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Glitches in the rotational frequency of a spinning neutron star could be promising sources of
gravitational wave signals lasting between a few microseconds to a few weeks. The emitted signals
and their properties depend upon the internal properties of the neutron star. In neutron stars, the most
important physical properties of the fluid core are the viscosity of the fluid, the stratification of flow in the
equilibrium state, and the adiabatic sound speed. Such models were previously studied [C. A. van Eysden
and A. Melatos, Classical Quantum Gravity 25, 225020 (2008); M. F. Bennett, C. A. van Eysden, and A.
Melatos, Mon. Not. R. Astron. Soc. 409, 1705 (2010)] following simple assumptions on all contributing
factors, in which the post-glitch relaxation phase could be driven by the well-known process of Ekman
pumping [G. Walin, J. Fluid Mech. 36, 289 (1969); M. Abney and R. I. Epstein, J. Fluid Mech. 312, 327
(1996)]. We explore the hydrodynamic properties of the flow of fluid during this phase following more
relaxed assumptions on the stratification of flow and the pressure-density gradients within the neutron star
than previously studied. We calculate the time scales of duration as well as the amplitudes of the resulting
gravitational wave signals, and we detail their dependence on the physical properties of the fluid core. We
find that it is possible for the neutron star to emit gravitational wave signals in a wide range of decay time
scales and within the detection sensitivity of aLIGO for selected domains of physical parameters.

DOI: 10.1103/PhysRevD.95.024022

I. INTRODUCTION

Pulsar glitches are sudden fractional increases in the
rotational velocity of a neutron star. Several pulsars,
observed in radio, x-ray, and γ-ray bands of the electro-
magnetic spectrum, have been repeatedly observed to
glitch [1–3]. The fractional spin-up δΩ of the rotational
velocity Ω of the neutron star lies in the range of δΩ

Ω ∈
½Oð10−11Þ; Oð10−4Þ� [2,4,5].
Gravitational wave emission is typically associated with

a nonzero derivative of the quadrupole moment stemming
from the accelerated flow of the nonaxisymmetrically
distributed bulk of matter. It is possible that such non-
axisymmetric motions are excited following a glitch;
possible mechanisms for producing such nonaxisymmetric
motions, besides Ekman pumping, include bulk two-stream
instabilities [6], surface two-stream instabilities [7], crust
deformation and precession [8], meridional circulation and
superfluid turbulence driven by crust-core differential
rotation [9], crust-core coupling via the magnetic field
[10], excitation of pulsation modes [11–13], and mutual
friction in a two-fluid model for the superfluid core [14].
These mechanisms were briefly reviewed by van Eysden
and Melatos [5] and Bennett et al. [15]. In this paper, we
solely consider the hydrodynamic properties of the fluid

core following a glitch and concentrate on the mechanism
of Ekman pumping.
In this work, we consider the hydrodynamic evolution

of the post-glitch relaxation phase via the mechanism of
Ekman pumping, pioneered by Walin [16] and Abney and
Epstein [17]. We extend the previous works on this by van
Eysden and Melatos [5] and Bennett et al. [15], where an
initial nonaxisymmetric perturbation introduced by the
glitch induces Ekman pumping in the core of the star.
Ekman pumping is briefly described as the induced flow of
the bulk matter in the core when it is acted upon by a
tangential force (in this case, Coriolis force) at its boundary,
i.e., the crust-core interface. In our case, the Coriolis force
results from the differential rotation of the crust with
respect to the bulk fluid, resulting from the glitch in the
star’s rotational velocity. This induced flow of the bulk
matter could then have a time-varying quadrupole moment
and led to the emission of gravitational waves. In this
context, a glitch can lead to gravitational wave emission in
two phases. Initially, a burst-type emission occurs during
the fast spin-up of crust at time scales of, at most, a few
seconds [18]. Second, a decaying continuous-wave signal
during the post-glitch relaxation phase is emitted on much
longer time scales. The initial nonaxisymmetric motion of
the bulk with respect to the crust in the second case is
excited by the glitch. The resulting damped continuous-
wave-like signal arises as the internal fluid dynamics
evolve to set the bulk in corotation or a steady differential*avneet.singh@aei.mpg.de, avneet.singh@ligo.org
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rotation with the crust, erasing the nonaxisymmetric
motions in the bulk [5,15].
In this paper, we relax certain assumptions in more

recent works [5,15] on the stratification length and the
adiabatic sound speed; we explore a regime of Ekman
pumping where these quantities are allowed to vary across
the star and study their effect on the emitted gravitational
wave signal. This extends the parameter space and intro-
duces more generality to the analysis.
We will keep other simplifying assumptions made in

[5,17] and analyze the system in a pure hydrodynamical
sense, ignoring the two-stream dynamics, sidestepping the
crust-core interface, neglecting the effects of the pinning
and unpinning of quantum vortices, disallowing the crust
to precess, and ignoring the affects of the magnetic field.
Specifically, the inclusion of a magnetic field in the current
model would make it analytically intractable. In the spirit of
first tackling these two aspects separately, i.e., the magnetic
field and Ekman pumping, this paper concentrates on the
latter process only; such an approach has been extensively
considered in the past [5,15,17]. Moreover, for analytic
simplicity, we approximate our spherical neutron star to a
fluid-filled rigid cylinder [15], as opposed to the choice of
semirigidity [5]. The correctness of this choice will be
explained in the next section. In a nutshell, as a result of all
of these simplifications, a toy model for a neutron star is
studied for the possibility of the emission of gravita-
tional waves.

II. HYDRODYNAMICS OF THE SYSTEM

Let us consider a rotating neutron star of a radius of order
OðLÞ with a solid crust around a compressible and viscous
fluid with viscosity ν, pressure p, and density ρ. We
approximate this spherical system with a rigid cylindrical
container of height 2L and radius L rotating at an angular

frequency of Ω along the z axis (Fig. 1). We represent the
glitch as a sudden perturbation in the angular velocity of
magnitude δΩ along the z axis. This geometric simplifi-
cation does not lead to an order-of-magnitude change in the
amplitude or duration of the emitted gravitational wave
signal from Ekman pumping [19], and it has been exten-
sively used in the literature for neutron star modeling.
Moreover, this reformulation to the cylindrical system leads
to simpler analytic solutions.

A. Governing equations

Our physical system is described by the velocity field ~v,
the pressure p, and the density ρ of the fluid. The forces
acting on fluid elements of the bulk volume are the viscous
force, the Coriolis force, the centrifugal force, the com-
pressible strain, pressure gradients, and the gravitational
force. The Navier-Stokes equation, the conservation of
mass equation, and the “energy equation” (i.e., the equation
of state) govern our physical system. The Navier-Stokes
equation for a fluid element in the rotating Lagrangian
frame of the cylinder for a compressible fluid is given as

∂~v
∂t þ ~v · ∇~vþ 2 ~Ω × ~v ¼ −

1

ρ
∇pþ ν∇2~vþ ν

3
∇ð~∇ · ~vÞ

þ ∇½Ω × ðΩ × rÞ� þ ~g; ð1Þ

where ~v is the fluid velocity and ~g is the gravitational
acceleration. The Navier-Stokes equation relates the restor-
ing forces on a fluid element (written on the right-hand
side: pressure gradients, viscous force, gravitational force,
compressible strain, centrifugal force) to the impulsive
change in momentum of the fluid element (written on the
left-hand side: Coriolis force, etc.). We have ignored terms
from the magnetic field of the neutron star, as previously
stated, restricting ourselves to a purely hydrodynamic
analysis. The gravitational acceleration is taken to be of
the following form:

~g ¼ −
z
jzj gẑ: ð2Þ

This form for ~g is unphysical since it is generated by a
singular and planar mass distribution located at z ¼ 0.
However, such a choice is standard in the neutron star
literature [5,17]; it is equivalent to a radial field for a sphere,
which compares well to numerical simulations comprising
more realistic mass distributions [20]. This assumption
leads to symmetric flow across the midplane of the cylinder
and we can restrict ourselves to z ≥ 0.
The second governing equation is the “continuity equa-

tion,” i.e., the conservation of mass equation

∂ρ
∂t þ ∇ · ðρ~vÞ ¼ 0: ð3Þ

FIG. 1. The idealized system.
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Last, we write the energy equation—i.e., the equation of
state—in terms of the adiabatic sound speed vc (where
the subscript S represents the derivative taken at constant
entropy) of the form

�∂p
∂ρ

�
S
¼ v2c ; ð4Þ

which, in the adiabatic limit.1 and expressed in the
Lagrangian frame, takes the following form:

� ∂
∂tþ ~v · ∇

�
ρ ¼

� ∂
∂tþ ~v · ∇

�
p
v2c

: ð5Þ

Note that we do not impose invariance of vc in either space
or time, as was previously done in [5,15].
In addition, we scale our variables to dimensionless

form by redefining them as r → Lr; z → Lz; ~v → ðδΩÞL~v;
ρ → ρoρ; p → ρogLp;∇ → L−1∇; t → tet, where we define
ρo as the equilibrium mass density at z ¼ 0, and te and the
Ekman number E as

te ¼ E
1
2Ω−1; and; E ¼ ν

L2Ω
: ð6Þ

One can then write the governing equations (1), (3), and (5)
in the rescaled form as

ϵF

�
E

1
2
∂~v
∂t þ ϵ~v · ∇~vþ 2êz × ~v

�

¼ −
1

ρ
∇p − ~ez þ ϵFE

�
∇2~vþ 1

3
∇f∇ · ~vg

�
þ F∇

�
1

2
r2
�
;

ð7Þ

E
1
2
∂ρ
∂t þ ϵ∇ · ðρ~vÞ ¼ 0; ð8Þ

E
1
2
∂½ρη�
∂t þ ϵ~v · ∇½ρη� ¼ K

�
E

1
2
∂p
∂t þ ϵ~v · ∇p

�
; ð9Þ

where η, the Froude number F, the maximum scaled
compressibility K, and ϵ are defined as

η ¼ v2c
c2

; K ¼ g
L
c2

; F ¼ Ω2
L
g
; ϵ ¼ δΩ

Ω
: ð10Þ

B. Orders of magnitude

Here, we list the physical constants and parameters
introduced in the previous section, and their order-of-
magnitude values in SI units for the interior of a neutron
star from estimates on the expected and observed physical
properties:

g ¼ Oð1012Þ; L ¼ Oð104Þ; Ω
2π

¼ Oð1 Hz–102 HzÞ;

E ∈ ½Oð10−17Þ; Oð10−7Þ�; vc
c
∈ ½Oð10−2Þ; 1�: ð11Þ

The viscosity ν of the fluid for a neutron star is currently
unknown and widely debated. The associated value of
Ekman number E also remains volatile. Yet, there are
estimates on the value of E from results of heavy-ion
collision experiments [5,21–24] and from theoretical cal-
culations of neutron-neutron scattering in the superfluid
limit [25,26]. The results from such an analysis lead to the
wide range of possible values for E quoted above in (11).
The parameters listed in (10) then take the following
values2:

K ¼ Oð10−1Þ; F ∈ ½Oð10−9Þ; Oð10−3Þ�;
ϵ ∈ ½Oð10−11Þ; Oð10−4Þ�: ð12Þ

III. SOLUTION

In this section, we solve the governing equations given
in Sec. II A.

