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In the context of Lorentz-Finsler spacetime theories the relativity principle holds at a spacetime point if
the indicatrix (observer space) is homogeneous. We point out that in four spacetime dimensions there are
just three kinematical models which respect an exact form of the relativity principle and for which all
observers agree on the spacetime volume. They have necessarily affine sphere indicatrices. For them every
observer which looks at a flash of light emitted by a point would observe, respectively, an expanding
(a) sphere, (b) tetrahedron, or (c) cone, with barycenter at the point. The first model corresponds to
Lorentzian relativity, the second one has been studied by several authors though the relationship with affine
spheres passed unnoticed, and the last one has not been previously recognized and it is studied here in some
detail. The symmetry groups are Oþð3; 1Þ;R3; Oþð2; 1Þ × R, respectively. In the second part, devoted to
the general relativistic theory, we show that the field equations can be obtained by gauging the Finsler
Lagrangian symmetry while avoiding direct use of Finslerian curvatures. We construct some notable affine
sphere spacetimes which in the appropriate velocity limit return the Schwarzschild, Kerr-Schild, Kerr–de
Sitter, Kerr-Newman, Taub, and Friedmann-Lemaître-Robertson-Walker spacetimes, respectively.
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I. INTRODUCTION

Finslerian modifications of general relativity have
received renewed attention in recent years. Theoretically
they share with general relativity the whole edifice of
causality theory including the celebrated singularity theo-
rems [1,2], a result which does not seem to be shared by any
other alternative gravity theory.
Observations are also suggesting that we consider these

theories, for they seem to provide the correct mathematical
framework for the study of the low-l anisotropy of the
cosmic microwave background temperature [3,4].
Finslerian proposals have been advanced in order to

explain some anisotropic features of the Universe, includ-
ing the observed anisotropy in the galaxy bulk flow [5], and
they can also have a role in the dynamics of dark energy
and dark matter [6,7].
Finslerian modifications of gravity and of particle

dynamics are in fact quite ubiquitous even at the quantum
level, due to the fact that modified dispersion relations often
lead to geometries of Finslerian type [8–10].
This work is devoted to the study of four-dimensional

Finslerian spacetimes which satisfy the relativity principle.
The adjective Finslerian means that no assumption on the
isotropy of the speed of light is made. We obtain Finslerian
generalizations of the notable spacetimes of Einstein’s
gravity including Schwarzschild’s.
Finslerian generalization of, say, the Schwarzschild or of

the Friedman metric has long been sought. Most proposals
[6,11–17] have used one of the following ingredients:

(a) Randers metrics, (b) direct sum metrics, and (c) pertur-
bation. Instead, we impose the relativity principle at every
point showing that this condition restricts significatively the
geometry of the indicatrix. For a particular conic aniso-
tropic geometry we are able to obtain, almost unambigu-
ously, the Finslerian generalization of the notable general
relativistic metrics from the mentioned requirement of
relativistic invariance and the imposition of a suitable
general relativistic limit for low velocities.
Although we do not impose dynamical equations, it is

likely that these spacetimes could be obtained as exact
solutions of the sought for gravitational Finsler equations.
In fact they could possibly be used to identify them.
Historically, it has often been the case that exact solutions,
by respecting symmetry and other requirements, have been
found before the field equations (e.g. the Coulomb field
was determined long before Maxwell’s equations).
Let us introduce some notations in order to be more

specific.
In Finslerian generalizations of general relativity the

spacetime is a nþ 1-dimensional manifold endowed with a
Finsler Lagrangian L∶Ω → R, Ω ⊂ TMnf0g, where Ω is
an open sharp convex cone sub-bundle of the slit tangent
bundle, L is positive homogeneous of degree 2, that is,
∀ s > 0, y ∈ Ωx, Lðx; syÞ ¼ s2Lðx; yÞ, L is negative on Ω
and converges to 0 at the boundary ∂Ω, and finally, the fiber
Hessian gμν ¼ ∂2L=∂yμ∂yν is Lorentzian. We do not
demand that L be differentiable at the boundary ∂Ω,
namely we adopt the rough model discussed in [18].
The set Ωx represents the set of future directed timelike
vectors at x ∈ M.*ettore.minguzzi@unifi.it
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The indicatrix Ix ⊂ Ωx is the locus where 2L ¼ −1 and
it represents the velocity space of observers (this is the
usual hyperboloid in general relativity). By positive homo-
geneity the Finsler Lagrangian can be recovered from the
indicatrix as follows, for y ∈ Ωx:

Lðx; yÞ ¼ −s2=2; where s is such that y=s ∈ Ix: ð1Þ

By positive homogeneity the formulas L ¼ 1
2
gμνyμyν,

∂L
∂yμ ¼

gμνyν hold true, where the metric might depend on y. If it is
independent of y then we are in the quadratic case which
corresponds to Lorentzian geometry and general relativity.
The Cartan torsion is Cμνα ¼ 1

2
∂
∂yα gμν. It is symmetric

and annihilated by yμ. The mean Cartan torsion is its
contraction,

Iα ≔ gμνCμνα ¼
1

2

∂
∂yα log j det gμνj: ð2Þ

In a series of recent works we have stressed the
importance of the Lorentz-Finsler spaces for which
Iα ¼ 0, which we termed affine sphere spacetimes [19–
21]. Indeed, these spaces have hyperbolic affine sphere
indicatrices and a well-defined volume form independent of
the fiber coordinates. Their importance stems from the fact
that affine sphere spacetimes are in one-to-one correspon-
dence with pairs given by (a) a distribution of sharp cones
over M and (b) a volume form on M. This property shows
that affine sphere spacetimes reflect the notions of measure
and order on spacetime [21].
In what follows we recall the construction and the

interpretation of the general theory as developed in [21].
Let fxαg be local coordinates on M and let fxα; yαg be the
induced local coordinates on TM. We are mostly interested
in a single tangent space TxM so we often omit the
dependence on x.
The indicatrix at y ∈ Ix is everywhere transversal to y. It

is particularly convenient to regard the indicatrix as the
image of an embedding

f∶v → y ¼ −
1

uðvÞ ð1; vÞ;

where v ¼ yi=y0, for a function uðvÞ called the Lagrangian
(actually it is the Lagrangian per unit mass). The relation-
ship with the Finsler or super-Lagrangian L is given by

Lððy0; yÞÞ ¼ −
1

2
ðy0Þ2u2ðy=y0Þ; ð3Þ

uðvÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Lðð1; vÞÞ

p
: ð4Þ

The Hamiltonian (per unit mass) is given by the Legendre
transform of u, u�ðpÞ. The embedding p ↦ ð−u�ðpÞ;pÞ is
an affine sphere in T�

xM asymptotic to the polar cone Ω�
x.

Sometimes it is convenient to consider the Legendre
transform H of L. It is called the Finsler Hamiltonian
and some of its properties are investigated in [22].
We say that fyαg are observer coordinates if the

Taylor series expansion of u has the classical form
u ¼ −1þ v2

2
þ oðjvj2Þ. It can be shown [21] that for every

point on the indicatrix ŷ ∈ I there are observer coordinates
such that ŷ ¼ ð1; 0; 0; 0Þ. Observer coordinates can also be
characterized by this condition and by gμνðŷÞ ¼ ημν where η
is the Minkowski metric.
The vector v represents then the velocity of a test particle

as seen from the observer and it belongs to a convex set
Dŷ ≔ fv∶u < 0g, which represents the velocity domain of
massive particles as seen from the observer ŷ. The domain
for the phase velocity p=u�ðpÞ is given by the dual of Dŷ,
D�

ŷ, and observer coordinates can be characterized equiv-
alently by the condition that the expansion of u�ðpÞ is

u� ¼ 1þ p2

2
þ oðjpj2Þ, namely that the dispersion relation

for massive particles should reduce to the classical one in
the appropriate limit of low velocity.
The previous definitions and concepts make sense in any

Lorentz-Finsler spacetime. We have an affine sphere
spacetime if at every event the indicatrix is a hyperbolic
affine sphere, or equivalently, if the mean Cartan torsion
vanishes, Iα ¼ 0. The indicatrix is an affine sphere if and
only if u satisfies a Monge-Ampère equation which in
observer coordinates of observer ŷ takes the very simple
form

det uij ¼
�
−
1

u

�
nþ2

; uj∂Dŷ
¼ 0: ð5Þ

Actually, this equation holds in arbitrary coordinates fy0αg
provided the coordinate change between observer coordi-
nates yα and y0α is linear and unimodular (unit determinant).
Our next step is to introduce the concept of relativity

principle. We mentioned that Ωx represents the sets of
timelike vectors and that we need a hypersurface (indica-
trix) Ix inside Ωx and asymptotic to the boundary ∂Ωx in
order to define the observer space [and hence the Finsler
Lagrangian through (1)]. On TxM acts the group of
unimodular linear transformations. We say that the rela-
tivity principle holds true if there is a transitive action on Ix
by a subgroup G of the unimodular linear group. This
transitive action expresses the fact that all observers are
kinematically equivalent, namely that they cannot deter-
mine their position on the velocity space by means of local
measurements probing its geometry. The unimodularity
condition is there to guarantee that all observers agree on
the spacetime volume form. Of course, for the usual general
relativistic spacetimes the indicatrix is the hyperboloid H,
the timelike cone is round and G is nothing but the Lorentz
group, cf. Sec. II A 1.
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If we add the dilatations to G we get a group Rþ × G
which by acting transitively on Ωx shows that Ωx itself is a
homogeneous cone. Now, every sharp convex cone admits,
up to dilatations, a unique affine sphere asymptotic to it (the
Cheng-Yau theorem), which for the case of homogeneous
cones coincides with a level set of the characteristic
function of the cone [23,24]. This hypersurface is the only
hypersurface which is invariant under the action ofGwhere
Rþ ×G is the automorphism group of the cone, and G is
the unimodular factor.
In other words every spacetime which satisfies the

relativity principle according to our definition has homo-
geneous (timelike) cones and indicatrices which are affine
spheres. Thus they are particular instances of affine sphere
spacetimes. Equivalently, a spacetime satisfies the relativity
principle if and only if it is an affine sphere spacetime and
the domains Dŷ do not depend on ŷ (up to space rotations).
Namely, all observers agree on the dependence of the speed
of light on direction.
Fortunately, homogeneous cones have been classified

