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The effects of a nonminimally coupled curvature-matter model of gravity on a perturbed Minkowski
metric are presented. The action functional of the model involves two functions f'(R) and f2(R) of the
Ricci scalar curvature R. This work expands upon previous results, extending the framework developed

there to compute corrections up to order O(1/c*) of the 00 component of the metric tensor. It is shown that
additional contributions arise due to both the nonlinear form f!(R) and the nonminimal coupling fZ(R),
including exponential contributions that cannot be expressed as an expansion in powers of 1/r. Some
possible experimental implications are assessed with application to perihelion precession.
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I. INTRODUCTION

Dark matter and dark energy are key contemporary
concepts used to account, for instance, for the astro-
physical problem of the flattening of galactic rotation
curves and the cosmological issue of the accelerated
expansion of the Universe, respectively. Dark energy
accounts for 68% of the energy budget of the Universe
[1]; among several other proposals, it has been the object
of several so-called “quintessence” models [2], which
posit the existence of scalar fields with negative pressure,
as an alternative to a suitably adjusted cosmological
constant, which presents the eponymous problem of
reconciling the large order of magnitude difference
between its observed and predicted values [3]. Dark
matter searches focus on the characterization of addi-
tional matter species arising from extensions to the
Standard Model of particles, collectively dubbed as
weak-interacting massive particles (WIMPS) such as,
for instance, neutralinos or axions [4]. As an alternative,
some proposals assume that both dark components may
be described in a unified fashion [5,6].

Other models assume that, instead of additional matter
species, the fundamental laws of general relativity (GR)
may be incomplete, prompting, e.g., corrections and

“r.march@iac.cnr.it
Tjorge.paramos @fc.up.pt
“orfeu.bertolami @fc.up.pt
Ssimone.dellagnello@Inf.infn.it

2470-0010/2017/95(2)/024017(22)

024017-1

alternatives to the FEinstein-Hilbert action. Among such
theories, those involving a nonlinear correction to the
geometric part of the action via the scalar curvature, aptly
called f(R) theories, have gained much attention (see
Ref. [7] for a thorough discussion). These can be extended
also to include a nonminimal coupling (NMC) between the
scalar curvature and the matter Lagrangian density, leading
to an even richer phenomenology and implying that the
energy-momentum tensor may not be (covariantly) con-
served [8] (see also Ref. [9] for a more general model).

Considering that f(R) are phenomenological models
that should be derived from the low-energy regime of a
more complete theory [7,10], strong fundamental moti-
vations for the presence of a nonminimal coupling (NMC)
arise from, for instance, one-loop vacuum-polarization
effects in the formulation of quantum electrodynamics
in a curved spacetime [11], as well as in the context of
multi-scalar-tensor theories, when considering matter
scalar fields [12] (as explicitly shown in Ref. [13]).
Furthermore, a NMC was put forward in the context of
Riemann-Cartan geometry [14], with another study show-
ing that it has clear implications in the characterization
of the ground state [15].

NMC models have yielded several interesting results,
including the impact on stellar observables [16], energy
conditions [17], equivalence with multi-scalar-tensor
theories [18], possibility to account for galactic [19] and
cluster [20] dark matter, cosmological perturbations [21], a
mechanism for mimicking a cosmological constant at
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astrophysical scales [22], post-inflationary reheating [23],
dark energy [24-26], dynamical impact of the choice of the
Lagrangian density of matter [27,28], gravitational collapse
[29], and black hole solutions [30], its Newtonian limit
[31], the existence of closed timelike curves [32] and the
modified Layzer-Irvine equation [33] (see Ref. [34] for a
review and Refs. [35] for other NMC gravity theories and
their potential applications).

Recently, the impact of NMC gravity on the spacetime
metric surrounding a spherical central body was consid-
ered in Ref. [36], where the additional degree of freedom
arising from a nontrivial f(R) function is light, thus
yielding a long-range additional force which requires
considering the background cosmological setting; follow-
ing the procedure set out in Ref. [37] for f(R) gravity, the
parametrized post-Newtonian (PPN) parameter y was
computed, provided that a set of requirements for f(R)
and the NMC function are obeyed. Then the compatibility
has been assessed between a NMC model which accounts
for the observed accelerated expansion of the Universe
and Solar System experiments.

Conversely, the case where the former is short-ranged
enables one to neglect the background cosmological setting
and derive the ensuing corrections to the gravitational
potential [38], which are shown to be of the Yukawa-
type—as previously reported in Ref. [39] for f(R) gravity.
In particular, it is found that the range of this Yukawa
potential is given solely by f(R), with the NMC affecting
only its strength: this is a natural result, since the effect of
the latter vanishes in vacuum, but affects the gravitational
source.

The purpose of this work is thus to further examine those
findings, extending the formalism used in Ref. [38] to
include terms up to order O(1/¢*) in the 00 component of
the metric tensor. The nonlinear correction to the geometry
part of the action is represented by a function f!(R), and
the NMC is represented by a function f2(R) which
multiplies the matter Lagrangian density. Both functions
are assumed analytic at R = 0 and the coefficients of the
Taylor expansions around R =0 are considered as the
parameters of the model.

This work is organized as follows: In Sec. II, the NMC
model is presented and in Sec. III its nonrelativistic limit is
derived. Section IV computes the post-Newtonian and
Yukawa corrections to the metric tensor by considering
matter as a perfect fluid (without assumptions of sym-
metry). In Sec. V, the metric around a static, spherically
symmetric body is computed. Section VI addresses the
ensuing Solar System constraints, namely through pertur-
bations to perihelion precession. Recent observations of
Mercury, including data from the NASA orbiter
MESSENGER (Mercury Surface, Space Environment,
Geochemistry and Ranging) spacecraft, are used to con-
strain the parameters of the model. Finally, conclusions are
drawn in Sec. VIL
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II. NONMINIMALLY COUPLED GRAVITY
The action functional of NMC gravity is of the form [8]

s= [ [r®+ 0+ pwie] e

where f7(R) (with i = 1, 2) are functions of the Ricci scalar
curvature R, L is the Lagrangian density of matter, and g is
the metric determinant.
The Einstein-Hilbert action is recovered by choosing:
f(R)=2k(R=2A).  f*(R)=0. (2)
where k = ¢* /167G, G is Newton’s gravitational constant
and A the cosmological constant.

The variation of the action functional with respect to the
metric g,, yields the field equations

1
(f}l'e + 2f12?£)R;w - Eflg/w

= (VYo =g, O)(fk +2/2L) + 1+ )T, (3)
where f% = df'/dR. The trace of the field equations is
given by

(fk +2fRL)R +30(f + 2f%L) = 21 = (1 + )T,
(4)

where 7' is the trace of the energy-momentum tensor 7.

A rather striking feature of NMC gravity is that the

energy-momentum tensor of matter is not covariantly

conserved: indeed, applying the Bianchi identities to
Eq. (3), one finds that

I&

VvV, " = =2 (¢"L —T")V,R, 5

T = WV, )

a result that, as discussed thoroughly in Refs. [18,40],

cannot be ‘“gauged away” by a convenient conformal

transformation, but is instead a distinctive feature of the
model under scrutiny.

A. Assumptions on the metric

We assume that the metric can be written as a small
perturbation around flat spacetime,
with

Guv = My + h;w’ |h,ul/| <1, (6)

where 7, is the Minkowski metric with signature
(= +,+,4+). In the following, Greek letters denote
space-time indices ranging from O to 3, whereas Latin
letters denote spatial indices ranging from 1 to 3.

In analogy with the post-Newtonian approximation of
general relativity, we expand the metric tensor in powers
of 1/c:
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2 4 1
Joo = =1+ héo) + h<()o) + 0<§>,

1
Joi = h(()? +0 (§>

2 1
where
A :0(—1> forn =2,3,4 (8)
HY c" ’ L L

The above choice of metric is an apt description for an
approximately flat spacetime, and asymptotically
approaches a Minkowsi form if the higher-order contribu-

tions h,(ﬁ,) vanish as r — oo0. The order of the expansion for
each metric component is chosen so as to ensure that all the
physics is derived to post-Newtonian order (see Ref. [41]
for a thorough discussion).

