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Any recipe to grow black hole hair has to circumvent no-hair theorems by violating some of their
assumptions. Recently discovered hairy black hole solutions exist due to the fact that their scalar fields
don’t inherit the symmetries of the spacetime metric. We present here a general analysis of the constraints
which limit the possible forms of such a hair, for both the real and the complex scalar fields. These results
can be taken as a novel piece of the black hole uniqueness theorems or simply as a symmetry noninheriting
Ansätze guide. In addition, we introduce new classification of the gravitational field equations which might
prove useful for various generalizations of the theorems about spacetimes with symmetries.
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I. INTRODUCTION

One of the longstanding programs in the black hole
physics has been the understanding of the classical fields
which can coexist with the black hole horizon. Such fields
are generally referred to as a black hole hair, and their
existence and form have been constrained by a series of no-
hair theorems [1,2]. Moreover, we now have an opportunity
of testing these theorems in the electromagnetic spectrum
[3–6] and, after the recent detection of gravitational waves
by the LIGO Collaboration [7], also in the spectrum of
gravitational waves [8–13].
A typical setting for the analysis of the black hole hair

are the spacetimes which admit some symmetries, such
as the static and the stationary axisymmetric spacetimes.
Arguably the simplest type of hair is grown from the real
and the complex scalar fields. The absence of the scalar
black hole hair is always proven under some particular
assumptions about the scalar field ϕ, most important being
(a) a choice of the scalar field coupling to gravity (the way

it appears in the matter-gravity field equations),
(b) an energy condition (e.g. some inequality imposed on

the scalar field potential),
(c) the assumption that scalar field ϕ is nonsingular on the

black hole horizon and
(d) the assumption that scalar field ϕ inherits the space-

time symmetries: for any Killing vector field ξa, such
that £ξgab ¼ 0, we necessarily have £ξϕ ¼ 0.

Bekenstein’s original theorems [14–16] rest upon the
simplest set of choices among these: minimally coupled,
canonical scalar fields, regular on the black hole horizon
and inheriting all the spacetime symmetries. These theo-
rems were later generalized to a great extent, for the
minimally coupled [17–21] as well as for the nonminimally
coupled [22–29] scalar fields. On the other hand, over the
past several decades, a number of hairy black hole solutions
have been found [30–33], each violating some of the basic

assumptions of the no-hair theorems. However, only
recently the rotating black holes with the symmetry non-
inheriting complex scalar hair have been found [34,35].
This begs a question: What are the general symmetry
inheritance properties of the scalar fields and in which
possible forms can the symmetry noninheriting (sni) scalar
fields appear as a black hole hair?
After the pioneer paper by Hoenselaers [36], dealing with

the simplest form of the real scalar fields, and several recent
ones [37–39] focused on the more specific time dependence
of the real scalar field in a stationary spacetime, the first
general analysis of the symmetry inheritance properties of
both real and complex scalar fields was presented in [40].
As a direct consequence it was noticed that, given that the
spacetime is a solution to the Einstein’s gravitational field
equations, the assumption about the symmetry inheritance of
the canonical real scalar field in the original Bekenstein’s
theorem [14] is in fact superfluous. As most of the no-hair
theorems [1,2] and the symmetry inheritance properties
proven in [40] are valid for a much general class of the
gravitational theories, one might wonder if these two groups
of results can be unified in some more effective way. The
objective of this paper, thus, is to expand the encyclopedia of
no-hair theorems with a broad treatment of the symmetry
noninheriting scalar fields.
In Sec. II, we precisely define the classes of spacetimeswith

symmetries which are general enough to includemany known
important solutions, but still useful enough to draw the
conclusions that we aspire to. In Sec. III, we single out one
crucial tensorialpropertyandprovethatsomeimportantclasses
ofgravitationalfieldequationsdoinfactfulfill it.SectionsVand
VI treat, respectively, the real and the complex scalar fields,
proving the central results of the paper. In the final section,
we summarize the results and raise some open questions.