A. Equilibrium solution

In equilibrium, because of the symmetry of the system
across the z ¼ 0 midplane, the flow is steady and axisym-
metric, and the density and pressure are functions of z and r
only. Since ϵ and F are quite small in their absolute
magnitude, we can ignore the centrifugal term [17] in
the rescaled equations (7), (8), and (9). With this approxi-
mation, (7) reduces to

1

ρ
∇pþ ~ez ¼ 0: ð13Þ

In order to solve the above equation, we need to make an
assumption for either the mass density or the pressure. We
introduce the dimensionless parameter Ks, following [5],
and assume the following:

ρ−1ðdρ=dzÞ ¼ −KsðzÞ: ð14Þ

The stratification length, zs, is defined in terms of the
dimensionless quantity Ks as zs ¼ LK−1

s . The above
expression defines a steady-state density profile of the
system. The equilibrium pressure and density profiles are
then given by solving (13) and (14), respectively, as

ρeðzÞ ¼ e−
R

z

0
Ksðz0Þdz0 ; ð15Þ

1The adiabatic limit for an isolated neutron star allows us to
drop the subscript S in (4); see Sec. VI C for further discussion.

2We will use the values quoted in (11) and (12) when making
order-of-magnitude estimates on the emitted gravitational wave
signals.
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peðzÞ ¼ K−1
s ðzÞe−

R
z

0
Ksðz0Þdz0 : ð16Þ

Here, we have not assumed Ks to be a constant, as was done
in [5,15]. The introduction of the form Ks is not trivial. In
fact, the assumption of a certain form of Ks incorporates the
nature of entropic or compositional gradients, which, in
turn, incorporate the deviation of an equilibrium state from
an adiabatic state. We introduce equilibrium sound speed
accordingly, given as v2eq ¼ gL

KsðzÞ. We note that, in the

equilibrium state, gravity acts to vary the density and
pressure along the axis of the cylinder.

B. Induced perturbations

Let us assume that a glitch induces perturbations in
pressure, density, and velocity fields of the internal bulk
fluid of the neutron star, and that the resultant bulk fluid
flow may be nonaxisymmetric. When such nonaxisym-
metric perturbations are induced, the density ρðr;ϕ; z; tÞ
and pressure pðr;ϕ; z; tÞ are functions of all spatial
coordinates and time, as opposed to the case of stable
equilibrium. In order to solve for the perturbed fluid
motion, we treat the system “perturbatively,” given the
small magnitude of ϵ. In the perturbative treatment, the
density, the pressure, and the velocity field can be expanded
as ρ → ρþ ϵδρ and p → pþ ϵδp, where we have let the
magnitude of δp and δρ run free and have normalized it by
ϵ. The perturbed velocity field, however, is written simply
as ~v → δ~v. We do not perturb η explicitly; the variation in η
comes naturally from the variation in vc. Now, ignoring all
terms larger then Oð1Þ in ϵ, the set of three rescaled
governing equations, (7), (8), and (9), reduce to

F

�
E

1
2
∂½δ~v�
∂t þ 2êz × ½δ~v�

�

¼ −
1

ρ
∇½δp� − δρ

ρ
~ez þ FE

�
∇2½δ~v� þ 1

3
∇f∇ · ½δ~v�g

�

þ F
δρ

ρ
∇
�
1

2
r2
�
; ð17Þ

E
1
2
∂½δρ�
∂t þ ∇ · ðρδ~vÞ ¼ 0; ð18Þ

E
1
2
∂½ηδρ�
∂t þ δ~v · ∇½ρη� ¼ K

�
E

1
2
∂½δp�
∂t þ δ~v · ∇p

�
: ð19Þ

C. Method of multiple scales

In the perturbative treatment, we employ the method of
multiple scales [5,15–17]. The perturbations in the density,
pressure, and velocity field are expanded into scales of
order E0, E

1
2, and E1, such that, for density perturbations,

δρ ¼ δρð0Þ þ E
1
2δρð1Þ þ E1δρð2Þ; ð20Þ

and for pressure perturbations,

δp ¼ δpð0Þ þ E
1
2δpð1Þ þ E1δpð2Þ; ð21Þ

and for velocity perturbations,

δ~v ¼ δ~vð0Þ þ E
1
2δ~vð1Þ þ E1δ~vð2Þ: ð22Þ

The idea behind the method of multiple scales is to separate
subprocesses that occur at time scales in increments of E

1
2,

and to solve them individually.
One can now solve (17) for the velocity field, its radial,

azimuthal, and vertical components of vðiÞr , vðiÞϕ , and vðiÞz , up

to ith order in E
i
2,

F

�
E

1
2
∂δvr
∂t − 2δvϕ

�
¼ −

∂
∂r

�
δp
ρ

�
þ FE ×

��
∇2 −

1

r2

�
δvr

−
2

r2
∂½δvϕ�
∂ϕ þ 1

3

∂
∂r ½∇ · δ~v�

�
; ð23Þ

F

�
E

1
2

∂δvϕ
∂t − 2δvr

�
¼ −

1

r
∂
∂ϕ

�
δp
ρ

�
þ FE ×

��
∇2 −

1

r2

�
δvϕ

−
2

r2
∂½δvr�
∂ϕ þ 1

3r
∂
∂ϕ ½∇ · δ~v�

�
; ð24Þ

FE
1
2
∂δvz
∂t ¼ −

1

ρ

∂
∂z

�
δp
ρ

�
−
δρ

ρ
þ FE

×
�
∇2½δvz� −

1

3

∂
∂ϕ ½∇ · δ~v�

�
: ð25Þ

Two additional relations are derived from the energy
equation (19) and the continuity equation (18), and they
are given as

E
1
2
∂
∂t

�
δρ

ρ

�
þ ∇ · δ~v ¼ KsðzÞδvz; ð26Þ

and

ηðzÞE1
2
∂
∂t

�
δρ

ρ

�
¼ KE

1
2
∂
∂t

�
δp
ρ

�
þ FN2ðzÞδvz; ð27Þ

where we have introduced NðzÞ—the redefined Brunt-
Väisälä frequency,3

3Note that the Brunt-Väisälä frequency N is a well-known
quantity in fluid mechanics and atmospheric sciences. It is a
measure of the buoyant force experienced by a fluid element
when displaced from equilibrium.
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N2ðzÞ ¼ ½ηKs − ∂zη� − K
F

¼ K
F

�
v2c
v2eq

− 1

�
−
∂zη

F
: ð28Þ

We can reformulate (28) by introducing K0
sðzÞ as

K0
sðzÞ ¼ ηKs − ∂zη ¼ K

v2c
v2eq

− ∂zη; ð29Þ

such that (28) takes the form

N2ðzÞ ¼ K0
sðzÞ − K

F
: ð30Þ

Here, η and Ks are allowed to vary with z only. In the set of
equations (23)–(27), the terms on different OðE0Þ, OðE1

2Þ,
and OðE1Þ scales are reducible at each order. Moreover, we
can distinguish and deduce the time scales at which several
processes contribute to the overall perturbed flow of the
bulk matter, such as the formation of a viscous Rayleigh
shear layer, followed by partial spin-up of the interior fluid
via Ekman pumping, followed by complete spin-up of the
interior on longer time scales. These processes have been
discussed briefly by van Eysden and Melatos [5] and in
much greater detail by Abney and Epstein [17]. We will
also discuss them in later sections. These time scales are
E0Ω−1, E−1

2Ω−1, and E−1Ω−1. One can now isolate solutions
at these different scales since they are effectively indepen-
dent due to the very small magnitude of the Ekman
number E.

D. OðE0Þ solutions
On the order of E0, expressions (23)–(27) yield

δvð0Þr ¼ −
1

2Fr
∂
∂ϕ

�
δpð0Þ

ρ

�
; ð31Þ

δvð0Þϕ ¼ 1

2F
∂
∂r

�
δpð0Þ

ρ

�
; ð32Þ

δvð0Þz ¼ 0; ð33Þ

δρð0Þ ¼ −
∂½δpð0Þ�

∂z ; and ð34Þ

∇ · δ~vð0Þ ¼ 0: ð35Þ

Note that the solutions on the order E0 are exactly the same
as those previously achieved in [5,15–17]. These solutions,
given by (31)–(35), correspond to the formation of a
viscous boundary layer (also referred to as the Rayleigh
shear layer) on the top and bottom faces of the cylinder on a
time scale OðE0Ω−1Þ. Within this viscous boundary layer,
the flow moves radially outward due to the gradient in the

azimuthal velocity and the resulting imbalance between the
centrifugal and pressure gradient forces [16,17].

E. OðE1
2Þ solutions

In solving for the OðE1
2Þ solutions, we assume that

δpð0Þ

p
≫

δpð1Þ

p
∼ 0;

δρð0Þ

ρ
≫

δρð1Þ

ρ
∼ 0: ð36Þ

The OðE1
2Þ terms in (23)–(27) yield

δvð1Þr ¼ 1

4F
∂χ
∂r ; ð37Þ

δvð1Þϕ ¼ 1

4Fr
∂χ
∂ϕ ; ð38Þ

δvð1Þz ¼ ηðzÞ
FN2ðzÞ

∂χ
∂z þ

�
−∂zη

FN2ðzÞ − 1

�
χ; and ð39Þ

∂
∂t

�
δρð0Þ

ρ

�
þ ∇ · δ~vð1Þ ¼ KsðzÞδvð1Þz ; ð40Þ

where we have defined χ as

χ ¼ −
∂
∂t

�
δpð0Þ

ρ

�
∼OðE0Þ: ð41Þ

This set of solutions represents the process of Ekman
pumping—the flow in the viscous boundary layer, given
by (31)–(35), sets a secondary motion in the interior,4 by
which the fluid is pulled into the viscous boundary layer
from the interior to replace the radial outward flow in it
[16,17]. Note that the results on the order OðE1

2Þ, given by
(37)–(40), are different from those in previous works with

respect to the expression for δvð1Þz (39) and the continuity
equation (40). This affects all future calculations and
results.

F. More on the scale-based solutions

We will skip the discussion of the OðE1Þ solutions since
they occur on much larger time scales ofOðE−1Ω−1Þ. These
OðE−1Ω−1Þ solutions correspond to the eventual “spin-up”
of the entire interior bulk matter when the interior bulk sets
in complete corotation or steady differential corotation with
the crust, as previously mentioned [16,17]. This subprocess
on much larger time scales is irrelevant to our discussion
since it does not contribute to the gravitational wave
emission. To recap the scale-based solutions, the sudden
spin-up of the rotating cylinder leads to the formation of a

4The important development is the excitation of flow in the z
direction in the boundary layer, given by (39).
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viscous boundary layer at the top and bottom faces of the
rotating cylinder. This viscous layer forms on a time scale
ofOðE0Ω−1Þ. The velocity field within this layer pushes the
fluid radially outward across the layer, given by (31)–(33).
TheOðE0Þ flow excites Ekman pumping in the interior on a
time scale of OðE−1

2Ω−1Þ, pushing the fluid radially inward
and vertically into the boundary layer, given by (37)–(39).
Note that the vertical velocity of the OðE−1

2Þ flow, given
by (39), is nonzero. This vertical velocity is constrained by
the continuity law applied to the viscous layer [5,15–17],
such that

δvzjz¼�1 ¼ � 1

2
E

1
2½∇ × ðδ~v − ~vBÞ�zjz¼�1; ð42Þ

where ~vB is the dimensionless velocity of the boundary
layer in the frame rotating at Ω. In this rotating frame,
~vB ¼ r~eϕ [15]. Note that we have assumed that the
boundary layer is rigidly corotating with the cylinder with
angular frequencyΩþ δΩwithout any slippage. The above
expression (42) describes the continuity of the vertical flow
across and inside the viscous boundary layer as a function
of flow just outside the layer. This process occurs on a time
scale of OðE1

2Þ, which is reflected in the magnitude term E
1
2

in (42). We also find that the process of Ekman pumping
continues until the local velocity field δ~v becomes equal to
the boundary velocity ~vB. This is followed by spin-up of the
entire interior on much larger time scales of OðE−1Ω−1Þ.
Furthermore, the magnitude term of E

1
2 can be understood

in terms of scaling arguments. The viscous term in the
dimensionless Navier-Stokes equation (7) is given as

FE∇2 ∼ FE
�
1

δL

�
2

∼OðFÞ; ð43Þ

where δL is the scale of the thickness of the viscous
boundary layer. Clearly, from the relation given above,
δL ¼ OðE1

2Þ; also see the detailed discussion by Abney and
Epstein [17] on this subject. The characteristic thickness of
the boundary layer and the time scale of Ekman pumping
are both attributable to the magnitude term E

1
2 in (42).

