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The purpose of this paper is to check the impact of observer and Palatini fðRÞ terms in the formulations
of inhomogeneity factors of spherical relativistic systems. We consider the Lemaître-Tolman-Bondi
dynamical model as a compact object and studied its evolution with both tilted and nontilted observers. We
performed our analysis for particular cases of fluid distribution in tilted frame and found some energy
density irregularity variables. We found that these variables are drastically different from those observed by
a nontilted observer. The conformal flat dust and perfect matter contents are homogeneous as long as they
impregnate vacuum core. However, this restriction is relaxed, when the complexity in the fluid description
is increased. The radial fluid velocity due to tilted congruences and Palatini fðRÞ curvature terms tends to
produce hindrances in the appearance of energy-density inhomogeneities in the initially regular spherical
stellar populations.
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I. INTRODUCTION

The modern cosmology is inferred as the study of
geometry and matter in the universe which leads to new
theoretical ideas about the theories of gravity analogous
with current observations. In the 1920s, it was Friedmann
and Lemaître who introduced the concept of expanding
universe which gained significance due to Hubble’s obser-
vations in the 1930s. We are still uncertain about the dark
side of the universe, which includes dark energy (DE) and
dark matter (DM), but have confidence that it has some
crucial role in astrophysics and cosmology. The demon-
stration of the current accelerated phase of the evolutionary
universe proved the dominance of DE with immense
negative pressure [1]. An arguable alternative to DE is
the generalization of general relativity (GR) which can
render cosmic acceleration (for reviews on not only the
dark energy problem but also modified gravity theories,
see, for example, [2]). A simple possible generalization to
GR is the inclusion of nongeneric function of Ricci scalar
in the Einstein-Hilber action which can describe the
accelerated expansion and termed as fðRÞ theory. In
deriving the modified field equations, the procedure which
involves the metric and connections to be independent
while performing the variations in the action is termed as
the Palatini approach. There exists distinct fðRÞ models
that meet local and cosmological constraints and can be
found in literature [3]. The comprehensive study on the
effectiveness and viability of Palatini approach in fðRÞ

theory of gravity as compared to observational solar system
data has been presented by Olmo with his coworkers [4].
Li and Chu [5] presented a framework to study the late-

time cosmic acceleration by constraining the fðRÞ correc-
tion under Palatini version to GR with high redshift
parameter. Kainulainen et al. [6] analyzed the exterior
and interior geometries of stars by exploring Tolman-
Oppenheimer-Volkoff equations in the background of
both Palatini and metric fðRÞ theory. Fay et al. [7] provided
a systematic study for different fðRÞ gravity models
discussing the cosmological dynamics in the Palatini
version. Shojai and Shojai [8] studied the features of
geodesic deviation and its congruences by making use of
Raychaudhuri’s equation in Palatini fðRÞ gravity. Sotiriou
and Faraoni [9] surveyed all versions of fðRÞ gravity from
literature and presented their most significant views
comprehensively. Kucukakca and Camci [10] explored
exact solutions with flat Friedmann-Robertson-Walker
(FRW) model for cosmic scale factor by adopting
Noether gauge symmetry approach under the Palatini
fðRÞ formalism.
It was enlightened that the universe is not isotropic and

homogeneous at the galactic epochs. To understand the
dynamics of anisotropic and inhomogeneous universe,
several cosmological models have been proposed.
Penrose and Hawking [11] discussed the irregularities
density distribution of spherical relativistic stars by means
of the Weyl invariant. Energy density inhomogeneities also
bring forward a crucial role in the process of gravitational
collapse which may lead to the appearance of naked
singularity [12]. However, the exact relation between
the final outcome of the collapse and density inhomoge-
neities is still unidentified. During the evolution of self-
gravitating relativistic models, the role of energy density
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inhomogeneity has gained much significance [13]. Herrera
et al. [14] discussed the role of density inhomogeneities on
the evolution and structure formation of spherical aniso-
tropic objects. Recently, the role of the Weyl tensor and
super-Poynting vector in various aspects of dissipative and
nondissipative self-gravitating fluids have been a subject
of keen interest [15].
Mena et al. [16] explored the role of inhomogeneity and

anisotropy for a spherically symmetric dust cloud. Di
Prisco et al. [17] looked into nonadiabatic spherically
symmetric collapsing process and explored the role of
energy density inhomogeneities. Chuang et al. [18]
explored the possibilities of emergence of inhomogeneities
for acceleratory expanding universe. Herrera et al. [19]
studied the dynamics of dissipative spherical collapse and
demonstrated a relation between density inhomogeneities
and the Weyl tensor. Herrera [20] formulated inhomoge-
neity factors for adiabatic and nonadiabatic relativistic
matters and claimed that the system must satisfy these
constraints to achieve stable configurations. Bhatti and his
coworkers [21] examined the impact of extra Ricci curva-
ture terms on the stability of spherical compact objects
filled with anisotropic relativistic matter distributions.
Yousaf et al. [22] explored the contribution of fðR; TÞ
extra curvature terms in the outcomes of inhomogeneity
factors for dissipative spherical system. They also found
factors that cause the maintenance of homogeneous or
inhomogeneous matter state, when the system departs
hydrostatic equilibrium phase in modified gravity [23].
A system is said to be tilted if its fluid four-velocity and