A. Basic conventions

We shall use the “mostly plus” metric signature
ð−;þ;þ;…Þ and the natural system of units,*ismolic@phy.hr
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G ¼ c ¼ 1. Unless stated otherwise, the total number of
spacetime dimensions is always generalD ≥ 3. Tensors are
written either in the abstract index notation (see e.g. [41]),
denoted by the lowercase Latin letters from the beginning
of the alphabet, or in the “indexless” notation (see e.g. [1]),
where appropriate. For any symmetric tensor field Sab and a
vector field Xa we introduce the 1-form SðXÞa ≡ SabXb,
abbreviated in the indexless notation as SðXÞ.
We shall consider the gravitational equations of motion

which can be written in a form

Eab ¼ 8πTab; ð1Þ

with the energy-momentum tensor Tab. The tensor Eab is a
general diff-covariant smooth function of the spacetime
metric, the Riemann tensor, the Levi-Civita tensor and the
covariant derivatives. As a consequence of these assump-
tions we know that the existence of a Killing vector field ξa,
such that £ξgab ¼ 0, implies £ξEab ¼ 0 and immediately,
via (1),

£ξTab ¼ 0; ð2Þ

the central equation in the analysis of the symmetry
inheritance. We always assume that any scalar field is at
least of differentiability class C2.

II. GEOMETRIC SETTING

We shall consider a spacetime which admits a family
of n ∈ N smooth pairwise commuting Killing vector
fields fξað1Þ;…; ξaðnÞg, everywhere orthogonal to a family

of submanifolds which foliate the spacetime. Technically,
we demand that the tangent distribution Δ⊥, orthogonal to
the distribution Δ spanned by these Killing vector fields,
must be totally integrable. Frobenius’ theorem (see e.g.
[42], chapter 19) is telling us that a tangent distribution is
totally integrable if and only if it is involute. The dual form
of this theorem states that Δ⊥ is involute if and only if the

1-forms fξð1Þa ;…; ξðnÞa g, associated to the Killing vectors
that span the Δ, satisfy equations

ξð1Þ ∧ … ∧ ξðnÞ ∧ dξðiÞ ¼ 0 ð3Þ

for all i ∈ f1;…; ng.
Just to give some more concrete examples, let us look at

the cases of the time-independent and the axially symmetric
spacetimes. More precisely, we say that the asymptotically
flat spacetime ðM; gabÞ is stationary if it allows a complete
Killing vector field ka, which is timelike “at infinity” (say,
in a neighbourhood of the null infinities I�). Furthermore,
a spacetime is axisymmetric if it allows a spacelike Killing
vector fieldma with compact orbits. Two frequently studied
subcases of these are

(i) Static spacetime (e.g., the Schwarzschild space-
time), which is stationary spacetime, such that
1-form ka, associated to the stationary Killing vector
field ka, satisfies

k ∧ dk ¼ 0: ð4Þ

(ii) Circular spacetime (e.g., the Kerr spacetime), which
is a stationary axisymmetric spacetime, such that
½k;m�a ¼ 0 and

k ∧ m ∧ dk ¼ k ∧ m ∧ dm ¼ 0: ð5Þ

More generally, we have the following definition:
Definition II.1.—We say that a smooth D-dimensional

spacetime ðM; gabÞ admits n < D orthogonally-transitive
Killing vectors if it admits n smooth pairwise commuting,
(almost everywhere) linearly independent Killing vector
fields fξað1Þ;…; ξaðnÞg, satisfying conditions (3).

Commuting of the Killing vectors in Definition II.1
implies that the distribution Δ is involute, thus integrable
with the corresponding family of n-dimensional submani-
folds (“surfaces of transitivity”), which we shall generically
denote by N ⊆ M. Furthermore, conditions (3) imply the
existence of a family of (D − n)-dimensional smooth
submanifolds (to which these Killing vector fields are
orthogonal), which we shall generically denote by Σ ⊆ M.
Degenerate points. Now, building upon this geometric

setting we would like to introduce a useful coordinate
system, but first we must take special care of the “degen-
erate points”, the importance of which will be clarified
below. Using an auxiliary function,

