are shown to
exist for κg ≲ 0.015, while solutions with κg ≳ 0.015 were observed to be entirely unstable. Threshold
solutions are shown to demonstrate time-scaling laws, and the space separating true and false vacuum end
states is shown to be fractal in nature, similar to oscillons. Coherent states with superextremal charge-to-
mass ratios are shown to exist and observed to collapse or expand, depending on the sign of the charge
perturbation. Expanding superextremal bubbles induce phase transitions to the true AdS vacuum, while
collapsing superextremal bubbles can form nonsingular strongly gravitating solutions with superextremal
RN exteriors.
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I. INTRODUCTION

Nontopological solitons (NTSs) are localized bound-
state (BS) solutions to nonlinear field theories whose
stability is associated with a conserved Noether charge.
One of the most well-studied NTS solutions was discovered
roughly thirty years ago, when Coleman demonstrated that
the flat space Klein-Gordon equation with a nonlinear
unbroken U(1)-symmetric potential gives rise to coherent
bound states known as Q-balls [1]. Since that discovery,
many other similar NTS solutions have been found using
models with a variety of scalar potentials (both broken and
unbroken) and with the addition of gauge fields and gravity.
These soliton solutions found relevance in the contexts
of q-stars, boson stars, Q-ball induced solitogensis
(“Q-bubbles”), baryogenesis in supersymmetric extensions
of the standard model, and other cosmological, astrophysi-
cal, and particle physics applications [2–14].
For any NTS solution to be physically relevant, it must

exist long enough to interact with other objects in the
universe. As such, the stability of Q-balls and other NTS
solutions has been extensively explored both analytically
and numerically. In the original discovery of Q-balls,
Coleman used the thin-wall approximation in the case of
an unbroken U(1) symmetry to show that coherent sol-
utions with energy less than the charge (E < Q) were stable
[1]. In the broken U(1) symmetric case, it was demon-
strated thatQ-balls are locally stable if ðω=QÞ∂ωQ < 0 and
locally unstable if ðω=QÞ∂ωQ > 0, where ω is the angular

velocity of the phase of the complex scalar field [15]. Stable
Q-balls or boson stars have also been shown to exist in the
presence of gravity, for broken and unbroken symmetries in
both the thin- and thick-wall limits [16–30]. Stable Q-balls
in the false vacuum (broken symmetry) were shown to exist
[3,15,20], and were dubbed Q-bubbles in [20]. It was even
shown in the broken symmetry case that gravity allows for
arbitrarily small Q-balls, where they would otherwise have
been unstable in flat space [21]. An excellent review of this
family of solutions, with an emphasis on strong gravita-
tional coupling, is given by [31].
Oscillons and scalarons are also closely related to the

solitons studied in this paper but are not actually solitons
because they are composed of a single real scalar field and
therefore do not have a conserved Noether charge. Oscillons
created with a double-well potential in flat space describe
“bubble” solutions that are of interest in the study of
cosmological phase transitions (PTs) [32,33] and were
shown to have fractal boundaries in the space of possible
end states [34]. Self-gravitating scalarons discovered in [35]
were shown to be unstable solutions that decayed into either
an expanding vacuum bubble or a Schwarzschild black hole
(BH). The black hole solutions, while unstable, provide a
weak counterexample to the no-scalar-hair conjecture [36].
While the solutions mentioned above are all obtainable

from the Einstein-Maxwell-Higgs (EMH) model in some
appropriate limit (choice of potential, presence of gravity
or gauge field, etc.), this paper discusses the existence,
stability, and other properties of NTS solutions to the full
EMH theory with a broken U(1) symmetry and anti–de*ehonda@alum.mit.edu
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Sitter (AdS) true vacuum. Similar (4þ 1) models form the
basis of Randall-Sundrum spacetimes, where expanding
AdS bubbles have been shown to be candidates for brane
formation [37].
This paper begins by presenting the general EMH

formalism and definitions in Sec. II. Section III describes
solutions to the coherent equations of motion resulting
from a stationary ansatz; the basic properties (mass, charge,
radius, and central lapse) of the solutions are presented.
Section IV describes the use of the time-dependent equa-
tions of motion to explore the long-term stability of the
coherent solutions.

II. GENERAL FORMALISM AND DEFINITIONS

The EMH action being discussed here is given by

S¼
Z

d4x
ffiffiffiffiffi
jgj

p �
R

16πκg
−
F2

4
−
1

2
gμνðDνϕÞ�Dμϕ−VðϕρÞ

�
;

ð1Þ

where R is the Ricci curvature scalar associated with the
metric gμν, F2 ¼ FμνFμν, ϕ ¼ ϕ1 þ iϕ2 for real ϕ1 and ϕ2,

and ϕρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2
1 þ ϕ2

2

p
. The electromagnetic field strength

tensor, the gauge covariant derivative, and the Uð1Þ
symmetric scalar field potential are given by

Fμν ¼ ∇μAν −∇νAμ; ð2Þ

Dμϕ ¼ ð∇μ − iqAμÞϕ; and ð3Þ

VðϕρÞ ¼
XN
n¼1

αn
2n

ϕ2n
ρ ; ð4Þ

respectively, where Aμ is the electromagnetic vector poten-
tial with associated charge q. The action (1) is written in
terms of dimensionless variables and coordinates and
Appendix A describes how to obtain this form of the
action from a physical dimensionful action by performing a
transformation of coordinates and field variables. Changing
the dimensionless model parameter κg can be interpreted
as a rescaling of Newton’s gravitational constant or the
boson mass.
Varying (1) with respect to ϕ gives rise to the equations

of motion for the complex scalar field,

∇μ∇μϕ ¼ 2iqAσ∂σϕþ iqϕ∇σAσ þ q2ϕAσAσ

þ ϕ
X
n

αnϕ
2n−2
ρ : ð5Þ

Maxwell’s equations in curved spacetime are obtained by
varying the action with respect to the vector potential and
using the antisymmetry of the field strength tensor,

∇ρFσρ ¼ Jσ; ð6Þ

∂ ½μFσρ� ¼ 0; ð7Þ

with conserved current (∇σJσ ¼ 0),

Jσ ¼ i
2
qgσνðϕ�∂νϕ − ϕ∂νϕ

�Þ þ q2ϕϕ�Aσ: ð8Þ

Using the standard (3þ 1) formalism, the spacetime
metric is given by

gμν ¼
�−α2 þ βiβ

i βi

βj hij

�
ð9Þ

for lapse function α, shift vector βi, and spatial metric hij.
Using (9), variation of (1) with respect to gμν yields a set of
hyperbolic equations for the spatial metric and extrinsic
curvature,

hik∂thkj ¼ −2αKi
j þDiβj þDjβ

i; ð10Þ

∂tKi
j ¼ £βKi

j −DiDjαþ α

�
Ri

j þ KKi
j

þ 8πκg

�
1

2
hijðS − ρÞ − Sij

��
; ð11Þ

and the elliptic (Hamiltonian and momentum) constraint
equations,

ð3ÞRþ K2 − Ki
jKj

i ¼ 16πκgρ; ð12Þ

DjKj
i −DiK ¼ 8πκgji; ð13Þ

where the energy density, momenta, and spatial stress
tensor on the spatial hypersurfuce are given by

ρ ¼ nμnνTμν; ð14Þ

ji ¼ −nνTiν; and ð15Þ

Sij ¼ hμihνjTμν; ð16Þ

in terms of the spacetime energy-momentum tensor

Tμν ¼ −
2ffiffiffiffiffiffi−gp δSM

δgμν
ð17Þ

and the normal to the spacelike hypersurface,
nμ ¼ ð1=α;−βi=αÞ.
In analysis of scalar field bubble dynamics, it is useful

to describe a few additional quantities. The first quantity is
representative of the bubble radius and is defined as
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ξðtjÞ ¼
�
max ðriðϕTF; tjÞÞ when ϕTF ∈ ϕðri; tjÞ
0 otherwise;