group of orbits are not orthogonal and nontilted otherwise.
It is established in literature that some new interesting
results can be achieved due to tilted observer. The general
tilted dynamics of cosmological models have been con-
sidered by Ellis and his collaborators [24] as well as Bali
and his collaborators [25]. The initial attempt to examine
tilted models qualitatively has been made for Bianchi type
II cosmological models [26]. Pawar et al. [27] studied tilted
plane symmetric cosmological models of dissipating iso-
tropic fluid and investigated that the resulting universe is
shearing, expanding and nonrotating. Apostolopoulos [28]
interpreted the dynamical and geometric features for one
class of Bianchi models by presenting the evolution
equations and equilibrium points in tilted and nontilted
frames. Sahu and Kumar [29] explored the exact solutions
for tilted Bianchi-I cosmological model and examined their
geometrical and physical properties. Sharif and Bhatti [30]
explored the tilted compact objects and developed relation-
ships between tilted and nontilted variables which are used
in analyzing different physical quantities. The influences of
extra curvature terms coming from modified gravity on the
formulation of inhomogeneity factors [31] and evolution of
stellar collapse [32] have also been analyzed.
Through the present paper, we explore the inhomoge-

neity factors which can control an initially homogeneous

system with the evolution of time. The format of this paper
is outlined as follows. In the next section, we construct all
the basic equations by introducing the concept of a tilted
observer in the framework of Palatini fðRÞ theory. In
Sec. III, the kinematical quantities, dynamical as well as
evolution equations are explored from the congruence of a
tilted observer. Section IV is devoted to characterizing the
inhomogeneity factors with some particular constraints on
the matter profile. The last section concludes our main
findings.

II. PALATINI f ðRÞ FORMALISM

The modified gravity theories could be considered as a
powerful tool to understand the enigmatic cosmic evolu-
tion. For Palatini fðRÞ gravity, the Einstein-Hilbert action is
modified as [33]

SfðRÞ ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ SM; ð1Þ

where κ and SM are constant number with appropriate
dimensions, for instance κ ¼ 8πG for GR action and matter
fields action, respectively, while R≡ gγδRγδ, Rγδ ≡ Rμ

γμδ

with Rμ
νγδ ¼ ∂γΓμ

δν − ∂δΓμ
γν þ Γμ

γσΓσ
δν − Γμ

δσΓσ
γν indi-

cates Riemann tensor components, the field intensity due to
connections Γμ

γν. As the connection is found dynamically,
therefore one cannot consider Γμ

γδ ¼ Γμ
δγ. Due to this

reason, we shall keep Γμ
γδ ≠ Γμ

δγ along with gγδ ¼ gδγ in
our variations. Varying the above action with gγδ and Γμ

γδ

provide

δSfðRÞ ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ��
fRRðγδÞ −

1

2
gγδf

�
δgγδ

þ gγδfRδRγδ

�
þ δSM; ð2Þ

where RðγδÞ and fR indicate symmetric component of the
Ricci tensor and partial Ricci scalar derivation of f,
respectively. The variations of Rγδ can be expressed as

δRγδ ¼ ∇σðδΓσ
δγÞ −∇δðδΓσ

σγÞ þ 2Sσ
μδδΓμ

σγ; ð3Þ

where Sσ
μδ is the torsion tensor defined as Sσ

μδ ¼
1
2
ðΓσ

μδ − Γσ
δμÞ. The role of δRγδ quantity in the action

([1]) can be given as

Z
d4x

ffiffiffiffiffiffi
−g

p
gγδδRγδ ¼

Z
d4x½∇σð

ffiffiffiffiffiffi
−g

p
PσÞ

þ δΓσ
δγf2

ffiffiffiffiffiffi
−g

p
gγμSδ

σμ

þ∇λð
ffiffiffiffiffiffi
−g

p
gγλfRÞ

−∇σð
ffiffiffiffiffiffi
−g

p
gγδfRÞg�; ð4Þ
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where Pσ ¼ ðgγδδΓσ
γδ − gγσδΓρ

ργÞfR. The first term in the
above equation takes the following form

∇σð
ffiffiffiffiffiffi
−g

p
PσÞ ¼ ∂σð

ffiffiffiffiffiffi
−g

p
PσÞ þ ffiffiffiffiffiffi

−g
p

fR½gγδSλλσ
− δδσgγμSρ

ρμ�δΓσ
δγ: ð5Þ

Using these values along with the identity of the surface
quantity at the hypersurfaces, i.e.,

R
d4xð ffiffiffiffiffiffi−gp

PσÞ ¼ 0 in
Eq. (4), the field equations can be established as

fRðRÞRðγδÞ − ½gγδfðRÞ�=2 ¼ κTγδ; ð6Þ

−∇σð
ffiffiffiffiffiffi
−g

p
gγδfRÞ þ δδσ∇λð

ffiffiffiffiffiffi
−g

p
gγλfRÞ

þ 2
ffiffiffiffiffiffi
−g

p
fRðgγδSρ

ρσ − δδσgγλSμ
μλ þ gγμSδ

σμÞ ¼ Hδγ
σ ; ð7Þ

where Hδγ
σ ¼ −ðδSM=δΓσ

δγÞ and Tγδ ¼−ðδSM=δgγδÞ
ð2= ffiffiffiffiffiffi−gp Þ. Since we have considered that the fluid content

is not coupled with connection, thereforeHδγ
σ ¼ 0. To have

a torsionless background, we need to impose Sδ
σρ ¼ 0. In

this context, Eq. (7) turns out to be

∇μðgγδ
ffiffiffiffiffiffi
−g

p
fRðRÞÞ ¼ 0; ð8Þ

One can also obtain the similar configurations as mentioned
above by removing the torsionless condition (for details
please see [34]). On solving Eq. (8) (without imposing the
torsionless condition, i.e., for the sake of general discus-
sion), we found the relation of connection as follows