G. The characteristic equation

Considering the OðE0Þ and OðE1
2Þ solutions obtained in

the previous sections, we combine them to write the
following differential equation with terms up to orders
OðE1

2Þ and OðF0Þ:

1

r
∂
∂r

�
r
∂χ
∂r

�
þ 1

r2
∂2χ

∂ϕ2
−
�
4ηðzÞKsðzÞ

N2ðzÞ
� ∂χ
∂z þ

4ηðzÞ
N2ðzÞ

∂2χ

∂z2

¼
�∂zη − ∂2

zη

N2ðzÞ
�
χ: ð44Þ

The above characteristic equation can be solved via the
standard method of separation of variables to yield

χðr;ϕ; z; tÞ ¼
X∞
α¼0

X∞
γ¼1

JαðλαγrÞ
�
AαγðtÞ − iBαγðtÞ

2

× eiαϕ þ AαγðtÞ þ iBαγðtÞ
2

e−iαϕ
�
ZαγðzÞ;

ð45Þ

where λαγ is the γth zero of the αth Bessel mode (Jα), and
AαγðtÞ, BαγðtÞ are the associated Bessel-Fourier coeffi-
cients which depend upon the assumed steady-state sol-
ution, which we will see shortly. The flow is constrained by
a trivial boundary condition which requires no penetration

through the sidewalls, i.e., δvð0Þr jr¼1 ¼ 0. This simply
translates to ∂ϕχjr¼1 ¼ 0 for ∀ϕ’s, via (31). Moreover,
ZαγðzÞ is the solution to the following differential equation:

4ηðzÞ
N2ðzÞ

∂2ZαγðzÞ
∂z2 −

4ηðzÞKsðzÞ
N2ðzÞ

∂ZαγðzÞ
∂z

−
�∂zη − ∂2

zη

N2ðzÞ þ λ2αγ

�
ZαγðzÞ ¼ 0; ð46Þ

which depends on N2, which in turn depends exclusively on
Ks and η. When Ks (or, veq) and η (or, vc) are constants,
ZαγðzÞ takes the simple form given below,

ZαγðzÞ ¼
ðFN2 − B−ÞeBþz − ðFN2 − BþÞeB−z

ðFN2 − B−ÞeBþ − ðFN2 − BþÞeB−
; ð47Þ

where

B� ¼ 1

2
½Ks � ðK2

s þ η−1N2λ2αγÞ12�: ð48Þ

It must be noted that, following [5], we have temporarily—
and seemingly arbitrarily5—assumed Zαγð1Þ ¼ 1. Moreover,

we also assume vzjz¼0 ∼ vð1Þz jz¼0 ¼ 0 to ensure symmetric
flow across the z ¼ 0 plane,6 given the relation prescribed.
This is precisely the result obtained by van Eysden and
Melatos [5] and Bennett et al. [15].

H. Temporal evolution

The temporal evolution of Ekman pumping is governed
by the boundary condition given in (42) [5,17]. Taking the

5The function ZαγðzÞ must be explicitly renormalized to lie in
the range [0, 1], since (41) dictates that χ—as a dimensionless
variable—must be, at most, of the order OðE0Þ ∼ 1. This requires
ZαγðzÞ to be of the same order of magnitude.

6The boundary condition on axial flow, i.e., setting vzjz¼0 ∼
vð1Þz jz¼0 ¼ 0 in (39), is equivalent to specifying ZαγðzÞ at z ¼ 0.
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first-order derivative of (42) and using the results from the
OðE0Þ and OðE1

2Þ solutions, we find the exponentially
decaying time dependence7 of χ,

χðr;ϕ; z; tÞ ¼
X∞
α¼0

X∞
γ¼1

JαðλαγrÞ
�
Aαγ − iBαγ

2
× eiαϕ

þ Aαγ þ iBαγ

2
e−iαϕ

�
ZαγðzÞe−ωαγ t; ð49Þ

where, momentarily assuming Zαγð1Þ to be an arbitrary
value that we will define shortly, we get

ωαγ ¼
1

4F
λ2αγZαγð1Þ

�
ηð1Þ

FN2ð1Þ
∂Zαγ

∂z
����
z¼1

þ
�
−∂zηjz¼1

FN2ð1Þ − 1

�
Zαγð1Þ

�
−1
: ð50Þ

Note that, for the simple case where KsðzÞ; η ∼ constant and
Zαγð1Þ ¼ 1, (50) reduces to

ωαγ ¼
λ2αγ½ðFN2 − B−ÞeBþ − ðFN2 − BþÞeB− �

ð4FKþ λ2αγÞðeBþ − eB−Þ : ð51Þ

Furthermore, given the explicit dependence of χ on time,
we integrate (49) over t ∈ ½t;∞Þ and get

δpð0Þðr;ϕ; z; tÞ
ρðzÞ ¼ δpð0Þ

t→∞ðr;ϕ; zÞ
ρðzÞ þ

X∞
α¼0

X∞
γ¼1

ω−1
αγ

× JαðλαγrÞ½Aαγ cosðαϕÞ þ Bαγ sinðαϕÞ�
× ZαγðzÞe−ωαγt; ð52Þ

where the first term on the right-hand side is the constant of
integration evaluated at t → ∞, i.e., the steady-state pres-
sure profile of the spun-up cylinder. The relation given in
(52) encodes the variation of pressure perturbations up to
the leading order in magnitude as a function of time.

I. Initial and final conditions

We are left with one intrinsic degree of freedom in our
model in the form of initial and final conditions in time, i.e.,
the state of perturbations immediately following the glitch
at t ¼ 0 and when Ekman pumping stops as t → ∞,
respectively. In principle, we only require one boundary
condition in time—once Aαγ , Bαγ are known—since the
state of modes at t → ∞ is coupled to their state at t ¼ 0 by
the relation (52), and vice versa. In this case, however, we
require both the initial and final conditions in time to
calculate Aαγ , Bαγ since they are unknown. For example,
two of the most general choices are (a) one can assume a

scenario where the perturbation modes continuously grow
from an axisymmetric state in the post-glitch phase at t ¼ 0
and reach a steady nonaxisymmetric state as t → ∞ and
remain in that state. This leads to emission of gravitational
waves even in the steady state at t → ∞ and is somewhat
unphysical. In fact, this equates to the scenario of “semi-
rigidity,” where the top and bottom faces of the cylinder
rotate differentially at t → ∞, potentially causing the crust
to crack [5]. On the contrary, (b) an alternative scenario is
when the perturbation modes are instantaneously excited
at t ¼ 0 and eventually decay as t → ∞, which is more
physical than the former choice. This choice disallows any
residual nonaxisymmetry in the bulk, ensures zero residual
steady-state emission, and also incorporates the feature of
rigidity between the two faces of the cylinder [15]. Both of
these possibilities are encoded in our choice of assumed
boundary conditions at t ¼ 0 and t → ∞. Hence, we
assume the more physical set of initial and final conditions
where the modes originate arbitrarily and instantaneously at
t ¼ 0, and decay from some unknown initial value δP0 to a
symmetric steady-state δP∞ as t → ∞ according to (52).
Note that the steady-state solution at t → ∞ is an axisym-
metric state with no angular or z dependence but only radial
dependence, given as δP∞ ¼ r2 in dimensionless form
[15]. This axisymmetric state does not lead to any gravi-
tational wave emission, as previously stated.
Finally, in order to calculate Aαγ , Bαγ , we write

δP0 ¼ δP∞ þ
X∞
α¼0

X∞
γ¼1

ω−1
αγ JαðλαγrÞ

× ½Aαγ cosðαϕÞ þ Bαγ × sinðαϕÞ�ZαγðzÞ

¼
X∞
α¼0

Cαrαðr2 − 1Þ cosðαϕÞZαγðzÞ; ð53Þ

where, whenever suitable from this point onward, we will
abbreviate, for simplicity,

δPt0 ≡ δpð0Þ
t→t0 ðr;ϕ; zÞ
ρðzÞ :

The assumed form of the initial arbitrary perturbations
δP0 in (53) is a sum of nonaxisymmetric modes satisfying
the boundary conditions [15]. Cα represents the relative
weights of modes with respect to the loudest mode, excited
at t ¼ 0, and it will be set equal to 1 in the calculations in
Sec. IV. Note that any assumed form of δP0 must be
constrained by the boundary conditions in space; i.e., no
penetration is allowed across the sidewalls, and the
assumed form must be a solution to the Navier-Stokes
equation by satisfying the relations in (17)–(19). Our
assumption of δP0 guarantees the decay of all modes at
t → ∞, while it also ensures that the flow vanishes at the
lateral surface at r ¼ L. We have assumed trivial z7Refer to Sec. A of the Appendix for details.
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dependence and ϕ dependence in (53) for simplicity [5,15],
without potentially corrupting the generality of the solu-
tions. The associated Bessel-Fourier coefficients Aαγ and
Bαγ can now be calculated8 as an implicit function of z as
follows:

Aαγ ¼
2ωαγ

πJ2αþ1ðλαγÞ
Z

2π

0

dϕ
Z

1

0

dz
Z

1

0

rdr

× JαðλαγrÞ cosðαϕÞ½δP0 − δP∞�Z−1
αγ ðzÞ

¼ 2Cαωαγ

J2αþ1ðλαγÞ
Z

1

0

drrαþ1ðr2 − 1ÞJαðλαγrÞ; ð54Þ

and

Bαγ ¼
2ωαγ

πJ2αþ1ðλαγÞ
Z

2π

0

dϕ
Z

1

0

dz
Z

1

0

rdr

× JαðλαγrÞ sinðαϕÞ½δP0 − δP∞�Z−1
αγ ðzÞ ¼ 0: ð55Þ

In principle, the Bessel-Fourier coefficients may not be
constants. In fact, they could be functions of ϕ and z,
depending on the chosen initial conditions in (53).
However, since we chose trivial dependence on ϕ and z
in our assumed initial conditions in (53), Aαγ and
Bαγ remain constant. The first few values of Aαγ are
A11 ¼ −0.706ω11, A21 ¼ −0.521ω21, A12 ¼ 0.154ω12,
and A22 ¼ 0.148ω22.

J. Final solutions

We restore the dimensions and calculate the final
velocity, density, and pressure fields in the inertial rest
frame instead of the rotating frame. The density profile in
the inertial frame is given as

ρðr;ϕ; z; tÞ ¼ ρ0ρeðz=LÞ þ ρ0
ðδΩÞΩL

g

×
X∞
α¼0

X∞
γ¼1

ω−1
αγ CαAαγJα

�
λαγr

L

�
cos½αðϕ −ΩtÞ�

× ∂z½−LZαγðz=LÞρeðz=LÞ�e−E
1
2ωαγΩt; ð56Þ

whereas, from (34),

δρð0Þt→0ðr;ϕ; zÞ ¼ −∂z½ρðzÞδP0�

¼ −
�X∞
α¼0

Cαrαðr2 − 1Þ cosðαϕÞ
� ∂½ρðzÞ�

∂z :

ð57Þ

δvð0Þr ðr;ϕ; z; t → 0Þ and δvð0Þϕ ðr;ϕ; z; t → 0Þ can be sim-
ilarly calculated from (31) and (32), respectively. The
pressure profile and the velocity field up to order OðE1

2Þ
are given as

pðr;ϕ; z; tÞ ¼ ρ0gLpeðz=LÞ þ
�
ρ0ðδΩÞΩL2

X∞
α¼0

X∞
γ¼1

ω−1
αγ CαAαγJα

�
λαγr

L

�
Zαγðz=LÞ × cos½αðϕ −ΩtÞ�ρeðz=LÞe−E

1
2ωαγΩt

�
;

ð58Þ

δvr ∼ δvð0Þr ðr;ϕ; z; tÞ ¼ 1

2
ðδΩÞL2

X∞
α¼0

X∞
γ¼1

α

r
ω−1
αγ Cα × AαγJα

�
λαγr

L

�
cos½αðϕ −ΩtÞ�Zαγðz=LÞe−E

1
2ωαγΩt; ð59Þ

δvϕ ∼ δvð0Þϕ ðr;ϕ; z; tÞ ¼ Ωrþ 1

2
ðδΩÞL

X∞
α¼0

X∞
γ¼1

ω−1
αγ × CαAαγλαγ∂r

�
LJα

�
λαγr

L

��
cos½αðϕ −ΩtÞ� × Zαγðz=LÞe−E

1
2ωαγΩt;

ð60Þ

and9

δvz ∼ vð1Þz ðr;ϕ; z; tÞ ¼ 1

FN2ðzÞ
∂χ
∂z − χ

¼ OðE1
2Þ ðin dimensionless unitsÞ:

ð61Þ

IV. GRAVITATIONAL WAVE EMISSION

In this section, we describe the gravitational wave
emission from mass-quadrupole and current-quadrupole
moments of the nonaxisymmetric flow derived in
Sec. III.