W ≡ n!ξð1Þ½a1 � � � ξ
ðnÞ
an�ξ

½a1
ð1Þ � � � ξan�ðnÞ; ð6Þ

we define its set of zeros,

W ≡ fp ∈ MjWðpÞ ¼ 0g: ð7Þ

Furthermore, a spacetime may contain a nonempty (albeit
usually a zero measure) set of points,

Z ≡ fp ∈ Mjξð1Þ ∧ … ∧ ξðnÞ¼p 0g ⊆ W ð8Þ

at which the condition of linear independence of the Killing
vector fields breaks. An example of such a set is the axis of
symmetry, where an axial Killing vector field vanishes.
So, in what sense are these points “degenerate”? Noting

that W ¼ detðgðξðiÞ; ξðjÞÞÞ, it becomes clear that the vanish-
ing of this function is sufficient and necessary condition for
the existence of the null Killing vector field which is a linear
combination of the Killing vector fields from Definition II.1,
and which is orthogonal to all of them. In other words, the
surface of transitivity Np through a point p ∈ M − Z is null
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(there is a vector field both tangent and orthogonal to Np) if
and only if WðpÞ ¼ 0 [43]. A particularly interesting subset
of W are the black hole horizons.
Killing horizons. There is a multitude of related, but

subtly different definitions of the black hole horizons, among
which the spacetimes with symmetries allow a particularly
useful one. The Killing horizon H½ξ�, associated to the
Killing vector field ξa, is a null embedded (not necessarily
connected) hypersurface, invariant under the flow of ξa

which is null and nonvanishing on H½ξ�. The closure of a
Killing horizon may fail to be a submanifold if its compo-
nents “cross” in a spacelike codimension-2 bifurcation
surface B½ξ� on which ξa vanishes, so that such an union
of subsets is usually referred to as a bifurcate Killing
horizon. As most of our arguments on the black hole horizon
will be local, formal difference between the “ordinary” and
the “bifurcate” Killing horizons is not relevant here. If the
Killing vector field ξa is a linear combination of the Killing
vector fields from Definition II.1 then H½ξ� ⊆ W and
B½ξ� ⊆ Z. For later convenience we denote the Killing
horizon with excluded points from the set Z (bifurcation
surface, intersection of the axis of symmetry with the
horizon) by

H½ξ�× ≡H½ξ�∩ðM − ZÞ ð9Þ

or just shortly H×. Typical exact stationary black hole
solutions, such as the ones from the Kerr-Newman family,
contain a Killing horizon. A black hole binary is not longer a
stationary system, but still can be modeled by a spacetime
possessing so-called helical Killing vector field [44] and the
associated Killing horizon. Finally, we note in passing that
the cosmological horizons also provide another example of
the Killing horizons.
As the Killing vector field are by assumption smooth, the

function W is at least continuous and the set W is thus
closed. We shall consider spacetimes in which the degen-
erate points appear only on the boundary of the “regular
regions”, thus we always assume that the interior W∘ is
empty, which implies that ∂W ¼ W. Most of the con-
structions and proofs that follow will be performed on the
open setM −W, with conclusions extended by continuity of
the various tensor fields to the boundary ∂W. In this respect
we are relying on the same strategy that was used in [45]
(encapsulated in Lemma 2 and Lemma 3 therein). In
addition, we emphasize that, assuming thatM is a connected
manifold and W ≠ 0, any connected component of the set
M −W is an open set O with a nonempty boundary
(otherwise, the set O would be both open and closed in M,
in contradiction with the connectedness of M) ∂O ⊆ W.
As a consequence of the assumptions given in

Definition II.1 and all the remarks from above, at each
point p ∈ M −W the tangent space splits as TpM ¼
TpN ⊕ TpΣ. This allows us to choose a (local) coordinate
system

fz1;…; zn; y1;…; yD−ng; ð10Þ

such that

ξaðiÞ ¼
� ∂
∂zi

�
a
∈ TpN and Ya

ðAÞ ≡
� ∂
∂yA

�
a
∈ TpΣ;

where i ∈ f1;…; ng, A ∈ f1;…; D − ng and

½ξðiÞ; YðAÞ�a ¼ 0; giA ¼ gðξðiÞ; YðAÞÞ ¼ 0 ð11Þ

for any i and A. In order to emphasize that tensor indices
take value in some of these two subsets of coordinates,
we shall call them “z-block” and “y-block” indices. In
the coordinate system (10), the spacetime metric has the
“block-diagonal form” [43]