We impose the following gauge conditions [41],

e _1,0 1
hios =5 hiio + O <C—5>
@_Lwo_10@ 1
hij; = Ehjj.i - zhOO,i + 0<? ; )
so that the Ricci tensor R, is expanded as
Loy, log,@
ROO - _Evzhoo - Evzhoo

1 »2 1. o, @ 1
=3IV + 5+ 0(5). o

w1 oo 1
Ry = _Evzh(()i) - %h(go),io + 0(;) (11)
R = —+v2? 4 of 12
i = Ty Vi O (12)

where V2 denotes the usual Laplacian operator in three-
dimensional Euclidean space.
We also expand the Ricci scalar as follows:

1
R=R? 4R +0( ). (13)
C
where R") = O(1/c"), for n =2, 4.
B. Energy-momentum tensor

As in the PPN framework, the components of the energy-

momentum tensor, T}w, to the relevant order, are [41]
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v 10 ) 1
Top = pc2<1 + 3t hé&) + 0<?), (14)
1
Ty = —pcv; + O — ), (15)
C

1
Tij:pvil)j—i-ptsij—i-O(?), (16)
where matter is considered as a perfect fluid with matter
density p, velocity field v;, pressure p, and specific energy
density IT (ratio of energy density to rest-mass density).
The trace of the energy-momentum tensor is given by

1 1
T_—pc2<1+?>+3p+0<?). (17)

If Q denotes the portion of three-dimensional space
occupied by a body with mass density p, and p = 0 outside
of the body, in order for the field Egs. (3) to be well defined,
we require that both the function p = p(r, x) and its spatial
derivatives are continuous across the surface of the body:
p(t,x) =0, Vp(t,x) =0, x€0Q, (18)
where the operator V denotes the three-dimensional
gradient.
In what follows, we use £ = —p(c?>+1II) for the
Lagrangian density of matter (see Ref. [27] for a discussion).

C. Assumptions on f!(R) and f2(R)

We assume the functions f!(R) and f2(R) to be analytic
at R = 0. Hence, the function f' admits the following
Taylor expansion around R = 0,

FIR) =26) aR.  ay =1, (19)
i=1

where the condition a; = 1 allows for recovering GR when
the function f! is linear and f% = 0.

Analogously, the function f? admits the following Taylor
expansion,

PR=Y R (20)

The 1/c¢ expansion of the metric, which is the subject of the
present paper, will show how the coefficients a;, g; affect
the weak-field limit of NMC gravity, in such a way that
some of these coefficients can be constrained by means of
experiments in gravitational physics.

One should notice that the above Taylor expansion of
f(R) around a flat spacetime is in direct contradiction with
the assumption of a nonvanishing scalar curvature R # 0 in
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a cosmological context, as required by the current accel-
erated expansion of the Universe: indeed, in order to
account for dark matter [19,20] and dark energy [24,26]
one must resort to inverse power-law functions f'(R) ~
1/R" (with n > 0); furthermore, no known, universal
exponent n can account for both the dark matter and dark
energy problems.

To account for this, one usually assumes that both
functions f?(R) can be, in general, written as a Laurent
series of the form

fw=3 (a). 1)

e \Rj

which is clearly nonanalytical: as discussed in Ref. [34], the
assumption of a simpler power-law form for f/(R) in a
particular cosmological context assumes that, in the vicinity
of the values for the scalar curvature R ~ R, relevant for
that scenario, one of the terms of the Laurent series above is
dominant, fi(R ~Ry) ~ (R/Ri,)".

Given the above, the proposed Taylor expansion restates
the tension existing between the assumption of an asymp-
totically flat metric and the knowledge that, at cosmological
scales, the metric is dynamical. In this work and in Ref. [38]
it is assumed that the relevant interaction has a range
smaller than the scale of the Solar System: as such, one
needs not consider the matching of the assumed metric
with a cosmological Friedmann-Robertson-Walker space-
time, and no contribution from a cosmological constant is
included, as this would contradict the assumption of an
asymptotically flat spacetime. Conversely, if the interaction
is long-ranged, the contribution from the cosmological
value of the scalar curvature must be taken into account and
the dynamical impact are quite different, as reported in
Ref. [36].

Finally, it should be noted that, from a mathematical
standpoint, the lack of analyticity of an inverse-power law
form for fi(R) may be overcome by resorting to a
regularization procedure, whereas a vanishingly small
curvature scale r is added to the model

riw =3 () @

Jj=— ij

so that, while its dynamical behavior at cosmological scales
is unperturbed if R ~ R yqmo > 7, it can be Taylor expanded
around R = 0.

III. NONRELATIVISTIC LIMIT

In this section, we compute the quantity h(%), which
yields the nonrelativistic limit of NMC gravity. First, we
compute the trace of the field Eqgs. (4) at order O(1/c?),
obtaining
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R®?) 47G
V2R - = "= (p—6q,V?%). 23
6, 34, (p—6q,V°p) (23)

In the following, we assume that a, >0 and set
m?> = 1/(6a,).
The above admits a Yukawa-type solution,

RO = G
3c%a,
3 e_m‘x_ﬂ ’
< [y bty 60Ty (24

We now introduce the Green function

1 e—mlx-yl

G(x-y) = (25)

e

which satisfies the following equation in the sense of a
distribution,

(V2 —m*)G(x —y) = 6(x —y). (26)

where (x —y) is the Dirac distribution.

Hence, if the mass density p is zero outside of a body
which occupies a region Q of three-dimensional space,
using Green’s identity and the boundary conditions
Eq. (18), we have

/ Vp(1,y)

—m|x—y]
Ix —y

ry

e_m‘x_y‘

= —4mp + mz/p(t, y) d>y. (27)

x —yl

Collecting the above results we find for the Ricci scalar R at
order O(1/¢?):

R 837G a1
C2 a,
G ql / e_m‘x_yl 3
— (1= t, &3y, (28
+362a2( a2> p(1y) gy Y (28)

Note that, if a, < 0, then the solution for R® would be
oscillatory, which would lead to an unphysical behavior at
asymptotically large distances.

The 0 — 0 component of the field Eqgs. (3), written at
order O(1/c?), is

2 1
V2 (h(%) +4a,R®) — %pcz) =R® — ;pcz, (29)

where the O(1/¢?) contributions to Ry and T, have been
taken into account using Eqs. (10) and (14), respectively.

024017-4



1/c EXPANSION OF NONMINIMALLY COUPLED ...

Combining Eq. (29) with the trace Eq. (23) yields the
modified Poisson equation

) 162G 87G
\& <héo) —2a,R®) + 741,0) == ar (30)

which admits the solution

2 U 87G
hg)o) = 2(; +aR?) - 7%/)) (31)

where U is the usual Newtonian potential

- p(t.y)
U=G / oras (32)

x -

In the particular case of a body with a static and spherically
symmetric distribution of mass, the solution Eq. (31)
coincides, outside of the body, with the metric found in
Ref. [38]; in the case of pure f(R) gravity, i.e., g; =0, it
reduces to the solution for h(%) found in Ref. [42].

Eventually, the solution for h(%) shows that the non-
relativistic limit of NMC gravity, outside of a massive body,
is constituted by the sum of the Newtonian potential plus a
Yukawa potential proportional to R?). The characteristic
length of the Yukawa potential is given by 1 = 1/m, as in
f(R) gravity, whereas the strength of such a potential
depends on both a, and the NMC parameter ¢;.

The gravitational effects of this Yukawa potential and
consequent experimental constraints on the parameters a,
and ¢; have been discussed in detail in Ref. [38].

IV. POST-NEWTONIAN + YUKAWA
APPROXIMATION OF NMC GRAVITY

In this section, we compute a parametrized post-
Newtonian plus Yukawa (PPNY) approximation of NMC
gravity (see also Ref. [39] for f(R) gravity): this reflects the
impossibility of expanding a Yukawa perturbation
~(1/r)exp(=r/A) in powers of 1/r, so that both contri-
butions must be considered. More precisely, in the follow-
2
o
hg) and h&? , by solving the field equations of NMC
gravity.

ing subsections, we compute the metric contributions %

A. Solution for h,-j at second order

The i — j components of the field Eqs. (3), written at
order O(1/c?), are

1 2) 167G
V2 <§hll —2a25,-jR(2) +T(]1[)5U
2

1 c
+ §5in(2) + 202R,<i2/> = DPij (33)
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where the O(1/¢?) contributions to R;; and T';;/(2x) have
been taken into account using Eqs. (12) and (14), respectively.