A. Gravitational wave emission
via mass quadrupole

The density, pressure, and velocity fields calculated in
the previous section lead to gravitational wave emission if
the mass distribution and fluid flow are nonaxisymmetric in

8Refer to Sec. B in the Appendix for details.
9We have left the expression in condensed form since the

contribution is of the order OðE1
2Þ only, which is lower than the

magnitudes we want to explore.
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nature. Gravitational wave emission is attributable to a
nonaxisymmetric distribution of mass that has a nonzero
mass-quadrupole moment with an at least second-order
nonvanishing time derivative. We derive the gravitational
wave emission for the leading-order quadrupole term
(α ¼ 2) straightaway10 for the þ and × polarizations for
a polar observer—for an observer located at a distance ds
along the axis of rotation of the neutron star,

hM
P

þ ðtÞ ¼ hMo
X∞
γ¼1

κ2γ½−4ω2γE
1
2 sinð2ΩtÞ

þ ð4 − Eω2
2γÞ cosð2ΩtÞ�e−E

1
2ω2γΩt; ð62Þ

hM
P

× ðtÞ ¼ hMo
X∞
γ¼1

κ2γ½−4ω2γE
1
2 cosð2ΩtÞ

− ð4 − Eω2
2γÞ sinð2ΩtÞ�e−E

1
2ω2γΩt; ð63Þ

where the full expression of καγ is too lengthy to quote
here and is given in Sec. E of the Appendix and Cα is
set to 1. The characteristic dimensionless strain ho and
tαγ—the relaxation time scale for the fα; γgth mode—are
given as

hMo ¼ πρoΩ4L6ϵ
G

c4dsg
; ð64Þ

tαγ ¼ E−1
2Ω−1ω−1

αγ ; ð65Þ

where κ2γ and hMo are both constant quantities. We trans-
form the expressions (62) and (63) for time-series ampli-
tudes to the more useful Fourier space for a polar observer
as follows11:

jhMP

þ ðωÞj2 ¼ hMo 2
X∞
γ¼1

jκ2γj2f½t−22γ ð4þ t−22γ Ω−2Þ2

þ ω2ð4 − t−22γ Ω−2Þ2�½ð4Ω2 þ t−22γ − ω2Þ2
þ ð2ωt−12γ Þ2�−1g; ð66Þ

jhMP

× ðωÞj2 ¼ hMo 2
X∞
γ¼1

jκ2γj2f½4Ω2ð4þ t−22γ Ω−2Þ2

þ 16ω2t−22γ Ω−2�½ð4Ω2 þ t−22γ − ω2Þ2

þ ð2ωt−12γ Þ2�−1
�
: ð67Þ

Clearly, jhMP

þ ðωÞj and jhMP

× ðωÞj exhibit resonance at
ω2
R ¼ 4Ω2 þ t−22γ . A similar calculation can be made for

an equatorial observer, and the corresponding results are
given as

hM
E

þ ðtÞ ¼ 1

2
hMo

X∞
γ¼1

κ2γ½−4ω2γE
1
2 sinð2ΩtÞ

þ ð4 − Eω2
2γÞ cosð2ΩtÞ�e−E

1
2ω2γΩt; ð68Þ

hM
E

× ðtÞ ¼ 2hMo
X∞
γ¼1

κ1γ½2ω1γE
1
2 cosðΩtÞ

þ ð1 − Eω2
1γÞ sinðΩtÞ�e−E

1
2ω1γΩt: ð69Þ

It is important to note the change of oscillating frequency
for the × polarization from 2Ω in the case of a polar
observer to Ω in the case of an equatorial observer.
Furthermore, additional 1γ modes are seen by an equatorial
observer and appear besides the 2γ modes that appear in the
emission spectrum. In Fourier space for an equatorial
observer, we have

jhME

þ ðωÞj2 ¼ 1

4
hMo 2

X∞
γ¼1

jκ2γj2f½t−22γ ð4þ t−22γ Ω−2Þ2

þ ω2ð4 − t−22γ Ω−2Þ2�½ð4Ω2 þ t−22γ − ω2Þ2
þ ð2ωt−12γ Þ2�−1g; ð70Þ

jhME

× ðωÞj2 ¼ 4hMo 2
X∞
γ¼1

jκ1γj2f½Ω2ð1þ t−21γ Ω−2Þ2

þ 4ω2t−21γ Ω−2�½ðΩ2 þ t−21γ − ω2Þ2
þ ð2ωt−11γ Þ2�−1g: ð71Þ

In this case, jhME

þ ðωÞj exhibits resonance at ω2
R ¼

4Ω2 þ t−22γ , while jhME

× ðωÞj exhibits resonance at
ω2
R ¼ Ω2 þ t−21γ . It is worth noting that the factors κ1γ ,

κ2γ decrease in magnitude with an increasing index γ,
and we can truncate the above expressions at leading
order, γ ¼ 1. The maximum order-of-magnitude value of
the amplitude of the emitted gravitational waves for
both polarizations at a given frequency ω then depends
strongly on the characteristic magnitude hMo and its
amplification by the frequency terms in the Fourier
transforms. There also exists a weak dependency on the
prefactors jκ1γj and jκ2γj.12 In Figs. 2 and 3 above, we

10Refer to Sec. C in the Appendix for details of the
calculation.

11δD is the Kronecker delta function with units of Hz−1.

12The “weak” dependency in this case refers to the fact that
jκ1γ j and jκ2γ j are not as sensitive to variations in Ks or N2, as we
will see in later sections.
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plot the frequency characteristics13 of the emitted
signal amplitudes for jhMP

þ ðωÞj, jhMP

× ðωÞj, jhME

þ ðωÞj, and
jhME

× ðωÞj.

B. Gravitational wave emission via current quadrupole

Gravitational wave emission, as traditionally understood,
from the mass quadrupole occurs when the associated
oscillating mass-quadrupole moment excites gravitational
waves. However, time variation in the intrinsic mass
distribution (also known as the mass currents) of the bulk
matter could also lead to gravitational wave radiation
through “current-quadrupole” contribution [15,27]. This
effect is a subset of the gravitomagnetic effects—the
electromagnetic equivalent in gravitation. Similar to the
case of electromagnetism, where electric charges and
current multipoles emit electromagnetic radiation, time-
varying mass-current multipoles also emit gravitational
wave radiation, in addition to the well-known emission

from mass-quadrupole moment. Straightaway, we produce
the expressions for the þ and × polarization following
Thorne [27], Melatos and Peralta [28], and Bennett et al.
[15] for a polar observer as follows14:

hC
P

þ ðtÞ ¼ hCo
X∞
γ¼1

V2γ½−4t−12γ Ω−1 cosð2ΩtÞ

− ð4 − t−22γ Ω−2Þ sinð2ΩtÞ�e−t−12γ t;

hC
P

× ðtÞ ¼ hCo
X∞
γ¼1

V2γ½−4t−12γ Ω−1 sinð2ΩtÞ

þ ð4 − t−22γ Ω−2Þ cosð2ΩtÞ�e−t−12γ t; ð72Þ

and, for an equatorial observer, by

FIG. 2. Frequency characteristics of emitted signals for a
polar observer: three different sets of data are plotted for the
rotational frequency Ω of 10 Hz and ∂zη ∼ 10−11. The respective
color-coded time scales are 9.8, 1.1 × 10−4, and 8.5 × 10−7 days.
The corresponding resonant frequencies are �125.66371,
�125.66375, and �126.39611 Hz. Note that values of the time
scales are calculated for specifically chosen physical parameters
of the system—vc, ∂zη, veq, K, and F—in order to cover a large
range of time scales. A similar result for an equatorial observer is
shown in Fig. 3.

FIG. 3. Frequency characteristics of emitted signals for an
equatorial observer: three different sets of data are plotted for the
rotational frequency Ω of 10 Hz and ∂zη ∼ 10−11. The respective
color-coded time scales are 9.8, 1.1 × 10−4, and 8.5 × 10−7

days. Moreover, the corresponding resonant frequencies for ×
polarization are �62.83186, �62.83188, �63.19805 Hz,
whereas the resonant frequencies for the þ polarization
remain exactly the same as they were for the case of a polar
observer. The other physical parameters are chosen to be the same
as in Fig. 2.

13In order to show the frequency characteristics, we abbreviate

the remaining factors for simplicity, such that
hjhLY∓ ðωÞj

hLo jκαγ j

i
2 ≡ GLY

∓jαγ .
14Refer to Sec. D in the Appendix for further details of the

calculation, and for expressions of the prefactors V1γ and V2γ .
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hC
E

þ ðtÞ ¼ 2hCo
X∞
γ¼1

V1γ½2t−11γ Ω−1 cosðΩtÞ

þ ð1 − t−21γ Ω−2Þ sinðΩtÞ�e−t−11γ t;

hC
E

× ðtÞ ¼ 1

2
hCo

X∞
γ¼1

V2γ½−4t−12γ Ω−1 sinð2ΩtÞ

þ ð4 − t−22γ Ω−2Þ cosð2ΩtÞ�e−t−12γ t; ð73Þ

where

hCo ¼ 2πρoΩ3L6ϵ
G

3c5ds
: ð74Þ

Note that we have restricted ourselves to the leading-
order quadrupole term l ¼ 2 of the mass-current multipole
expansion. Once more, we write the above expressions for
polar and equatorial observers in the Fourier space. In the
case of a polar observer, this reduces to

jhCP

þ ðωÞj2 ¼ hCo 2
X∞
γ¼1

jV2γj2f½4Ω2ð4þ t−22γ Ω−2Þ2

þ 16ω2t−22γ Ω−2�½ð4Ω2 þ t−22γ − ω2Þ2
þ ð2ωt−12γ Þ2�−1g; ð75Þ

jhCP

× ðωÞj2 ¼ hCo 2
X∞
γ¼1

jV2γj2f½t−22γ ð4þ t−22γ Ω−2Þ2

þ ω2ð4 − t−22γ Ω−2Þ2�½ð4Ω2 þ t−22γ − ω2Þ2
þ ð2ωt−12γ Þ2�−1g: ð76Þ

It should be noted that the resonant frequencies for the
current-quadrupole contribution from jhMP

þ ðωÞj and
jhMP

× ðωÞj are the same as they were for the mass-quadrupole
contribution. Furthermore, for the case of equatorial
observers,

jhCE

þ ðωÞj2 ¼ 4hCo 2
X∞
γ¼1

jV1γj2f½Ω2ð1þ t−21γ Ω−2Þ2

þ 4ω2t−21γ Ω−2�½ðΩ2 þ t−21γ − ω2Þ2
þ ð2ωt−11γ Þ2�−1g; ð77Þ

jhCE

× ðωÞj2 ¼ 1

4
hCo 2

X∞
γ¼1

jV2γj2f½t−22γ ð4þ t−22γ Ω−2Þ2

þ ω2ð4 − t−22γ Ω−2Þ2�½ð4Ω2 þ t−22γ − ω2Þ2
þ ð2ωt−12γ Þ2�−1g: ð78Þ

We see that the emitted signals from the mass quadrupole
and the current quadrupole are similar in nature in terms of

the resonant frequencies and the general behavior of the
frequency responses.15 However, there is a notable switch
in the þ and × polarizations. Additionally, V1γ and V2γ

prefactors now appear instead of κ1γ and κ2γ ones, in
addition to the different characteristic amplitudes. Last, the
frequency characteristics for jhCP

þ ðωÞj, jhCP

× ðωÞj, jhCE

× ðωÞj,
and jhCE

þ ðωÞj follow the same shapes as shown previously
in Figs. 2 and 3.