ds2 ¼ gijðyÞdzidzj þ gABðyÞdyAdyB: ð12Þ

Apart from the members of the Kerr-Newman family of
spacetimes, nontrivial examples admitting orthogonally-
transitive Killing vector fields include the Myers-Perry black
hole spacetime [46] and the generalized Weyl solutions [47].
We collect a useful set of properties of the metric (12) in the
following Lemma.
Lemma II.1.—Let ðM; gabÞ be a spacetime with the

metric of the form (12). Then, in the coordinate system (10)
introduced above, the vanishing components of the
Christoffel symbol are

Γi
jk ¼ Γi

AB ¼ ΓA
iB ¼ 0; ð13Þ

while the vanishing components of the Riemann tensor and
its covariant derivatives are

RiABC ¼ RAijk ¼ 0; RiA ¼ 0; ð14Þ

∇iRjklm ¼ ∇iRjAkB ¼ ∇iRjkAB

¼ ∇iRABCD ¼ ∇ARBijk ¼ ∇ARBCDi ¼ 0: ð15Þ

For any smooth real function f, such that ∂if ¼ 0 for all
i ∈ f1;…; ng, we have

∇i∇Af ¼ ∂i∂Af − Γk
iA∂kf ¼ 0: ð16Þ

III. ASSORTING THE GRAVITATIONAL
FIELD EQUATIONS

An important property of the Ricci tensor, that has been
widely used in various uniqueness theorems [1], is that the
static metric is necessarily Ricci static,

k ∧ RðkÞ ¼ 0; ð17Þ
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and that the circular metric is necessarily Ricci circular,

k ∧ m ∧ RðkÞ ¼ 0 ¼ k ∧ m ∧ RðmÞ: ð18Þ

Since our goal is to extend the conclusions to the gravi-
tational field equations as general as possible, we introduce
the definition that provides a natural extension of the
aforementioned terms.
Definition III.1.—Let ðM; gabÞ be a smooth D-

dimensional spacetime allowing n < D orthogonally-
transitive Killing vector fields fξað1Þ;…; ξaðnÞg, such that

the set of degenerate points has empty interior, W∘ ¼ 0.
Then we say that a tensor Eab is a member of the
orthogonal-transitive class (“o-t class”) of order n if the
conditions

ξð1Þ ∧ … ∧ ξðnÞ ∧ EðξðiÞÞ ¼ 0 ð19Þ

hold for all i ∈ f1;…; ng.
In other words, the condition (19) holds if and only if

EiA ¼ EðξðiÞ; YðAÞÞ ¼ 0 ð20Þ

holds in the coordinate system (10). In practice we need to
check the condition (20) on the set M −W and then, using
the continuity of all the tensors involved here, extend the
validity of (19) to the degenerate pointsW on the boundary.
Of course, this generalization of the Ricci staticity and the
Ricci circularity would be useless if the physically moti-
vated tensors Eab belonging to some o-t class are rare. The
situation, as we shall immediately see, is quite the opposite.
Using the results in Lemma II.2 it can be easily checked
that the following two examples of tensors satisfy the
property (19):

(i) GR. The “gravitational side” of the Einstein’s field
equation is the sum of the Einstein’s tensor Gab and
the cosmological constant term,

EðEÞ
ab ¼ Rab −

1

2
Rgab þ Λgab: ð21Þ

(ii) fðRÞ. Based on theoretical models of quantum
gravity and phenomenological problems in cosmol-
ogy and astrophysics, various modifications of the
general relativity have been proposed. Among
these, extensively studied family of fðRÞ theories
[48,49] is simply constructed by replacement of the
Einstein-Hilbert lagrangian term R with some gen-
eral differentiable function fðRÞ. Correspondingly,
the Einstein tensor generalizes to