[24–26], a fact which implies a classification of homo-
geneous hyperbolic affine spheres. For any dimension there
are just a few homogeneous cones. Therefore, it is of
interest to study those four-dimensional affine sphere
spacetimes which satisfy the relativity principle.
Remark I.1.—We stress that the homogeneity of the cone

does not guarantee that the relativity principle is satisfied
since the indicatrix must also be an affine sphere. For
instance, the Finsler Lagrangian of example 1 in [22] has
the same round light cone of Minkowski spacetime but
does not satisfy the relativity principle since its indicatrix is
not an affine sphere [i.e. the function u associated to the
Finsler Lagrangian does not satisfy Eq. (5) above]. In fact,
we know that Eq. (5) above has a unique solution, which for
round cones is that of Minkowski spacetime.
We mention that the relativity principle could be gen-

eralized dropping the unimodularity condition for the
transitive group. In this case the indicatrix would not be
an affine sphere.
While the relativity principle restricts very much the

geometry of the cone, there are plenty of affine sphere
spacetimes which do not satisfy it. It is sufficient to take any
distribution of convex cones obtained perturbing slightly
the isotropic cones of a general relativistic spacetime so as
to get a distribution of nonround cones. The affine sphere
indicatrices inside the cones and then the Finsler
Lagrangian are uniquely determined by Eq. (5).

II. THE SPECIAL THEORY

In this section we restrict ourselves to the preliminary
case in which L does not depend on x.

A. Theories which satisfy the relativity principle

In Lorentz-Finsler geometry the indicatrix is asymptotic
to the cone of lightlike vectors. The metric induced on the

indicatrix has to be definite, due to the Lorentzianity of
the vertical Finsler metric, and since it coincides with the
equiaffine metric (see e.g. [18,27]), the indicatrix is a
definite hypersurface in the sense of affine differential
geometry (namely locally strongly convex). We are inter-
ested in those three-dimensional hypersurfacesN which are
locally homogeneous, namely for every p; q ∈ N there are
neighborhoods Up, Uq and a unimodular bijective affine
map from Up to Uq. Since these hypersurfaces have to be
asymptotic to a sharp cone, by the classification given in
[28], they are necessarily hyperbolic affine spheres.
Mathematicians have long investigated the classification

of homogeneous cones and consequently that of homo-
geneous affine spheres [24]. In a four-dimensional affine
space [28] there are only three possible locally homogeneous
hyperbolic affine spheres which we interpret and study in
Secs. II A 1–II A 3, giving the expressions of the Lagrangian
in observer coordinates. Their associated cones are actually
self-dual, namely linearly isomorphic with the dual cone. It
must be recalled here that a cone is reducible if it is the
Cartesian product of lower dimensional cones. In dimension
4 or less the only irreducible homogeneous cones are
necessarily self-dual and are given by the half-line of positive
real numbersRþ, which is of course one dimensional, and by
the Lorentz cones of dimension 3 and 4 (the Lorentz cone of
dimension 2 is reducible). Other reducible (self-dual) homo-
geneous cones can be obtained by multiplying irreducible
(self-dual) homogeneous cones.As a consequence, the above
threementioned cases are really obtained from the product of
round cones, an operation which at the level of the indica-
trices is called the Calabi product [29].
We have observed that in four spacetime dimensions there

are only three possible hyperbolic affine sphere indicatrices
which are homogeneous. Let us study and interpret them,
finding their expression in observer coordinates.

1. Isotropic relativity

Let us consider the usual velocity space of special and
general relativity, namely the hyperboloidHn: y0¼

ffiffiffiffiffiffiffiffiffiffiffi
1þy2

p
.

In theLorentzian spacetime of general relativity it is obtained
by selecting at TxM an orthonormal basis for which e0 is
timelike. The parametrization y ¼ − 1

uðvÞ ð1; vÞ holds with

u ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
;

where the domain of the velocity is determined by the
condition u < 0; thus it is a sphere centered at the origin

D ¼ fv∶∥v∥ < 1g:

As the domain is a sphere, the speed of light is isotropic.
We have

ui ¼
viffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ; uij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
δij þ

vivj

1 − v2

�
;
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which shows that uij is positive definite. By the rank one

update determinant formula detuij¼ð1−v2Þ−nþ2
2 ¼ð−1

uÞnþ2.
We have just checked that the indicatrix is an affine sphere.
The Finsler Lagrangian is [Eq. (3)]

L ¼ 1

2
ð−ðy0Þ2 þ y2Þ;

and the Finsler metric is the usual Minkowski metric
gαβðyÞ ¼ ηαβ, where ηαj ¼ δαj and η00 ¼ −1. The timelike
cone isΩ ¼ fy ∈ TxM∶y0 > ∥y∥g. The affine sphereHn is
homogeneous and the transitive symmetry group is the
isochronous Lorentz group Oþð3; 1Þ.
Concerning the dual formulation, since u ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
we have p ¼ vffiffiffiffiffiffiffiffi

1−v2
p and

u�ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p

�
; H ¼ 1

2
ð−p2

0 þ p2Þ:

Observe that the phase velocity coincides with the (group)
velocity.

2. The tetrahedral anisotropic theory

In this section we study a tetrahedral anisotropic model
which satisfies the relativity principle. G. Ţiţeica for n ¼ 2
and E. Calabi [29] for general n have shown that the set

Ix ¼ fy∶~y0 ~y1 � � � ~yn ¼ ðnþ 1Þ−nþ1
2 ; ~yα > 0g ð6Þ

is a hyperbolic homogeneous affine sphere. It is the Calabi
product of zero-dimensional hyperbolic affine spheres. Its

timelike cone is the positive quadrant Ωx ¼ fy∶~yα > 0g;
thus the light cone is not C1 and is not strictly convex. Its
section is affinely equivalent to a simplex Δn. Observe that
the ~y0-axis is lightlike (it belongs to the boundary of ∂Ωx);
thus the point (1, 0, 0, 0) does not belong to the indicatrix
and hence the coordinates are not observer coordinates.
Still all the formalism can be used to check whether it is
really an affine sphere. The coordinates of an observer are
linearly related with f~yαg and are given in a moment. In
Calabi coordinates the domain ~D ¼ f~v∶~vi > 0g is non-
compact and

~u ¼ −ðnþ 1Þ1=2ð~v1 ~v2 � � � ~vnÞ1=ðnþ1Þ: ð7Þ

The partial derivatives are

~ui ¼
~u

ðnþ 1Þ~vi ; ~uij ¼−
~u

ðnþ 1Þð~viÞ2 δijþ
~u

ðnþ 1Þ2 ~vi ~vj ;

thus det ~uij ¼ ð− 1
~uÞnþ2 and by Eq. (5) Ix is a hyperbolic

affine sphere. The Finsler Lagrangian is

LC ¼ −
nþ 1

2
ð~y0 ~y1 ~y2 � � � ~ynÞ 2

nþ1: ð8Þ

This Lagrangian was also considered by Berwald andMoór
[30,31] and it has been investigated in several mathematical
and physical works, e.g. [32–36].
Bogoslovsky and Goenner [37,38] considered the next

Lagrangian (for the physical case n ¼ 3) to which they
arrived through symmetry considerations unrelated to the
theory of affine spheres,

LBG ¼ −
1

2
½ðy0 − y1 − y2 − y3Þð1þaþbþcÞ=2ðy0 − y1 þ y2 þ y3Þð1þa−b−cÞ=2

× ðy0 þ y1 − y2 þ y3Þð1−aþb−cÞ=2ðy0 þ y1 þ y2 − y3Þð1−a−bþcÞ=2�;

where all the exponents are demanded to be positive. We have calculated the determinant of the spacetime metric

det gαβ ¼ −ða4 − 2a2ðb2 þ c2 þ 1Þ þ 8abcþ b4 − 2b2ðc2 þ 1Þ þ ðc2 − 1Þ2Þðy0 − y1 − y2 − y3Þ2ðaþbþcÞ

× ðy0 þ y1 − y2 þ y3Þ−2ða−bþcÞðy0 − y1 þ y2 þ y3Þ2ða−b−cÞðy0 þ y1 þ y2 − y3Þ−2ðaþb−cÞ:

The first parenthesis has to be nonzero for the metric to be
nondegenerate. As a consequence the determinant depends
on y unless all the exponents vanish which implies
a ¼ b ¼ c ¼ 0. For this choice the Lagrangian is just
Calabi’s up to a linear change of coordinates (such that
det ∂ ~y=∂y ¼ 1); thus the indicatrix is a known hyperbolic
affine sphere. In this case we have det gαβ ¼ −1.
Let us consider the Calabi Lagrangian in the coordinates

by Bogoslovsky and Goenner,

LC ¼−
1

2
½ðy0− y1− y2− y3Þ1=2ðy0− y1þ y2þ y3Þ1=2

× ðy0þ y1− y2þ y3Þ1=2ðy0þ y1þ y2− y3Þ1=2�: ð9Þ

The vector ŷ ¼ ð1; 0; 0; 0Þ belongs to the indicatrix and a
calculation shows that at this point gαβ ¼ ηαβ; thus fyαg
coincides with the coordinate system chosen by the
observer ŷ according to the general theory previously

E. MINGUZZI PHYSICAL REVIEW D 95, 024019 (2017)

024019-4



illustrated. The Cartan torsion at the same point has, up to
symmetries, the only nonvanishing component C123 ¼ 1.
The Cartan curvature has, up to symmetries and at the same
point, the only nonvanishing components C0123 ¼ −1,
Ciijj ¼ 2 for i, j ¼ 1, 2, 3. The function u is

u ¼ −½ð1 − v1 − v2 − v3Þð1 − v1 þ v2 þ v3Þ
× ð1þ v1 − v2 þ v3Þð1þ v1 þ v2 − v3Þ�1=4:

Bogoslovsky and Goenner have also shown that their
Lagrangian is invariant under a certain group of symmetries
[38] which, however, do not have unit determinant. As a
consequence, in Bogoslovsky and Goenner’s theory
observers cannot agree on the spacetime volume. For
a ¼ b ¼ c ¼ 0 there is no such difficulty since the indica-
trix is the Calabi affine sphere, which is well known to be
homogeneous [29]. Calabi has shown that the symmetry
group is the commutative group Rn; thus it has the minimal
dimension for a transitive action on an n-dimensional
manifold. Its action is for αi ∈ R

~yi ↦ eαi ~yi ðno sum over iÞ; ~y0 ↦ e−
P

i
αi ~y0: ð10Þ

If some of the constants a, b, c do not vanish the
Bogoslovsky and Goenner’s indicatrix is homogeneous but
it is not an affine sphere. These authors have given a nice
picture of the velocity domain D [37],

D ¼fv∶v1 þ v2 þ v3 < 1; v1 − v2 − v3 < 1;

v2 − v1 − v3 < 1; v3 − v1 − v2 < 1g:

It is a tetrahedron centered at the origin and is independent
of the constants a, b, c (see Fig. 1).
Let us come to the dual formulation. Let us consider the

Calabi Lagrangian in arbitrary dimension, Eq. (8). The
Finsler Hamiltonian is

HC ¼ −
nþ 1

2
ð ~p0 ~p1 ~p2 � � � ~pnÞ 2

nþ1: ð11Þ

Since ~u is given by (7) we have ~pi ¼ ~ui ¼ ~u
ðnþ1Þ ~vi, and the

Legendre transform is

~u� ¼ −
1

nþ 1
~u ¼

�
−1

ðnþ 1Þ1=2
�
nþ1 1

~p1 ~p2 � � � ~pn
:

The interpretation of this formula is not straightforward
since these are not observer coordinates (hence the tilde).
Let us consider the case n ¼ 3 in observer coordinates,

namely the Finsler Lagrangian (9). We have from Eq. (4)

u ¼ ð1 − v1 − v2 − v3Þ1=4ð1 − v1 þ v2 þ v3Þ1=4
× ð1þ v1 − v2 þ v3Þ1=4ð1þ v1 þ v2 − v3Þ1=4:

The Legendre transform is

u� ¼ u−3=4ðv2 þ 2v1v2v3 − 1Þ:

We have not been able to write it in terms of p. The Finsler
Hamiltonian is

HC¼−
1

2
½ð−p0−p1−p2−p3Þ1=2ð−p0−p1þp2þp3Þ1=2

× ð−p0þp1−p2þp3Þ1=2ð−p0þp1þp2−p3Þ1=2�:

3. The conical anisotropic theory

In this section we study a conical anisotropic model
which respects the relativity principle. We consider a
homogeneous hyperbolic affine sphere indicatrix which
is a Calabi product between zero-dimensional and two-
dimensional hyperbolic affine spheres. In suitable coordi-
nates the Finsler Lagrangian is

L ¼ −
2

33=4
ð~y3Þ1=2½ð~y0Þ2 − ð~y1Þ2 − ð~y2Þ2�3=4: ð12Þ

The indicatrix is

ð~y3Þ2½ð~y0Þ2 − ð~y1Þ2 − ð~y2Þ2�3 ¼ 33=44: ð13Þ

Let us write this Lagrangian in observer coordinates as
presented in the introduction. The coordinate change is a
rotation of 30° (thus det ∂ ~y=∂y ¼ 1 and ρ ¼ 1 as expected),

~y0¼
ffiffiffi
3

p

2
y0−

1

2
y3; ~y1¼y1; ~y2¼y2; ~y3¼1

2
y0þ

ffiffiffi
3

p

2
y3;

ð14Þ

thus the Lagrangian is

1

1

-1

1

-1

-1

FIG. 1. The velocity space for the tetrahedral anisotropic model
(Sec. II A 2).
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L ¼ −
2

33=4

�
1

2
y0 þ

ffiffiffi
3

p

2
y3
�1=2

×

�� ffiffiffi
3

p

2
y0 −

1

2
y3
�2

− ðy1Þ2 − ðy2Þ2
�3=4

: ð15Þ

The velocity domain is a circular cone with barycenter at
the origin of coordinates (see Fig. 2). Its height is equal to
the diameter of the base, namely 4ffiffi

3
p .

D ¼
n
v∶v3 > −1=

ffiffiffi
3

p
; v3 <

ffiffiffi
3

p
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q o
: ð16Þ

It can be checked that fyαg are indeed observer coor-
dinates, in the sense that ŷ ¼ ð1; 0; 0; 0Þ belongs to the
indicatrix and at this point dL ¼ −dy0, gαβ ¼ ηαβ. The
function u is

u¼−
2

33=8

�
1

2
þ

ffiffiffi
3

p

2
v3

�1=4�� ffiffiffi
3

p

2
−
v3
2

�2

−ðv1Þ2−ðv2Þ2
�3=8

:

While a conic velocity domain D departs very much from
the sphericity of the isotropic case, it does so in a milder
way with respect to the tetrahedral model. Also it must be
taken into account that in most experiments only the two-
way light speed is measured. This speed is the harmonic
mean of the light speeds in opposite orientations, so as
Fig. 3 shows, the anisotropic features might appear smaller.
Let us imagine a world ruled by this type of anisotropy
where the 1-2 plane could be identified at any point of the
Earth’s surface with the horizontal plane. Although the
anisotropy of the model is considerable, several experi-
ments would not detect it; for instance if the plane x-y can
be identified with the horizontal plane then it would be

necessary to tilt the plane of a Michelson-Morley apparatus
in order to detect some anisotropy.
The action of the symmetry group on the coordinates ~yα

is clear. The symmetry group is a product Oþð2; 1Þ × R
where the former factor is the isochronous Lorentz group
while the last factor is given by the action (α ∈ R)

~y3 ↦ e3α ~y3; ð~y0; ~y1; ~y2Þ ↦ e−αð~y0; ~y1; ~y2Þ: ð17Þ

Using the change of coordinates (14) it is easy to write the
general boost K ¼ S−1BES, where S is the transformation
(14) and B × E is an element of Oþð2; 1Þ ×R where B is

the usual boost parametrized with a vector ~β ¼ ðβ1; β2Þ and
γ ≔ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
. The matrix which sends ðy0; y1; y2; y3Þ⊤

to ðy00; y01; y02; y03Þ⊤ is

0
BBBBBBBB@

1
4
ð3γe3α þ 1Þ −

ffiffi
3

p
2
γβ1 −

ffiffi
3

p
2
γβ2

ffiffi
3

p
4
ð1− γe−αÞ

−
ffiffi
3

p
2
β1γe3α

ðγ−1Þβ2
1

β2
þ 1

ðγ−1Þβ1β2
β2

β1γe−α

2
−ffiffi

3
p
2
γβ2e3α

ðγ−1Þβ1β2
β2

ðγ−1Þβ2
2

β2
þ 1 γβ2e−α

2ffiffi
3

p
4
ð1− γe3αÞ γβ1

2
γβ2
2

1
4
ðγe−α þ 3Þ

1
CCCCCCCCA
:

From the first column we read that the unprimed observer
moves with velocity

v1 ¼ −
2

ffiffiffi
3

p
β1γe3α

3γe3α þ 1
; v2 ¼ −

2
ffiffiffi
3

p
β2γe3α

3γe3α þ 1
;

v3 ¼
ffiffiffi
3

p ð1 − γe3αÞ
3γe3α þ 1

;

with respect to the primed observer. We can express
ðβ1; β2; αÞ in terms of ðv1; v2; v3Þ as follows:

2

1

-1

-2

2

2

1

1

-2

-2

-1

-1

FIG. 2. The velocity space for the conical anisotropic model
(Sec. II A 3).