Γμ
γδ ¼ Cμγδ −

2

3
Aγδ

μ
δ; ð9Þ

where

Cμγδ ¼
1

2
hμσð∂γhσδ þ ∂δhσγ − ∂σhγδÞ; with

hγδ ¼ fRgγδ ð10Þ

and Aμ ≡ Sγγμ. Equation (9) has expressed the connection
by means of matter, metric and Aμ. For a torsionless
environment, the quantity Aμ will be zero. Substituting
Eq. (9) in Eq. (8), it follows that

1

fR
ð∇γ∇δ − gγδ□ÞfR þ 1

2
gγδRþ κ

fR
Tγδ þ

1

2
gγδ

�
f
fR

− R

�

þ 3

2f2R

�
1

2
gγδð∇fRÞ2 −∇γfR∇δfR

�
− R̂γδ ¼ 0; ð11Þ

where R ¼ RðgÞ, Rγδ ¼ RγδðgÞ and ∇γ∇δfR are calculated
through Levi-Civita connection of the usual metric gγδ. The
trace of the above equation can be expressed as

RfRðRÞ − 2fðRÞ ¼ κT; ð12Þ

where T ≡ gγδTγδ is the trace of usual energy momentum
tensor. Equation (12) has expressed Palatini curvature
scalar by means of T thereby indicating R and fR as the
functions of T, i.e., R ¼ RðTÞ and fR ¼ fRðTÞ. This has
made their dependence on metric variables, not on inde-
pendent connections. The vacuum case, i.e., Tγδ ¼ 0 that
would necessarily lead the differential equation to has a
constant solution that would secure connections to be well-
known Levi-Civita. Further, this would also assign constant
value to fR. The Palatini equation of motion (11) can be
manipulated as

Gγδ ¼
κ

fR
ðTγδ þ T γδÞ; ð13Þ

where

T γδ ¼
1

κ
ð∇γ∇δ − gγδ□ÞfR −

fR
2κ

gγδ

�
R −

f
fR

�

þ 3

2κfR

�
1

2
gγδð∇fRÞ2 −∇γfR∇δfR

�
;

while Gγδ ≡ Rγδ − 1
2
gγδR is the Einstein tensor, □ ¼

∇γ∇δgγδ is a de Alembert operator.
The most general mathematical expression for Lemaître-

Tolman-Bondi (LTB) spacetime is [35]

ds2− ¼ dt2 −
A02

ðwþ υÞ dr
2 − C2ðdθ2 þ sin θ2dϕ2Þ; ð14Þ

where υ could be 0 or �1, w ¼ wðrÞ following the
constraint wþ υ ≥ 0 and prime indicates ∂

∂r operator.
This spacetime has been used to study many burning
and useful phenomena of our anisotropic and inhomo-
geneous universe. It is worthy to mention that on orders
much shorter than Hubble radius, our universe mass density
could be predicted as homogeneous, however, this density
regularity no longer exists at all scales. One can consider
this to be an applicable scenario for distances larger than
100 Mpc. The galactic population has appeared to be
spatially inhomogeneous for r less than 100 Mpc=h.
There has been interesting literature on this issue [36].
Without loss of generality, one can take B ¼ A0 along with
wþ υ ¼ 1. Under this background, the nonstatic diagonal
irrotational LTB metric is found as follows

ds2− ¼ −dt2 þ B2dr2 þ C2ðdθ2 þ sin θ2dϕ2Þ: ð15Þ

The geometry of any relativistic celestial bodies is designed
by the gravitational effects coming from its matter source.
Such sources are peculiarly connected with their four-
velocities, thus presenting fluid four-velocities as promi-
nent factors in the formulation of energy-momentum
tensors. The illustrations as well as congruence kinematics
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of the gravitational sources could be dissimilar, if the two
feasible relativistic explanations of a given spacetime are
linked through the boost of one of the observer congruen-
ces regarding to the other one. For instance, FRW (with
zero curvature) is a solution of field equation that is coupled
with two different relativistic matter distributions. The first
one is an ideal fluid and second is a viscous radiating matter
source, depending upon the choice of four-velocity. The
former is the solution for those rest observers who are
configuring with reference to time-like congruence, devel-
oped by eigenvectors of Rγδ, while the observer who is
moving with relative velocity regarding the first previous
frame will see this to be solution of the later fluid source.
Based upon this concept, we first suppose the comoving
coordinate frame, under which the noninteracting particles
have the four-velocity

uγ ¼ ð1; 0; 0; 0Þ; ð16Þ

with the stress-energy tensor

Tγδ ¼ ρ̂uγuδ; ð17Þ

where ρ̂ is the energy density. To get tilted congruence, we
assume that fluid distribution has some velocity ω ¼ ωðrÞ
with respect to a new reference frame. Now, we apply
Lorentz boost from a locally Minkowskian frame carrying
dust particles to this new frame. Consequently, this gives
rise to the concept of tilted congruences, supported by the
following four-vector field

Uγ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ;
ω

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ; 0; 0

�
: ð18Þ

The fluid corresponding to the tilted frame and vector
fieldUγ is the radiating anisotropic matter distribution, with
the energy-momentum tensor