EðfÞ
ab ¼ f0ðRÞRab −

1

2
fðRÞgab

− ð∇a∇b − gab□Þf0ðRÞ: ð22Þ

A less trivial class of examples appears when multiple
Riemann tensors are contracted in the gravitational equa-
tion of motion.
(iii) Lovelock gravity. Lovelock has found [50] the

natural extension of the Einstein’s tensor to higher
dimensions: The most general rank-two symmetric
divergence-free tensor, built from the spacetime
metric and its first and second derivatives, is
given by

EðLÞ
ab ¼ λ0gab þ

X⌊D−1
2
⌋

p¼1

λpgacδ
cd1…d2p
be1…e2p

× Re1e2
d1d2 � � �Re2p−1e2p

d2p−1d2p ð23Þ

with some arbitrary real constants fλ0; λ1;…g. Let us now
examine more closely the EiA component,

EðLÞ
iA ¼

X⌊D−1
2
⌋

p¼1

λpgijδ
jμ1…μ2p
Aσ1…σ2p

Rσ1σ2
μ1μ2 � � �Rσ2p−1σ2p

μ2p−1μ2p :

ð24Þ
Let l1 be the number of “z-block” indices among the
“μ indices”, and l2 the number of “z-block” indices among
the “σ indices” in the generalized Kronecker delta appearing
in the sum (24). As any nonvanishing component of the
Riemann tensor contains an even number of indices from
any block (either all indices from one block, or we have
two and two from each), the difference l1 − l2 in the
nonvanishing terms of the sum (24) must be an even integer.
On the other hand, the total number of contravariant “z-block”
indices and the total number of covariant “z-block” indices
in the nonvanishing components of the generalized
Kronecker delta should be equal. As the generalized
Kronecker delta contains one extra contravariant “z-block”
index (namely, “j”), this is impossible and all terms in the sum
(24) vanish. Thus, we may conclude that in fact

EðLÞ
iA ¼ 0; ð25Þ

so that any tensor of the form (23) is a member of the o-t class
of any order n ∈ N.
Nonexamples. On the other hand, there is a significant

family of tensors which in general do not belong to any o-t
class. Gravitational field equations in odd D ¼ 2m − 1
dimensional spacetimes may contain gravitational Chern-
Simons terms [51–53],

Cab ¼ −
m

2m−1 ϵ
c1…c2m−2ða∇eðRbÞ

d1c1c2R
d1

d2c3c4 � � �
× Rdm−3

dm−2c2m−5c2m−4R
dm−2e

c2m−3c2m−2
Þ ð26Þ

motivated by the low-energy superstring effective actions.
Although the generalized Cotton tensor (26) identically
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vanishes for a class of block-diagonalmetrics (see theorem1 in
[54]), our metric (12) generally cannot bewritten in this form.
For example, the 2-form k ∧ CðkÞ doesn’t necessarily vanish
for a static metric with the associated stationary Killing vector
field ka, a fact whichwas noticed for the 3-dimensional case in
[55]. It would be interesting to see whether the generalized
Cotton tensor belongs to some of the o-t classes under certain
additional assumptions.
For later convenience we introduce one practical

abbreviation.
Definition III.1.—We say that the spacetime ðM; gab;ψÞ

(with some matter field ψ) is an o-t symmetric solution of
(1) of order n if the tensor Eab is a member of the o-t class
of order n (as defined in III.1) and if the spacetime allows
a set of n hypersurface orthogonal Killing vector fields
fξað1Þ;…; ξaðnÞg with the set of degenerate points W which

has empty interior.
Now, let us assume that the spacetime from the

Definition II.1 is a solution of the field equation (1), where
Eab is a member of a o-t class of the order n. Then the same
is true also for the energy-momentum tensor Tab,

ξð1Þ ∧ … ∧ ξðnÞ ∧ TðξðiÞÞ ¼ 0: ð27Þ

We note in passing that in the special cases of the static and
the circular spacetimes, corresponding properties of the
energy-momentum tensor, represented by the relation (27),
are usually referred to as the “matter staticity” and the
“matter circularity” [1].