1.0

0.5

-1.0 1.00-0.5 0.5

3/2

arctan(½)

FIG. 3. The two-way speed compared with the constant speedffiffiffi
3

p
=2. We set v2 ¼ 0 since there is rotational symmetry about the

third axis.
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~β ¼ −2
~vffiffiffi

3
p

− v3
;

α ¼ 1

3
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffi

3
p

− v3Þ2 − 4ðv21 þ v22Þ
q

3v3 þ
ffiffiffi
3

p

1
CA:

In order to obtain the velocity ξ of the primed observer with
respect to the unprimed observer one can consider the first
column of the inverse matrix or pass from ðv1; v2; v3Þ to the
group parameters ðβ1; β2; αÞ, invert their signs, and then
calculate the corresponding value of the velocities. As a
result

ξ3 ¼
ffiffiffi
3

p v21 þ v22 − v3ðv3 −
ffiffiffi
3

p Þ
v21 þ v22 þ ð2v3 þ

ffiffiffi
3

p Þðv3 −
ffiffiffi
3

p Þ ;

which shows at once that ξ ≠ −v, an effect due to the
anisotropy of the space. The analysis simplifies consid-

erably for frames related with ~β ¼ 0. We have e3α ¼
ffiffi
3

p
−v

3vþ ffiffi
3

p ;

thus since α is an additive parameter, the law of addition of
velocities along the third axis is

w ¼ uþ vþ 2uv=
ffiffiffi
3

p

1þ uv
: ð18Þ

Observe that if u ¼ −v it is not true that w ¼ 0. This fact
means that boosting forward and then backward the same
velocity does not bring us back to the original frame. This is
an anisotropic effect not present in special relativity.
In order to return to the same frame we have to choose
u ¼ − v

1þ2v=
ffiffi
3

p which gives the velocity of the primed

observer with respect to the unprimed observer. The law
of addition of velocities does not change if we pass from the
“passive” to the “active” velocities namely whether u, v, w
represent the velocity of the boosted frame with respect to
the original one or conversely, provided we stick to the
same interpretation for all the velocities.
Also observe that if u ¼ ffiffiffi

3
p

or u ¼ −1=
ffiffiffi
3

p
then the

same holds for w irrespective of the value of v. This fact is
an expression of the invariance of the light cone. Finally,
observe that boosts along the third axis do not affect the
transversal coordinates.
Up to symmetries the nonvanishing components of the

Cartan torsion are

C311 ¼ C322 ¼
1ffiffiffi
3

p ; C333 ¼ −
2ffiffiffi
3

p :

Some components of the Cartan curvature in observer
coordinates can be read from the next expansion [21],

uðvÞ ¼ oðjvj4Þ − 1þ v2

2
þ v3ffiffiffi

3
p

�
ðv1Þ2 þ ðv2Þ2 − 2

3
ðv3Þ2

�

þ 1

24
½2ð4ðv3Þ4 þ ððv1Þ2 þ ðv2Þ2Þ2Þ þ 3ðv2Þ2�:

Let us consider the dual formulation. Since the Finsler
Lagrangian is given by (12) the Finsler Hamiltonian is

H ¼ −
2

33=4
ð ~p3Þ1=2½ð ~p0Þ2 − ð ~p1Þ2 − ð ~p2Þ2�3=4: ð19Þ

In observer coordinates it reads

H ¼ −
2

33=4

�
−
1

2
p0 þ

ffiffiffi
3

p

2
p3

�
1=2

×

�� ffiffiffi
3

p

2
p0 þ

1

2
p3

�
2

− ðp1Þ2 − ðp2Þ2
�

3=4
: ð20Þ

It does not seem possible to find a simple analytic
expression for the Hamiltonian u�; nevertheless we found
that its Taylor expansion is

u�ðpÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þp2

q
−
p3ffiffiffi
3

p
�
ðp1Þ2þðp2Þ2−

2

3
ðp3Þ2

�
þoðjpj3Þ;

which gives the dispersion relation for this model.
Remark II.1.—Bogoslovsky proposed an anisotropic

Lagrangian intended to depart minimally from the isotropic
case [39,40]. Its study was then revived with the proposal of
the very special relativity theory [41,42]. With a rotation of
the reference frame it can be brought to the form (b ∈ R is
an anisotropy parameter)

LB ¼ −
1

2
ðy0 − y1Þ2b½ðy0Þ2 − y2�1−b: ð21Þ

Taking the determinant of the Hessian we obtain

det gαβ ¼ ðb − 1Þ3ð1þ bÞðy0 − y1Þ8b½ðy0Þ2 − y2�−4b

¼ 16ðb − 1Þ3ð1þ bÞ L4
B

½ðy0Þ2 − y2�4 ;

which shows that whenever g is nondegenerate it must be
jbj ≠ 1 and the determinant depends on y. The mean Cartan
torsion does not vanish; thus, it is not an affine sphere.
According to our previous discussion the indicatrix is not
transitively preserved by a group of unimodular linear
transformations, and so it does not respect the relativity
principle as we defined it. This model for b ¼ 1=4 should
not be confused with that given by Eq. (12). See [43,44] for
a discussion of the symmetries of the two factors.
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III. THE GENERAL THEORY

In this section we consider the four-dimensional affine
sphere spacetimes which satisfy the relativity principle at
every point. This means that at TxM the geometry of the
indicatrix belongs to one of the three types studied in the
previous sections, with the difference that now Lðx; yÞ
might indeed depend on x.
The solution of this problem is in fact very simple and

consists in introducing over each coordinate chart on M a
basis of one-forms ~ea ¼ ~eaμðxÞdxμ, a ¼ 0, 1, 2, 3 called
vierbeins such that μ ¼ j~e0∧~e1∧~e2∧~e3j is the spacetime
volume form. They provide an isomorphism between
TxM and a model Lorentz-Minkowski space provided we
assume that det ~e ≠ 0. Then the isotropic, tetrahedral aniso-
tropic, and conical anisotropic models read, respectively,

L ¼ 1

2
ð−ð~e0σðxÞyσÞ2 þ ð~e1σðxÞyσÞ2

þ ð~e2σðxÞyσÞ2 þ ð~e3σðxÞyσÞ2Þ; ð22Þ

L ¼ −2½Π4
a¼0ð~eaσðxÞyσÞ�1=2; ð23Þ

L ¼ −
2

33=4
ð~e3μðxÞyμÞ1=2½ð~e0γðxÞyγÞ2 − ð~e1αðxÞyαÞ2

− ð~e2βðxÞyβÞ2�3=4: ð24Þ

It is indeed clear that on each tangent space TxM we obtain
the anisotropic theories studied in the previous section.

A. Kinematical reformulation

The established isomorphism between TxM and the
model Lorentz-Minkowski space is largely arbitrary when-
ever the latter admits a symmetry group. As a consequence,
it can be convenient to replace the vierbein variable with
less arbitrary objects.

Introduced the metric gαβðxÞ ¼ ηab ~eaαðxÞ~ebβðxÞ, the
isotropic model becomes

L ¼ 1

2
gαβðxÞyαyβ; μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gαβj

q
d4x;

namely the isotropic theory depends only on a
Lorentzian metric.
The tetrahedral anisotropic theory cannot be further
simplified in the sense that one has to work with four
one-forms. These forms are not completely arbitrary
since det ~e ≠ 0.
Concerning the conical anisotropic theory, let tμ ≔ ~e3μ,
and let ξhαβðxÞ ≔ η̌ab ~eaαðxÞ~ebβðxÞ where η̌ab ¼ ηab for
a, b ≠ 3 and 0 otherwise. Evidently ξh is a degenerate
metric of signature ð−;þ;þ; 0Þ. Its kernel is spanned
by a vector ξ such that ~e3ðξÞ ¼ 1, ~e0ðξÞ ¼ ~e1ðξÞ ¼
~e2ðξÞ ¼ 0; thus tμξμ ¼ 1. Our notation ξh is meant to
remind us that ξh is degenerate with the kernel

spanned by ξ. Recalling the generalized Cauchy-Binet
formula for the minors of a product of matrices,
MαβðABÞ ¼

P
γMαγðAÞMγβðBÞ, we obtain

MαβðξhÞ ¼ −M3αð~eÞM3βð~eÞ:
Moreover, using the Laplace expansion for the deter-
minant, and selecting the last row to calculate the
expansion

det ~e ¼
X
μ

ð−1ÞμtμM3μð~eÞ;

thus ðdet ~eÞ2 ¼ −ð−1ÞαþβMαβðξhÞtαtβ. This identity
can be suggestively written as

ðdet ~eÞ2 ¼ ð− det ξhÞξhαβtαtβ;

where it is understood that this expression is just a
mnemonic aid to recover the above expression involv-
ing minors. Indeed, ξh cannot be really inverted since
it is degenerate. Finally, this theory is reduced to the
Lagrangian and associated volume form

L ¼ −
2

33=4
ðtμðxÞyμÞ1=2ðξhαβðxÞyαyβÞ3=4;

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det ξhjjξhαβtαtβj

q
d4x;

where the square root appearing in the volume form is
positive and ξh has signature ð−;þ;þ; 0Þ.