ð18Þ

where ϕTF ≡ ðϕT þ ϕFÞ=2, for ϕT and ϕF being the true
and false vacuums, respectively; ϕTF satisfies ϕTF ∈
ϕðri; tjÞ at tj if ϕðri; tjÞ ≤ ϕTF < ϕðriþ1; tjÞ for some i.
More simply put, ξðtÞ is the maximum radius for which the
field is halfway between the true and false vacuums, and 0
if at time tj the field does not anywhere equal ϕTF.
Another useful quantity is a normalized second moment

of the magnitude of the scalar field,

χðϕρ; r0Þ ¼
PNðr0Þ

i¼0 r2i ððϕρÞi − ϕFÞ
ðϕT − ϕFÞ

PNðr0Þ
i¼0 r2i

; ð19Þ

where Nðr0Þ is the index of the grid point corresponding
to r0. χðϕρ; r0Þ gives a measure of volume of space within
r ≤ r0 that is occupied by the true or false vacuum,
normalized to give 0 for the false vacuum and 1 for the
true vacuum.
Finally, the choices for αn are such that VðϕÞ is a broken

U(1) symmetric potential, α1 ¼ 1, α2 ¼ −5=2, and α3 ¼ 1,
with false vacuum at ϕF ¼ 0 with VðϕFÞ ¼ 0, and with
AdS true vacuum at ϕT ¼ ffiffiffi

2
p

with VðϕTÞ ¼ −1=6. Unless
otherwise explicitly stated, the value of the charge is taken
to be q ¼ 0.1.

III. COHERENT REISSNER-NORDSTROM–
ANTI–DE SITTER NTS SOLUTIONS

This section discusses the stationary spherically sym-
metric coherent solutions to (5)–(7) and (10)–(13). The
polar-areal slicing conditions (b ¼ 1, TrK ¼ Kr

r) fix the
spacetime gauge and simplify the metric to

ds2 ¼ −α2ðrÞdt2 þ a2ðrÞdr2 þ r2dΩ; ð20Þ

where dΩ ¼ dθ2 þ sin2θdϕ2. The Maxwell gauge freedom
is set using the Lorentz gauge condition,

∇μAμ ¼ 0; ð21Þ

and the electric field is implicitly defined such that

Ftr ¼ −αaEr: ð22Þ

Assuming the scalar field is described by the coherent
ansatz,

ϕðt; rÞ ¼ ϕρðrÞeiωt; ð23Þ

the coherent equations of motion are given by

1

r2
∂r

�
αr2Φρ

a

�
¼ −

a
α
ϕρu2 þ αa

X
n

αnϕ
2n−1
ρ ; ð24Þ

∂rϕρ ¼ Φρ; ð25Þ

1

r2
∂rðr2ErÞ ¼ Jt; ð26Þ

∂ru ¼ αaqEr; ð27Þ

a0

a
¼ 1 − a2

2r
þ 4πκgra2ρ; ð28Þ

α0

α
¼ a2 − 1

2r
þ 4πκgra2Srr; ð29Þ

where

u ¼ qAt − ω; ð30Þ

Jt ¼ quaϕ2
ρ

α
; ð31Þ

ρ ¼ E2
r

2
þ Φ2

ρ

2a2
þ u2ϕ2

ρ

2α2
þ V; ð32Þ

Srr ¼ −
E2
r

2
þ Φ2

ρ

2a2
þ u2ϕ2

ρ

2α2
− V; ð33Þ

and the conserved charge and mass are given by

Q ¼ 4π

Z
rb

0

drr2Jt; ð34Þ

M ¼ 4π

Z
rb

0

drr2ρ; ð35Þ

where rb is the radial coordinate value of the outer
boundary of the computational domain. WhileM is usually
a decent approximation for the total mass, for precise
measurements using the total mass, one should use the
mass at spatial infinity,

M∞ðrÞ ¼
�

r
2κg

��
1 − a−2 þ κgQ2

4πr2

�
; ð36Þ

which is obtained by matching the spacetime to the
Reissner-Nordstrom (RN) geometry. Since these solutions
are bound states of finite extent with radii approximated
by ξ, M∞ðrÞ tends to approach a constant very rapidly for
r > ξ. When not explicitly stated, M∞ is evaluated
at r ¼ rb.
It is helpful to note that the equations of motion are

invariant under the multiplicative rescaling of α and u,
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ðu; αÞ → ðk1α; k1uÞ; ð37Þ

and the additive shifting of At and ω,

ðAt;ωÞ → ðAt þ k2;ωþ qk2Þ; ð38Þ

for real constants k1 and k2.
The coherent equations of motion are solved using a

second-order finite difference code utilizing standard dou-
ble precision [38] variables. Solutions are obtained by
setting u0 ≡ uðr ¼ 0Þ and using ϕ0 ≡ ϕðr ¼ 0Þ as a
shooting parameter. Figure 1 shows the different possible
outcomes for shooting solutions, depending on the trial
values for ϕ0. To obtain a coherent solution, ϕðrÞ, one
starts with two values of ϕ0 that yield solutions like ϕA

ρ

and ϕB
ρ that oscillate in different local minima of −VðϕρÞ.

Bisecting between two such solutions yields the eigenvalue
solution ϕðrÞ that asymptotically approaches the false
vacuum. This also results in uðrÞ and αðrÞ solutions that
approach constant values for large r. αðrÞ and uðrÞ are then
rescaled using (37) to set α ¼ 1=a at the outer boundary.
Finally, ω and AtðrÞ are then determined from uðrÞ using
(38) such that Atð∞Þ ¼ 0. These charged scalar field bound
states that interpolate between vacua of a U(1) symmetric
potential are similar to the Q-bubble solutions discussed in
[3,15,20]. Since these bubble solutions are nontopological

solitons with an AdS interior and a RN exterior, they are
referred to here as RN-AdS NTSs.
The parameter space of coherent solutions is explored by

varying u0 for various gravitational couplings, κg. Figure 2
(top) shows the values of ϕ0 that result in coherent bound
states. Since there are many solutions close to one another
in ϕ0-space, log10ðϕþ − ϕ0Þ is also plotted (Fig. 2, middle),
where ϕþ is the lowest value of ϕ0 above which all
solutions blow up like the ϕC

ρ solution in Fig. 1.
Figure 2 (bottom) shows the values of ω for the different
coherent solutions. As is common with Q-balls [24], a
“catastrophe” clearly can be seen between the κg ¼ 0.1225
and κg ¼ 0.125 solutions, around u0 ≈�0.9, where the
topology of the solutions in u0-space can be seen to change.
Figure 3 shows the values of the radius (ξ), mass (M),

charge (Q), and central lapse (α0), for a range of u0 and
gravitational couplings κg. Due to a quadratic dependence
on u, the values of ξ, mass, and α0 are seen to be symmetric
in u0, while linear dependence of the charge density (31)
on u yields a total charge that is antisymmetric in u0.
Figures 4 and 5 show that for gravitational couplings

FIG. 1. Solutions to Eqs. (24)–(29) with different ϕ0 values.
Solutions ϕA

ρ and ϕB
ρ correspond, respectively, to “undershot” and

“overshot” solutions that oscillate in the minima of −VðϕρÞ.
Solution ϕC

ρ is an example of a runaway solution that “blows up”
to infinity. ϕρðrÞ is the solution corresponding to the coherent
bound state. Although the behavior observed is generic, these
solutions are for q ¼ 0.05, κg ¼ 0.001, and u0 ¼ −0.5. The inset
shows −VðϕρÞ.