In order to rewrite Eq. (33) in the form of a Poisson
equation, we observe that, using Eqgs. (10) and (12) at order

O(1/c?), we have
1
R =2 (V2h$) - v2n)y. (34)

Using this result and the 0 — 0 component of the field
Egs. (29), the trace Eq. (23) can be rewritten as

647G
5P (35)

V2(hit + Shig) = ==
Moreover, using the Poisson equation for the Newtonian
potential, V>U = —4xGp, we have

1
=—=——V2U .,
Pil = " anG "

while the solution (31) for ) and Egs. (34)—(36) enable to

write

(36)

2 487G
R(lzj) = V2 <6612R’(12]) —?U’,’j —TQIP,ij>' (37)

Now, substituting Egs. (36) and (37) into the i — j compo-
nents of the field Egs. (33), and using again Eq. (34) of R(?),
we obtain the following,

I 2
V2 {2 1 + a,5,;R® + 12a3R)

4 827G
-2 (ay—q,)U;; - 76]1(;051‘; + 12ayp ;)

4zG

This is a system of decoupled Poisson equations with
solution

=2

ij

v @)
?611 - Clzéin(z) - 12a%R7”

4 87G
+?(a2_QI)U,ij+7QI(p5ij+12a2p,ij) . (39)

In the case of pure f(R) gravity, i.e., if ¢, = 0, the above
reduces to the solution for hsz») found in Ref. [42].
Notice that the obtained solution is not diagonal, and
hence it is not in the standard post-Newtonian gauge. In a
subsequent section, it will be written as a diagonal spatial
metric by means of a suitable gauge transformation.

B. Solution for h; at third order

The 0 — i components of the field Eqs. (3), written at
order O(1/c?), are
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3 2 4a 2 2c C
V2hy) +Zhé0>,0i +TZR,(O? — DPoi = PV (40)
where the O(1/c?) contributions to Ry; and T; have been
taken into account using Eqgs. (11) and (15), respectively.

In order to solve Egs. (40) we use the following set of

PPN potentials [41],

t iz
v, — G/p( Y)vilty) 5
x -l

Y LIS RLESI ST
x -yl
Using the continuity equation
dp
o +V.(pv) =0, (42)
one can show that (cf. Ref. [41])
vz(Wi - Vi) =2Ug. (43)

Then, arguing as in the previous subsection, we have

) 2 2 487G
R<ol> =V <6azR,(o,~) 2 Uoi — 7 C]lﬂ,gi) .
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Inserting Egs. (43) and (44) into the O — i components of the
field Eqs. (40) and using the solution (31) for /3, we obtain

10 1
V2| 4302 g% _ 2 U v, W,
{01"' 0i c( -q1) 0i — 23 +2

240xG 162G

az%ﬂ.m] = o3 pPv;.

(45)

This is a system of decoupled Poisson equations with
solution

3 7 10
h((n):_;v 203 -3 Wi t3 3 (ay —q1)U g
2407TG
-302 R<03 + arq,p,0:- (46)

Again, in the case of pure f(R) gravity the above reduces to
the solution for hg) found in Ref. [42].
C. Solution for h, at fourth order

The solution of the 0 — 0 component of the field Egs. (3)
at order O(1/c*) is more involved and its computation is

poi=— V2U . (44) deferred to Appendix A, leading to the lengthy expression
4r G shown below,
|
2 327zG 327rG 1287°G? a3 12
hs) =~ U - 2a3R" - 4—UR—|— a1pU + a2q1pR === q1p* =36 3 Roo + 5 (a2 = 41)U oo
288zG 8 153671262
= aqipo + (a2 = 1) |[VUP = 2463| VR = == a,qi|Vpl* - 86%(2642 +¢)VU - VR
64er 3847:G

q1(2a, + q,)Vp - VU +

647xG>

8G G
+ ?‘hv(pz) - F(az —g)V(Vp-VU) + 24

4G 6G
+ ?V(PUZ) + FV(P)

G
- (16a2 +20g, + 8Z—2>X(pR) +

167G?
6¢

G

647G?

8G
+?‘12(‘12 —q1)X(Vp - VR) —T%(az

a3V(Vp - VR)
xRy + 2 (ay + 2\ x(r2) +
67c? 4z \? a,
8G
4 —§)X(/’2) T34 {az —q1

2

4G 2G (8
24,9p- VR - ivm o0 -2 (Se =500 )V

1922G?
—Taquv(|vﬂ|2)

(2 —Z—;)}X(Vp -VU)

2G
+ ? V(pH)

~aX(pU)

2G

- q1)X(|Vp]?) - X(p)

2G 1 2 q,
1 —— | X(pIl) = —1/= 1 —=— %00 47
+3C < 612) (pII) 64\/332( a2>)(.00 (47)
where, for brevity, R denotes R(?), and the Poisson and Yukawa potentials } and X, respectively, are defined by
Q 1y —m\x vl
v - [20e 0y . (48)

while the potential ¥ is given by
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7-G / p(t,y)e"x Yy, (49)

In the case of pure f(R) gravity Eq. (47) differs from the

solution for hgg found in Ref. [42] for some coefficients of
order of unity. The reason of such a difference is explained
in Appendix A.

The expression for h(()o) is not in the usual PPN form,
since it contains both the time derivatives U g9, R g9, £.00
and } o, and terms depending on the gradients VU, VR and
Vp. In the following section, these will be eliminated by
means of suitable gauge transformations, thus yielding a
more adequate PPNY form for the metric.

D. PPNY metric

So far, the metric has been computed in the gauge
specified by conditions Eqgs. (9), which are convenient in
the PPN framework [41]. However, the solution Eq. (39)
for the metric perturbation h;; at second order is not
diagonal, hence it is not in the standard post-Newtonian
gauge. Moreover, we recall that the metric perturbation /g,
at fourth order also contains terms that do not appear in the
standard post-Newtonian approximation.

To correct this, we follow Ref. [42] and make a further
gauge transformation

Xt — xH 4 (50)
so that the metric perturbation transforms as

h/w - h;w vyéﬂ - vﬂgu + 0(§2> (51)
Following the calculations depicted in Appendix B, which
work out the gauge transformation above and also the
transformation to a form with no gradient terms, we finally
arrive at the desired metric coefficients.

PHYSICAL REVIEW D 95, 024017 (2017)

In order to write the metric we need to define the
following potentials. We denote by ) the Yukawa potential
generated by a distribution of masses with density p:

e—mx-yl
=G [ sy &y, 52
9 oy (52)
so that Eq. (28) can be written as
1- G
R = y +— (53)
3c%a,

where we define the dimensionless parameter 8 = ¢,/ a,.
Next we introduce the standard PPN potentials [41],
constructed with the Poisson kernel:

0 =GV(pr*), P, =GV(pU),

= GV(p), (54)

and the analogous potentials, constructed with the Yukawa
kernel, which are characteristic of the NMC gravity model:

% =GX(pU), Z3=GX(pIl), Z,=GX(p). (55)

Moreover, we introduce the following new potentials
s =G2V(p?).

s =GX(p?), ©;=GX(pv,). (56)

and
p(t.y)[v(ry) - (x

Yl:G/
x —y|’

o e b

x —y|?

y)](x y)l —m\x y\d3

I -y); e gy,

(57)

The final expression of the metric tensor is the following,

goo:—1+2%+(1—9)$)}—%U2+%(2®1+2<I>2+<I)3+3<I)4) 24{3( 9)22—1—;(1—6’)23—24}
+g9(4a2+11q1)¢5+8 9( ~2 1+a3—Z" gZ—i)zS+(1;9){—5(1—9)y2—§w—lgmzx(Uy)
_9l( az‘g){ V(?) — (1+2a2> (yZ)} _%(2—9) 8a2y/1+2\/; 2 + 8asys;
_;—1(1—9)“2[\/%11144‘21//5—21//6—\/%(W*’Ws)—;;l/@} +%<—2az+ 1+a;—(jl—§z—j>l[/1o},

90i:—2lc3vz 21 W+613(1 9)(&‘&‘%%)

g = {1—%2?—(1—6)3%3)}5,7, (58)
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where the potentials w,; (i =0,...,10) are given in
Appendix B.

V.STATIC, SPHERICALLY SYMMETRIC METRIC
AROUND A BODY WITH UNIFORM DENSITY

In this section, we give the expression for the PPNY
metric in vacuum, around a spherical body of radius Rg and
with a static, uniform mass density: hence, we assume
p(t,x) = const inside the body and » = 0. This is a simple
model which allows us to achieve an explicit expression for
the metric amenable for computation of orbits around a
body (either the Sun or a planet) in the Solar System.

Note that such a mass density does not satisty the
boundary conditions Eq. (18) at the surface of the body.
Nevertheless, in order to satisfy such boundary conditions,
we may model the mass density of the body with a constant
value in an interior region and a sharp transition in a thin
layer close to the surface. When the thickness of the layer
tends to zero, the various potentials appearing in the PPNY
metric converge to the potentials corresponding to a uni-
form density model, since such potentials depend only on
the density p and not on spatial derivatives of p. Hence, the
uniform density model is an approximation (limit case) of a
density model with a thin layer. In what follows, we set the
origin of the spatial coordinates at the center of the
spherical body and set r = |x|.