IV. SPACETIMES WITH BLACK HOLES

We can now add the final part of our geometric setting
for the spacetimes with symmetries, a black hole.
Definition IV.1.—Let ðM; gabÞ be a spacetime admitting

a set of n orthogonally transitive Killing vector fields
fξað1Þ;…; ξaðnÞg. Then we say that a Killing horizon H½χ� is
associated to these Killing vector fields if

(i) H½χ� is generated by the Killing vector field

χa ¼
Xn
i¼1

biξaðiÞ; ð28Þ

defined with some real constants fb1;…; bng which
are not all zero,

(ii) H½χ� is invariant under the flow of the Killing vector
fields ξaðiÞ for all i ∈ f1;…; ng and

(iii) H½χ� intersects the boundary of each connected
component of M −W.

From the definition above, it follows that any Killing
vector field ξaðiÞ is tangent to the associated Killing horizon

H½χ�, thus χaξ
a
ðiÞ ¼ 0 holds on H½χ� for all i. Then (19)

implies that

ξð1Þ ∧ … ∧ ξðnÞ ∧ EðχÞ ¼ 0; ð29Þ

which contracted with χa on H½χ�× implies that

Eðχ; χÞ¼H×

0: ð30Þ

The field equation (1) implies that the energy-momentum
tensor Tab satisfies the analogous relation

Tðχ; χÞ¼H×

0: ð31Þ

This equation represents a valuable boundary condition
which we shall exploit for the central results in this paper.
Relations of the form (30) and (31) are well known in the
basic case of the Einstein’s gravitational field equations,
and have been recently proven for the spacetimes which fall
into some of the o-t classes considered here and which are
solutions of the Lovelock’s [56] and the fðRÞ [57]
gravitational field equations. The importance of these
relations stems from their roles in various black hole
theorems, such as the zeroth law of black hole thermody-
namics [41] and the constancy of the electric and the
magnetic potentials on the Killing horizons [58,59].
The most interesting cases for us are those of the static

spacetimes (with associated Killing vector field ka),
containing a nonrotating Killing horizon H½k�, and the
stationary axisymmetric spacetimes (with associated
“stationary” Killing vector field ka and l ∈ N spacelike
“axial” Killing vector fields ma

ðiÞ with compact orbits),

containing a Killing horizon H½χ�, generated by the Killing
vector field

χa ¼ ka þ
Xl
i¼1

Ωima
ðiÞ: ð32Þ

The real constants Ωi are usually referred to as the “angular
momenta” of the Killing horizon H½χ�.

V. REAL SCALAR FIELDS

The simplest matter content of a spacetime is provided
by the real scalar field. Here we shall consider only
minimally coupled real scalar fields, first those described
by the “canonical” energy-momentum tensor, then a larger
class of “noncanonical” ones.
Canonical case. The canonical real scalar field is

described with the energy-momentum tensor of the form

Tab ¼ ∇aϕ∇bϕþ ðX − VðϕÞÞgab; ð33Þ

where we have introduced the usual abbreviation

X ¼ −
1

2
∇cϕ∇cϕ ð34Þ
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and VðϕÞ is some potential. From the theorems in [40] we
know that the only possible form of the noninheriting scalar
field appears in the case when the Killing vector field ξa

has noncompact orbits and the potential VðϕÞ is constant.
Furthermore, the aforementioned theorem asserts that the
Lie derivative £ξϕ must be constant on each connected
component ofM −W (thus, the field ϕ is unbounded along
the complete noncompact orbits of ξa). For example, an
explicit example of a stationary spacetime with the mass-
less real scalar field linearly growing with time was found
by Wyman [60]. In a spacetime with a set of n hypersur-
face-orthogonal Killing vector fields and the associated
Killing horizon H½χ�, the relation (31) implies that

£χϕ¼H
×

0: ð35Þ

Supposing that, without loss of generality, the first r ≤ n
among the Killing vector fields have noncompact orbits,
then this relation provides us with an useful constraint, as
summarized in the following theorem.
Theorem V.1.—Let the spacetime ðM; gab;ϕÞ be an o-t

symmetric solution of (1) of order n with the energy-
momentum tensor (33), containing the associated Killing
horizon H½χ� (as defined in IV.1). If the first r ≤ n among
the Killing vector fields have noncompact orbits, then the
following relation holds