FIG. 2. Plots of ϕ0, log10ðϕþ − ϕ0Þ, and ω as a function of u0
for coherent bound-state solutions with κg ¼ f0.001; 0.008;
0.011; 0.01225; 0.0125; 0.013; 0.015g plotted in red, green, blue,
cyan, yellow, magenta, and black, respectively.
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κg ≳ 0.011, the NTS solutions are gravitationally strong-
field solutions with radii on the order of their RN horizon
radii, where the inner (−) and outer (þ) RN horizons are
given by

r�h ¼ κgM∞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2gM2

∞ −
κgQ2

4π

s
ð39Þ

¼ κgM∞

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Ξ2

p �
ð40Þ

and where

Ξ ¼ Q

ð4πκgÞ1=2M∞
ð41Þ

is the charge-to-mass ratio. Ξ is defined such that for
subextremal solutions, jΞj < 1 and rþh is between κgM∞
and 2κgM∞, for extremal solutions, Ξ ¼ �1 and r−h and rþh
are coincident at κgM∞, and for superextremal solutions,

jΞj > 1 and there are no real r�h . While one may question
the use of the term extremal for nonsingular NTS solutions
without horizons (ξ > rþh ), coherent NTS solutions with
jΞj ¼ 1 are extremal in that they are noninteracting with
other like-charged extremal solutions because their gravi-
tational attraction is balanced by their Coulombic repul-
sion. Additional evidence of the strong-field nature of these
solutions (0.01 ≲ κg ≲ 0.03) is that the central lapse values
are typically 0.1 ≲ α0 ≲ 0.5, indicating significant gravi-
tational time dilation relative to observers at spatial infinity
where α ¼ 1.
Solutions with jΞj ≥ 1 are of particular interest, given

their potential to form extremal black holes or naked
singularities. Figure 6 shows that coherent solutions
with jΞj ≥ 1 appear to exist for values of κg ≲ 0.002
and κg ≳ 0.028. Solutions with κg ≲ 0.002 are not likely
to couple to gravity strongly enough to result in collapse to
within rþh ; the κg ≳ 0.028 solutions are promising candi-
dates for superextremal collapse but appear to show a loss
of numerical precision when using standard double-
precision variables.

FIG. 3. Plots of radius (ξ), mass (M∞), charge (Q), and central
lapse (α0) as a function of u0 for coherent bound-state solutions
for κg ¼ f0.001; 0.008; 0.011; 0.01225; 0.0125; 0.013; 0.015g
plotted in red, green, blue, cyan, yellow, magenta, and black,
respectively.

FIG. 4. Plots of log10ðϕþ − ϕ0Þ, ξ=ðκgM∞Þ, and
jQj=ð4πκgÞ1=2M∞ as a function of u0 for coherent bound-state
solutions for κg ¼ f0.008; 0.011; 0.01225; 0.0125; 0.013; 0.018;
0.029g plotted in red, green, blue, cyan, yellow, magenta, and
black, respectively.
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Standard double-precision variables are encoded with
64 bits and have 53 bits of precision dedicated to the
mantissa of the real number they are representing. Such
variables cannot distinguish between two different real
numbers to more than one part in 1053 log10 2 ≈ 1016. This
effect begins to become apparent when log10 ðϕþ − ϕ0Þ ≲
−15 and the ability for a double-precision code to resolve
additional large-κg coherent solutions is lost. For additional
precision, a code was created that uses n × 32 bits of
precision. Figure 7 compares the use of 64 bits of precision
to the standard 53 bits, and the use of 96 bits of precision to
64 bits. The 64-bit precision code can fine-tune solutions to
one part in 1064 log10 2 ≈ 1019, and the 96-bit precision code
can fine-tune to one part in 1096 log10 2 ≈ 1029.
Coherent solutions for 0.028 ≤ κg ≤ 0.033 are obtained

using the 96-bit precision code, and the radius, mass,
charge, and central lapse can be observed in Fig. 8. The
radius, mass, and charge appear to increase significantly as
a function of κg, and the central lapse again demonstrates
significant gravitational time dilation relative to spatial
infinity, 0.001 ≲ α0 ≲ 0.008. Figure 9 shows that for
solutions with 0.029 ≲ κg ≲ 0.033, there are large regions
of u0-space that support superextremal solutions with radii
on the order of κgM∞. These solutions are very dense
objects that would form naked singularities if runaway
collapse were to occur. Figure 10 shows that with increas-
ing gravitational coupling, the radius of the coherent
solutions increases dramatically and the required precision

to resolve the shooting solutions [indicated by
log10 ðϕþ − ϕ0Þ] also increases rapidly. While the
higher-precision code allows one to explore higher-energy
(larger ξ, Q, and M∞) NTS solutions, the apparent greater-
than-exponential growth of the bubble radius as a function
of κg demands ever-increasing computational grid domains
and the rapidly decreasing value of log10 ðϕþ − ϕ0Þ
requires ever-greater numerical precision to fine-tune the
initial shooting parameter (ϕ0). As such, the work here
stops with 96-bit precision but seems to definitively
demonstrate the existence of superextremal (jΞj > 1)
coherent RN-AdS NTS solutions.

IV. RN-ADS NTS EVOLUTION AND STABILITY

While the solutions to (24)–(29) satisfy the stationary
coherent ansatz, they may not be stable to perturbations
over time. The long-term stability of the coherent solutions
is explored in this section by fully time evolving (5)–(7)

FIG. 5. Plots of ξ=rþh as a function of u0 for coherent bound-
state solutions for κg ¼ f0.008; 0.011; 0.01225; 0.0125; 0.013;
0.018; 0.029g plotted in red, green, blue, cyan, yellow, magenta,
and black, respectively. For the κg ¼ 0.029 solutions, the evi-
dence of loss of numerical precision from using the double-
precision code can be seen.

FIG. 6. Plots of logðϕþ
0 − ϕ0Þ, radius (ξ), and jQj=ð4πκgÞ1=2M∞

as a function of gravitational coupling κg for u0 ¼ f0.5; 0.6; 0.7;
0.8; 0.9; 1.0g, plotted in red, green, blue, cyan, yellow, and black,
respectively. The dashed line in the bottom graph denotes the
extremality condition jQj=ð4πκgÞ1=2M∞ ¼ 1. For values of κg ≳
0.03 loss of numerical precision from using the double-precision
code can be seen.
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and (10)–(13) with a perturbed set of coherent initial data.
Again using polar-areal slicing, the time-dependent spheri-
cally symmetric metric is taken to be

ds2 ¼ −α2ðt; rÞdt2 þ a2ðt; rÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð42Þ

which results in the following hyperbolic equations of
motion,

∂tΠ1 ¼
1

r2
∂r

�
α

a
r2Φ1

�
− 2q

�
AtΠ2 −

α

a
ArΦ2

�

þ ϕ1q2
�
aA2

t

α
−
αA2

r

a

�
− αa

X
n

αnϕ1ϕ
2n−2
ρ ; ð43Þ

∂tΠ2 ¼
1

r2
∂r

�
α

a
r2Φ2

�
þ 2q

�
AtΠ1 −

α

a
ArΦ1

�

þ ϕ2q2
�
aA2

t

α
−
αA2

r

a

�
− αa

X
n

αnϕ2ϕ
2n−2
ρ ; ð44Þ

∂tΦ1 ¼ ∂r

�
α

a
Π1

�
; ð45Þ

∂tΦ2 ¼ ∂r

�
α

a
Π2

�
; ð46Þ

∂tϕ1 ¼
α

a
Π1; ð47Þ

∂tϕ2 ¼
α

a
Π2; ð48Þ

∂tðErÞ ¼ q
α

a
ðϕ2Φ1 − ϕ1Φ2Þ þ q2ϕ2

ρ
α

a
Ar; ð49Þ

∂t

�
a
α
At

�
¼ 1

r2
∂r

�
α

a
r2Ar

�
; ð50Þ

∂tAr ¼ ∂rAt − αaEr; ð51Þ

∂ta ¼ −4πκgαarjr; ð52Þ

and the following elliptical equations:

FIG. 7. Plots of logðϕþ
0 − ϕ0Þ as a function of u0 for two

different values of gravitational coupling with simulations of
different numerical precision. The top graph is for κg ¼ 0.031,
where the red x’s are using standard 53-bit double precision
variables and the blue connected x’s are using 64-bit precision
variables. The bottom graph is for κg ¼ 0.033, where the red x’s
are using 64-bit precision variables and the blue connected x’s are
using 96-bit precision variables.