A. Effective mass

In order to find the expression for the metric, we first
observe that all the potentials in the g, coefficient of the
PPNY metric which involve the Poisson integral—i.e., the
potentials of the type V(Q) with the exception of V()?),
under our assumptions on the density p—are proportional
to 1/r outside of the body, whenever r > Rg. The potential
V()?) has to be decomposed into the sum of two potentials
Vi(D?) + V,()?), where V, is proportional to 1/r in
vacuum, while ), contains other functions of r (see
Appendix C).

Hence, we can take into account the potentials propor-
tional to 1/r, for r > Ry, absorbing such contributions in
the effective mass Mg of the body, defined as follows:

GM 1
; S = Ut (20 +20, + ®; +30,)
8
+§§9(4a2 + 116]1)<I)s
(=91 (-9

14
- 21 (2-0
2C2 171 a, V1<y ) + 9 ( )U/O ’

(59)
where w, = GV(p)Y). In order to compute the effective

mass, the potentials in Eq. (59) are evaluated under the
assumption Rg << A= 1/m (this assumption will be
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justified in Sec. V B). Then, keeping powers (Rg/4)" with
n <2, the following expression of the effective mass
follows:

GMy < Rg\ "
M¢=My|l B, | — , 60
S N|: +Rsc2r;2 n</1>:| ( )

where My = [ p(x)d’x is the Newtonian mass, and the
coefficients B, are given by

0
B_2 25(4"— 119),

B—l == 0,

14

B, =—(1-0)(12 - 50),

o Ol —

B, 1 —0)(—10 + 30). (61)

:E(

In all the potentials of gy, which are divided by ¢* (i.e., all
the potentials with the exception of the Yukawa potential
Y), we can replace the Newtonian mass with the effective
mass keeping the accuracy of the O(1/c¢*) approximation.

B. Yukawa potential

In the case of pure f(R) gravity, i.e., g = g, =0, it
turns out that most of the terms in g, are negligible because
of exponential suppression [42]: this reflects the require-
ment for a short ranged Yukawa interaction, so as to make it
compatible with observations [37]. Conversely, in NMC
gravity the Yukawa interaction can be long ranged, as it has
been shown in Ref. [38], so that terms which are not
exponentially suppressed arise in gq,, which in principle
allow to constrain the theory by means of Solar System
experiments.

Notice that the above is strictly valid only in the case
where the density vanishes outside the central body, as
assumed throughout this study. However, if one considers a
nonvanishing density p # 0, a chameleon effect may arise
where the dynamical impact of a nonlinear f(R) (with a
range up to the Mpc scale) is hidden from local tests of
gravity, due to the reduction of the related Compton
wavelength in regions of deep gravitational potential wells
[43,44]. The possibility of achieving a chameleon effect in
the context of NMC theories is alluring, given the existing
coupling between geometry and matter, and shall be
considered in a future work.

We now observe that, assuming a constant density p, all
the potentials in the gy, coefficient of the PPNY metric
which involve the Yukawa integral, hence the potentials of
the type X(Q) with the exception of X(U))) and X())?), are
proportional to exp(—r/A)/r outside of the body, r > Ry
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(where 4= 1/m = \/6a,). The potentials X(U)) and
X()?), evaluated in vacuum, contain both terms propor-
tional to exp(—r/A)/r and other functions of r (see
Appendix C).

We can take into account the potentials proportional to
exp(—r/A)/r, for r > Ry, absorbing such contributions in
the effective strength a of a Yukawa potential, which yields
the following contribution to gg:

(62)

The expressions of all the potentials of the type X(Q)
appearing in g are listed in Appendix C. Assembling such
expressions, it turns out that the effective strength « is a
function of the following four dimensionless quantities

PHYSICAL REVIEW D 95, 024017 (2017)

We assume that the range of the Yukawa potential satisfies
the condition 4> Ry, and we expand the potentials in
power series of Rg/A. Again, we remark that in the case of
pure f(R) gravity, if Ry is the radius either of the Sun or of
the Earth, then the condition 4 > Ry is not compatible with
Solar System observations [37,39].

Expanding in power series of Rg/A, and using the results
given in Appendix C, it follows that o can be decomposed
into a zeroth-order and a first-order contribution on 1/c:

a—a0+ ap,

2RS

(1-0) {1 + 110 <§S> +ﬁ <%>4}

o

L»JI'—‘

2 n
built with the parameters of the considered NMC model: ¢, = Z A, (%) ; (64)
n=-2
R
o=1 =% - TS (63) . N .
) a ) with the coefficients A, given by
|
4T 9 1
A, =——01 “u)-—e
-2 99- + l/+9< 8”) 4H:|,
A_1 == 0,
17 63 17
Ag=——1(25+12 0(11 — 184 —9) — 6*( 31 —— 63
0 45_+v+( 1 —9v) < 4/4) 2}
I ) [ R Ry R
Alz—ﬁ(l—é) —20 — 360 + 206° + 360u — 24v + 36Ei —27 +9(1-0)(2+p)|Ei 5 —Ei{ -3—= P ,
3195 1057
A= -55 {1121 — 2554 + 4400 — 59(228 + 3004 + 865) — 62 <1215 - ) 793} (65)

where Ei(x) denotes the exponential integral function:

+oo e_t
—/ —drt.
—x t

In Sec. VI, perihelion precession will be computed under
the assumption 4> L, where L is the characteristic
distance from the planet to the Sun, and by Taylor
expanding the involved quantities to second order in
L/A. For the purpose of achieving such an order of
approximation, in Eq. (64) we keep powers (Rg/4)" with
n <4 for ay (since a, will be multiplied by 4> in some
terms of the equations of motion) and n < 2 for a;.

We conclude this section by observing that, if the
condition 1> Ry is not satisfied, then most of the terms
in ggo are exponentially suppressed if » > Ry, so that they
become quickly negligible by increasing r outside of the
body. The only potentials which are not present in GR and
are not exponentially suppressed (see also Ref. [42]) are v/,
@if either A < Rg or A= Rg) and wy,, w3 (if A= Ry).

Ei(x) (66)

[

However, for a static, spherically symmetric (not neces-
sarily uniform) mass density p = p(r), we find that such
potentials vanish identically for r > Rg.

C. Further potentials

Using the expression Eq. (58) for the PPNY metric and
the results given in Appendix C, it turns out that the
coefficient gg, contains the following combination of
functions of r:

r

2O () Yy

2 (GMg\?

_?< S> (14 pre~* + pre™ /%)
2 GM

-2

(67)

with the coefficients
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p-so-afro (3]

3
a-go-ai 3]
b=50-0)5%,

G=gi-0p%,
¢3:—é(1—9)2(1+§>%, (68)

and the three functions F;(r) given by

2
Fi(r)=e"*In i P ]
Ry A

2r
Fyo(r) = e 24 42 Ei[ =21,
or) =e A 1< /1)

F3(r) = e"/Ei (- %) — "IEi (— %) (69)

D. PPNY metric around the spherical body

Collecting the results of the previous sections, we find
the expression for the metric tensor,

GM
I"C2

2 (B (R lam) + G + 6F0)

900:—1+2 (1"’(16_"//1)

1
+ - [1 + ﬂle—r/l + ﬁze_zr/'{]> s
r

90i =0,

GM
gij = |:1 +2 Zs(l —ae_r/’l)} 511 (70)

rc

VI. PERIHELION PRECESSION

In this section, we use the previously obtained expres-
sion for the PPNY metric, Eq. (70), to assess the impact of
the NMC gravity model on the precession of the perihelion
of closed orbits.

Alternatively, a coordinate transformation to the usual
nonisotropic Schwarzschild frame could be performed (see
Refs. [45-47]). As shown in Ref. [48] for the case of
general relativity, both approaches naturally lead to the
same result, highlighting the general covariance of the
theory, maintained by the NMC model here considered.

The action for a point particle with mass m is given by

dx* dx¥
S = mc/d’r[l +f2(R)]“_g””di:d_i’ (71)
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where 7 is an affine parameter (which, for the case of
timelike geodesics, can be identified with the proper time).
This is invariant for reparametrizations of the form
x*(7) — x#(7) 4+ 6x#, so that variations with respect to
ox* yield the equations of motion [31],

sz”’+ o dxtdxt f2(R)
ds> "™ ds ds 1+ f*(R)

9*'R 4, (72)

clearly showing that the NMC gravity model under scrutiny
leads to a deviation from geodesic motion [8,40].