Xr
i¼1

bi£ξðiÞϕ ¼ 0; ð36Þ

where each term £ξðiÞϕ is a constant.
If only one Killing vector field has noncompact orbit

(r ¼ 1), with nonvanishing constant b1 ≠ 0, then ϕ
necessarily inherits all the symmetries. For example, this
is the case that we encounter in the static spacetimes with
the nonrotating Killing horizon H½k�, or the stationary
axisymmetric spacetimes with the corresponding Killing
horizon H½χ�. Therefore, the assumption about the sym-
metry inheritance of the real scalar fields in the original
Bekenstein’s no-hair theorem [14] is in fact superfluous, at
least when the tensor Eab is a member of the o-t class
of the order 1 (in the static case) or of the order 2 (in the
circular case).
Noncanonical case. The “k-essence” theories [61,62]

generalize the form of the scalar field energy-momentum
tensor,

Tab ¼ p;X∇aϕ∇bϕþ pgab; ð37Þ

with some function p ¼ pðϕ; XÞ. The canonical case is
recovered with the special choice pðϕ; XÞ ¼ X − VðϕÞ.
From the results in [40] we know that Xp;X is constant
along the orbits of ξa, £ξðXp;XÞ ¼ 0, which allows us to

construct one classification of the symmetry inheritance
properties.
Let γ be a complete orbit of ξa which doesn’t contain

“exceptional points”, those in which all three functions
p;ϕ, p;X and £ξp;X vanish. The theorem 4 in [40] then
distinguishes the following two cases
(a) Xp;X ¼ 0 on γ implies that £ξ£ξϕ ¼ 0 holds along γ

for an admissible1 energy-momentum tensor Tab;
(b) Xp;X ≠ 0 on γ implies that £ξϕ is a solution to the

differential equation

p;ϕð£ξϕÞ2 þ 2Xp;X£ξð£ξϕÞ ¼ 0; ð38Þ

which is either a positive definite function, a negative
definite function or identically zero on γ.

What are the implications of this theorem on the
symmetry inheritance? Obviously, none of these cases is
reconcilable with a compact orbit γ unless £ξϕ ¼ 0 along γ.
A noncompact orbit requires some additional elaboration.
In the case (a) the field ϕ either inherits symmetry or is
unbounded along γ (a case which might be disregarded as
unphysical). Let us focus on the case (b) and assume,
without loss of generality, that £ξϕ > 0 holds along γ. If ϕ
remains bounded on γ then £ξϕ has to obtain arbitrarily
small values in both directions along this orbit (if the
limit of £ξϕ along the orbit exists then it must be zero). But
then £ξϕ has to have local extrema, a point s ∈ γ where
£ξ£ξϕ ¼ 0. Equation (38) here implies that either £ξϕ ¼ 0

(in contradiction with the assumption £ξϕ > 0) or p;ϕ ¼ 0

at point s. Thus, if Xp;X ≠ 0 along a noncompact orbit γ
which doesn’t contain “exceptional points” nor the points
on which both p;ϕ and £ξ£ξϕ vanish, then the scalar field ϕ
either inherits symmetry or is unbounded along γ.
Now, using the geometric setting introduced above, we

can make some further conclusions about the noncanonical
scalar fields. By inserting (20) and (37) into (1), we get that
the relation

p;Xð£ξðiÞϕÞð£YðAÞϕÞ ¼ 0 ð39Þ

holds on M −W for each ξaðiÞ and Ya
ðAÞ. Whence, at each

point q ∈ M −W where p;X ≠ 0 holds and for at least one
Killing vector field we have symmetry noninheritance,
£ξðiÞϕ ≠ 0, the relation (39) implies that £YðAÞϕ ¼ 0 holds
for all Ya

ðAÞ ∈ TqΣ.
Just to be little more concrete, let us look more closely at

the case when only one Killing vector field has noncompact
orbits, ka ¼ ð∂=∂tÞa. Using the fact that ϕ inherits all the
symmetries generated by the Killing vector fields with
compact orbits, and consequences of Eq. (39), we know

1We say that the energy momentum Tab is admissible if the
function p is such that £vðp;XÞ vanishes for an arbitrary vector
field va whenever both X and £vX vanish
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that ϕ ¼ ϕðtÞ. If the spacetime contains a bifurcate Killing
horizon H½χ�, generated by the Killing vector field of the
form (32), then £kϕ vanishes on the bifurcation surface
B½χ�. Furthermore, suppose that surfaces of constant t
intersect the bifurcation surface B½χ� (see, e.g., Sec. V in
[63]), which is a subset of the open set where Xp;X ≠ 0.
Then, as £kϕ is by assumption a continuous function, we
may deduce that £kϕ vanishes on each surface of constant t
and that ϕ inherits all the symmetries.