FIG. 8. Plots of radius (ξ), mass (M∞), charge (Q), and central
lapse (α0) as a function of u0 for coherent bound-state solutions
for κg ¼ f0.028; 0.029; 0.030; 0.031; 0.032; 0.033g plotted in
red, green, blue, cyan, yellow, and magenta, respectively.
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a0

a
¼ 1 − a2

2r
þ 4πκgra2ρ; ð53Þ

α0

α
¼ a2 − 1

2r
þ 4πκgra2Srr; ð54Þ

1

r2
∂rðr2ErÞ ¼ Jt; ð55Þ

where

ρ ¼ 1

2
E2
r þ

1

2a2
ðΦ2

1 þ Φ2
2 þ Π2

1 þ Π2
2Þ

þ q

�
At

αa
ðϕ2Π1 − ϕ1Π2Þ þ

Ar

a2
ðϕ2Φ1 − ϕ1Φ2Þ

	

þ 1

2
q2ϕ2

ρ

�
A2
t

α2
þ A2

r

a2

�
þ V; ð56Þ

Srr ¼ −
1

2
E2
r þ

1
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α
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and the charge and mass are conserved,

FIG. 9. Plots of logðϕþ
0 − ϕ0Þ, ξ=ðκgM∞Þ, and

jQj=ð4πκgÞ1=2M∞ as a function of u0 for coherent bound-state
solutions for κg ¼ f0.028; 0.029; 0.030; 0.031; 0.032; 0.033g plot-
ted in red, green, blue, cyan, yellow, and magenta, respectively.
The dashed line in the bottom graph denotes the extremality
condition jQj=ð4πκgÞ1=2M∞ ¼ 1 and separates sub- and super-
extremal solutions.

FIG. 10. Plots of ξ, log10ðϕþ
0 − ϕ0Þ, and jQj=ð4πκgÞ1=2M∞ as a

function of κg for coherent bound-state solutions for u0 ¼
f0.1; 0.2; 0.3; 0.4; 0.7; 1.0g in red, green, blue, cyan, yellow,
and black, respectively. The dashed line in the bottom graph
denotes the extremality condition jQj=ð4πκgÞ1=2M∞ ¼ 1 and
separates sub- and superextremal solutions.
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QðtÞ ¼ 4π

Z
rb

0

drr2Jtðt; rÞ; ð60Þ

MðtÞ ¼ 4π

Z
rb

0

drr2ρðt; rÞ: ð61Þ

As discussed in [36], if one based the stability solely on
time evolving the coherent initial data, the perturbation
would be determined by the truncation errors of the
coherent solutions. To have a more controlled parameter-
ized perturbation, the scalar field initial data are taken to be
the following “charge perturbed” values:

ϕð0; rÞ ¼ ϕcðrÞ; ð62Þ

Πð0; rÞ ¼ i

�
a
α

�
ðωc þ ΔωÞϕcðrÞ; ð63Þ

where ϕcðrÞ is a solution to the coherent equations obtained
in Sec. III, ωc is the angular frequency of the coherent
solution, and Δω is an arbitrary perturbation. When
Δω ¼ 0, the coherent initial data are unchanged. When
using a nonzero Δω, the perturbation changes the rotation
rate of the scalar field in the (ϕ1, ϕ2) internal space in the
direction of the U(1) isometry, thereby directly increasing
or decreasing the ∂t component of the conserved Noether
current (the charge). Since the perturbation changes both
the charge and mass distribution of the spacetime, the
electromagnetic and gravitational constraint equations are
solved with the new ϕð0; rÞ and Πð0; rÞ.
Figure 11 demonstrates the effect that a given perturba-

tion has on the charge and the radial component of the
ADM momentum for a range of coherent solutions. Given
the conventions used in this paper for the gauge covariant
derivative, a negative perturbation to the angular frequency
results in a positive perturbation to the charge of the
coherent bound state (top plot in Fig. 11). The nature of
the perturbation given by (62) and (63) is such that the
geometric variables and their time derivatives are 0 at t ¼ 0,
but perturbations induce an imbalance of gravitational and
electromagnetic forces. As such, jr is 0 at t ¼ 0 but is
nonzero for Δω ≠ 0 after one iteration forward in time and
can serve as a measure of the effect the perturbation has on
the dynamics of the NTS solution. Looking at the bottom
plot in Fig. 11, one can see that since the u0 ¼ 0 coherent
solutions are charge neutral, any perturbation creates a net
charge and thereby increases the Coulombic self-repulsion,
resulting in outward radial motion (jr > 0) independent of
the sign of Δω. On the other hand, since the coherent
solutions with u0 > 0 start with a positive charge before
being perturbed, a negative Δω perturbation implies a
positiveΔQ, and the amount of positive charge of the given
solution is increased; the Coulombic self-repulsion there-
fore increases, resulting in a radially outward motion,
jr > 0. Conversely, u0 > 0 coherent solutions with positive

Δω have negative ΔQ, and the positive charge of the
given solution is decreased; the Coulombic self-repulsion
therefore decreases, resulting in a radially inward motion,
jr < 0. With increasingΔω, enough negative charge can be
added to make the solution charge neutral (the minima of
the curves); with additional Δω (and more negative ΔQ),
the Coulombic self-repulsion starts increasing again,
and the self-repulsion eventually balances out the gravita-
tional attraction (jr ¼ 0). With even more negative ΔQ, the
solutions acquire enough negative charge to have net
Coulombic repulsion (jr > 0). Equations (62) and (63)
therefore serve as a simple parametric means to charge
perturb the coherent RN-AdS NTS solutions.

A. Short-term stability

While the focus of this work is on the numerical time
evolutionofperturbed coherent solutions, it is useful to briefly
consider the analytic stability of these solutions aswell. It was
shown in the context of scalar field Q-balls [15] (without a
gauge field or coupling to gravity) that the quantity

ΩQ ¼ ω

Q
∂Q
∂ω ð64Þ

FIG. 11. Plots of charge perturbation ΔQ and the radial
Arnowitt-Deser-Misner (ADM) momentum jrðΔtÞ as a function
of Δω, the perturbation to the angular velocity of the complex
scalar field. Plots shown are solutions for κg ¼ 0.011 and u0 ¼
f0.0; 0.1; 0.2; 0.3g in red, green, blue, and cyan, respectively. All
solutions have Q ≥ 0.
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determines the short-term stability of the soliton solution.
For ΩQ < 0, Q-balls are stable, while for ΩQ > 0, they are
unstable. This stability condition was observed to be true for
RN-AdS solitons as well, but only in the gravitational weak-
field limit, which in this context can be considered to be for
coherent solutions with α0 ≳ 0.4 and κg ≲ 0.015. Figure 12
showsΩQ as a function of u0 for many values of gravitational
coupling. Since ΩQðu0 ¼ 0Þ ¼ 1 for all values of gravita-
tional coupling, one can clearly see that charge-neutral
solutions will be unstable. For κg ≲ 0.015, there is a region
in u0-space where ΩQ < 0 and the presence of a conserved
charge leads to short-term stable solutions.
Figure 13 shows the time evolution of the radius, ξðtÞ,

for charge-perturbed initial data with κg ¼ 0.011 for three
different values of u0 where the stability condition (64) is
observed to hold. The top two ξðtÞ graphs show unstable
time evolution in regions of ΩQ > 0. Perturbations that
increase the net charge of the solution induce outward
radial motion of the bubble wall due to additional
Coulombic self-repulsion; the location of the wall increases
indefinitely and results in a bubble-induced phase transition
to the true AdS vacuum. Perturbations that decrease the

magnitude of the charge of the solution result in an
immediate collapse of the bubble wall that can have two
different possible outcomes depending on the amount of
charge.
Solutions with less charge (Q < QTP) collapse to within

the RN outer horizon and form a black hole (ξAðtÞ).
Solutions with more charge (Q > QTP) collapse until the
Coulombic self-repulsion causes the wall to “bounce” back
toward its original location (ξBðtÞ). The point in u0-space
where Q ≈QTP is referred to as the “triple point” because
depending on the nature of the perturbation, the end state
can be an RN-AdS black hole, a phase transition to the AdS
true vacuum, or the false vacuum containing an RN-AdS
bound state. The bottom graph demonstrates the behavior
of solutions in an ΩQ < 0 region where the NTS solutions
are stable to perturbations (ξCðtÞ). Similarly, Fig. 14 shows