Tγδ ¼ ðρþ P⊥ÞUγUδ þ ϵlγlδ − P⊥gγδ þ qγUδ

þ ðPr − P⊥ÞSγSδ þ qδUγ; ð19Þ

where ρ; qγ; ϵ; P⊥ and Pr are energy density, heat flux
vector, radiation density, tangential and radial pressures,
respectively. The quantities Sγ and lγ are four-vectors with
definitions

Sγ ¼
�

ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ;
1

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ; 0; 0

�
;

lγ ¼
�

1þ ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ;
1þ ω

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ; 0; 0

�
: ð20Þ

The heat flux scalar can be obtained through Sγ as

qγ ¼ qSγ: ð21Þ

All 4-vectors associated with tilted congruences are
satisfying

UγUγ ¼ −1 ¼ lγUγ; SγSγ ¼ 1 ¼ lγSγ;

lγlγ ¼ 0 ¼ SγUγ ¼ Uγqγ:

For tilted-congruences, we would take fðRÞ ¼ Rþ δ4

R , with
δ > 0 [37].

III. PALATINI f ðRÞ ELLIS EQUATIONS

This section is devoted to developing a relationship
between Weyl scalar and LTB dynamical variables widely
known as Ellis equations with á la the Palatini formalism.
For this purpose, we will formulate some equations with the
help of mass function and field equations. The Palatini
fðRÞ equations of motion provide the energy variation of
the stellar population gradients respecting time and proxi-
mate surfaces. Through contracted Bianchi identities

Yγ
δ;γ ¼ 0; with Yγ

δ ¼ Tγ
δ þ T γ

δ;

and fðR; TÞ field equations with tilted congruence back-
ground can be found as

~ρ� þ ~ρΘþ ~q† þ ~q

�
ωΘþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p

B

�
2C0

C
þ f0R
fR

�
þ 2 _ωffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ω2
p

�
þ ~ρf�R

fR
þ ~qf†R

fR
þ ωP0⊥

B
þ P⊥

�
Θþ

_fR
fR

þ ωf0R
fR

�
þD0 ¼ 0;

ð22Þ

~Pr
† þ að~ρþ ~PrÞ þ

2~q
3
½2Θþ σ − 3ωðlnCÞ†� þ ~q� þ ωf�R

fR
ð~ρþ P⊥Þ − ~q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p �
_B
B
þ 2 _C

C

�

þ 1

fR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
�
~qω2 _fR −

~ρf0R
B

−
P⊥f0R
B

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
ðP⊥ω _Þ − ω2P0⊥

B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p þ ωffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p ½ _~μþ ðω ~q _Þ� þD1 ¼ 0;

ð23Þ
whereΘ is a Palatini fðRÞ expansion scalar, σ is a shearing quantity related to shear tensor. Their values for LTB spacetime are
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Θ ¼ 1ffiffiffi
3

p
1 − ω2

�
ω _ωþ ω0

B
þ ð1 − ω2Þ

�
_B
B
þ 2 _fR

fR
þ 2 _C

C
þ 2ωC0

CB
þ ωf0R
BfR

��
; ð24Þ

σ ¼ 1ffiffiffi
3

p
1 − ω2

�
ω _ωþ ω0

B
þ ð1 − ω2Þ

�
_B
B
−

_fR
fR

−
_C
C
−
ωC0

CB
þ ωf0R

BfR

��
; ð25Þ

while g† ¼ g;μSμ, g� ¼ g;μUμ and D0, D1 contain Palatini
fðRÞ dark sector quantities and are given in the Appendix.
The total amount of matter content within the spherical

stellar interior can be found through the well-known
Misner-Sharp mass formalism [38]. For metric (15), it is
given by

mðt; rÞ ¼ C
2
ð1 − gγδC;γC;δÞ ¼

�
1þ _C2 −

C02

B2

�
C
2
: ð26Þ

Now, we define an operator which is related to coordinate r
derivation as

DC ¼ 1

C0
∂
∂r : ð27Þ

Equation (26) can be manipulated as

E≡ C0

B
¼

�
1þU2 −

2mðt; rÞ
C

�
1=2

; ð28Þ

where U denotes fluid velocity which for LTB geometry is
found as U ¼ _C. The fðR; TÞ field equations and
Eqs. (26)–(28) give

DCm ¼ κ

2fRð1 − ω2Þ
�
~μ

�
1þ ωU

E

�
þ ~Prω

�
ωþU

E

�
þ ~q

�
2ωþ ð1þ ω2ÞU

E

�
þ ð1 − ω2Þ

�
T 00 −

UT 01

EB

��
C2; ð29Þ

while the variation of LTB matter content respecting time is

_m ¼ −κ
2fRð1 − ω2Þ

��
ð~μþ ~PrÞωþ ~qð1þ ω2Þ − T 01

B
ð1 − ω2Þ

�
Eþ

�
~μω2þ ~Pr þ 2~qωþ T 11

B2
ð1 − ω2Þ

�
U

�
C2: ð30Þ

The radial integration of Eq. (30) yields

m¼ κ

2

Z
C

0

1

fRð1−ω2Þ
�
~μ

�
1þωU

E

�
þ ~Prω

�
ωþU

E

�
þ ~q

�
2ωþð1þω2ÞU

E

�
þð1−ω2Þ

�
T 00−

UT 01

EB

��
C2dC; ð31Þ

which can be reinterpreted as

3m
C3

¼ 3κ

2C3

Z
C

0

1

fRð1 − ω2Þ
�
~μ

�
1þ ωU

E

�
þ ~Prω

�
ωþU

E

�
þ ~q

�
2ωþ ð1þ ω2ÞU

E

�
þ ð1 − ω2Þ

�
T 00 −

UT 01

EB

��
C2dC:

ð32Þ
After decomposing the Weyl tensor into its electric and magnetic parts, we found that the magnetic component turns out to
be zero for out LTB spherical structure. However, its electric part is nonzero. This can be represented via Uγ and Sγ as

Eγδ ¼ E
�
SγSδ −

1

3
ðgγδ þ UγUδÞ

�
;

with

E ¼
�
C̈
C
þ
�
_B
B
−

_C
C

�
_C
C
−
B̈
B

�
−
�
C00

C
−
�
C0

C
þ B0

B

�
C0

C

�
1

2B2
−

1

2C2
: ð33Þ

This Weyl scalar can be written alternatively via mass function and field equations as
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E¼ κ

2fR

�
~μ− ~PrþP⊥þT 00−

T 11

B2
þT 22

C2

�
−
3m
C3

: ð34Þ

This expression would be very useful to calculate the Ellis
equation with tilted congruences in Palatini fðRÞ gravity.
Now, we are interested to calculate Palatini fðRÞ dis-

tributions of Ellis equations by following the procedure
given by Ellis [39]. These would help us to find irregularity
factors in the energy density of dissipative locally aniso-
tropic matter content with tilted congruences. Using
Eqs. (29), (30), (33), (34) and tilted fðR; TÞ field equations,
these are formulated as follows

�
E −

κ

2fR

�
~μ − ~Pr þ P⊥ þ T 00 −

T 11

B2
þ T 22

C2

��
;0

¼ 3 _C
Cð1 − ω2Þ

�
−E þ κ

2fR

�
~μð1þ ω2Þ þ P⊥ þ T 00

þ 2~qω −
T 11

B2
ω2 þ T 22

C2

��
þ 3κC0

2BCð1 − ω2ÞfR
×

�
ð~μþ ~PrÞωþ ~qð1þ ω2Þ − T 01

B
ð1 − ω2Þ

�
; ð35Þ

�
E −

κ

2fR

�
~μ − ~Pr þ P⊥ þ T 00 −

T 11

B2
þ T 22

C2

��0

¼ −
3C0

Cð1 − ω2Þ
�
E þ κ

2fR

�
~Prð1þ ω2Þ − P⊥ − T 00ω

2

þ 2~qωþ T 11

B2
−
T 22

C2

��
−

3κUC0

2ECð1 − ω2ÞfR
×

�
ð~μþ ~PrÞωþ ~qð1þ ω2Þ − T 01

B
ð1 − ω2Þ

�
: ð36Þ

On considering fðRÞ ¼ R in above equations, GR Ellis
equations for tilted congruences can be found. However,
the Ellis equation calculated by Herrera et al. [40] can be
recovered by taking ω ¼ 0 along with fðRÞ ¼ R.

IV. INHOMOGENEITIES IN THE TILTED
LTP SPHERES

In this section, we find factors disturbing the energy
density inhomogeneity of the tilted LTB system coupled
with anisotropic dissipative relativistic matter. We solve
modified versions of Ellis equations that have related the
Weyl tensor with fluid source variables. The study of
inhomogeneity parameters occupy enticing importance in
the complete description of stellar gravitational collapse.
The initial homogeneously evolving system will only enter
in the collapsing window once it experiences energy
density irregularities.

(i) What factors are actually creating these changes over
the surface of regular relativistic system?

(ii) Are dark sector terms affecting these inhomogeneity
factors?

(iii) Furthermore, is this study an observer dependant?
In order to answer these issues, we would like to carry out
our analysis with the help of Ellis equations in Palatini fðRÞ
gravity. We shall also check the influence of kinematical
parameters in the modeling of inhomogeneous phases of
collapsing stellar objects. Since, modified gravity may result
in a cumbersome set of linear equations, we would like to
perform our analysis by taking simple case of matter source
and then we will increase their order of complexity. We
consider the following calculations under the context of
current cosmologicalRicci scalar constraint.We shall classify
our investigations into a couple of streams, i.e., radiating/
dissipative and nonradiating/nondissipative populations.

A. Nonradiating case

This section explores inhomogeneity factors of the
adiabatic relativistic tilted matter sources with LTB geom-
etry as gravitational field in Palatini fðRÞ gravity. This
section constitutes various nondissipative choices of matter
fields such as dust, perfect and anisotropic galactic pop-
ulations, respectively.

1. Cloud of noninteracting particles

First we check the geodesic cloud of noninteracting
adiabatic relativistic fragments. So, we consider all pressure
gradients, radiation density as well as heat flux to be zero.
For this subsection, Eq. (35) boils down to�
E −

κ

2ð1 − δ4R−2Þ
�
μ −

δ4

Rκ

��
;0

¼ 3 _C
Cð1 − ω2Þ

�
−E þ κ

2ð1 − δ4R−2Þ
�
μð1þ ω2Þ − δ4

Rκ

��

þ 3κμωC0

2BCð1 − ω2Þð1 − δ4R−2Þ ;

which after using first dynamical equation can be read as

ð1 − ω2Þ _E þ 3 _C
C

E ¼ κ

2ð1 − δ4R−2Þ

×

��
3C0

C
ω

B
− Θð1 − ω2Þ3=2 þ 3 _C

C

× ð1þ ω2 − δ4ω2Þ
�
μþ ðω2 − 1Þμ0

�
:

ð37Þ
It is a well-known fact that the energy density of dust
particles are regular once the systems impregnate the null
Weyl scalar. This consequently implies zero value of radial
derivative of energy density. Using this result, the above
equation provides the following value of expansion scalar
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Θ ¼ 1ffiffiffi
3

p
1 − ω2

�
3 _C
C

ðδ4ω2 − ω2 − 1Þ − 3C0

C
ω

B

�
: ð38Þ

If an irregular system wishes to enter in the regular window,
its matter content should need to attain the above value of
expansion scalar. Now, the second Ellis equation (36)
provides

�
E −

κ

2ð1 − δ4R−2Þ
�
μþ δ4

Rκ

��0

¼ −
3C0

Cð1 − ω2Þ
�
E þ κ

2ð1 − δ4R−2Þ
�
δ4

Rκ
ω2

��

−
3κUC0μω

2ECð1 − ω2Þð1 − δ4R−2Þ ;

which provides the inhomogeneity condition

C0

C
¼ RUκμ

3ωδ4Eð1 − ω2Þ : ð39Þ

Using the above relation in the solution of above Ellis
equation with Schwarzschild radius, i.e., C ¼ r, gives

Θ ¼ 0:

This shows that homogeneous tilted dust particles with
Palatini fðRÞ corrections should satisfy expansion-free
condition. Under this condition, the system would expe-
rience two very interesting dynamical processes.

(i) This condition produces two distinct boundaries
(within the spherical object) in which the external
one differentiates the relativistic matter content from
the exterior vacuum metric while the interior one
distinguishes central Minkowskian core from the
fluid gravitational source. Under the zero expansion
scalar, the matter content evolves without being
compressed. For instance, during expansion of
spherical stellar gradient, the changes in its volume
produce similar expansion in the external hypersur-
face counterbalancing similar internal surface ex-
pansion. Thus, zero expansion scalar initiates a
specific form of system evolution in which the
innermost shell drags away from the central point
resulting in the outcome of the vacuum core. Based
on this concept, expansion-free matter populations
could be effective for the voids explanation.

(ii) The collapsing expansion-free fluid upon approach-
ing toward the central point experienced shear scalar
blowup. The strong shearing effects cause obstruc-
tion in the appearance of apparent horizon, thereby
supporting the existence of naked singularity (NS)
[41]. Thus, in nature, NS and the expansion-free
condition are weaved together. For a deep under-

standing of NS appearance, Virbhadra et al. [42]
developed general formalisms. Further, Virbhadra
and Ellis [43] linked this outstanding NS phenome-
non with gravitational lensing and presented some
basic foreground results.

2. Locally isotropic matter populations

Here, we assumed that tilted observer has witnessed that
LTB relativistic metric is designed due to a gravitational
field produced by ideal matter sources in Palatini fðRÞ
gravity. Then, Eq. (35) yields

�
E −

κ

2ð1 − δ4R−2Þ
�
μþ δ4

Rκ

��
;0

¼ 3 _C
Cð1 − ω2Þ

�
−E þ κ

2ð1 − δ4R−2Þ

×

�
Pð1þ ω2Þ þ ðμþ PÞ − δ4

Rκ
ω2

��

þ 3κC0ðμþ PÞω
2BCð1 − ω2Þð1 − δ4R−2Þ ;

after using Eq. (22), the above equation provides

_Eþ 3E _C
Cð1−ω2Þ¼

κ

2ð1−δ4R−2Þ
�

3 _C
Cð1−ω2Þ−Θ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2

p

þ 3ωC0

BCð1−ω2Þ
��

μ−
αðR2−δ4Þ
2ð1þ2αRÞ−

δ4

Rκ

�

−
3 _Cδ4ω2

2Cð1−ω2RÞð1−δ4R−2Þ−
κμ0

2Bð1−δ4R−2Þ :

ð40Þ

It is worthy to stress that for a comoving system, we have
considered corrections coming from fðRÞ ¼ Rþ αR2

model [44,45], in which α is a positive number.
Equation (40), after using some relations between tilted
and nontilted congruences, provides the following con-
straint for the existence of regular energy density with
Palatini fðRÞ background

Θ ¼ 3δ4 _Cω2

κCRð1 − ω2Þ5=2
�
3 _C
C

þ 3ωC0

BC

�

×

�
μ −

αðR2 − δ4Þ
2ð1þ 2αRÞ −

δ4

Rκ

�−1
: ð41Þ

It is evident from the above equation that isotropic LTB
stellar model having Schwarzschild radius will be homo-
geneous only when the system impregnates vacuum core.
Now, it follows from Eq. (36) that
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�
E −

κ

2ð1 − δ4R−2Þ
�
μþ δ4

Rκ

��0
¼ −

3C0

Cð1 − ω2Þ
�
E þ κω2

2ð1 − δ4R−2Þ
�
P −

δ4

Rκ

��
−

3κUC0ðμþ PÞω
2ECð1 − ω2Þð1 − δ4R−2Þ ;

which can be interpreted as

E þ 3C0E
Cð1 − ω2Þ ¼

−3κC0

2ð1 − ω2Þð1 − δ4R−2Þ
�
Pω2 −

δ4ω2

κR
þ Uω

E
ðμþ PÞ

�
þ κμ0

2ð1 − δ4R−2Þ ; ð42Þ

from which the inhomogeneity factor is found as

Ψ≡ −
E
U

�
ω −

U
E

��
αðR2 − δ4Þ
2ð1þ 2αRÞ þ

δ4

Rκ

�
−

δ2ω

RκE
− μ: ð43Þ

This shows that when the system is in an inhomogeneous
phase, it should need to make null contributions of Weyl
scalar and Ψ. The major portion of expression Ψ is
controlled by the dark sector terms coming from Palatini

fðRÞ gravity. Thus, fðRÞ terms tends to make hindrance for
the same to leave homogeneous as well as inhomogeneous
phases due to their nonattractive nature.