C. A verdict on parameter space

It is clear from the general expressions of καγ (in Sec. E
of the Appendix) and Vαγ (in Sec. D of the Appendix) that
their calculations are cumbersome to perform unless we are
able to make some simplifying assumptions. Ideally, one
would like to explore the range of parameter space where
the first derivative of η—i.e., ∂zη in (51)—and ∂zKs are
constants and follow

j∂zηj ≪ FN2 ≪ η < 1 for ∀ z ∈ ð0; 1�; j∂zKsj ≪ jKsj
for∀ z ∈ ð0; 1�: ð79Þ

Such a choice of a regime is physically reasonable and it
makes the calculations analytically feasible, without com-
promising the generality of the model. These assumptions
allow us to reduce the parameter space and explore the
model in its simplest form. Meanwhile, since we do not
have any prior functional forms of vc and veq with respect
to the z coordinate, we assume a simple scenario where vc
is linear in z and takes the form16

vcðzÞ ∼ voc þ z × ∂zvc; ð80Þ

while, at the same time, N2 is taken to be a constant. These
assumptions leave veq implicitly varying in z according to
(28). It must be noted that this does not imply constancy
of η. In fact, it is simply that ∂zη ∼ 2vcðzÞ∂zvc, and
∂2
zη ∼ 2ð∂zvcÞ2. Last, we are left with N2, voc , and ∂zvc

as free parameters in our model. Ks (or veq) in this case
becomes a dependent parameter varying in z according to
(28), as previously stated. Thus, we restrict ourselves to the
domain where

15The characteristic amplitudes for the mass and current
quadrupoles are related by jhCo j

jhMo j ¼
2g
3Ωc.

16Note that any functional form of vcðzÞ can be reduced to this
expression at leading order as long as j∂zvcj ≪ voc . This is
equivalent to a “stiff” polytropic equation of state with the
polytropic exponent γ → 1.
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FIG. 4. Emitted gravitational wave strain (turn page sideways). (Top panel) Time scales for the t21 mode and the corresponding
gravitational wave strain amplitudes for three sets of values for ∂zvc: 0, 10−3cL−1, −10−4cL−1 (left to right), respectively. (Bottom
panel) The t11 modes and corresponding gravitational wave strain amplitudes. The parameters are set to f ¼ 100 Hz, E ¼ 10−7,
ϵ ¼ 10−4, ds ¼ 1.0 kpc, L ¼ 104 m, g ¼ 1012 m=sec2, ρo ¼ 1017 kg=m3. All positive time scales, as well as the corresponding emitted
amplitudes, are marked with a •, while the negative time scales and corresponding amplitudes are marked with aþ. Negative time scales
correspond to the scenario of growing modes20.
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j∂zvcj ≪ voc < 1 ⇒ j∂zKsj ≪ jKsj;
∂zη ∼ 2voc∂zvc: ð81Þ

Under such assumptions, the calculations for the factors καγ
and Vαγ become analytic and relatively simple.17 The
simplification occurs because ∂zη is now invariant in z
according to (81). To further validate our choice, we find
that numerical errors dominate significantly when calculat-
ing καγ and Vαγ numerically, especially toward the lower
ranges of voc . These numerical errors are catalyzed by large
corresponding magnitudes of Ks when voc becomes very
small. This effect is shown in detail in Sec. F of the
Appendix, where we have compared numerical and ana-
lytic results for καγ and Vαγ while assuming (81) to be true.
In a nutshell, the analytic approximation (81) enables us to
selectively explore the more crucial aspects of the improved
model, such as ∂zvc, while ignoring the less crucial degrees
of freedom of the system, such as the spatial variations in
N2. The complete reduced expressions for καγ and Vαγ are
given in Sec. E of the Appendix.
It must be noted that such an assumption of constancy of

∂zη is not applied while calculating ωαγ or the correspond-
ing time scales tαγ via (50). However, the time scales tαγ are
not prone to errors from numerical computations, as
opposed to καγ and Vαγ . It remains straightforward to
compute them numerically and accurately. Nonetheless, the
approximated analytic expression for the time scales is
given in Sec. E of the Appendix [see (A38)].

V. TIME SCALES OF EMITTED SIGNALS AND
CORRESPONDING AMPLITUDES

In this section, we explore the decay time scales of the
emitted signals. We see from the expressions in (62)–(69)
for the mass-quadrupole contribution, and (72)–(75) for the
current-quadrupole contribution, that the decay time scale
tαγ for a given fα; γg mode—as defined previously in
(64)—is given as

tαγ ¼ E−1
2Ω−1ω−1

αγ : ð82Þ

The emitted gravitational wave signal amplitude at a given
frequency ω depends intrinsically on the time scale; this is
shown in the expressions (62)–(78). Following the dis-
cussion of the previous section, we have three independent
parameters to vary: voc , ∂zvc, and N2, under the analytic
approximations introduced by (81). In Fig. 4, we plot the
characteristics for the involved time scales t11 and t21, and
the corresponding gravitational wave amplitudes for
mass-quadrupole and current-quadrupole contributions at
resonant frequencies, i.e., ω ¼ ωR (denoted by the sub-
script R). Note that the resonant frequencies ωR are also a
function of tαγ , as shown in Sec. IVA. This corresponds to

the effect where jhME

× j, jhCE

þ j emit at different resonant
frequencies and different time scales than jhMP

× j, jhMP

þ j,
jhME

þ j, jhCP

× j, jhCP

þ j, and jhCE

× j, as shown in Fig. 4. We also
find that only a very small fraction of mechanical energy
[Oð10−9 − 10−7Þ] from the glitch is converted into gravi-
tational wave emission.18

Note that, in the case of ∂zvc < 0 in Fig. 4 (the rightmost
panels), the apparent outlier in the plots for ∂zvc ¼
−10−4cL−1 is an artifact of low resolution in parameter

FIG. 5. Outlier enlarged. The characteristics of the parameter space in the vicinity of the apparent outlier in Fig. 4 for the case of
∂zvc ¼ −10−4cL−1 (the rightmost panels in Fig. 4) are shown in higher resolution. All positive time scales as well as the corresponding
emitted amplitudes are marked with a •, while the negative time scales and the corresponding strain amplitudes are marked with a þ.

17See Sec. E of the Appendix for details, and for full
expressions of καγ and Vαγ .

18The energetics of the emitted amplitudes is discussed in
detail in Sec. VI B.
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space. In Fig. 5, we show the characteristics in the vicinity
of the outlier for clarity.

A. Growing modes

In Fig. 4, for ∂zvc < 0 (the rightmost panels), we see that
it is possible for the system to exhibit growing modes.
Growing modes refer to the cases where perturbations
become unstable and grow monotonically, denoted by the
þ marker in Figs. 4 and 5. Growing modes are charac-
terized by negative time scales, i.e., tαγ < 0. In standard
oceanography and fluid mechanics literature, growing
modes are associated with convection and overturning
[29]. They represent a system that gains energy from its
surroundings and is not in an adiabatic state. However, this
is not true for our system since it is an isolated neutron star.
For this reason, these growing modes are unphysical19 and
the corresponding regions in the parameter space are
gravitationally inaccessible.

VI. DISCUSSION

To conclude our study, one can broadly make the
following reiterations and conclusions. We have extended
the previous works by van Eysden and Melatos [5] and
Bennett et al. [15] by incorporating a more general
equation of state (characterized by vc) and stratification
length (characterized by Ks) in Secs. II and III. We derived
the expected time scales of emission of gravitational wave
signals and the corresponding strain amplitudes from mass-
quadrupole and current-quadrupole formalisms in Sec. IV.
In order to better visualize the results, we explored the
properties of emission in fN2; vocg parameter space by

making some simplifying approximations given by (81) in
Sec. IV C. The results are shown in Fig. 4, where we find
that it is possible for such a hydrodynamic system to emit
gravitational waves at a ground-based detector with a strain
amplitude greater than Oð10−25Þ for a source at a distance
of roughly 1 kpc. The corresponding time scales for the
loudest signals are as long as Oð300Þ days, also shown in
Fig. 4. The results in Fig. 4 are explored for favorable
values of physical parameters such as at glitch magnitude
ϵ ¼ Oð10−4Þ, ds ¼ 1 kpc, and f ¼ 100 Hz. The analysis
yields a strain amplitude as high as Oð10−21Þ toward lower
magnitudes of N2, i.e., N2 ≤ Oð10−5Þ, and with voc approx-
imately equaling 0.09c–0.11c, for the majority of individ-
ual amplitudes.20 Besides, in a broader range of values of
N2 and voc , unlike the aforementioned ranges, we expect
emission on the order of Oð101 − 101.5Þ days in duration,
with amplitudes in the range of Oð10−23.5 − 10−26.5Þ. It
must be noted that the current-quadrupole contribution
tends to be larger than the corresponding mass-quadrupole
contribution to the emitted signal, as shown in Sec. IV and
Fig. 4. This is largely because of the characteristic
amplitude hCo being larger than hMo by a factor21 of 2g

3Ωc.
Furthermore, very low values of N2 (as low as 10−6 − 10−7)
are debatable since no physical phenomenon accounts for
such magnitudes of N2. Note that the “classical” Brunt-
Väisälä frequency N2

c is expected to lie loosely in the range
of (0.01, 1) [5]. The equivalent magnitude of the lower
bound on the redefined Brunt-Väisälä frequency N2 is then
given as N2 ∼ ηoN2

c ¼ 10−4 for voc ¼ 0.1c. Thus, very low
values of N2 lie outside the current estimates on equivalent

FIG. 6. Sensitivity to E. The characteristics of emitted signals for E ¼ 10−14 and ∂zvc ¼ 0 are shown, setting f ¼ 100 Hz, ϵ ¼ 10−4,
ds ¼ 1 kpc, L ¼ 104 m, g ¼ 1012 m=sec2, ρo ¼ 1017 kg=m3. Note the emission of loud amplitudes within the range
N2 ∈ ð10−4; 10−2Þ; the equivalent classical Brunt-Väisälä frequency N2

c for this range lies within permitted physical expectations.

19A brief explanation and interpretation of the existence of
growing modes is discussed in Sec. H of the Appendix and
Sec. VI, respectively.