FIG. 12. Plots of ΩQ as a function of u0 for different values of
κg. The top graph shows κg ¼ f0.001; 0.008; 0.011; 0.01225g in
red, green, blue, and cyan, respectively; the middle graph shows
κg ¼ f0.0125; 0.013; 0.015; 0.020g in red, green, blue, and cyan,
respectively; the bottom graph shows κg ¼ f0.022; 0.025; 0.028;
0.030; 0.032g in red, green, blue, cyan, and magenta, respec-
tively. Positive values of ΩQ indicate unstable solutions, while
negative values of ΩQ indicate stable solutions.

FIG. 13. Plots of ξðtÞ for κg ¼ 0.011 for three different
perturbed coherent solutions. The graphs of ξAðtÞ, ξBðtÞ, and
ξCðtÞ correspond to time evolutions of the perturbed coherent
solutions at points A, B, and C, respectively, in the top graph. The
red, green, and blue curves represent time evolutions with a like-
charged perturbation, thereby increasing the Coulombic repul-
sion and resulting in an initial outward motion; the cyan, yellow,
and magenta curves represent evolutions with opposite-charged
perturbations having the opposite effect. The values of
log10ðϕþ − ϕ0Þ are red for solutions with ΩQ > 0 and green
for solutions with ΩQ < 0.
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the time evolution of the radius for different perturbed
coherent solutions, this time with κg ¼ 0.015. The stability
condition holds for ju0j ≲ 0.6, but for ju0j ≳ 0.6, solutions
are gravitationally strong-field solutions (α0 ≲ 0.1) and are
unstable, even though there are regions where ΩQ < 0.

B. Long-term stability and phase diagrams

Although ΩQ can be an indicator of short-term stability
under certain conditions, it cannot accurately predict the long-
term fate of RN-AdS solitons. The long-term behavior of
these solutions can be systematically understood by time
evolving the perturbed initial data andusing the end states and
exit conditions defined in Table I to create phase diagrams.
Remembering that the coherent initial data are bubble

solutions that separate an AdS true vacuum interior from a

RN false vacuum exterior, a PT is determined to have
occurred when most of the space within a given radius, r0,
is converted to the AdS true vacuum. r0 was chosen to be
large compared to the initial bubble radius and such that all
observed solutions with ξ > r0 led to runaway expanding
bubbles. A solution is determined to have formed a BH
when a value of 2MðrÞ=r exceeds a threshold, δ. A solution
is determined to have dispersed (D) when the scalar field is
nowhere greater than or equal to halfway between the true
and false vacuum for a period of time, Tdisp. Such solutions
were never seen to support bound states and always left
the false vacuum intact. Finally, when over a time, tmax, a
solution does not induce a phase transition, form a black
hole, or disperse, it is considered a BS. It should be noted
that PT, BH, and D solutions are definitively observed and
the exit criteria were chosen such that one could be
confident that the solution remained in that state for all
future time. The bound-state solutions, on the other hand,
are determined by default in that the solution is of finite
extent for at least t ¼ tmax; one cannot assume a BS
solution will remain a BS solution for all time.
To illustrate the utility of the phase diagram approach,

Fig. 15 shows the results from time-evolving charge-
perturbed coherent solutions with κg ¼ 0.003. Each pixel
in the bitmap corresponds to a ðΔω; u0Þ pair where a
coherent solution with the given u0 was perturbed by Δω
and time evolved until one of the conditions in Table I was
met. For a coherent (Δω ¼ 0) solution to be considered
stable, it must remain a bound state when subjected to
both positive and negative charge perturbations (Δω < 0
and Δω > 0, respectively). For coherent solutions with
ju0j ≲ 0.2, ΩQ is positive and solutions are predicted to be
unstable. It can clearly be seen that solutions are indeed
unstable to like-charged perturbations and lead to PT
end states (green pixels). Solutions with opposite-charged
perturbations collapse but can lead to two different out-
comes (BS or BH), depending on the amount of charge
and the gravitational coupling. For most values of u0, the
bubble walls begin to collapse, but the Coulombic self-
repulsion leads to a bounce before the wall collapses to
within the outer RN horizon and the solutions are

FIG. 14. Plots of ξðtÞ for κg ¼ 0.015 for four different perturbed
coherent solutions. The graphs of ξAðtÞ, ξBðtÞ, ξCðtÞ, and ξDðtÞ
correspond to time evolutions of the perturbed coherent solutions
at points A, B, C, and D, respectively, in the top graph. The red,
green, and blue curves represent time evolutions with a like-
charged perturbation, thereby increasing the Coulombic repul-
sion and resulting in an initial outward motion; the cyan, yellow,
and magenta curves represent evolutions with opposite-charged
perturbations having the opposite effect. The values of
log10ðϕþ − ϕ0Þ are red for solutions with ΩQ > 0 and green
for solutions with ΩQ < 0. Note that in case D, ΩQ < 0 but the
solutions are unstable.

TABLE I. Table of conditions that result in different end states
to the time evolution equations. The end states considered are
phase transition (PT), black hole (BH), dispersal (D), and bound
state (BS). For most simulations used in this work, χ0 ¼ 0.9,
δ ¼ 0.7, Tdisp ¼ 40, and tmax is set to approximately twice the
size of the computational domain.

End State Condition

PT χðϕρ; r0Þ ≥ χ0
BH max½ð2Mr Þi� ≥ δ

D Tξ¼0 ≥ Tdisp

BS t ≥ tmax
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modulated bound states (black pixels). For very small u0,
on the other hand, the bubble walls do collapse to within the
outer RN horizon and form black holes (blue pixels). For
coherent solutions where 0.2 ≲ ju0j ≲ 0.9, ΩQ is negative
and evolutions are predicted to be stable to perturbations. It
can be seen that in this region both positive and negative
charge perturbations lead to bound states for the duration of
the simulation, thereby indicating stable coherent solutions.
For coherent solutions with ju0j≳ 0.9, ΩQ is positive and
solutions are predicted to be unstable again; however this
time, collapsing solutions end in dispersal and expanding
solutions lead to modulated bound states without enough
Coulombic self-repulsion to overcome the combined gravi-
tational attraction and bubble wall surface tension.
Figure 16 shows twelve similar bitmaps, each covering

the same range in ðΔω; u0Þ space but for different values of
gravitational coupling. With increasing gravitational cou-
pling, more black holes appear, more perturbed solutions
do not have initial data that can satisfy the Atðr → ∞Þ
boundary condition, and the number of bound states seems
to decrease. The fact that the area of solutions in ðΔω; u0Þ
space supporting stable bound states reduces dramatically
with increasing κg is indicative of the lack of stable bound
states for gravitationally strong-field solutions. Figure 17
shows the transition across the κg ≈ 0.0155 boundary,

above which no stable coherent bound states are observed.
For these larger gravitational couplings, the range of Δω
values was adjusted to give insight into smaller perturba-
tions, while a larger range of u0-space was used to clearly
demonstrate the instability of solutions despite the ΩQ < 0

stability condition being met.
Figure 18 shows finer detail of the phase diagram for

κg ¼ 0.011. The aforementioned triple point can be seen
around u0 ≈ 0.13, where BH, PT, and BS solutions all exist
in close proximity in ðΔω; u0Þ space. Of particular interest
is that near the triple point, a fractal structure is observed in
the phase diagram. These solutions arise from bounce
solutions that initially collapse but eventually bounce back
and expand enough to become runaway PT solutions.
Figure 19 shows these solutions colored based on the
number of bounces (or modulations), nmod, they undergo
before inducing a runaway phase transition. This behavior

FIG. 15. Bitmap of ðΔω; u0Þ parameter space survey showing
end states of time-evolved perturbed coherent solutions. The
bitmap spans fΔω∶ − 1 ≤ Δω ≤ 1g on the horizontal axis and
fu0∶ − 1 ≲ u0 ≲ 1g on the vertical axis and is for gravitational
coupling κg ¼ 0.003. The bitmap contains roughly 40,000 points,
each the result of a time evolution with an end state of BH (blue),
PT (green), D (cyan), or BS (black). White points represent
solutions that could not satisfy the Atðr → ∞Þ ¼ 0 boundary
condition at t ¼ 0. The existence of stable coherent bound states
is demonstrated by black pixels along Δω ¼ 0.