Naturally, we are considering the test body to travel
outside the central mass. However, this does not imply that
the scalar curvature vanishes, as Eq. (53) shows to order
O(1/¢?). Furthermore, one must consider the contribution
to this term of both the Yukawa potential given in Eq. (52)
generated by both the central body as well as the test body
itself, Y = Vg + Vp, thus giving rise to the possibility of a
self-acceleration.

If the test body has inner structure [e.g., a density
pp(t,x)], this will further complicate the computation of
the additional force arising from the nonconservation of the
energy-momentum tensor depicted on the rhs of the above.
As such, we consider that the test body is homogeneous and
static, pp(t, x) = const, consistent with the approximation
considered in the previous section for the central body itself
(for a thorough discussion of the effect of the inner
structure on the nongeodesic motion induced by a NMC
model, see Ref. [35]).

We must still consider the effect of the Yukawa potentials
arising both from the central body as well as the test body.
For this, we resort to Eq. (C1) of Appendix C, where this
quantity is computed assuming a homogeneous density p,

o e_r/'1 1 RS 2
Y = GM; {1 15 (7) ] (73)

r

Anticipating the comparison with the observed precession
of the perihelion of Mercury, we may compute the
proportion between both contributions,

Vg Myl )
Vs Mgr
where condition 1 > Rg was considered, L ~ 55 x 10° m
is the characteristic distance from Mercury to the Sun and r
is the distance to the centre of the planet. Since
Mg ~1.7x10""Mg, we find that the Yukawa potential
created by Mercury itself is only dominant up to a distance
to its centre r < 10 km ~ 0.3% of its radius. Thus, we
conclude that we may safely disregard the self-acceleration
of Mercury due to the Yukawa potential it generates, and
focus solely on the contribution of the Sun, ) ~ ).

In order to compute perturbations to the Newtonian orbit,
it is useful to write the equations of motion in the form
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P ‘ W\ oy

e —<F2ﬁ—rgﬂ;)xaxﬂ +—N(r). (715
where dot denotes time derivative, N(r) is the additional

potential due to the nonconservation of the energy-momen-
tum tensor,

_ 290 +v?/c? g +2q,R
gjj 1+q1R+CI2R2

N(r) R(r),  (76)

and the factor g is due to the transformation ds — dt. To
the desired order O(1/c*) on the metric g,, and the scalar
curvature R, we have

c? v?
N(r) =~ 022 [R(“)'(r) + <1 - hig — h)

+2 g [2; - e} )R(z)’(r)} . (77)

Here and in the sequel the prime denotes derivative with
respect to r. Using Eq. (53), the potentials defined in
Appendix C and the definitions Eq. (64), we can write the
scalar curvature to the required order,

1-6 6ay GM 1
Q) 9 Ty 0TS —r/a _
R 2 )2 Y A2 rc? ¢ + 0(c4>’

4
R®) + RW = ?Yg[(l - 0)U' - 3Y})]

6 3
tap {czY—i— (1 —EM)Y%

(GM)*
Rsr

(&1Fy +C3F3)]’ (78)

where we define the Yukawa contributions

GM
Yo(r) = ag——>e"/%,
GM)?
Yi(r)=a ( Sz e/,
RSrC

GM
Y(r) = Yo(r) + ¥1(r) = a— Sevrlt. (79)

We thus obtain the expression below,

4 2 _ 2 v /
N(r) == ||4U+v" =" — 2—6‘—3,u+25 Yol|Y,

c

2
- (:ZY’1 + 4/12Y6Yg — 5/12(1 -0)(U'Y,+ U'Y})

o2 s (-2

(30)

valid to order O(1/c?).

PHYSICAL REVIEW D 95, 024017 (2017)

In the following, we set

GMy)? [1
Py == 1k et et
r r
13
+ — CiFi r :| . (81
7 G )
Using the metric Eq. (70), the equations of motion yield
dv GMsl'
— = A, 82
dt r + (82)

with the perturbative force

r 2

[

L w-vy+ Nk
C'2 C2 r
=AY AL (83)
v r

where v = |v|, and A,, A, are defined implicitly.

To compute the precession of the perihelion, we follow
Refs. [48,49] and begin by recalling that, in Newtonian
Mechanics, orbits are ellipses (with perihelion at an angle
¢ = ¢p), described by

- L
1 +ecos(¢p—pp)’

where e is the orbit’s eccentricity, L is the previously
mentioned semilatus rectum,

1 1/1 1
z—z(ﬁ:)’ (85)

and r, and r_ are the apoapsis and periapsis, i.e., the
distances to the central body at aphelion and perihelion,
respectively. The following relations are also valid,

r(#) (84)

dp /GM,L
da 2

dl"_ GMS . _
7N sin(¢ — ¢p),

dr  elh|sin(g — bp)
dt 1+ ecos(¢p—p)’
GM,

r-v=r

v’ =

[1 4 e+ 2ecos(¢p — ¢p)],
h| = \/GM;L,

The constants of motion of closed Newtonian orbits are not
only the total energy and angular momentum (per mass),
h =r x v, but also the Runge-Lenz vector,

A| = eGMs. (86)
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GM
—7Sr+vxh, (87)
r

A =
which points towards the perihelion.

Thus, in order to compute the precession of the latter due
to a small perturbing force, it suffices to obtain the (small)
variation of the Runge-Lenz vector along the line
perpendicular to both A and the angular momentum,

dip o
—=(hxA) 4, 88
ar A A (88)
using
A
(il—t:Axh+vx(rxA). (89)
Integrating, we can finally get
2z dpp dt
Opp = ——d
b= [
2z d, L?
:/ e Sdg.  (90)
o di [T+ ecos(d— )]

In the case under scrutiny, inserting Eq. (83) into Eq. (89)
yields
dA A 2A
— =" h+—¢ h, 91
o p rxh+ ; vV X (91)
|

- a-al 2]

GM;
R‘S'C2
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so that Eq. (88) becomes

dgp 1 [ L L :
e _ 1 {A,(l——)—I—ZAUu]
rov

dt e GMS r
R
_e GMS

2A,sin(¢ — ¢p) _ B ]
) L/l +e? +2ecos(¢p — ¢pp) Arcos(d = br)|.

(92)

Notice that A, = —4U’iv/c* has no dependence on the
additional parameters of the model under scrutiny.

In the following we consider the regime A > L ~ r and
we Taylor expand the involved quantities to second order in
r/A (except in the nonrelativistic terms); as such, using
Egs. (83) and (90), we may write

1-0
3e

67[GMS
="

/0 1) cos( — dp)d. (93)

with

owa(oc3) el B - G

Ry 1 Rs

- %ﬂ%(l _9)9<&)3+L(1 =000+ 3= 4) =20 =92+ (1= &)(1-0)

15

r

r 10 L
10

+(1_9)<?+g(1_9)_‘9>1e%

3 E93 88 —493u s 228 + 2400u + 8651/9 3 71 +440v + 270u
600 560 2100 1050
1 0334 — 6>(124 — 40(11 — 18u — 4(2 12
—5(1—62)(1—9)£RL+ 3 ( 63u) + 40( 8u—9v) +4(25+ 120)
s

r 2
120 Rg

+2149[-1192 +e<16-zﬂ> +4+61/} < ’ ﬂ _Rs [(1 =) 1862 — (17 = 184) + 1 — 124]

Rg

0 9 r\?3
Z =116 4+0( 16 —= 4+6 —
+3{ - ( 2ﬂ>+ - U} <RS) ]

3

3

Ry 6334 —0%(124 — 63u) + 40(11 — 184 — %) + 4(25 + 120)

F(1-e)(1-0)5

L
4

(=000 13-4 -2+ %5+ Lo -0

3r 15

=)

so that the familiar result from GR is recovered by setting 8 = 1, as expected (except in the case of a perfectly circular orbit,

e = 0, when the perihelion is ill defined).
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In the above, the exponential contribution may be first expanded to third order in the eccentricity e

(1 +%) exp (-%) ~ exp (—%) x {1 +%+e(%)2cos(¢—¢p) +%2 (%)2(%—3)0052(45—45[,)
S (st n)owo-s]

so that the third power leads to a contribution of second order in e to Eq. (93). The remaining terms in Eq. (94) may be

(95)

directly integrated, using

1

3ﬂe<1 +Zez) n=-3
e n=-1
0 n=20
2 1 3
— 1= X —7e 1+—€2> n=1

2n COS X e < \/1—€2> ( 4

/7dx: (96)
o (1+ecosx)" 2re )

et

(4+e )N
(1 )7/2

However, the ensuing expressions are too cumbersome, so we choose to instead also expand the ensuing integral to second

order in e: the overall result is then given by

opp =

67xGMg r 3 L 1/[/L\2
= 1-0)2>1¢1 5= 1
Lz 9)3{ “L z+8</1>”{+

wl3) () e (-3)

+(1_0)7;2G£§{[g[‘1192+9<16—§/4)+4+6u}[—2(2+3 2) 4 (4+10€)% <2+§ 2><%ﬂ

—%(2 +362)(6°34 — 02[124 — 63y] + 46[11 — 184 — 9] + 4[25 + 120]) (ﬁ) 2} <£)3
(1 -e)(?uu _O—40+ e [8%(,41 0 —29)D (I)

%1(1_9)([9(9—4+3u)—2’/‘9] {1+; <Iils) } _9>}.