3. Locally anisotropic gravitational sources

For this case, we consider all dissipative terms to
be zero in the first Palatini fðRÞ Ellis equation. Then, it
becomes

�
E −

κ

2ð1 − δ4R−2Þ
�
μ − Pr þ P⊥ −

δ4

Rκ

��
;0
¼ 3 _C

Cð1 − ω2Þ
�
−E þ κ

2ð1 − δ4R−2Þ
�
μð1þ ω2Þ þ P⊥ −

δ4ω2

Rκ

��

þ 3κðμþ PrÞωC0

2BCð1 − ω2Þð1 − δ4R−2Þ :

Equation (22), after performing some mathematical exercise, gives

�
E þ κΠ

2ð1 − δ4R−2Þ
�

;0
þ 3 _C
Cð1 − ω2Þ

�
E þ κΠ

2ð1 − δ4R−2Þ
�

¼ κμ

2ð1 − δ4R−2Þ
�

1

ð1 − ω2Þ
�
3 _C
C

ð2þ ω2Þ − 6ωC0

BC

�
− Θ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p �
−

3κ

2ð1 − δ4R−2Þð1 − ω2Þ
�
_C
C
−
ωC0

BC

�
μ̂ðR2 − δ4Þ
R2ð1þ 2αRÞ

þ D2

2ð1 − δ4R−2Þ ; ð44Þ

with

D2 ¼
�
αðR2 − δ4Þ
2ð1þ 2αRÞ þ

δ4

R

��
Θ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

p
−

6

ð1 − ω2Þ
�
_C
C
−
ωC0

BC

��
:

It can be seen from the literature than the scalar quantity that controls the inhomogeneity emergence in anisotropic sources
is the trace free part of the tensor that came from the orthogonal splitting of Riemann curvature tensor. Such scalar has been
dubbed as XTF. We found that the configurations of squiggly brackets terms in the first and second mathematical
expressions of the above equation resemble with XTF. Using this result, we find the following value of expansion which the
anisotropic stellar populations must attain to achieve homogeneity in their energy densities.

Θ ¼ 3ffiffiffi
3

p
1 − ω2

�
ð2þ ω2Þ

_C
C
−
2ωC0

BC
−

κμ̂ðR2 − δ4Þ
R2ð1þ 2αRÞ

�
_C
C
−
ωC0

BC

�
þD2

3
ð1 − ω2Þ

�
: ð45Þ

The second Ellis equation for anisotropic sources boils down to
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�
E −

κ

2ð1 − δ4R−2Þ
�
μ − Pr þ P⊥ −

δ4

Rκ

��0
¼ −

3C0

Cð1 − ω2Þ
�
E þ κ

2ð1 − δ4R−2Þ
�
Prð1þ ω2Þ − P⊥ −

δ4ω2

Rκ

��

−
3κðμþ PrÞωUC0

2ECð1 − ω2Þð1 − δ4R−2Þ :

This equation after some lengthy but easy mathematical manipulations yields

�
Eþ κΠ

2ð1−δ4R−2Þ
�0

þ 3C0

Cð1−ω2Þ
�
Eþ κΠ

2ð1−δ4R−2Þ
�
¼ κðμþD1Þ
2ð1−δ4R−2Þþ

κUω

2Eð1−ω2Þð1−δ4R−2Þ
�
μþ μ̂ðR2−δ4Þ

R2ð1þ2αRÞ
�
;

ð46Þ

where

D1 ¼
κ

2ð1 − δ4R−2Þð1 − ω2Þ
�
3C0ω2δ4

CR
þ ω

E

�
2δ4

Rκ
þ αðR2 − δ4Þ
R2ð1þ 2αRÞ

��
:

Here, we also noted the same mathematical combinations as we observed in Eq. (44). Therefore, the regular energy density
can be achieved by the system if the system makes null value to the following parameter, Φ

Φ≡ R2ð1 − 2αRÞ
R2 − δ4

�
D1

Uω
ð1 − ω2Þ þ μ

�
− μ̂: ð47Þ

For Schwarzschild radius, Eq. (45) provides nonzero value to expansion scalar. In comparison with previous cases, Θ ¼ 0
was the necessary condition for dust and isotropic fluid systems to attain homogeneous energy density.

B. Radiating case

In this subsection, we explore the irregularity factor for the tilted observer who observed that LTB geometry of the stellar
object is formed due to dissipative dust source. This cloud is dissipating in the mode of both diffusion and free-streaming
approximations. Therefore, we take all anisotropic pressure gradients to be zero, then Eqs. (35) and (36) give