FIG. 16. Bitmaps of ðΔω; u0Þ parameter space survey showing
end states of time-evolved perturbed coherent solutions. The
bitmaps span fΔω∶ − 1 ≤ Δω ≤ 1g on the horizontal axis and
fu0∶ − 1 ≲ u0 ≲ 1g on the vertical axis. From left to right and
top to bottom, the tiles represent different gravitational couplings
from κg ¼ 0.0 to κg ¼ 0.011, in steps of Δκg ¼ 0.001. Each
bitmap contains roughly 40,000 points, each the result of a time
evolution with an end state of BH (blue), PT (green), D (cyan), or
BS (black). White points represent solutions that could not satisfy
the Atðr → ∞Þ ¼ 0 boundary condition at t ¼ 0. The existence
of stable coherent bound states is demonstrated by black pixels
along Δω ¼ 0.
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is similar to the fractal boundary basins observed in real
scalar field oscillon dynamics [34]. Figures 20 and 21 show
the time evolution of the bubble radius for two different
coherent solutions, u0 ¼ 0.1312 and u0 ¼ 0.168, for a
variety of perturbations, Δω. Figure 20 shows evolutions
for three regions of the phase diagram. Region I is for
Δω < 0, where all solutions induce a phase transition (the
green region on the left side of the bitmap in Fig. 19).
Region III is for larger Δω, where all solutions collapse to
form black holes (the blue region on the lower-right side of
the bitmap in Fig. 19). Region II is the intermediate region,
where BS or bounce (PT or BH) solutions are supported.
Figure 21 shows time evolutions for bounce solutions like
those in region II of Fig. 20, but for u0 ¼ 0.168. Values of
Δω were chosen that demonstrate bounces prior to either
inducing a phase transition or collapsing to a black hole.
Similar to behavior observed in oscillon dynamics [34],

PT regions of ðΔω; u0Þ space with nmod modulations are
surrounded by PT regions with (nmod þ 1) modulations
that approach the region with nmod modulations in a log-
periodic fashion. To demonstrate the log-periodic nature of
the bounce regions, one first needs to find the boundary of
such a region. Since a PT region with nmod modulations is
surrounded by either BS solutions or PT solutions with
more than nmod modulations, it is straightforward to vary ω
and bisect on the boundary of the nmod region, which is

denoted ω�. Figure 22 shows the result of bisecting on a
boundary of a nmod ¼ 0 region. Approaching ω� from
within the nmod ¼ 0 region, all solutions (green line) are
PT solutions, and a time-scaling law is observed as ω
approaches ω�,

T ¼ γ ln jω − ω�j; ð65Þ

where γ is the nonuniversal scaling exponent. Approaching
the boundary of the nmod ¼ 0 region from the other
direction, one sees that regions of nmod ¼ 1 PT solutions
approach the edge of the nmod ¼ 0 region in a log-periodic
fashion. The time-minimum boundary of each band follows
a time-scaling law with the same exponent. Between
the nmod ¼ 1 bands, one can also see a rich structure of
BS solutions and additional PT bands with nmod > 1
(Fig. 23). Both the nmod ¼ 1 bands and the structure
between bands can be seen in Fig. 24 to repeat in a
discretely self-similar fashion,

Tðln jω − ω�jÞ ¼ Tðln jω − ω�j þ nΔωÞ þ nΔT; ð66Þ

where Tðln jω − ω�j þ nΔωÞ þ nΔT has been plotted for
n ¼ 0, 1, 2, 3, 4, 5, 6, and 7. While regular (i.e., not
chaotic), this self-similarity in the set of PT solutions is

FIG. 17. Bitmaps that span fΔω∶ − 0.01 ≤ Δω ≤ 0.01g on the
horizontal axis and fu0∶ − 2 ≲ u0 ≲ 2g on the vertical axis for
κg ¼ f0.014; 0.015; 0.016; 0.017g (upper left, upper right, lower
left, and lower right, respectively). Each bitmap contains roughly
40,000 points, each the result of a time evolution with an end state
of BH (blue), PT (green), D (cyan), or BS (black). White points
represent solutions that could not satisfy the Atðr → ∞Þ ¼ 0
boundary condition at t ¼ 0. The existence of stable coherent
bound states is demonstrated by black pixels along Δω ¼ 0.

FIG. 18. Bitmaps of successive magnification of ðΔω; u0Þ
parameter space survey showing end states of time-evolved
coherent solutions for κg ¼ 0.011. The upper-left bitmap spans
fΔω∶ − 1 ≤ Δω ≤ 1g and fu0∶ − 1 ≲ u0 ≲ 1g, while the lower-
right bitmap spans fΔω∶ − 0.001 ≤ Δω ≤ 0.007g and
fu0∶0.12 ≲ u0 ≲ 0.20g. Each bitmap contains roughly 40,000
points, each the result of a time evolution with an end state of BH
(blue), PT (green), D (cyan), or BS (black). White points
represent solutions that could not satisfy the Atðr → ∞Þ ¼ 0
boundary condition at t ¼ 0.
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FIG. 19. Bitmap of ðΔω; u0Þ parameter space survey showing
end states of time-evolved perturbed coherent solutions. The bitmap
spans fΔω∶ − 0.001 ≤ Δω ≤ 0.007g on the horizontal axis and
fu0∶0.12 ≲ u0 ≲ 0.20g on the vertical axis and is for gravitational
coupling κg ¼ 0.011. The bitmap contains roughly 160,000 points,
each the result of a time evolution with an end state of BH (blue),
immediate (nmod ¼ 0) PT (green), or BS (black). PT solutions with
nmod > 0 are colored based on their value of nmod by cycling
through a color palette of red (nmod ¼ 1), cyan (nmod ¼ 2), magenta
(nmod ¼ 3), and yellow (nmod ¼ 4); the colors repeat for nmod > 4.

FIG. 20. Plots of ξðtÞ for solutions that induce phase transitions
(region I above and solid green region in Fig. 19), solutions that
form black holes (region III above and solid blue region in
Fig. 19), and solutions that appear to create bound states (region
II above and the section between solid blue and green regions in
Fig. 19). All solutions were generated by charge-perturbing the
same u0 ¼ 0.1312 coherent solution.

FIG. 21. Plots of ξðtÞ for solutions that induce phase transitions
or create black holes after “bouncing” for nmod ¼ 1, 2, 3, 4. All
solutions were generated by charge perturbing the same u0 ¼
0.168 coherent solution. The expanding PT solutions shown
above correspond to nmod > 0 colored pixels in Fig. 19.

FIG. 22. Plot demonstrating the solution lifetime (before
inducing a phase transition) as a function of the charge pertur-
bation, ω, as ω approaches the nmod ¼ 0 boundary for a u0 ¼
0.168 coherent solution. The log-periodic nature of the solutions
is apparent and the time-scaling exponent is measured to be
γ ¼ 18.2 on both sides of the threshold. The green line is
continuous since the perturbations are clearly in the nmod ¼ 0
region, while the log-periodic bands have nmod ¼ 1 for the main
lobes outside the nmod ¼ 0 region.
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fractal in nature because it has a nonintegral Minkowski-
Bouligand dimension that depends on the width of and
spacing between the nmod ¼ 1 bands in ln jω − ω�j space,
similar to [34].