The comparison of the theory with observation might
require a different choice of vierbeins,

~eaμ ¼ Ma
be

b
μ;

where M is the matrix which in the previous section
accomplished the change of coordinates ~ya ¼ Ma

by
b (thus

Ma
b ¼ δab in the isotropic theory, while M is just a rotation

of 30 degrees in the 0-3 plane in the conic theory). In fact,
whenever eiμyμ ≪ e0μyμ (e.g. because e00 > 0, ei0 ¼ 0 and
yj ≪ y0) we have that the Lagrangian of the tetrahedral or
conic theories is approximated by the isotropic one. In
other words, in that velocity limit the Finslerian kinematics
reduces itself to the general relativistic one.

B. Dynamics

In this section we show how to construct a dynamical
Lagrangian or the field equations for the kinematical
models. This can be skipped on first reading.
In order to define a dynamics we need an action.

Fortunately, due to the affine sphere condition we have
already a well-defined volume form on M so we need only
to define a scalar Lagrangian. The traditional approach in
Finsler gravity theory consists in trying to build, if not a
Lagrangian, some field equations directly from the various
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curvatures associated to theBerwald,Cartan, orChern-Rund
Finsler connections. This approach has been followed by
Horvath [45], Takano [46], Ishikawa [47,48], Ikeda [49],
Asanov [32], Miron [50], Rutz [15], Li and Chang [51],
Vacaru [52], and Pfeifer and Wohlfarth [53], to mention a
few. I have also explored this route [19]. It has the drawback
that the soobtained equationsdependon the fiber variables, a
fact which complicates their interpretation as evolution
equations.
Here we are going to construct dynamical equations

which do not depend on the fiber variables and which,
variationally speaking, do not introduce complications
related to the integration over the noncompact indicatrix.
We do not use the Finslerian curvatures but rather construct
a gauge theory from the fields which enter the definition of
the Finsler Lagrangian. The number and nature of these
fields depend on the model considered.
In fact, the most straightforward approach towards the

dynamics of the theory consists in gauging the interior
symmetry. This gauging is necessary since the Finsler
Lagrangian is largely independent of the vierbein choice
and so should be the dynamics. As we mentioned, the
interior groups of vierbein transformations which leave the
Finsler Lagrangians (22)–(24) invariant are Oþð3; 1Þ, R3

andOþð2; 1Þ ×R, respectively. We assume the existence of
a G-structure over M, where G is the interior group. This
hypothesis allows us to assume the existence of a g-valued
connection and hence of a g-valued curvature.

In the isotropic case we have a natural gauge invariant
object, namely the spacetime metric gμν ≔ ηab ~eaμ ~ebν .
Thus a gauge invariant Lagrangian can be obtained
from a scalar constructed from the metric. Of course,
general relativity tells us that the appropriate scalar is
the Ricci scalar.
We have four 1-form variables ~eaμ, a ¼ 0, 1, 2, 3, and
three 1-formAbelian connectionsAi

μ, i ¼ 1, 2, 3, due to
the three Abelian gauge symmetries cf. Eq. (10),
A0 i

μ ¼ Ai
μ − ∂μαi,

~e0 0ν ¼ e−
P

i
αi ~e0ν; ð25Þ

~e0 iν ¼ eαi ~eiν; ð26Þ

where e0 has charge ðq1; q2; q3Þ ¼ ð−1;−1;−1Þ, e1
has charge (1, 0, 0), e2 has charge (0, 1, 0) and e3 has
charge (0, 0, 1). We introduce a covariant derivative
which takes into account these charges,

Dμ ~e0ν ¼ ∂μ ~e0ν −
�X

i

Ai
μ

�
~e0ν;

Dμ ~eiν ¼ ∂μ ~eiν þ Ai
μ ~eiν; i ¼ 1; 2; 3:

These covariant derivatives are left invariant under
the gauge transformation. The vierbeins eνa have

opposite charges so that an upper interior index brings
the opposite charge of a lower interior index and the
interior contractions are uncharged.

Observe that we have four linearly independent 1-
forms which can be arbitrarily rescaled though gauge
transformations provided the volume form is left invari-
ant. Dually, we have four linearly independent vectors
which can be arbitrarily rescaled provided their wedge
product is left invariant. These vierbeins determine at
each point four preferred directions but no preferred
scale along those directions. It is a kind of geometry
slightly more relaxed than Weitzenböck’s. There the
connection would be obtained by imposing the parallel
translation of the vierbein field ∇W

α ~eaμ ¼ ∂α ~eaμ −
ΓW σ

μα ~eaσ ¼ 0; thus ΓW σ
μα ¼ ~eσa∂α ~eaμ, while here we have

to replace ordinary derivatives with gauge derivatives;
thus

The connection coefficients Γ determine a linear con-
nection ∇ from which we can construct the torsion
tensor

Tα
μν ¼ Γα

νμ − Γα
μν ¼ ~eαaDμ ~eaν − ~eαaDν ~eaμ

and the curvature Rα
βγδ. Thus, introducing the Abelian

curvatures Fi
μν ¼ ∂μAi

ν − ∂νAi
μ, the most general action

for this theory is

S ¼
Z

fðR; T; F; ~eÞ detð~eaμÞdx;

where with ~e we mean the vierbeins or their dual. It
should be observed that contrary to the isotropic theory
we do not have an interior metric ηab which through
gμν ¼ ~eμaηab ~eνb could allow us to contract lower space-
time indices. Furthermore, R, T, F are predominant in
the lower indices so the construction of a scalar appears
nontrivial. Some interesting scalars are

j detðRðαβÞÞj1=2
detð~eaνÞ

;
PfðFi

αβÞ
detð~eaνÞ

;

whereRðαβÞ is the symmetrizedRicci tensor and Pf is the
Pfaffian. The latter choice gives an action term of
topological origin while the former choice is inspired
by Eddington’s purely affine action [54]. If Bαβ denotes
the transpose of the cofactor matrix of RðαβÞ, namely the
matrix such that BαβRðβγÞ ¼ detðRðαβÞÞδαγ , then particu-
larly interesting is the action
Z �

j detðRðαβÞÞj1=2 þ
X
i

ciFi
αβF

i
γδ

BαγBβδ

½detð~eaαÞ�3
�
d4x;

where ci are coupling constants.
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Someother possibilities are offered by the tensoriality
of the following uncharged object tαβγδ ≔ ~eα0 ~e

β
1 ~e

γ
2 ~e

δ
3.

Then other examples of scalars which might enter the
construction of a Lagrangian are

RαβRγδtαβγδ; Fi
αβF

i
γδt

αβγδ; RαβFi
γδt

αβγδ;

or various combinations in the fourth power of the
torsion e.g.

Tα
βγT

γ
ναTδ

ηρT
ρ
μδt

βνημ:

Finally, there is the possibility of writing directly field
equations of nonvariational origin by equating equally
charged terms.
In the conic theory the Oþð2; 1Þ-gauge invariance can
be accomplished by constructing the Lagrangian from
the Oþð2; 1Þ-gauge invariant fields tμ and ξhαβ. Addi-
tionally, we have a gauge field Aμ due to the Abelian
gauge symmetry cf. Eq. (17),

A0
μ ¼ Aμ − ∂μα; ð27Þ

t0μ ¼ e3αtμ; ð28Þ
ξh0μν ¼ e−αξhμν; ð29Þ

namely t has charge 3 while ξh has charge −1. The
vector ξ has change −3.

The pair ðtμ; ξhαβÞ, where ξ spans the kernel of ξhαβ
and tμξμ ¼ 1, can be easily shown to be equivalent to a
triple ðtμ; hαβ; ξνÞ, where hαβ is a contravariant metric
of nullity one, hαβtβ ¼ 0, and ξhαβ ≔ hαμξhμβ ¼ δαβ −
ξαtβ is the projector on ker t determined by the spitting
TxM ¼ ðker t ⊕ hξiÞjx.

The tensor hαβ does not bring the ξ label because it
is, in a well-defined sense, independent of it. In fact, it
really depends only on ξhαβjker t. This metric is non-
degenerate; thus it has an inverse ðξhjker tÞ−1 which
acts as a bilinear form on ker t�. But any element of
ker t� can be regarded as an equivalence class of
forms, any two forms being equivalent if they differ by
a term proportional to t. As a consequence
ðξhαβjker tÞ−1 can be represented by a contravariant
metric which annihilates tβ; this is hαβ.

Observe that hαβ has charge 1. The reader ac-
quainted with the geometrical formulation of the
Newtonian gravitational theory will recognize its main
geometric ingredients [55,56] with three relevant
differences: (a) the metrics hαβ and ξhαβ have signature
ð−;þ;þ; 0Þ rather than ðþ;þ;þ; 0Þ, (b) the fields are
charged, and (c) the dynamics depends on a “non-
relativistic matter” field ξ.