Notice that the above collapses to d¢pp = 47GM/Lc?
when the model parameters 6, p and v vanish and

A — oo: this falls short of the GR prediction of 5¢§JGR)
62GMg/Lc* = 42.98" by a factor 2/3.

The prediction for the precession of the perihelion
assuming a PPN metric [41] together with the Newtonian
effect of a quadrupole moment J, = (2.2 40.1) x 107’
[50] of the Sun is given by

2(1+y)-p
3

67TGMS

3
+3X 1000 | =7

opp =

(98)

2 Rg
? +§(1 —0)0(4+€?) {1 +1ng0 (%)2] <%>2

(97)

L

[

with the most stringent bounds on the PPN parameters f [51]
and y [52] given by

p—1=(-414+7.8)x107,

y—1=(2.1£23)x 107, (99)
The bound on f results from recent observations of Mercury,
including data from the MESSENGER spacecraft.

The result ¢pp = 4nGM/Lc? is equivalent to having
p =2y [41]. In particular, this is precisely what stems
from the extraneous comparison of f(R) models with a
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Brans-Dicke theory with parameter w = 0, which incor-
rectly leads to y = 1/2 and ff = 1.

Conversely, inspection shows that setting @ = 1 immedi-
ately yields the GR prediction for the precession of the
perihelion, independently of the remaining model parame-
ters: this reflects the dependence of the model parameters «,
pis Ci~1—0, and confirms the previous findings of
Ref. [38], where it was noted that the vanishing of the
zeroth-order coupling oy = 0 when @ = 1 evades the strin-
gent constraints of Yukawa forces existing for characteristic
length scales 1 mm < 4 < 1000 AU [53].

Using the experimental bounds for the PPN parameters /3
and y given in Eq. (99), we find that the additional
perihelion precession due to the model under scrutiny is
bounded by

G
Spp — 55"
GR
sy
e, = —1.367 x 1075,

& < < &,

& =69 x107. (100)

Hence, Eq. (97) for 6¢pp permits us to obtain the admissible
region in the four-dimensional parameter space with
dimensionless coordinates 0 = q,/a,, p=as/a3, v=
g»/a3 and Rg/A = Rg/+\/6a; < 1.

For the computation of exclusion plots, we use the values
for the mass of the Sun, M, = 1.989 x 10** kg, the radius
of the Sun, R, = 6.957 x 10® m, and the semilatus rectum
of Mercury, L = 5.546 x 10'° m.

Using Eq. (97), the bounds Eq. (100) can be written in
the following form which involves a linear combination of
parameters u and v,

L
e < R—FA(G)e‘L/’l + PO+ 0,(0)v + 5,(0) < e,
g

(101)

where R, = 2GM,/c? is the Schwarzschild radius of the
Sun, and P,(0), Q,(0), S;(0) and F;(0) are polynomials in
6 which depend on powers of the dimensionless quantities
L/A and R /2, and do not depend on c?.

For fixed values of L/4 and 0, the admissible region
described by bounds Eq. (101) is a strip in the y — v plane
bounded by two parallel straight lines. The bounds
Eq. (101) take a simple form in the following particular
case. Assume |1 — 0| < 1, which implies that the strength
of the Yukawa potential is small in the nonrelativistic limit,
and also assume (L/2)|1 — 6] < 107°. Then, neglecting
(1 — 6)?* with respect to |1 — 6], and neglecting (L/1)?, >
with respect to unity, the bounds Eq. (101) can be
approximated as follows:

0 L L\3/1 v 6
Za-0(1-=) (=) (-ou-2-2 .
o <zi-0(1-5) (z) Gou-5-3) <=

(102)
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10[

—-10t,
—1.x1078

—5.x107° 0 5.x107° 1.x1078

6-1
FIG. 1. Exclusion plot for the model parameters (0,v), for
A=50L and u = 0.

In this case, the slope m of the parallel lines and the width A
of the strip in the v direction are given by

3 R-\3
=20 A= iC)
m 17 9/1<L>

& &
—. (103
0|1 —6|(A-L) (103)
If the above assumptions are not satisfied, then the general
expression Eq. (101) of the bounds has to be used. Using

10f

—10},
-1.x1078

-5.x107° 0 5.x107° 1.x1078

6-1

FIG. 2. Exclusion plot for the model parameters (6, u), for
A=50L and v = 0.
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1.x107° f
8.x10710 ¢
6.x10710
~ 4.x1070 ¢
N
2.x10710
0 L
-2.x10710 ¢
1.0 12 14 16 18 2.0
fog—"—
g1 AU
FIG. 3. Exclusion plot for the model parameters (4,8), for
u=v=0.

Eq. (97) for d¢pp, further exclusion plots for the four
independent quantities 6, u, v and A are depicted on
Figs. 1-5, using the previously considered experimental
bounds for f and y. The admissible region corresponds to
the grey areas in the plots.

Starting in the mid 2020s, the BepiColombo mission
will offer the best possibility for tightening current con-
straints on the PPN parameters, shown in Eq. (99): indeed,

15000 [’
10000
> 5000 ¢
0 L

—5000 |, . . . . .

1.0 1.2 1.4 1.6 1.8 2.0

lo, A
g1AU

FIG. 4. Exclusion plot for the model parameters (4,v), for
p=0and O={1+10"1 142x 107131410712} (light, medium,
dark grey).
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15
10t
>~ 5+¢
0,
_5»‘ ) ) ) ) B
1.0 1.2 1.4 1.6 1.8 2.0
tog—"—
g1AU

FIG. 5. Exclusion plot for the model parameters (4,v), for
p=0and 0= {1+107191+2x1071°,1+ 107"} (light, medium,
dark grey).

the radioscience experiment onboard the spacecraft is
expected to yield an order of magnitude improvement on
p [54] and y [55],

|p—1|<7.81x107°,

ly —1] £5.07 x 107°. (104)
Using these figures to derive the allowed range for the
model parameters mentioned above does not change the
corresponding exclusion plots qualitatively, but naturally
leads to a reduction on their admissible bounds of approx-
imately one order of magnitude.

VII. CONCLUSIONS

In this work, we have computed the metric solutions for a
NMC gravity model around a Minkowski background. It is
shown that, up to order O(1/c*), the corrections depend on
the f!(R) and f?(R) functions and cannot be expressed in
terms of powers of 1/r: indeed, it is found that the obtained
solutions must be expressed in the PPNY approximation, as
first proposed in Ref. [38].

Comparison with experimental results on the precession
of the perihelion of Mercury allows us to establish con-
straints on the model parameters, and further Solar System
tests using the obtained results for the PPNY metric could
yield more stringent bounds on the latter: in principle,
this opens up the possibility of addressing a wider class of
physical situations with great accuracy, as the results
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obtained in this work might be relevant for distinguishing
between GR, f(R) and nonminimally coupled theories
from the analysis of detailed observations data in the future.

As discussed in Sec. V, the results reported here depend
crucially on the assumption of a vanishing density away
from the central body: following the interest around the
possibility of implementing a chameleon effect in f(R)
theories that suppresses the dynamical impact of the latter
at Solar System scales, we expect that an additional NMC
should modify this effect, displaying the impact of non-
minimally coupling matter with geometry.
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APPENDIX A: EQUATIONS FOR h;)

In order to compute hg(‘)) we need the corresponding term
R™ in the expansion Eq. (13) of the Ricci scalar; this can
be obtained by solving the trace Eq. (4) at order O(1/c*).