�
E −

κ

2ð1 − δ4R−2Þ
�
~μ −

δ4

Rκ

��
;0

¼ 3 _C
Cð1 − ω2Þ

�
−E þ κ

2ð1 − δ4R−2Þ ×
�
~μð1þ ω2Þ þ 2~qω −

δ4ω2

Rκ

��
þ 3κ½ ~μþ ~qð1þ ω2Þ�C0

2BCð1 − ω2Þð1 − δ4R−2Þ ; ð48Þ

�
E−

κ

2ð1−δ4R−2Þ
�
~μ−

δ4

Rκ

��0
¼−

3C0

Cð1−ω2Þ
�
Eþ κ

2ð1−δ4R−2Þ×
�
2~qω−

δ4ω2

Rκ

��
−
3κU½ ~μωþ ~qð1þω2Þ�C0

2ECð1−ω2Þð1−δ4R−2Þ : ð49Þ

The second of above equation, after making some lengthy calculations, provides

E0 þ 3C0

Cð1 − ω2Þ E ¼ κ ~μ0

2ð1 − δ4R−2Þ −
3C0

Cð1 − ω2Þð1 − δ4R−2Þ
�
κω~μU
2E

−
ω2δ4

R
þ κ ~q

�
ωþ Uð1þ ω2Þ

2E

��
; ð50Þ

from which, we have obtained the constraint on heat conducting scalar as follows

~q ¼ ω

2κ

�
κU ~μ

E
−
ωδ4

R

��
ωþ Uð1þ ω2Þ

2E

�−1
: ð51Þ

The dissipative dust with tilted congruences will be of regular energy density, if μ0, Weyl scalar as well as above value of
heat flux is zero. This clearly shows that homogeneity depends upon dark source Palatini fðRÞ terms and congruence radial
velocity ω.
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V. SUMMARY

We have seen that LTB spacetimes as seen by a tilted
observer exhibit physical properties which drastically differ
from those present in the standard nontilted LTB.
In this paper, we have studied the dynamics of LTB

anisotropic geometry from the point of view of a tilted
observer in Palatini fðRÞ gravity. The nonideal matter
distribution and the congruence supported by its 4-velocity
vector, as observed by the tilted observer, is analyzed in
detail. The “inhomogeneity factor”, i.e., the variable
quantities depicting those aspects of the matter configura-
tions that are involved in the emergence of energy-density
irregularities, has been explored with respect to the tilted
congruence. We have also integrated evolution of such
factor in the maintenance of homogeneous phases of
compact objects.
The dynamical equations and kinematical quantities are

explored in non-comoving coordinates for the systematic
construction of our analysis. Two expressions widely
known to be Ellis equations have been developed in the
context of Palatini fðRÞ gravity. These equations have
linked the Weyl tensor with the material variables as seen
by the tilted observer. We have extracted the factors that are
responsible for the emergence of inhomogeneities in the
LTB energy density under particular cases of dissipative
and nondissipative regimes. In the nonradiating sector, we
studied irregularity factors for the cloud of noninteracting
particles, isotropic fluid and anisotropic matter while the
radiating sector is explored only for noninteracting particles
in tilted frame. The results in these particular cases are
summarized as follows.

(i) For noninteracting and nondissipative particles, we
observed that the initially homogeneous system will
remain homogeneous if it is conformally flat or have
zero expansion scalar. It means that the inhomoge-
neity in the LTB type universe is not only controlled
by the Weyl tensor but also the expansion scalar. We
would like to stress here that the converse is not true,
i.e., the zero expansion condition does not lead to a
homogeneous density distribution. It is worth men-
tioning that expansion-free scenarios have their own
physical interpretation during the evolutionary proc-
ess with some crucial impact on realistic models that
we mentioned earlier in subsection IVA 1.

(ii) With the inclusion of isotropic pressure in the
noninteracting particles, we found that the effects
on the inhomogeneity parameters of density distri-
bution differs from the previous one. We observed
that a geometrical combination of dark source terms
of Palatini fðRÞ gravitational field Ψ along with
Weyl tensor and expansion scalar are the responsible
factors. In the absence of extra curvature invariants

of the theory, the Weyl tensor will be the only
candidate for the appearance of inhomogeneities in
the density distribution. Furthermore, we have ex-
plored that if during evolution, the expansion scalar
is able to attain a specific value [Eq. (41)], then the
system will have a regular environment of energy
density.

(iii) Similar factors for the case of nonradiating aniso-
tropic matter distribution are obtained. For the
smooth distribution of energy density, the value of
Θ has also been identified [mentioned in Eq. (45)].
The corresponding inhomogeneity factor Φ has
also been explored [Eq. (47)]. It is seen that
Palatini fðRÞ dark source terms and tilted parameter
ω have produced hindrances for the system to
leave initial homogeneous state of the compact
object.

(iv) In the radiating dust cloud case, we observed that a
specific value of dissipation obtained in Eq. (51) is
the responsible factor of density inhomogeneity in
Palatini fðRÞ gravity and tilted observer along with
the Weyl tensor. The homogeneous state can be
recovered if the system is conformally flat and
nonradiating.

All of our results support the analysis of [23] on setting
ω ¼ 0, while the assumptions ω ¼ 0 and fðRÞ ¼ R, in our
calculations would provide results compatible with [20]
and [35].
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APPENDIX: DARK SOURCE TERMS

The parts of Eqs. (22) and (23) are

D0 ¼ − _T 00 þ
�
T 10

B2

�0
þ T 01

B2

�
2f0R
fR

þ B0

B
þ 2C0

C

�

− T 00

�
_B
B
þ 3 _fR
2fR

þ 2 _C
C

�
−
2T 22

C2

�
_C
C
þ

_fR
2fR

�

−
T 11

B2

�
_B
B
þ

_fR
2fR

�
;

D1 ¼ T 00

f0R
2fR

− _T 10 þ
�
T 11

B2

�0
− T 10

�
2_fR
fR

þ
_B
B
þ 2 _C

C

�

−
2T 22

C2

�
C0

C
þ f0R
2fR

�
þ T 11

B2

�
2
C0

C
þ 3f0R
2fR

�
:
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