Let us construct a dynamics which is reminiscent of
Newtonian gravity. We introduce a derivative which
takes into account the charges

Dμtν ¼ ∂μtν þ 3Aμtν;

Dμhαβ ¼ ∂μhαβ þ Aμhαβ;

Dμξ
ν ¼ ∂μξ

ν − 3Aμξ
ν:

Next we introduce an affine connection ∇ through its
coefficients Γα

μν and impose that the fields ðtα; hμνÞ be
covariantly constant with respect to the gauged covar-
iant derivative

ð30Þ

ð31Þ

The former equation implies that the torsion Tα
μν ≔

Γα
νμ − Γα

μν satisfies

Tα
μνtα ¼ ðdtþ 3A∧tÞμν ¼ 0;

thus the connection is torsionless only if ker t is
integrable. We assume that the connection is torsion-
less. Defining the curvature Fμν ¼ ∂μAν − ∂νAμ, the
previous equations imply F∧t ¼ 0, namely the “mag-
netic” components vanish and soF is purely “electric.”

Observe that the light cone includes a distinguished
flat boundary which provides us with a distribution of
hyperplanes ker t over the manifold. Since the distri-
bution is integrable we have a natural foliation which
can be interpreted as a global absolute notion of
simultaneity. Over each slice we have a Lorentzian
metric; thus the spacetime M is foliated by a one-
parameter family of Lorentzian manifolds. Given a
curve x∶I → M, s → xðsÞ, such that tμ dxμ

ds > 0 (i.e.
classically timelike) the integral

R
tμ dxμ

ds ds cannot
represent the time of the particle since tμ is not gauge
invariant. This is an important differencewith respect to
theNewtonian theory. Themeaningful proper time over
the trajectory is that calculated via the Finsler
Lagrangian,

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Lðx; x0Þp

ds. Curiously, aswe clarify
in amoment, the conic theorymingles a sort of formally
nonrelativistic field dynamics together with a relativ-
istic notion of proper time.

Let us raise indices with hαβ. As in Newton-Cartan
theory [55,57] we consider connections of the form
(observe that we took into account the Abelian gauge
symmetry)

Γμ
αβ ¼ hμσ

1

2
ðDβ

ξhασ þDα
ξhσβ −Dσ

ξhαβÞ
þDðαtβÞξμ þ tðαΩβÞσhσμ;
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where vanishes if and only
if ξ is geodesic and twist free; ,

.Observe that the connection is uncharged.
Mimicking Newton-Cartan theory, the vacuum

dynamics for hαβ and Aμ can be assigned to be

Rαβ ¼ 0; ∇βFαβ ¼ 0: ð32Þ
Thevector field ξ could be assigned a dynamics formally
analogous to that of a nonrelativistic fluid.

Of course, completely different dynamics could have
been considered, e.g. in those cases in which Γ has
torsion. In fact,many scalars canbebuilt fromthe torsion
and curvature ofΓ. In order to contract lower indices one
could use the tensoriality of the object,

ðdet ξhÞξhμν=½j det ξhjjξhαβtαtβj�:
These considerations were aimed at illustrating the pos-

sibility of defining a dynamics for the Finslerian kinematical
theories previously introduced. In the next section we show
that it is not necessary to impose some dynamical equations
and to solve them in order to select physically interesting
affine sphere spacetimes. Indeed, these spaces are uniquely
selected from the imposition of an appropriate general
relativistic limit. These notable spacetimes might then help
to select the correct field equations.

C. Notable affine sphere spacetimes

We can construct some first examples of general relativistic
affine sphere spacetimes which satisfy the relativity principle.
We impose that at every point the spacetime is conic aniso-
tropic obtaining conic anisotropic generalizations of the
Kerr-Schild, Schwarzschild, Kerr, Taub, Friedmann-
Lemaître-Robertson-Walker (FLRW) metrics. A test particle
slowlymovingon these spacetimeswith respect to their natural
stationary observer would behave as in the corresponding
Lorentzianspacetimesofgeneral relativity. Ihavenotbeenable
to obtain similarly good results for the tetrahedral theory.

D. Conic anisotropic generalization
of the Kerr-Schild metric

We recall that the fiber coordinate is defined by
yμ ¼ dxμ∶ TxM → Rnþ1. In this section we might revert
to the notation dxμ for the fiber coordinate. Let f∶ U → R,
μ∶ U → ð0; 2πÞnfπ=2; π; 3π=2g, U ⊂ M be functions and
let k ¼ kαdxα ¼ dtþ kxdxþ kydyþ kzdz be a 1-form field
on the same coordinate patch U. Let us define

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − fÞ þ fk2z

q
;

ω⊥ ¼ kxdxþ kydy;

ωt ¼ dt −
f

1 − f
ðkxdxþ kydyþ kzdzÞ;

ωz ¼
1

β

�
dzþ f

1 − f
kzðkxdxþ kydyþ kzdzÞ

�
:

Let us consider the Finsler Lagrangian

L ¼ −
1 − f

2ðcos2μÞcos2μðsin2μÞsin2μ ððsin μωt þ cos μωzÞ2Þsin2μ

×

�
ðcos μωt − sin μωzÞ2

−
1

1 − f

�
dx2 þ dy2 þ f

β2
ω2⊥

��
cos2μ

: ð33Þ

This expression is left invariant if we change the orientation
of z, x with y, and the sign of sin μ; thus μ can be assumed
in the range ð0; πÞ with no loss of generality.
Its limit for large distances [large maxðjxijÞ] is

L∞ ¼ −
1

2ðcos2μ̄Þcos2μ̄ðsin2μ̄Þsin2μ̄ ððsin μ̄dtþ cos μ̄dzÞ2Þsin2μ̄

× ððcos μ̄dt − sin μ̄dzÞ2 − dx2 − dy2Þcos2μ̄; ð34Þ
provided that for every α, β we have fkαkβ → 0 and μ → μ̄
in that limit.
If μ ¼ μ̄ is a constant throughoutM thenL is modeled on

the same Lorentz-Minkowski space L∞ at every point.
At every point x ∈ M the vector ŷ ¼ ð 1ffiffiffiffiffiffi

1−f
p ; 0; 0; 0Þ

belongs to the indicatrix and so provides an observer vector
field which is of particular interest whenever ðM;LÞ is
stationary, that is, independent of time.
For low velocities with respect to ŷ, yi ≪ y0, and for

every function μðxÞ, the Lagrangian reduces itself to the
Kerr-Schild metric

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2 þ fkαkβdxαdxβ:

Under the assumption fkαkβ → 0 it is asymptotic to the
Minkowski metric which is indeed the low velocity
limit of L∞.
For μ ¼ π=6 namely with

L¼ −
2ð1− fÞ
33=4

��
1

2
ωt þ

ffiffiffi
3

p

2
ωz

�2�1=4

×

�� ffiffiffi
3

p

2
ωt −

1

2
ωz

�2

−
1

1− f

�
dx2 þ dy2 þ f

β2
ω2⊥

��3=4

ð35Þ

the indicatrix is a Calabi product of affine spheres; thus it is
itself an affine sphere and hence its mean Cartan torsion
vanishes. Its asymptotic limit and model Lorentz-
Minkowski space is

L∞ ¼ −
2

33=4

��
1

2
dtþ

ffiffiffi
3

p

2
dz

�2�1=4

×

�� ffiffiffi
3

p

2
dt −

1

2
dz

�2

− dx2 − dy2
�3=4

: ð36Þ
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If μ is different from this special value the mean Cartan
torsion does not vanish. Indeed, a calculation at the
observer ŷ gives

IαðŷÞ ¼
2ð3 − 4cos2μÞ

β
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
cos μ sin μ

ð0; fk1k3; fk2k3; β2Þ: ð37Þ

Now, for any chosen μðxÞ we can obtain from (33) the
Finslerian conic anisotropic version of many general
relativistic metrics. For instance, for the Kerr-Newman
metric in Kerr-Schild Cartesian coordinates [58] we set for
some constants m > 0, a, q

kα ¼
�
1;
rxþ ay
a2 þ r2

;
ry − ax
a2 þ r2

;
z
r

�
;

f ¼ 2mr3 − q2r2

a2z2 þ r4
;

where rðx; y; zÞ is determined implicitly, up to a sign, by the
requirement that k be null, namely

x2 þ y2

a2 þ r2
þ z2

r2
¼ 1:

Similarly, the Kerr–de Sitter metric can be obtained from k
and r as above with a ¼ 0, by setting

f ¼ 2m
r

þ Λ
3
r2:

For the Schwarzschild metric (a ¼ Λ ¼ 0) it can be
convenient to introduce cylindrical coordinates ðz; ρ;φÞ,
pass to the Schwarzschild time tS through

t ¼ tS þ 2m ln

���� r
2m

− 1

����;

in such a way that ωt ¼ dtS, set r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
and set for

definiteness μ ¼ π=6; then

L ¼ −
2ð1 − 2m

r Þ
33=4

��
1

2
dtS þ

ffiffiffi
3

p

2

�
1 −

2m
r

�
−1 ð1 − 2mρ2=r3Þdzþ 2mzρdρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2mρ2=r3
p

�2�1=4

×

�� ffiffiffi
3

p

2
dtS −

1

2

�
1 −

2m
r

�
−1 ð1 − 2mρ2=r3Þdzþ 2mzρdρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2mρ2=r3
p