In the following, in order to avoid a cumbersome
notation, we replace the symbol R by R. Using the
gauge conditions Eq. (9) and the trace of the field equations
at order O(1/c*) leads to the following equation for R(*):

64rG q,

3(13 2
sz(4> - 6—02R(4) - ?R,OO + 2—azv2R2 + 2a2RV2R —_ ? Usz + C4 (Clz —_ ql) a_2 Uljplj

167G 8

- q1 (Psz =+ szﬂ) + %VZ(PR) + 24“%R,in.ij s (ar — q, )U,in.ij
2

384nG 47G g 872G q 162G g

———5—Gq1p R ——2—1,0R +—4—IP,00 7T “Luv?p
C C ap C a C ar

1287%G> q% 153672G? 872G q 4dnG

— — 4,V S P ip i — — L2 (pIT) = — (Il — 3p). Al
+— AN t PP T Ay, (pIl) 30,0 (p p) (A1)

In the case of pure f(R) gravity (¢, = g, = 0) this
equation differs from the equation found by Clifton in
Ref. [42]. More precisely, in Eq. (A1), the terms propor-
tional to

RV?R, UV?R, R ;R U

R, (A2)

AjIN RIS
have opposite sign with respect to the equation given in
Ref. [42]. The reason is the following. The trace of the field
equations, Eq. (4), contains a term proportional to [1fk,
which requires the computation of (IR at order O(1/c*).
Using the gauge conditions Eq. (9), we find (setting

R = R@)

UR = ¢“R,, = —%R.oo + V2R + hICIR ;. (A3)
Now the terms given in Eq. (A2) come from 4*)R ;; and
their sign in our equation is determined by the property
hi?) = —hl(.jz.). An analogous computation in Ref. [39] is in
agreement with the sign we have found for the above terms.
Such changes of sign subsequently determine differences of

order of unity in the coefficients of the solution for h((;(? with
respect to the result in Ref. [42].

Next, we rewrite Eq. (A1) in the form of a Yukawa-type
equation,
(V2 —=m?)(RW +-..) = —4z0, (A4)

where we recall that m> = 1/6a, and we introduce the
potential [42]

e ¥l
d’y,

—m|x—
x0) = [ ot (A3)
which solves the equation
(V2 —m?)X(Q) = —4z0Q. (A6)

In order to put Eq. (A1) into the form (A4), we make use of
the following identity for two arbitrary potentials U and V:

0,7, = % V2(V - VV) = VT - V(V27)

- VV-V(V20)). (A7)
Using this identity, the trace Eq. (23), and the Poisson
equation for the Newtonian potential, V2U = —42Gp, we
get the following relations:
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U,R, 1<v2 1>VU VR + 272GV - VR + 27C %V (p - 64, V%),
: 2 645 34,

1/, 1 , R R2 G . pR ,
RijRoj 2<v 6a><|VR| 12a ) " 32 2RV p =+ 4 VR - V(p = 641 V7p) .

1 1
Rijpij =5 (V2 §> Vp-VR - —VR V(Vp) + (p=64:V2p),

2
— 1 2 _ L - 2 _1 2

1 |

PP = 5 (v2 ) Vol + 15 Vel = Vo -V (Vop). (A8)

Now we introduce the potential [42]

I L (A9)

Using the solution for the trace equation at second order, Eq. (28), one can show that the potential y satisfies the equation

1 -1 887G
6(12 a) c” a
Then, using the relations (A8), the trace equation (23), and transforming the quantities RV?p, UV?p and pV?p by means of

the identity V2(ab) = aV?b 4 bV?a +2Va - Vb, we put Eq. (A1) for R in the Yukawa form Eq. (A4). The solution of the
resulting equation is

1 3 162G 872G 641> G?
RY = ———— =T g0 - (22— a, |R2 -2 Q1—@ PR+LﬂPH+ . ql p* = 12a3|VR[?
c*\/6a, 2a, c? ct

+ 2 a2V TR+ 0,9 TR IHE L 0, - 9. vu—msz A1V
—12”22C2X(UR)+$<2612+1> (R )+322GC4 <16+20—+8 2) (o)
SEED (4= D)x) - 3G [1—‘1(2—")] X0 - V0) + 2 (0 - g1)x(Vp - V)

258 gy (1= LX)~ + s (1= 2 o, (A1)

We can now write the 0 — O component of the field Egs. (3) at order O(1/c*). Using the expressions for R, and Ty, given

by Eqs. (10) and (14), respectively, and Eq. (A1) to eliminate the term proportional to R*), we find that h(()?)) obeys the
following:

1 1 3 a 242G 162G
_Evzhg)‘(‘)) _gszz‘f‘ <§a3—20%)V2R2_3C—§V2(UR)+ @iV (p )"‘7(2612% — )V (pR)

12872G? 6 4471'G 872G

—TQ%vz p*—18 zsz 00 + 7 (ar — q,)V*U oo + a2, V?p o0 + a, V2RW ——Q1v2(/)n>
8 a2 19272G 1 2 287G 202G (a,

+?(02 -q)U ;U ;- 24? U ;iR ;; +?026]1U.UP,U 602 UR + = 3 ayR* — 34 pU+ pe <?— CI])PR
9672 G2 4rG

- qip* = X [p(IT+ 20%) + 3p]. (A12)
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This can be written in the form of a Poisson-type equation,
4
V2(hiY) + - ) = —4zQ. (A13)
Moreover, we denote by )V the Poisson integral

0(ty) &

Xy

V(Q) =

(A14)

so that V2V(Q) = —4zQ. We proceed as in the computation of R™: using the identity (A7), the trace Eq. (23), and the
Poisson equation for the Newtonian potential, V2U = —4xGp, we get the following relations,

U U = SV2(VUP) + 42GVp - VU,

J
2
1, 5 Gqi o, 272G
U;R;==V*(VU-VR) - V=(UR) +2zGVp - VR+——V( U) + il Vp-VU
T2 a, 3c%a a; 3ayc? a,
_4nG g, G 1 G 47’G* q,
VU V(V?p) —=—pR+——-UR - U =%
c? (V) 6a2p +144a% 18a%czp i 3¢? a%p
1

Then, using relations (A15), Eq. (A12) for h((;(l)) can be recast in the Poisson form Eq. (A13), with solution

hy = —%Uz + (3a3 —4a3)R* - 4% UR + 229 4 U + 2725 (20,4, - g)oR - ]6”G qipT1 — %szﬁpz
B 366cléR-Oo +%2( —q)Ugo + 288T[Gaqupoo + s 7(a, — q1)|VU]? —24 ZVU VR + lgzﬂGaZle/’ Vu
- V(R +4€—§V(pU) —20—(2; @az - Sql)V(ﬂR> + 64”G2‘11V(/’2) ‘Sc_?(“z ~a)VVe-VU)
+24 5@V VR) -2 00 v(9pp) + 2500 + 27 (02) + S0 ) + 20,80 (A16)

Substituting in the above expression Eq. (A11) for R, we finally obtain the solution for h(oé(‘)) given in Eq. (47) of
Sec. IV C.

APPENDIX B: TRANSFORMATIONS OF THE METRIC

Following the discussion preceding Eq. (50), for the gauge transformation, we adopt the form

a3 14472G 1 Ja qi\ .
So=—5(a—q)Ug—18 2R0+ 3 az‘hP,O—? —2<1——1>)(,0,

6G

9
& =—5(a—q)U; = 12a3R ; + ——arq1p ;. (B1)

“.\,|4> | o

so that the metric perturbation /£, transforms into a diagonal expression, with no time derivatives and some of the gradient

terms in hgg gauged away:
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2 2 8 1922G
hﬁj) - hﬁ,) - ?(az - q)U ;4 24a3R ;; - 2 @A
2
3) 3 10 a; 2402G 1 Ja, q; )\ .
hy = hy; _?(az -q)Ugi + 30?R,Oi T3 @diPo +§ 3 1 _d_z X0
2
4 4 a 12 2887G 1 2 q:\ 8
héo) —’héo)+36—§R.00——4(32—611)U,00— T @24q1P.00 T 7 —02(1——1 )(.oo——4(‘12—611)|VU|2+24G%|VR|2
c c c ¢t V3 a c
15367>G> a 647G 3847G
+Ta2q%|Vp|2+8c—§(2a2+q1)VU-VR— o q1(2a; +¢q,)Vp - VU - 2 a3q:Vp - VR. (B2)
Using the continuity Eq. (42), the quantity } o; appearing in the transformation law for h((;) is given by
; L (Gx(ow)-v———2 (B3)
| = Vi) =¥ ——F7—4%i |,
X 0i 6612 P 6612

where the potentials Y; and Z; are defined in Eq. (57).

Collecting the results from Secs. III and IV, the form of the metric after the gauge transformations is

U 87G

2 a
gOO = —1 +2<—2+612R——2q1p> ——4U2—2Q%R2—4—§UR+—2qlp
C C C C C

647G>

4G 2G /(8
2 vpu) -2 (gaz—541)V(PR)+

1927G>

4G

t34

3¢t

322G (U

12872G> a
—2+02R) I e— qip* —S—ZV(R2>
c c b

8G G
V() =5 (a2 = q)V(Vp-VU) +24—5a3V(Vp- VR)
C C C

2G 4G 6G 1 1 a
S g V(TP + 2V + 2V (007) + V() = S X(UR) + - (52 ) (R

67c?