C. “Modest” superextremal RN-AdS solitons

It was shown in Sec. III that for the shape of potential
(αn) and charge coupling (q) used in this paper, super-
extremal solutions exist for 0.029 ≲ κg ≲ 0.035. Given that
solutions with κg ≳ 0.0155 were observed to be unstable,
one might naturally wonder whether the long-term fate of
such superextremal solutions could be to collapse to form a
naked singularity.
Because these solutions are bubbles with a true vacuum

interior and a false vacuum exterior, local negative energy
densities can be present inside these bubbles, and both the
dominant energy condition and the weak energy condition
can be violated and cosmic censorship does not necessarily
hold. However, the only source of negative energy is from
the scalar field potential, VðϕÞ, and the amount of negative
energy is proportional to the volume of space where
ϕ ≈ ϕT . As such, if the bubble wall were to completely
collapse, so would the volume of space that would
contribute “negatively” to the local energy density. This
would suggest that upon completely collapsing, the amount
of negative energy arising from the true negative vacuum
energy density would go to 0, the energy conditions could
again be met, cosmic censorship would again hold, and
naked singularities would not be present.
A more compelling argument can be made for the long-

term modesty (lack of nakedness) of these solutions by
considering the conservation of energy. Every evolution
studied in this paper begins with perturbed bound-state
initial data. The total matter, M∞, is of finite extent,
converges rapidly after r ≈ ξ, and is a conserved quantity.
For the initial data with opposite-charged perturbations,
the Coulombic self-repulsion is decreased and the bubble
wall (and total mass) collapses inward. Unlike the sub-
extremal case in which the bubble wall falls within the outer
RN horizon, for this superextremal case there are no RN
horizons and the formation of a naked singularity depends
on whether the collapse continues indefinitely. Because
the collapsing mass distribution is charged, one must
consider the energy it takes to compress that charge against
its own Coulombic self-repulsion. Complete collapse of
the charged matter to a naked singularity would require an
infinite amount of energy; this is analogous to the well-
known infinite self-energy of a point charge. Because there
is only a finite amount of energy,M∞, that can be converted
to electromagnetic mass energy, and since there is a finite
(and decreasing with radius) amount of negative energy
from the true vacuum, the collapse must stop at some
nonzero radius. Appendix B describes simple models
describing the possible end state of such a collapse and
derives four different minimum radii based on different
assumptions about the shape of the charge distribution.
Figure 25 shows the scalar field, geometry, and lapse

function for a coherent solution with κg ¼ 0.031 and
u0 ¼ �0.5, which has jΞj ≈ 1.03. Within the bubble wall
radius (ξ ≈ 52), the scalar field is approximately ϕT, the

FIG. 23. Plot of a zoomed-in region of Fig. 22 that shows the
region between the nmod ¼ 1 lobes with solutions that induce
phase transitions with nmod > 1.

FIG. 24. Plot demonstrating the log-periodic nature of the PT
solutions by overlaying Tðln jω − ω�jÞ with itself after offsetting
by Δω ¼ 2.4285 and ΔT ¼ 45. Tðln jω − ω�j þ nΔωÞ þ nΔT has
been plotted for n ¼ 0, 1, 2, 3, 4, 5, 6, and 7 in black, yellow,
magenta, cyan, blue, green, red, black, respectively. In addition to
the main nmod ¼ 1 lobes, the finer detail of the nmod > 1 solutions
also appears to be self-similar.
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geometric variable aðrÞ can be seen to decrease from its
value of unity at the origin (required by elementary flatness
and regularity), and the lapse function can be seen to
increase roughly linearly. As the solutions approach the
bubble wall, the fields transition from their AdS values and
match onto a RN exterior. Figure 26 shows the dynamics
resulting from like-charged and opposite-charged pertur-
bations of this solution. As expected, like-charged solutions
form expanding bubbles that induce a phase transition,
while opposite-charged solutions collapse.
To better understand the dynamics of collapsing super-

extremal solutions, it is helpful to understand the composite
masses that contribute to the total ADM mass, M∞. One
can define

MV ¼ 4π

Z
rb

0

drr2V; ð67Þ

MEM ¼ 4π

Z
rb

0

drr2
�
E2
r

2

�
; and ð68ÞFIG. 25. Graphs of the scalar field, ϕðrÞ, geometry, aðrÞ,

and lapse function, αðrÞ, in red, green, and blue, respectively,
for κg ¼ 0.031 and u0 ¼ �0.5. This solution is superextremal
with jΞj ≈ 1.03.

FIG. 26. Graphs of the bubble radius ξðtÞ as a function of time
for a like-charged (red) and opposite-charged (green) pertur-
bation, for κg ¼ 0.031 and u0 ¼ �0.5. The like-charged per-
turbed solution expands, and the opposite-charged solution
collapses. The unperturbed solution is superextremal with
jΞj ≈ 1.03. The horizontal lines represent the minimum collapse
radius based on conservation of energy for a Gaussian Jt

(magenta), linear Jt (cyan), constant dQ=dr (blue), and con-
stant ρ (equal to constant dQ=dr).

FIG. 27. Graphs of composite energies for charge-perturbed
evolution of a superextremal RN-AdS soliton with κg ¼ 0.031
and u0 ¼ �0.5. The top graph shows M∞, MEM, MV , and MDϕ

scaled by the initial total mass, in red, green, blue, and cyan,
respectively. The bottom graph showsM∞,MEM, andMVþMDϕ

scaled by the initial total mass in red, green, and blue, respec-
tively. Total mass is conserved to within a percent through t ≈ 800
and to within about 5 percent through t ≈ 1000, but the solution
becomes unstable shortly thereafter.
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MDϕ ¼ M∞ −MEM −MV; ð69Þ

for the scalar potential, the electromagnetic field, and the
gauge covariant derivative of the scalar field, respectively.
One can see in Fig. 27 that for this particular RN-AdS
bubble solution, the magnitudes of MV and MDϕ are many
times larger than the magnitude of the total ADM mass,
M∞. The vacuum energy inside the bubble provides a
very large negative energy contribution, approximately
−38.03M∞, while the gauge covariant derivative energy
provides a very large (slightly larger in magnitude) positive
energy contribution, approximately 38.50M∞. The sum of
these two terms is approximately 0.47M∞, and the remain-
ing mass, approximately 0.53M∞, is mass energy from
the electromagnetic field. As the wall begins to collapse,
MEM begins to increase toward M∞, and MV þMDϕ

begins to decrease. Scalar field energy is being converted
into electromagnetic energy because the fields are doing
work by compressing the charge against Coulombic repul-
sion. Unfortunately, solutions become unstable around
t ≈ 1150 as a result of unphysical gauge shocks that arise
from gauge radiation (At and Ar). The infalling radiative
parts of the gauge potential do not contribute to Er but
become severely compressed by the nearly collapsed lapse
(α0 ≲ 10−5), leading to steep gradients and code instability.
Nevertheless, there is clear evidence that superextremal
solutions with opposite-charged perturbations can collapse
and result in strong-field gravitational solutions that match
onto superextremal RN exteriors with nonsingular interiors.