20See Sec. H of the Appendix for further details.
21This factor yields a value of the order Oð101–102Þ for

Ω ¼ Oð102 HzÞ, assuming that g ¼ Oð1012 m= sec2Þ.
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values of N2
c . In fact, very loud signals of amplitude

Oð10−25Þ and higher lie near the lower bound of current
estimates on N2

c , roughly in the range 10−4–10−7 for N2.
However, the value of Ekman number E could lie anywhere
in the range 10−17–10−7 [5,15,21–26,30], whereas we have
based our analysis on the assumption of E ¼ 10−7. The
time scales and the corresponding gravitational wave
amplitudes depend on E, such that E↓ ⇒ tαγ↑ ⇒ hR↑.
Thus, for lower values of E, stronger emissions could occur
even at higher values of N2. This effect is shown in Fig. 6,
where we have regenerated parts of Fig. 4 for E ¼ 10−14.
Note that since the Ekman number is directly proportional
to the sheer viscosity of the bulk matter [25,31] and
inversely proportional to the square of its temperature,
we expect higher values of E ð10−7Þ for colder neutron stars
ðT ∼ 106 KÞ [26], and vice versa. Thus, in principle, hotter
neutron stars should be better candidates for transient
gravitational waves than colder neutron stars. However,
this is not entirely true since it is expected that hotter and
younger neutron stars undergo post-glitch relaxation via
crust-core dynamics aided by the magnetic field rather than
bulk hydrodynamics [10,32].

A. Detectability of emitted signals

We can also derive characteristics of emitted signals as a
function of the rotational frequency f of the neutron star. It
has been shown that the minimum strain amplitude hmin

o of
a continuous gravitational wave detectable by a network of
two detectors searched over a large parameter space with a
coherent search duration of Tobs hours during which the
signal is present is given by [33,34]

hmin
o ðωÞ ¼ Kt

�
ShðωÞ
TobsðωÞ

�1
2

; ð83Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffi
ShðωÞ

p
is the multidetector amplitude spectral

density for a network of two detectors (H1, L1), and Kt is
roughly equal to 30. Given this relation, we can compare
the strength of the emitted gravitational wave signals with
the strain detectable by aLIGO. We again restrict ourselves
to emission at resonant frequencies only, i.e., ω ¼ ωR. Note
that we can express hmin

o as a function of f instead of ω
since ωR is an implicit function of f. This allows us to
rewrite hmin

o as

hmin
o ðfÞ ∼ 30.0

�
ShðfÞ
tαγðfÞ

�1
2

; ð84Þ

where tαγ is expressed in hours.
22 In Fig. 7, we plot hmin

o ðfÞ
and compare it with the emitted gravitational wave

amplitudes23 as a function of f. We have set the parameters
E, voc , and N2 at the nominal values 10−10, 0.1c, and 10−4,
respectively. We find that, for the selected region in
parameter space in Fig. 7, it is possible to detect the
gravitational wave emission with current aLIGO sensitivity,
especially in the mid to high frequency range.
One must carefully note that we have assumed an

invariant N2 in space and time in order to simplify our
results for easier graphical visualization and understanding.
In principle, one could vary all of the featured parameters,
i.e., N2 or Ks, vc, veq, in all possible ways. This is because
all analytically derived results in Secs. II–IV B are general
in nature and assume none of the approximations described
in Sec. IV C. However, such a thorough and complete
analysis will require extensive numerical computations and
better priors on the parameter space. More importantly, the
main aim of this study was to estimate the strength of the
emitted gravitational wave signals and their time scales as a
function of the spatial variation in the adiabatic sound
speed vc and the stratification length zs. This is shown in
detail in Figs. 4 and 5. We find that the signal characteristics
are more sensitive to small spatial variations in vc and Ks in
some regions of parameter space than others. In fact, for
these regions in parameter space, the maximum duration of
the emission increases by a factor of 300 when ∂zvc ¼
−10−4cL−1, as compared to when ∂zvc ¼ 0. The corre-
sponding amplitudes also increase by a similar factor, as
seen in Figs. 4 and 5. In parts of the parameter space
characterized by growing modes, no gravitational emission
is possible due to hydrodynamic instability.

B. Energetics of the system

It is an interesting exercise to estimate the fraction of
mechanical energy (from the glitch) that gets converted into
gravitation wave emission. For instance, the total gravita-
tional wave energy emitted by a waveform hðtÞ ∝
eiΩwte−γwt is given by [27,35]

EGW ¼ c3

8G
½Ω2

w þ γ2w�d2s
Z

∞

0

jhðωÞj2dω; ð85Þ

where we have used Parseval’s theorem such that

22Refer to Sec. G of the Appendix for a discussion of
the properties of tαγ as a function of f.

23Note that the resonant frequencies of the emitted modes for
the mass-quadrupole and current-quadrupole contributions, and
for a given orientation of the observer (polar, equatorial, or
otherwise), depend on the polarizations (þ and ×), which in turn
depend on the featured time scales tαγ , as seen in Fig. 4 and
Sec. IV. The overall signal is a superposition of all such individual
emissions shown in Fig. 7, possibly at multiple resonant
frequencies for a single source with a given orientation. In this
regard, (84) assumes that these individual emissions are resolv-
able in frequency; this usually holds true when the featured time
scales tαγ are not very small (see Secs. IVA and IV B).
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Z
∞

0

jhðtÞj2dt ¼ 1

2π

Z
∞

0

jhðωÞj2dω:

We can easily calculate EGW by integrating (numerically or
analytically) the total emitted waveform24 over time, or by
integrating its Fourier transform in frequency space. Note
that expression (85) assumes an isotropic distribution of
signal as a function of the observation angle i. In our case,
the emission is not isotropically distributed as a function of
i. In fact, the amplitude for a given polarization varies as a
linear combination of sines and cosines of i, as briefly
discussed in Sec. D of the Appendix [15]. In order to
simplify this to an order-of-magnitude estimate, the total
emission can be constrained by an isotropic limit, such
that25

jhðωÞj2 ∼ 2
X

P¼þ;×

� X
L¼M;C

jhLP

P ðωÞj
�
2

: ð86Þ

Combining (85) and (86), we get

EGW ∼
c3

4G
½Ω2

w þ γ2w�d2s
Z

∞

0

X
P¼þ;×

� X
L¼M;C

jhLP

P ðωÞj
�
2

dω:

ð87Þ

On the other hand, the total mechanical energy Eglitch

imparted by the glitch is written as26

Eglitch ∼ ΓMtotalL2ΩrΔΩr ¼ 2πϵΓρoL5Ω2
r ; ð88Þ

where Γ is the fraction of total neutron star mass
(Mtotal ∼ 2πρoL3) contained within the crust; this is

FIG. 7. Sensitivity vs f. The characteristics of emitted signals24 and hmin
o are shown as a function of the neutron star’s rotational

frequency f as well as the emitted resonant frequency fR, given as fR ¼ ωR=2π. We have set voc ¼ 0.1c, N2 ¼ 10−4, E ¼ 10−10,
ϵ ¼ 10−4, ds ¼ 1 kpc, L ¼ 104 m, g ¼ 1012 m=sec2, ρo ¼ 1017 kg=m3, ∂zvc ¼ 0. Note that the emitted amplitudes are largely
insensitive to ∂zvc for the chosen points in fvoc ;N2g parameter space. The multidetector amplitude spectral density

ffiffiffiffiffiffiffiffiffiffiffiffi
ShðωÞ

p
is calculated

by taking the harmonic mean of the individual amplitude spectral densities of the H1 (aLIGO Hanford) and L1 detectors (aLIGO
Livingston) measured during initial days of the O1 run, i.e., September 12 through October 20, 2015.

24Note that the total emission is a sum of the mass-quadrupole
and current-quadrupole emission.

25This approximation assumes that the amplitude measured by
a polar observer is isotropically distributed as a function i. This is
a reasonable assumption for an order-of-magnitude estimate of
the emitted energy considering that the observed amplitudes for
polar and equatorial observers are of the same order of magni-
tude, as seen in Figs. 2, 3, and 7.

26This approximation assumes that only the crust of the
neutron star gains angular momentum from the glitch, while
the bulk fluid is decoupled from the crust at the time of the glitch.
Moreover, we also assume that the crust is very thin compared to
the radius of the cylinder, and it contains only a fraction of the
mass [Oð10−2Þ] of the entire neutron star.
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assumed to be a small fiducial value of 10−2. Then the
fraction of mechanical energy EC (¼ EGW=Eglitch) con-
verted into gravitational waves is given as

EC ∼
c3

8πG
½Ω2

w þ γ2w�d2s
ϵΓρoL5Ω2

r

Z
∞

0

X
P¼þ;×

� X
L¼M;C

jhLP

P ðωÞj
�
2

dω:

ð89Þ

We find that the ratio EC yields values on the order of
Oð10−7Þ, assuming Ωw ∼ 2Ωr. This suggests that a large
fraction of the energy from the glitch is converted into the
kinetic and potential energy of the bulk fluid. We also note
that the value of EC in the fN2; voc ; ∂zvcg parameter space
depends only on the prefactors καγ and Vαγ .

27 In Fig. 8, we
show an example of the characteristics of EC.

C. Choice of equation of state

In (4), we assumed a simple form of the equation of state
where the adiabatic speed of sound vc is slowly and linearly
varying with z. It may be useful to compare this choice with
a general polytropic equation of state with polytropic index
n, polytropic exponent γ ¼ ðnþ 1Þ=n, and polytropic
constant Kp, i.e., p ¼ Kpρ

γ . The adiabatic speed of sound
vp for the polytropic equation is given as v2p ¼ Kpρ

1=n.
Clearly, our model of equation of state resembles the
polytropic model for n → ∞. We also know that neutron
star interiors are generally well modeled for values of the
polytropic index n ∈ ð0.5; 1.5Þ. Thus, we should inquire
whether our assumption of n → ∞ is reasonable. In order to
answer this question, consider that the gravitational wave
emission is almost entirely dominated by the processes
occurring at the viscous boundary layer, such as the

exchange of fluid across this layer, as discussed in great
detail in Secs. A 8, A 1, and III H. These processes
determine the time scales of relaxation, which in turn
determine the peak gravitational wave amplitudes (at
resonant frequencies). We also note that the prefactors
καγ and Vαγ are largely insensitive to these processes, as
discussed in Sec. VI B. Thus, our choice of equation of
state particularly encodes physical processes at the viscous
boundary layer. In the vicinity of this viscous boundary
layer, i.e., z ∼ 1, any polytropic equation of state can be
reduced to linear order in z. In this limit, the true form of the
equation of state becomes irrelevant. For example, for an
n ¼ 1 polytrope,

vpjz∼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kpρjz∼1

q
∼ voc þ ∂zvc: ð90Þ

Specifically, for a typical crust density of ρjz∼1 ∼
109 kgm−3, voc ∼ c, and ∂zvc ∼ 0, we find that
Kp ∼ 107 kg−1m5 s−2.
However, there are certain aspects that we have over-

looked, such as the effects of the magnetic field and the
superfluid nature of the core. The strong magnetic field in
neutron stars affects the crust-core interactions and cou-
pling dynamics of the superfluid [10,32], possibly short-
ening the duration of the emission, especially in young and
hot neutron stars such as the Vela pulsar [36]. Recent works
by van Eysden [37] have explored the effect of the magnetic
field on the post-glitch relaxation phase, but in a slightly
different context. Note that we have assumed that non-
axisymmetric modes are equally likely to be excited by the
glitch as the axisymmetric ones (Cα ¼ 1). If this
assumption does not hold, the gravitational amplitudes
should be rescaled by the same factor. In conclusion, we
believe this to be a viable model to predict the expected
order of magnitude of the amplitude and duration of the
emitted gravitational wave signals from glitching neutron
stars that involve relaxation via Ekman pumping. It lays
down a basic approach for predicting the approximate
internal state of the neutron star and first-order variations in
it, if any such transient signal is detected by gravitational
wave detectors from the post-glitch relaxation phase.
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APPENDIX

1. Time evolution

In this section, we derive the time evolution of the
χðr;ϕ; z; tÞ function. We begin by isolating the time

FIG. 8. Energetics. We have set E ¼ 10−7, ϵ ¼ 10−4,
ds ¼ 1 kpc, L ¼ 104 m, g ¼ 1012 m=sec2, ρo ¼ 1017 kg=m3,
and ∂zvc ¼ 0. We find that similar results, i.e., EC ¼ Oð10−7Þ,
are achieved when we set 0 < j∂zvcj ≪ 1; this is due to the fact
that καγ and Vαγ show very weak dependence on ∂zvc when
j∂zvcj ≪ 1.