V3
G 162G? G
X(pU) “l <16a2 +20q, —|—8Z—§>X(pR) + q, (4—Z—l>X(p2) “3d [az —q; <2—§>]X(Vp-VU)

8G 647G> 2G 2G
+7az(az—q1)X(Vp'VR)— o 611(“2—611)X(|VP|2)—FX(P>+3?X(PH)7
7 1 1 q1
= Vi — Wi+ — (1 -LL) [GX(pv;,) - ¥, ———Z, |, B4
Yoi 20371 93 it 603 ( (12) |: (/)Ut) i /_6612 l:| ( )

U 872G
gij: [1+2<z—a2R+7q1p>]5u (BS)

The spatial part of the metric g;; is now diagonal, as in
the standard post-Newtonian gauge. However, although
time derivatives have been eliminated from g, the latter is
not yet in the usual PPN form, since it contains contribu-
tions with the potentials } and X depending on the gradient
terms Vp - VU, Vp - VR and |Vpl|>.

Once again, following Ref. [42], we transform such
potentials into expressions without gradient terms: below
we show, for instance, how the gradient terms can be
eliminated from the contribution X(Vp - VU). We have

Vp(t.y) - VU(1,y)

e—m|x—y\d3y‘
[x -~y

X(Vp-VU) = / (B6)

[
Introducing the vector field

e_m‘X_Y‘

x —y]|

and using the divergence theorem and the boundary
conditions (18) yields

A(t.x.y) = VU(t.y). (B7)

X(Vp-VU) = / Vp(t.y) - Al x.y)d
_ / p(6.y)Y, - Alt.x.y)dy.  (BS)

where the operator V|, denotes the divergence with respect
to the coordinates y. The evaluation of the divergence of the
vector field A, using the Poisson equation ViU(t,y) =
—47Gp(t,y), yields
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V. A(tx.y) = —dxGp(iy)
‘ tsxay = —Aan p t’y e _ ol
’ Ix -yl

_ Gm/p(t’ z)(x—y) (y—2z) emx=Y g3,

x—y[ly—zf

_G/¢UJKx—w-@—z

x—yPly -z

) e—m\x—y|d32’
(B9)

from which we obtain the following expression with the
gradient terms expunged:

L Ys

X(Vp - VU) = 4zGX (> ¥s
(Vp-VU) =4r (p)+G Eﬁ+(;

(B10)

where the potentials y, and y5 are defined by

w4_G3/pmy>< z)(x-y) (y—2) NPy,

x —y[*ly —z/*
B p(t.y)p(tz)(x —y)- (y—z) J—
ps = [P s
(B11)

Following Ref. [42] and the argument above, we transform
all the potentials involving gradients into expressions
without gradient terms. We find the following identities:

GV(Vp -VU) = 4zG*V(p?) + y.,
871G? q 47G*ay — q
GV(Vp-VR) = V(IVpl) + V()
c? 3¢ a3
_ (az - 611) 1 — 1 -y
322 \6a, ° oar, © )
1
%W%Vw=%@ﬂﬁ+ﬂrw+%,
87G? 47G? a
GX(Vp - VR) = =T x(19pP) + -2 T x (p?)
c? 3¢t 4}
(02—611) Wi tWws  Wo—Wio
* 3c¢?a3 Vet V6a, * 6a, |
(B12)

Substituting these identities into Eq. (B4) for g, the terms
proportional to V(|Vp|?) and X(|Vp|?) cancel exactly. The
eleven potentials v, ..., ;o appearing in the previous
identities are given by

p(t.y)p(t.z) o

yi(t.x) =G
Ix —ylly —z|

(x,y,2)dyd*z, (B13)

with
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\IJO(X,y, z) — e_mly_z"

W (xyr) = XED )
x —y[*|ly — 2|

Uy (x,y,z) = xX-y-ly=z) eyl
x —y[*ly — 2|

Us(x,y.2z) = —(X =y -(y=2) e~my=zl
x —y|[*ly -z

Uy (x,y, z) = —(X —¥)- = 2) e~mx-yl
Ix —ylly — z|

Us(x.y.z) = (x-y) (y- 2) emlx=yl,
x —y|*|ly — 2|

Ue(x,y,z) = 92321&1@-%@wam,
x —y|*|ly — 2|

s (x,y.2) = (x-y)-y-2) e—mllx=yl+ly=z))
x —y|*ly — 2|

Ug(X,y.2) = L(y—z) —m((x—yl+y—2]),
Ix —ylly—z

Wo(X,y,2) = we—m(\x—ylﬁ-ly—zh’
x —ylly - z|

Uio(x,y,z) = e—m(x=yl+ly-z|) (B14)

The potentials y, ...
in Ref. [42].

Substituting into Eq. (B4) the expression for the curva-
ture (53), the potentials given in Eqs. (54), (55) and (56),
and the potentials y; (i = 0, ..., 10) listed above, we obtain
the final expression for the metric tensor, as shown
in Eq. (58).

,Wo coincide with those found

APPENDIX C: EXPRESSIONS FOR THE
POTENTIALS

We list the expressions of the potentials appearing in the
goo coefficient of the PPNY metric, evaluated for r > Ry
under the assumptions given in Sec. V and subsection V B.

For the Yukawa potential, we have

e_r/ 4 1 R Ky 1 R S 4
Y Moy [*’0(1) +2w<z>} (€D
where, in order to express gy, by means of the effective
mass Mg, using Eq. (60) we replace the Newtonian mass
n=-2 < >

My with the following expression:
1
TEAR
For the potential %,, we find

-5
2—r//1 2
gy SGMP 2 (]

5 Ry 7 21\ 2
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In the case of uniform density p, we have I1 = 0; hence, £; = 0. At the required order the pressure is given by Newtonian

equilibrium: p(r)
yields for the potential X,

4 r 5 RS

4
8;19( L L @>2

a3 " 3a, r Rg

= p(0)(1 — r*/R%) where the pressure p(0) at the center of the body is p(0)

e"* 1 (GM)?

o e_’/’l (GMs)2

= G(z/6)'3MY*p*/3. That

L (RS
14\1) |

The following potentials contain both a Yukawa term and other functions of r:

1 (1-0)1 2 e/
187 ¢* a

O R RATS) R
o[ (7)(25) 5 ()]
+3_i2% [e—’/ﬂ In <RLS> _ 'IEi <—2£)] (1-0) gﬁgz <%> (C5)

P (1) Lxor) = roms -0 (144) S0

36 ¢t 2a3

(3P

1 GMy

CZRS

7)) s0) )

tia [ ~r/AEj <—71> —er/ﬂEi<_3£)](1 —9)2<1 +g) Zﬁgj (%) (C6)

where Ei(x) denotes the exponential integral function,
Eq. (66).

The potential V()?) is decomposed into the sum
of two potentials V;()?) + V,()?) where V; is propor-
tional to 1/r for r > Ry (it is absorbed into the effective
mass term), while V), contains the following functions
of r:

ra —H)ziVQ(yz)

27n * a,

4 GMg (RQ\ [e727/% 2 r
M(1—0)> 225 (=5 Ei( —2-)].
“gaom-0r e ()5 3w ()]

(C7)

For a static, spherically symmetric mass density p = p(r)
we find that, for r > Ry,

i (r) =y3(r) =0. (C8)

=y, (r)

Using the results in Appendix B, the linear combination of
potentials w4 and w5 in gy is proportional to a Yukawa
integral of the type X(Q), with Q supported inside the
spherical body, so that such a linear combination is
proportional to a Yukawa term:

4(1-02 ([ 2
3 az( 3—azll/4+2ll/5>

4 e~ GM 1 (R
-——GMs——(1-02—=" 1 )
152 Ms——(1-9) c2Rs[ +14</1
(C9)
Analogously, the linear combination of potentials
We, .-, Wo 18 also proportional to a Yukawa term:
4(1-0)? 2 1
§( A ) a, |:21//6 + “3—@(% + ) +3—%W9]
2 eu e/ (1-0) GM
15¢2 8 c’Rg

O

Eventually for the potential y, we find:

2 (1-90) 613611 2q,
- ) =1 -1
30, & < a, +qp + 2 34, V1o
4 e’/ GM 2
=—GMg——(1-0)——(-2+0+60u—=
502 s, ( ) 2Rs< + 0+ 0u 31/>

(C11)

<=5 ()]
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