�2

−
�
1 −

2m
r

�
−1
�

dρ2

1 − 2mρ2=r3
þ ρ2dφ2

��3=4

: ð38Þ

The metric can be written using Boyer-Linquist coor-
dinates ðr; θ;φÞ defined by

xþ iy ¼ ðrþ iaÞ sin θ exp i
�
φþ a

Z
dr

r2 − 2mrþ a2

�
;

z ¼ r cos θ; t̄ ¼ tþ 2m
Z

rdr
r2 − 2mrþ a2

;

by noticing that

ω⊥ ¼ ðr2 − 2mrÞsin2θ
r2 − 2mrþ a2

drþ r sin θ cos θdθ

− asin2θdφ;

ωþ zdz
r

¼
�
1 −

a2sin2θ
r2 − 2mrþ a2

�
dr − asin2θdφ;

dx2 þ dy2 ¼ r2sin2ðθÞða2 þ ðr − 2mÞ2Þ
ðr2 − 2mrþ a2Þ2 dr2

þ ðr2 þ a2Þsin2θdφ2 þ ðr2 þ a2Þcos2θdθ2

þ 4amrsin2θ
r2 − 2mrþ a2

drdφþ 2r cos θ sin θdrdθ:

The final expression is not particularly illuminating; how-
ever, it shows that the Finsler Lagrangian has Killing
vectors ∂t, ∂ϕ. We have

α ¼ 1 −
2mr

r2 þ a2cos2θ
;

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2msin2θ
r

r
;

ω⊥ ¼ ðr2 − 2mrÞsin2θ
r2 − 2mrþ a2

drþ r sin θ cos θdθ

− asin2θdφ;

ωt̄ ¼ dtþ 2mrsin2θ
r2 − 2mrþ a2cos2θ

adφ;

ωz ¼
1

β

�ða2 þ r2Þ cos θ
r2 − 2mrþ a2

dr − r sin θdθ

−
2mr cos θsin2θ

r2 − 2mrþ a2cos2θ
adφ

	
;

dx2 þ dy2 ¼ sin2θdr2 þ r2sin2θdϕ2 þ r2cos2θdθ2

þ 2r cos θ sin θdrdθ:
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The Finsler Lagrangian becomes

L¼−
2α

33=4

�
1

2
ωt̄þ

ffiffiffi
3

p

2
ωz

�1=2

×

�� ffiffiffi
3

p

2
ωt̄−

1

2
ωz

�2

−
1

α

�
dx2þdy2þ 2m

rβ2
ω2⊥

��3=4

:

ð39Þ
The low velocity limit gives the Kerr metric in Boyer-
Linquist coordinates. For a ¼ 0, ωt̄ ¼ dt, the low velocity
metric is Schwarzschild’s and t is the Schwarzschild’s time.

E. A cosmological model

In this section we construct the conic anisotropic
versions of the FLRW metrics with k ¼ 1 or k ¼ 0. We
also obtain the conic anisotropic version of the Taub
solution. For k ¼ 1 the idea is to regard the S3 space
section as a Hopf fibration and to orient the anisotropic
direction of the conic anisotropy along the Clifford paral-
lels, that is, along the fibers.

1. The Hopf bundle

Let us first recall the construction of the Hopf fibration.
This introduction also serves to fix the notation. Let an
element of SUð2Þ be parametrized as follows:

w ¼
�
z0 −z̄1
z1 z̄0

�
; jz0j2 þ jz1j2 ¼ 1:

This expression clarifies that SUð2Þ is diffeomorphic to S3.
Let us denote with σi the Pauli matrices

σ1 ¼
�
0 1

1 0

�
; σ2 ¼

�
0 −i
i 0

�
; σ3 ¼

�
1 0

0 −1

�
;

and let τk ¼ iσk=2 be the generators of the Lie algebra
suð2Þ,

½τi; τj� ¼ εijkτk:

Every element of SUð2Þ is also a linear combination of the
identity and τk. It is useful to recall the identity

σiσj ¼ iεijkσk þ δijI;

and that det σi ¼ −1. Let us define the map over SUð2Þ,

πðwÞ ¼ 2wτ3w†;

some algebra shows that

πðwÞ ¼ 2wτ3w† ¼ i

�
a b̄

b −a

�
¼

�
ia −īb
ib īa

�
;

where a ¼ jz0j2 − jz1j2 ∈ R, and b ¼ 2z1z̄0 ∈ C. Observe
that πðwÞ belongs to SUð2Þ ∩ suð2Þ; thus det πðwÞ ¼ 1

which reads a2 þ jbj2 ¼ 1. We conclude that πðwÞ ∈ S2.
The group SUð2Þ admits a subgroup isomorphic to Uð1Þ

given by the matrices of the form

ρðφÞ ¼
�
eiφ 0

0 e−iφ

�
;

which is generated by τ3. Its right action on SUð2Þ can be
defined through

Uð1Þ × SUð2Þ → SUð2Þ; ðw; ρðφÞÞ ↦ wρðφÞ:

Since ρðφÞ commutes with τ3,

πðwρðφÞÞ ¼ 2wρðφÞτ3ρðφÞ−1w−1 ¼ 2wτ3w−1 ¼ πðwÞ:

Thus the projection π∶S3 → S2 has fiber S1. This is the
Hopf fiber bundle. Let u ∈ S2; namely let u be a matrix
of the form 2wτ3w† for w ∈ SUð2Þ, if h ∈ SUð2Þ,
huh−1 ¼ πðhwÞ ∈ S2; thus SUð2Þ acts on S2 as a trans-
formation induced from a linear transformation of R3. We
see later that this is an isometry, so that SUð2Þ acts as a
rotation. This is the double covering of SUð2Þ over SOð3Þ.

2. Metrics over the Hopf bundle

The idea is to construct the cone of the Finsler
Lagrangian as the product between a one-dimensional
cone and a three-dimensional irreducible cone, or equiv-
alently the indicatrix should be the Calabi product between
a zero-dimensional affine sphere and an irreducible two-
dimensional affine sphere. We construct the three-
dimensional cone from a Lorentzian metric on the Hopf
fiber bundle. We wish to avoid coordinates as far as
possible so as to make the presentation clearer.
Coordinates are introduced in the end. The (left-invariant)
Maurer-Cartan form of SUð2Þ is

θ ¼ w†dw ¼
�

z̄0dz0 þ z̄1dz1 −z̄0dz̄1 þ z̄1dz̄0
−z1dz0 þ z0dz1 z1dz̄1 þ z0dz̄0

�
:

It can be observed that since jz0j2 þ jz1j2 ¼ 1 we have
trθ ¼ 0. It can be interesting to observe that for an arbitrary
2 × 2 matrix M (this formula admits generalization to
higher dimensions)

detM ¼ 1

2
det

�
trM 1

trM2 trM

�
¼ 1

2
ððtrMÞ2 − trM2Þ;

thus
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−
1

2
trðθ2Þ ¼ 1

2
trðdw†dwÞ ¼ detðθÞ

¼ dz̄0dz0 þ dz̄1dz1 ¼ gS3 : ð40Þ

This is precisely the metric induced on S3 by the Euclidean
metric in R4 (decompose z0 and z1 in real and imaginary
components).
Similarly, the metric induced on S2 by the Euclidean

metric of R3 is

−
1

2
trððπðwÞ†dπðwÞÞ2Þ ¼ dðiaÞdðiaÞ þ dðibÞdðibÞ

¼ da2 þ db̄db ¼ gS2 : ð41Þ

Since θ is suð2Þ valued we decompose it as follows:
θ ¼ τkωk where ωk are real 1-forms over SUð2Þ. Using
trðσiσjÞ ¼ 2δij or trðτiτjÞ ¼ − 1

2
δij we get

ωk ¼ −2trðθτkÞ:

This expression shows at once that ω3 is invariant under the
right action of Uð1Þ; indeed let us calculate R�

aω3 with a ∈
SUð2Þ [observe that R�

aθ ¼ ðwaÞ†dðwaÞ ¼ a†θa],

R�
aω3ðXÞ ¼ −2trðθðRa�XÞÞτ3Þ ¼ −2trððR�

aθÞðXÞÞτ3Þ
¼ −2trða−1θðXÞaτ3Þ;

so since ρðφÞ commutes with τ3, R�
ρðφÞω3 ¼ ω3. The 1-form

ω3 is actually a connection for the Hopf bundle. Indeed, the
vertical fundamental field is τ�3, and by definition of θ,
θðτ�3Þ ¼ τ3; thus ω3ðτ�3Þ ¼ −2trðτ3τ3Þ ¼ 1 (see [59] for the
conditions defining a connection on a principal bundle).
There is also a Uð1Þ-invariant metric; indeed,

ω2
1 þω2

2 ¼ ðω2
1 þω2

2 þω2
3Þ−ω2

3 ¼ −2trðθ2Þ− ð2trðθτ3ÞÞ2:

The validity of this equation can be checked inserting θ ¼
ωkτk and using again trðτiτjÞ ¼ − 1

2
δij. Arguing as

above R�
ρðφÞðω2

1 þ ω2
2Þ ¼ ω2

1 þ ω2
2.