27Note that this dependence is generally biased toward Vαγ
since the current-quadrupole emission is significantly louder than
the mass-quadrupole emission.
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dependence in χðr;ϕ; z; tÞ by separating the variables as
follows:

χðr;ϕ; z; tÞ≡ χ̄ðr;ϕ; zÞ TðtÞ: ðA1Þ

In parallel, we take the time derivative of (42),

∂tðδvzÞjz¼�1¼∓1

2
E

1
2∂tð∇×δ~vÞzjz¼�1

¼�1

2
E

1
2

�
1

r
∂
∂rðr∂t½δvϕ�Þ−

1

r
∂
∂ϕð∂t½δvr�Þ

�
jz¼�1:

ðA2Þ

Ignoring all the OðE1Þ or higher-order terms on the right-
hand side of (A2) and using results from Secs. III D and III
E and (44), we get

∂t½δvð1Þz �jz¼�1 ¼ ∓ 1

4F

�
1

r2
∂2χ

∂ϕ2
þ 1

r
∂
∂r

�
r
∂χ
∂r

������
z¼�1

¼ � 1

4F
λ2αγχ

���
z¼�1

: ðA3Þ

Moreover, we use (39) to further simplify (A3) as

�
ηðzÞ

FN2ðzÞ
∂ _χ
∂z þ

�
−∂zη

FN2ðzÞ − 1

�
_χ

�����
z¼�1

¼ ∓ 1

4F
λ2αγχ

���
z¼�1

:

ðA4Þ

Now, introducing the separation of variables from (A1), we
rewrite the above equation (A4) as

�
ηðzÞ

FN2ðzÞ
∂χ̄
∂z þ

�
−∂zη

FN2ðzÞ − 1

�
χ̄

�����
z¼�1

_TðtÞ

¼ ∓ 1

4F
λ2αγχ̄

���
z¼�1

TðtÞ: ðA5Þ

We further reduce the previous expression (A5) by sepa-
rating the variables into ðr;ϕÞ and z to

�
ηð�1Þ

FN2ð�1Þ
∂Zαγ

∂z
����
z¼�1

þ
�
−∂zηjz¼�1

FN2ð�1Þ − 1

�
× Zαγð�1Þ

�
_TðtÞ

¼ ∓ 1

4F
λ2αγZαγð�1Þ TðtÞ: ðA6Þ

Equation (A6) can now be solved to yield TðtÞ as

TðtÞ ∝ e−ωαγt; ðA7Þ

such that ωαγ is given as

ωαγ ¼
1

4F
λ2αγZαγð1Þ

�
ηð1Þ

FN2ð1Þ
∂Zαγ

∂z
����
z¼1

þ
�
−∂zηjz¼1

FN2ð1Þ − 1

�
Zαγð1Þ

�
−1
: ðA8Þ

Note that ZαγðzÞ is symmetric about the z ¼ 0 plane and we
have evaluated the expression at z ¼ 1.

2. Bessel-Fourier coefficients

In this section, we will calculate the Bessel-Fourier
coefficients introduced in (52). We use the orthogonality
property of the Bessel functions, which states that Bessel
functions are orthogonal with respect to the inner product,
as follows28:

hJαðλαγrÞ; JαðλααrÞi ¼
Z

1

0

rJαðλαγrÞJαðλααrÞdr

¼ 1

2
δγα½Jαþ1ðλαγrÞ�2: ðA9Þ

For a Fourier-Bessel series of the form fðrÞ ¼P∞
α¼1 CαJαðλααrÞ, the coefficients Cα can be calculated

by taking projection of the function fðrÞ over the corre-
sponding Bessel functions as

Cα ¼
hfðrÞ; JαðλααrÞi

hJαðλαγrÞ; JαðλαγrÞi
: ðA10Þ

Using the above relation in combination with (53), we can
substitute for fðrÞ,

fðrÞ ¼ δP0 − δP∞ ¼
X∞
α¼0

X∞
γ¼1

ω−1
αγ JαðλαγrÞ × ½Aαγ cosðαϕÞ

þ Bαγ sinðαϕÞ�ZαγðzÞ

¼
�X∞
α¼0

Cαrαðr2 − 1Þ cosðαϕÞZαγðzÞ
�
− r2; ðA11Þ

which, when applied to (A10), gives

ω−1
αγAαγ cosðαϕÞZαγðzÞ

¼ 2

J2αþ1ðλαγÞ
Z

1

0

r × JαðλαγrÞ½δP0 − δP∞�dr: ðA12Þ

We multiply both sides by cosðαϕÞ and integrate the
resulting expression in the ϕ and z variables, assuming
that Aαγ is an absolute constant, and arrive at the following
result:

28δγα is the Dirac-delta function.
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Aαγ ¼
2ωαγ

πJ2αþ1ðλαγÞ
Z

2π

0

dϕ
Z

1

0

dz
Z

1

0

rdr

× JαðλαγrÞ cosðαϕÞ½δP0 − δP∞�Z−1
αγ ðzÞ: ðA13Þ

Similarly, for Bαγ,

Bαγ ¼
2ωαγ

πJ2αþ1ðλαγÞ
Z

2π

0

dϕ
Z

1

0

dz
Z

1

0

rdr

× JαðλαγrÞ sinðαϕÞ½δP0 − δP∞�Z−1
αγ ðzÞ: ðA14Þ

3. Quadrupole moment formalism

In this section, we will underline the formalism for
calculating expressions (62)–(71) for gravitational wave
emission. In the reference frame of a polar observer at a
distance d, the components of the gravitational wave strain
in Einstein’s quadrupole moment formalism in the trans-
verse traceless (TT) gauge are given as

hþðtÞ ¼ hTTxx ðtÞ ¼ −hTTyy ðtÞ ¼
G
c4d

½̈IxxðtÞ − ̈IyyðtÞ�; ðA15Þ

h×ðtÞ ¼ hTTxy ðtÞ ¼
2G
c4d

̈IxyðtÞ; ðA16Þ

where IikðtÞ is the reduced quadrupole moment of inertia,
and it is given in terms of the stress-energy tensor
component T00 as

IikðtÞ ¼
1

c2

Z
d3~x

�
xixk − δik

j~xj2
3

�
T00ð~x; tÞ: ðA17Þ

Combining (A15), (A16), and (A17), we get

hPþðtÞ ¼
G
c6d

Z
d3~x½x2 − y2�T̈00ð~x; tÞ

¼ G
c6d

Z
d3~rr2 cosð2ϕÞT̈00

NAð~r; tÞ; ðA18Þ

hP×ðtÞ ¼
2G
c6d

Z
d3~x½xy�T̈00ð~x; tÞ

¼ G
c6d

Z
d3~rr2 sinð2ϕÞT̈00

NAð~x; tÞ; ðA19Þ

where the subscript NA refers to nonaxisymmetric terms.
Moreover, in the case of a perfect fluid, we neglect the
viscous terms while evaluating Tμν since they are of the
order OðEÞ, and the stress-energy tensor component T00 is
then given as

T00 ¼
�
ρþ p

c2

�
u0u0 þ pg00; ðA20Þ

where the 0-component u0 of the 4-velocity ~u is given as

u0 ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ~v·~v

c2

q : ðA21Þ

We break expression (A20) into separate terms describing
the constitutive equilibrium and perturbative terms, i.e.,
ρ → ρe þ ϵδρ, p → pe þ ϵδp and ~v → ~vr þ δ~v, as
described in Sec. III B. Here, ~vr is simply the velocity
of a fluid element given in cylindrical coordinates as
~vr ¼ ð0;Ωr; 0Þ, assuming corotation with the neutron star
crust. Note that the equilibrium state is axisymmetric in
nature and does not contribute to the signal emission. The
contributing nonaxisymmetric terms in T00 are then
given as29

T00
NA ¼ ϵδρc2 þ ðρec2 þ peÞ

�
2
δ~v · ~vr
c2

þ δ~v · δ~v
c2

�

þ ϵðδρc2 þ δpÞ
�
2
δ~v · ~vr
c2

þ ~vr · ~vr
c2

þ δ~v · δ~v
c2

�

∼ ϵδρc2 þ ðρec2 þ peÞ
�
2
δ~v · ~vr
c2

þ δ~v · δ~v
c2

�

þ ðϵδρc2 þ δpÞ
�
~vr · ~vr
c2

�
: ðA22Þ

Note that there exists no explicit factor of ϵ when it comes
to δ~v, as discussed previously in Sec. III B. The factor of ϵ
in the order of magnitude of δ~v is implicitly contained
within δ~v. Furthermore, combining expressions (A18),
(A19), and (A22), we calculate the gravitational wave
emission up to the order Oðϵ1Þ given by (62)–(71).

4. Current-quadrupole moment

In this section, we briefly describe the method for
deriving strain amplitude for the current-quadrupole con-
tribution quoted in (72)–(76). We follow [15,27,28], and
make appropriate modifications corresponding to our
assumption of spatially varying the stratification length
and adiabatic sound speed. The general expression for
the þ and × polarizations contributed by the current-
quadrupole moment (labeled with the superscript C) for a
general observer at distance d is given as [15,27,28]

hCþðtÞ ¼
G

2c5d

�
5

2π

�1
2½ImfC̈21ðtÞg sinðiÞ

þ ImfC̈22ðtÞg cosðiÞ�; ðA23Þ

hC×ðtÞ ¼
G

4c5d

�
5

2π

�1
2½RefC̈21ðtÞg sinð2iÞ

þ RefC̈22ðtÞg½1þ cos2ðiÞ��; ðA24Þ

29Here, we have assumed g00 ¼ −1 and jv2j ≪ c2.
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where ClνðtÞ represents the ðl; νÞ multipoles of the mass-
current distribution. Note that we have only considered the
leading-order quadrupole moment (l ¼ 2), which is the
lowest multipole moment that contributes to the gravita-
tional wave emission via its nonvanishing second-order
time derivative C̈2νðtÞ. The presence of an additional c5

factor, as opposed to c4 in the case of the mass-quadrupole
moment, suggests that the current-quadrupole contribution
is much smaller than the mass-quadrupole moment. This is
true for systems with low density. However, for high-
density systems such as a neutron star, current-quadrupole
emission may be larger than the mass-quadrupole contri-
bution, as described in Sec. IV B. We have also ignored the
ν ¼ 0 mode, which contributes at the order of OðE1Þ while
retaining the more significant ν ¼ 1, 2 modes. Moreover, i
denotes the angle between the neutron star’s rotation axis
and the observer’s line of sight, such that i ¼ 0 for a polar
observer, and i ¼ 90° for an equatorial observer. The C2νðtÞ
terms are explicitly given as [15]30

C2νðtÞ ¼ ð−1Þνþ18πð10πÞ12
15νρ−1o L−6ðδΩÞ−1

X∞
γ¼1

Vνγe−ðE
1
2ωνγþiνÞΩt; ðA25Þ

where

Vνγ ¼ 2Aνγω
−1
νγ

Z
1

0

dr
Z

1

0

dzrνþ1z2−ν

× Û½JνðλνγrÞZνγðzÞρeðzÞ�: ðA26Þ

Moreover, the operator Û is written as

Û ¼
�
z
∂2

∂r2 þ
z
r
∂
∂r − z

ν2

r2
− r

∂2

∂r∂z
�

þ 2F

�
r2

∂2

∂z2 − rz
∂2

∂r∂z − 2z
∂
∂z

�
: ðA27Þ

Finally, the expressions for the þ and × polarizations can
now be reduced using the above relations to the expressions
quoted in (72)–(76).