V. CONCLUSIONS

Results have been presented from numerical simulations
of the EMH equations with a broken U(1) symmetry.
Coherent nontopological solitons were shown to exist that
separate a negative-energy AdS true vacuum interior
[VðϕTÞ < 0] from a zero-energy RN false vacuum exterior
[VðϕFÞ ¼ 0]. The physical parameters (charge, mass,
radius, and central lapse) of these solutions were obtained
for a wide range of gravitational couplings. For κg ≳ 0.011,
solutions are gravitationally strong-field solutions with
radii on the order of their outer RN horizons and
with central lapse function values of 0.1 ≲ α0 ≲ 0.5,
indicating significant gravitational time dilation effects.
For solutions with 0.028 ≲ κg ≲ 0.034, the charge-to-mass
ratios become superextremal (jΞj>1), the radii are
ðκgM∞Þ≲ ξ≲ ð3κgM∞Þ, and the central lapse values are
0.001 ≲ α0 ≲ 0.08. Because obtaining these solutions
requires fine-tuning to more than one part in 1015, a
96-bit precision numerical code was used.
The stability of these solutions was tested by perturbing

the charge of the coherent solution and evolving the time-
dependent equations of motion. In the weak gravitational
limit, the short-term stability depends on the sign of
ðω=QÞ∂ωQ, similar to Q-balls. This condition does not

hold, however, for κg ≳ 0.015 and for ju0j ≳ 0.6. The long-
term end states of the perturbed solutions were visualized
using phase diagrams that served as a way to clearly
demonstrate regions of stability and instability. It was
further demonstrated that there exists a rich fractal structure
around the triple point, which was defined to be a region
in the phase diagrams where BH, PT, and BS solutions
exist in close proximity. The fractal structure results from
bouncelike modulations of the scalar field where collapsing
bubbles bounce back and induce phase transitions to the
AdS true vacuum. The bands of n modulations are
surrounded by bands of nþ 1 modulations that approach
the boundary of the n modulation regions in a log-periodic
manner. Threshold solutions are shown to demonstrate
time-scaling laws with scaling exponents that depend on κg
and total charge.
Finally, superextremal coherent RN-AdS solitons were

shown to be unstable with an end state dependent on the
sign of the charge perturbation. Like-charged perturba-
tions led to expanding bubbles, and opposite-charged
perturbations led to collapsing bubbles. While the super-
extremal charge-to-mass ratio might suggest a possibility
of collapse to a naked singularity, it was shown that there
is a minimum radius within which the wall can collapse
based on the conversion of scalar field energy to electro-
magnetic energy. While it is still possible that solutions
collapse and then bounce back to induce a phase
transition, there is strong evidence supporting the exist-
ence of persistent nonsingular superextremal bound states
that exhibit very strong-field gravitational behavior with
α0 ≲ 10−5. The existence of such solutions and their
formation by decay of unstable coherent RN-AdS
solitons was not previously known.

APPENDIX A: UNITS AND DIMENSIONS

The action described in Eq. (1) was derived from the
following dimensionful Lagrangian where c¼ℏ¼ ϵ0¼1:

L ¼ R
16πGN

−
FμνFμν

4
−
1

2
gμνðDνϕÞ�Dμϕ

−
1

2
α1m2ϕ2 −

1

4
α2ϕ

4 −
1

6
α3m−2ϕ6; ðA1Þ

where m is the characteristic boson mass, GN is Newton’s
constant, and the αn are dimensionless.
Equation (1) is derived by transforming all the field

variables and coordinates to dimensionless quantities
according to the following transformations,

~r ¼ mr; ðA2Þ

~t ¼ mt; ðA3Þ

~Aμ ¼ m−1Aμ; ðA4Þ

REISSNER–NORDSTROM–ANTI–DE SITTER … PHYSICAL REVIEW D 95, 024032 (2017)

024032-17



~ϕ ¼ m−1ϕ; ðA5Þ

which puts the Lagrangian in the following dimensionless
form:

1

m4
L ¼

~R
16πκg

−
~Fμν

~Fμν

4
−
1

2
gμνð ~Dν

~ϕÞ� ~Dμ
~ϕ

−
1

2
α1 ~ϕ

2 −
1

4
α2 ~ϕ

4 −
1

6
α3 ~ϕ

6 ðA6Þ

¼ ~L ðA7Þ

where κg ¼ m2GN is dimensionless. Removing tildes in
Eq. (A6) results in Eq. (1).

APPENDIX B: MINIMUM RADIUS OF
GAUSSIAN CHARGE DISTRIBUTION

This appendix discusses a simplified model of a col-
lapsing charge distribution and uses the conservation of
energy to derive the minimum radius to which the dis-
tribution can collapse. The charge density is assumed to be

Jt ¼ Q0

σ3π3=2
e−

r2

σ2 ; ðB1Þ

which is normalized so that the total charge (enclosed)
at infinity is Q0. The charge enclosed for arbitrary r is
given by

Qðr0Þ ¼ 4π

Z
r0

0

drr2Jt ðB2Þ

¼ Q0

�
−

2r0
σπ1=2

e−
r2
0

σ2 þ erf

�
r0
σ

�	
: ðB3Þ

Integrating Eq. (26) from the origin to r0 gives

Erðr0Þ ¼
Qðr0Þ
4πr20

ðB4Þ

¼ Q0

4πr20

�
−

2r0
σπ1=2

e−
r2
0

σ2 þ erf

�
r0
σ

�	
: ðB5Þ

The mass energy of the electromagnetic field is then
given by

MEMðr0Þ ¼ 4π

Z
r0

0

drr2
�
Erðr0Þ2

2

�
ðB6Þ

¼ −
Q2

0

8πr0

�
erf

�
r0
σ

�
2

−
ffiffiffi
2

π

r
r0
σ
erf

� ffiffiffi
2

p
r0

σ

�	
:

ðB7Þ

Integrating the Hamiltonian constraint equation (28) yields
the well-known equation for the geometry,

a2 ¼
�
1 −

2κgMðrÞ
r

�−1
ðB8Þ

≡Δ−1; ðB9Þ

where MðrÞ is the total ADM mass,

MðrÞ ¼ MDϕðrÞ þMVðrÞ þMEMðrÞ; ðB10Þ

and whereMDϕðrÞ is the mass-energy term arising from the
covariant derivative of the scalar field and MVðrÞ is the
mass energy arising from the scalar field potential. For
r0 ≫ σ, the mass energy of the electromagnetic field
becomes

MEMðr0 ≫ σÞ ¼ −
Q2

0

8πr0
þ Q2

0

4
ffiffiffi
2

p
π3=2σ

; ðB11Þ

where the first term is the typical RN charge term, and the
second term is a positive constant that can be considered the
mass of the electromagnetic field at infinity, M∞

EM,

Δðr0 ≫ σÞ ¼ 1 −
2κgM∞

EM

r0
þ κgQ2

0

4πr20
; ðB12Þ

where

M∞
EM ¼ Q2

0

4
ffiffiffi
2

p
π3=2σ

: ðB13Þ

It should be stressed that the r0 ≲ σ behavior of Eqs. (B11)
and (B12) is not valid because the assumption used to
obtain the expression is violated in that regime. The r0-
dependent terms are only proportional to r−10 and r−20 at
large r0. The actual expression for the mass (B7) is well
behaved (approaches 0) as r0 goes to 0.
The total mass of the field, however, does indeed go to

infinity in the limit of small σ. This is consistent with
the well-known infinite self-energy of a point charge.
Nevertheless, the conservation of energy would imply that
the final mass energy of the electric field cannot exceed the
total conserved ADM mass of the system,

TABLE II. Table of constants to determine a lower limit on the
radius for collapsed RN-AdS solutions, where the constant k is
defined by σmin ¼ kQ2

0=MADM.

Model description Constant (k)

Gaussian Jt 1=ð4 ffiffiffi
2

p
π3=2Þ

Linear Jt 13=ð70πÞ
Constant dQ=dr 1=ð4πÞ
Constant ρ ≈ VðϕTÞ, with other approximations 1=ð4πÞ
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Mfinal
EM ≤ MADM; ðB14Þ

which implies

σ ≥
1

4
ffiffiffi
2

p
π3=2

�
Q2

0

MADM

�
; ðB15Þ

which would set a limit on the collapse of the charge
distribution.
While the minimum radius for a Gaussian-shaped charge

density with massMADM is derived above, Table II presents
the results of three additional models that all result in
comparable minimum radii.
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