As the next trace vanishes

trðπðwÞ†dπðwÞÞ ¼ 4tr½wτ3w†ðwτ3ð−w†dww†Þ þ dwτ3w†Þ�
¼ trðdww†Þ − trðw†dwÞ ¼ 0:

We can write

−
1

2
trððπðwÞ†dπðwÞÞ2Þ

¼ detðπðwÞ†dπðwÞÞ ¼ detðdπðwÞÞ
¼ 4 detðdwτ3w† − wτ3w†dww†Þ
¼ 4 detðw†dwτ3 − τ3w†dwÞ ¼ 4 detð½θ; τ3�Þ
¼ 4 detð−ω1τ2 þ ω2τ1Þ ¼ ω2

1 þ ω2
2:

This result jointly with Eq. (41) shows that ω2
1 þ ω2

2 is the
(π-pullback of the) canonical metric of S2. Observe that the
action of SUð2Þ on S2, πðwÞ ↦ hπðwÞh−1 is an isometry
for this metric which proves the earlier statement that
SUð2Þ is a double covering of SOð3Þ (h and −h give the
same map).
Remark III.1.—If one insists on using coordinates it is

convenient to parametrize SUð2Þ as follows,

wðϕ; θ;ψÞ ¼
�
e

i
2
ðψ−ϕÞ cosðθ=2Þ −e−i

2
ðψþϕÞ sinðθ=2Þ

e
i
2
ðψþϕÞ sinðθ=2Þ e−

i
2
ðψ−ϕÞ cosðθ=2Þ

�
;

that is,

z0 ¼ e
i
2
ðψ−ϕÞ cosðθ=2Þ; z1 ¼ e

i
2
ðψþϕÞ sinðθ=2Þ;

with ϕ ∈ ½0; 2πÞ, ψ ∈ ½0; 4πÞ, θ ∈ ½0; π� (the angle ψ can be
given the domain ½0; 2π�Þ if one is interested in generating
the SOð3Þ group through the action x0iσi ¼ wxiσiw†;
however in order to generate SUð2Þ one needs to double
the domain of ψ in order to generate the negated matrices.
This parametrization is particularly useful because

πðwðϕ; θ;ψÞÞ ¼ iwσ3w† ¼ inkσk

with n1 ¼ sin θ cosϕ, n2 ¼ sin θ sinϕ, n3 ¼ cos θ. The
invariants under Uð1Þ-right translations are

ω3 ¼ dψ − cos θdϕ;

ω2
1 þ ω2

2 ¼ dθ2 þ sin2θdϕ2:

The other 1-forms are

ω1 ¼ sinψdθ þ cosψ sin θdϕ;

ω2 ¼ − cosψdθ þ sin θ sinψdϕ:

Any metric over S3 of the form hijωiωj, where hij are
constant coefficients, is necessarily invariant under the left
SUð2Þ action as the forms ωi are. There are Riemannian
metrics over S3 which share additional symmetries. For
instance from Eq. (40) the metric
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ω2
1 þ ω2

2 þ ω2
3 ¼ −2trðθ2Þ ¼ 4gS3

¼ ðdψ − cos θdϕÞ2 þ dθ2 þ sin2θdϕ2

is invariant under the right SUð2Þ action. This means that
the isotropy group at a point, namely the subgroup which
leaves a point fixed, is three dimensional, a fact which
implies that this space is isotropic.
In order to construct the mentioned product of cones we

need a Lorentzian metric over S3. We are interested in
Lorentzian metrics over SUð2Þ of the form

g ¼ − ~α23ω
2
3 þ α2⊥ðω2

1 þ ω2
2Þ: ð42Þ

The formsω3 and ω2
1 þ ω2

2 entering this metric are invariant
under the SUð2Þ-left action and the Uð1Þ-right action. The
metric g shares similar symmetries depending on the
functions ~α3 and α⊥. For instance, it respects the full
symmetry if they are constant while it respects the Uð1Þ
symmetry for ~α3, α⊥∶ S2 → R. We are interested in the
former case for it admits an additional τ3 right rotation
which tells us that the isometry subgroup which leaves a
point fixed is nontrivial (not just the identity) so that there is
isotropy at least under rotations with respect to some
direction. This is the direction towards which we orient
the cone domain of the conic anisotropy.
A pointwise Calabi product and the requirement of

preservation of symmetry lead us to the next affine sphere
spacetime

L ¼ −
2

33=4

��
1

2
α0dtþ

ffiffiffi
3

p

2
α3ω3

�2�1=4

×

�� ffiffiffi
3

p

2
α0dt −

1

2
α3ω3

�2

− α2⊥ðω2
1 þ ω2

2Þ
�3=4

; ð43Þ

where α3, α0, α⊥ depend on t. Observe that the Uð1Þ-
right translations and the SUð2Þ-left translations acting
on the space sections S3 are symmetries for this Finsler
Lagrangian. It can share additional symmetries for particu-
lar choices of α3, α0, α⊥. For instance, if they are constant
there is an additional R factor due to the time translations.
For low velocities it becomes

ds2 ¼ −α20dt2 þ α23ω
2
3 þ α2⊥ðω2

1 þ ω2
2Þ;

which for constants m, l > 0, once we set

α20 ¼ U−1; UðtÞ ≔ l2 − 2mtþ t2

t2 þ l2
;

α2⊥ ¼ t2 þ l2;

α23 ¼ 4l2U;

gives the Taub vacuum. For α3 ¼ α⊥ ¼ aðtÞ=2, α0 ¼ 1, it
gives the FLRW metric with k ¼ 1,

ds2 ¼ −dt2 þ a2ðtÞgS3 : ð44Þ

Clearly, the FLRWmetric with k ¼ 0 can be obtained as the
low velocity limit of the Finsler Lagrangian,

L ¼ −
2

33=4

��
1

2
dtþ

ffiffiffi
3

p

2
aðtÞdz

�2�1=4

×

�� ffiffiffi
3

p

2
dt −

1

2
aðtÞdz

�2

− a2ðtÞðdx2 þ dy2Þ
�3=4

;

ð45Þ
however, there seems to be no natural conic Finslerian
generalization of the FLRW metric with k ¼ −1.
Remark III.2.—It can be observed that while the FLRW

Lagrangian for k ¼ 1, Eq. (43), has invariance group
Uð1Þ × SUð2Þ, its low velocity limit, Eq. (44), has more
symmetries, as it has six Killings. This fact has to be
expected on the following ground. In general, the Finsler
Lagrangian captures also the kinematics of light which
could be highly anisotropic; still in the low velocity limit
one has that the indicatrix is approximated by a hyper-
boloid, which is isotropic. As a consequence, one does not
see the anisotropy of velocity space but only that of
spacetime and so gets more symmetries (unless the
Finslerian spacetime is obtained aligning the velocity space
anisotropy with that already present in its general relativ-
istic limit as in the Kerr example). The same phenomenon
can be seen with Eq. (15) which has an eight-dimensional
group of symmetries while the limit for low velocities is
Minkowski spacetime which has ten Killings.

IV. CONCLUSIONS

In this work we have recognized that the relativity
principle is expressed by the homogeneity of the observer
space (indicatrix), meaning by this its transitivity under the
action of a unimodular linear group acting on the tangent
space. We have also pointed out that in four spacetime
dimensions there are only three theories which respect an
exact form of the relativity principle, the velocity domain of
massive particles as seen from a local observer being given
by a ball, a tetrahedron or a cone, respectively. We have
studied their kinematics, particularly that of the conic
theory since it was not previously recognized. For each
of these theories we have provided observer coordinates,
namely special coordinates for which the metric becomes
Minkowskian in the appropriate velocity limit.
In Sec. III we discussed the dynamics showing how to

build consistent field equations by gauging the interior
symmetries. We did not focus on particular dynamical laws.
Instead, we observed that notable Finslerian spacetimes
could be selected by two requirements: that (a) the space-
time is relativistic invariant (the indicatrix is homo-
geneous), and that (b) the low velocity limit with respect
to a natural (conformal) stationary observer returns some
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notable general relativistic metric. Using this approach we
have been able to obtain the conic anisotropic version of the
Kerr-Schild metric and through it the conic anisotropic
versions of the Schwarzschild, Kerr–de Sitter and Kerr-
Newman spacetimes. The generalization of the FLRW
metric required a preliminary study of the Hopf bundle,
but in the end we obtained the conic anisotropic versions
for k ¼ 0, 1, and as a bonus we obtained also the conic
anisotropic version of Taub’s spacetime.
Our study shows that other and different general rela-

tivistic theories are possible. In fact some theories might
present curious hybrid features, namely the gravitational
fields might admit a sort of formally nonrelativistic

description while test particles might exhibit typical rela-
tivistic features, such as time dilation.
The found geometries could possibly describe peculiar

gravitational regions of the Universe. For our spacetime
neighborhood a perturbative approach seems more appro-
priate since the local light cones are expected to depart
slightly from isotropy. Approaches which try to retain an
almost general relativistic dynamics while modifying the
indicatrix in a neighborhood of a (stationary) observer
should pass through a study of modified dispersion
relations at the lowest order of approximation [9,60,61].
A perturbative study respecting the geometry of affine
spheres will be presented in future work.
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