5. κνγ and Vνγ

In this section, we quote the full expression of κνγ
31:

κνγ ¼ 2ω−1
νγ Aνγ

�Z
1

0

drr3JνðλνγrÞ
Z

1

0

dz∂z½−ZνγðzÞρeðzÞ� þ K
Z

1

0

drr4∂r½JνðλνγrÞ�

×
Z

L

0

dz
�
1þ K

KsðzÞ
�
ZνγðzÞρeðzÞ þ

Ω2L2

c2

Z
1

0

drr5JνðλνγrÞ
Z

1

0

dz½∂z½−ZνγðzÞρeðzÞ� þ KZνγðzÞρeðzÞ��: ðA28Þ

Moreover, following the assumptions described in (81) in Sec. IV C, the above expression for κνγ can be further reduced to a
simpler and easier form. The simplifying assumptions lead to the case where all coefficients in (46) become effectively
invariant with respect to the z coordinate. This makes the solution for ZνγðzÞ straightforward to achieve. Moreover, the
integrals in the exponents involving Ks in (A28) are dissolved, and the resulting exponential terms can be folded into ZνγðzÞ
to yield

κνγ ¼ 2ω−1
νγ Aνγ

�
L1

Z
1

0

drr3JνðλνγrÞ þ K

�
1þ K

Ks

�
L2

Z
1

0

drr4∂r½JνðλνγrÞ� þ
Ω2L2

c2
½L1 þ KL2�

Z
1

0

drr5JνðλνγrÞ
�
; ðA29Þ

where L1 and L2 are given in terms of K� as

L1 ¼
ðFN2 −K−Þ½1 − e−K− � − ðFN2 −KþÞ½1 − e−Kþ�

ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK−
;

ðA30Þ

L2 ¼
ðFN2 −K−Þ 1−e−K−

K−
− ðFN2 −KþÞ 1−e−Kþ

Kþ

ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK−
: ðA31Þ

Furthermore, K� in (A30) and (A31) is given as

K� ¼ 1

2
½Ks � ðK2

s þ η−1o ½N2λ2νγ þ ∂zη − ∂2
zη�Þ12�; ðA32Þ

where ηo ¼ ðvoc=cÞ2, ∂zη ∼ 2voc∂zvc, and ∂2
zη ∼ 2ð∂zvcÞ2.

Similarly, we calculate the reduced expression for Vνγ in

30In the case of the current-quadrupole contribution, it is
possible to have continuous emission of gravitational waves at
large time scales, t ≫ t2ν, as shown by Bennett et al. [15]. This
continuous residual emission is not artificial (cf. van Eysden and
Melatos [5]). In calculating the expression for C2νðtÞ, we have
ignored terms responsible for this residual continuous contribu-
tion since we concern ourselves solely with transient emission.

31The prefactor of 2 in κνγ comes from extending the
symmetric integral to z ∈ ½−1; 1�.
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terms of LðgÞ
3 , LðgÞ

4 , and LðgÞ
5 . We define LðgÞ

3 , LðgÞ
4 , and LðgÞ

5

as follows:

LðgÞ
3 ¼ ðFN2 −K−ÞHgðK−Þ − ðFN2 −KþÞHgðK−Þ

ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK−
;

ðA33Þ

LðgÞ
4 ¼

ðFN2 −K−ÞHgðK−Þ
K−1

−
− ðFN2 −KþÞHgðKþÞ

K−1
þ

ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK−
; ðA34Þ

LðgÞ
5 ¼

ðFN2 −K−ÞHgðK−Þ
K−2

−
− ðFN2 −KþÞHgðKþÞ

K−2
þ

ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK−
; ðA35Þ

where HgðK−Þ is defined by the integral given below,32

HgðK�Þ ¼
Z

1

0

dzzge−K�z: ðA36Þ

The resulting complete expression for Vνγ is then expanded

and written in terms of LðgÞ
3 , LðgÞ

4 , and LðgÞ
5 , as follows:

Vνγ ¼ 2Aνγω
−1
νγ

�
Lð3−νÞ
3

Z
1

0

drrν−1½r2∂2
r ½JνðλνγrÞ� þ r∂r½JνðλνγrÞ� − ν2JνðλνγrÞ� þ Lð2−νÞ

4

Z
1

0

drrνþ2∂r½JνðλνγrÞ�

þ 2F

�
Lð2−νÞ
5

Z
1

0

drrνþ3JνðλνγrÞ þ Lð3−νÞ
4

Z
1

0

drrνþ1½r∂r½JνðλνγrÞ� þ 2JνðλνγrÞ�
��

: ðA37Þ

Moreover, the approximated analytic expression of tνγ can also be calculated following (81), and it is given as

tνγ ¼
4E−1

2Ω−1F2N2½ðFN2 −K−ÞeKþ − ðFN2 −KþÞeK− �
λ2νγ½ðη1Kþ − ∂zηjz¼1 − FN2ÞðFN2 −K−ÞeKþ − ðη1K− − ∂zηjz¼1 − FN2ÞðFN2 −KþÞeK− � ; ðA38Þ

where

η1 ∼ ηo þ ∂zηþ
1

2
∂2
zη; ∂zηjz¼1 ∼ ∂zηþ ∂2

zη;

given

ηo ¼ ðvoc=cÞ2; ∂zη ∼ 2voc∂zvc and; ∂2
zη ∼ 2ð∂zvcÞ2:

6. Error characterization

In this section, we show the comparison between
analytically approximated and numerically computed
results for κνγ and Vνγ. We have explored the results for
the t21 mode since this is sufficient for our purposes. We
define the differences between analytically approximated
(κtνγ, Vt

νγ) and numerical (κnνγ , Vn
νγ) results as follows:

Rκ ¼
���� κ

t
νγ − κnνγ

κtνγ þ κnνγ

����; ðA39Þ

RV ¼
����V

t
νγ − Vn

νγ

Vt
νγ þ Vn

νγ

����: ðA40Þ

In Fig. 9, we plot the characteristics of Rκ and RV for three
cases, i.e., when ∂zvc ∈ f0; 10−3cL−1;−10−4cL−1g. The

leftmost panels show a baseline mismatch between the
approximated analytical values and the numerically calcu-
lated values of κνγ and Vνγ . Note that, since ∂zvc ¼ 0 for
these two panels, the numerical and approximated analytic
results should not have a significant mismatch. However,
the results deviate from accuracy for certain regions in
parameter space, especially for lower values of voc . The
center and rightmost panels show similar characteristics.
Note that the mismatch in κνγ and Vνγ follows somewhat
similar characteristics to the time scales plotted in Fig. 4.
The underlying reason is fairly straightforward: larger time
scales occur when Ks becomes large in magnitude, and this
large magnitude of Ks tends to make the numerical results
less accurate, while the approximated analytic results
continue to follow an accurate path. Note that the factor
ρeðzÞ in the expressions of κνγ and Vνγ tends to fall very
rapidly with z from a large value ρo at z ¼ 0 for large
magnitudes of Ks

33 We also find that the numerical values
of ZνγðzÞ tend to wander inaccurately into the negative
domain from tolerance-induced numerical errors nearing
z ¼ 0. This small discrepancy between the values calcu-
lated by numerical methods and approximate analytic
expressions is amplified by the larger value of ρeðzÞ nearing
z ¼ 0, especially when Ks is large, leading to a large
mismatch. This effect also contributes to Fig. 9 in the case
of ∂zvc ¼ 0, i.e., the leftmost panels.

32Note that the occurrences of (g) in the expressions of LðgÞ
3 ,

LðgÞ
3 , and LðgÞ

3 are intended as superscripts and not exponents.

33While this affects the numerical results of κνγ and Vνγ , no
such effect is present in the expression for the time scale tνγ .
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7. tνγ vs f

In this section, we elaborate on the characteristics of
emitted signals as a function of a neutron star’s rotational
frequency f. In Fig. 10, we plot the time scales for the
f2; 1g and f1; 1gmodes, i.e., t21 and t11, as a function of f.
These time scales have been calculated and implicitly
included in the results via (84) in Fig. 7. We can conclude
from Fig. 10 that these time scales may span orders of
magnitudes. For (84) to be a valid measure of minimum
detectable strain for such signals, the observation time for
the coherent search must be larger than these time scales,
i.e., Tobs ≥ tνγ .
Moreover, there is a noticeable dip in emission from

current-quadrupole contribution in the midfrequency range
in Fig. 7. This dip is caused by Vνγ becoming negative with
increasing frequency. The sharp dip occurs due to the
inclusion of Vνγ in (72)–(75) via its absolute magnitude.
This effect is not limited to the Vνγ and current-quadrupole
contribution only. In fact, the presence of this dip in

FIG. 9. Error characteristics. Three different sets of data are plotted for the t21 mode at a rotational frequency of 100 Hz, and for a set of
values of ∂zvc: 0, 10−3cL−1, and −10−4cL−1 (from left to right). Other relevant physical parameters are chosen from astrophysical
priors, as in all of the previous figures. The top panel represents Rκ , while the bottom panel represents RV. Note that larger values of Rκ

and RV signify a large mismatch between the approximated analytic and numerical results.

FIG. 10. tνγ characteristics. t21 and t11 are plotted as a function
of a neutron star’s rotational frequency f. We have set voc ¼ 0.1c,
N2 ¼ 10−4, E ¼ 10−10, ϵ ¼ 10−4, ds ¼ 1 kpc, L ¼ 104 m,
g ¼ 1012 m=sec2, ρo ¼ 1017 kg=m3, ∂zvc ¼ 0.
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current-quadrupole or mass-quadrupole emission depends
upon the values of voc and N2. Like Vνγ , κνγ may also show a
similar effect for alternative values of voc and N2.
Furthermore, the location of this dip in frequency space
is found to vary with voc as well as N2. We also find that the
location of this dip is less sensitive to variation in N2 than in
voc . In Fig. 11 above, we plot a part of Fig. 7 (the top-right
panel) to demonstrate the aforementioned effect.

8. Dependence of emission properties on ∂zvc
The significant and critical affect of ∂zvc on the proper-

ties of the gravitational wave emission discussed in Secs. V

and VI is best estimated by looking at (42) and the
discussion in Sec. A of this appendix. For instance, (A2)
equates the rate of flow into the viscous boundary layer at
the top and bottom faces of the cylinder with the rate of
flow out of this boundary layer back into the bulk; this is a
direct consequence of the conservation of mass across the
viscous boundary layer [5,15–17]. This rate of exchange of
fluid determines the dissipation time scale of a certain
perturbed fα; γg mode—faster exchange of fluid leads to
faster dissipation of the perturbation. The value of ∂zvc
bears a direct consequence on this process at the boundary
layer. For example, from (A8) and (46), we see that ∂zvc
contributes via the “slope term” ∂Zαγ=∂z, and the ∂zη term
in the denominator in (A8). In fact, the ∂Zαγ=∂z term is the
dominant determinant in deciding the speed of exchange
since j∂zηj ≪ 1. When the slope term is large and positive,
the exchange of fluid is slow, as is clearly seen in (A8). This
is simply because the fluid flowing out of the boundary
layer and back into the bulk has to work against a high
pressure gradient at z ¼ �1, which is set by the positive
value of the slope term. Note that the positive slope of Zαγ

implies decreasing pressure in the z direction, as seen in
(41). Similarly, when the slope term is positive but small,
the exchange of fluid is faster since the pressure gradient
decreases in value. Note that when the slope term becomes
negative, we may see growing modes, although this is
neither a sufficient nor a necessary condition; the growing
modes could also occur when N2 < 0 despite the slope
being positive. This effect is seen in Fig. 4, where the value
∂zvc ¼ −10−4cL−1 increases the characteristic time scales
as well as the corresponding gravitational wave amplitudes
in some regions of the parameter space. It is important to
remember here that this increase in gravitational wave
amplitude occurs at the resonance frequency only, and the
amplitudes decay in the sidebands. Hence, while increasing
time scales increase the gravitational wave amplitude at the
resonance frequency, they also decrease the effective
bandwidth of the signal frequency.
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