VI. COMPLEX SCALAR FIELDS

The canonical energy-momentum tensor for the complex
scalar field ϕ is given by

Tab ¼ ∇ðaϕ∇bÞϕ� −
1

2
ð∇cϕ∇cϕ� þ Vðϕ�ϕÞÞgab: ð40Þ

We shall use the polar form of the complex scalar field,

ϕ ¼ Aeiα ð41Þ

where A is the amplitude and α is the phase of the field ϕ.
In order to leave the trivial case aside, in the rest of the
chapter we shall focus only on the points from the open
set Q ⊆ M −W where A ≠ 0. In this parametrization, the
energy momentum tensor (40) becomes

Tab ¼ ∇aA∇bAþ A2∇aα∇bαþ T þ VðA2Þ
D − 2

gab; ð42Þ

where T ≡ gabTab. In order to simplify the notation we
shall use the abbreviations

_f ¼ £ξðiÞf and f0 ¼ £YðAÞf

for any function f. From Eqs. (1) and (20), we have

0 ¼ TðξðiÞ; YðAÞÞ ¼ _AA0 þ A2 _αα0: ð43Þ

It is not too difficult to see that this system of equations
drives the coordinate dependence “synchronisation” of the
amplitude A and the phase α. If p ∈ Q and there is
(a) Ya

ðAÞ ∈ TpΣ such that A0 ≠ 0 and α0 ¼ 0, then _A ¼ 0
for all ξaðiÞ ∈ TpN. In addition, assuming that there is

ξaðiÞ, such that _α ≠ 0 (otherwise, we would have the
complete symmetry inheritance), we can conclude that
α0 ¼ 0 for all Ya

ðAÞ ∈ TpΣ.
(b) Ya

ðAÞ ∈ TpΣ such that A0 ¼ 0 and α0 ≠ 0 then _α ¼ 0
for all ξaðiÞ ∈ TpN. In addition, assuming that there

is ξaðiÞ ∈ TpN, such that _A ≠ 0 (otherwise, we would
have the complete symmetry inheritance), we can
conclude that A0 ¼ 0 for all Ya

ðAÞ ∈ TpΣ.

(c) ξaðiÞ ∈ TpN such that _A ¼ 0 and _α ≠ 0, then α0 ¼ 0 for
all Ya

ðAÞ ∈TpΣ. Furthermore, if there is any Ya
ðAÞ ∈TpΣ

such that A0 ≠ 0 then _A ¼ 0 for all ξaðiÞ ∈ TpN, which
reduces to the case (a). Otherwise, we have A0 ¼ 0 for
all Ya

ðAÞ ∈ TpΣ.
(d) ξaðiÞ ∈ TpN such that _α ¼ 0 and _A ≠ 0, then A0 ¼ 0 for

all Ya
ðAÞ ∈TpΣ. Furthermore, if there is any Ya

ðAÞ ∈TpΣ
such that α0 ≠ 0 then _α ¼ 0 for all ξaðiÞ ∈ TpN, which
reduces to the case (b). Otherwise, we have α0 ¼ 0 for
all Ya

ðAÞ ∈ TpΣ.
If none of the conditions from above are met, then we

are left with the general “synchronized case”: For any
ξaðiÞ ∈ TpN either both _A and _α vanish or neither does, and

for any Ya
ðAÞ ∈ TpΣ either both A0 and α0 vanish or neither

does. Let us look more closely at the particular subcases
of the symmetry noninheritance that have been described
above.
Symmetry inheriting amplitude. On any open subset of

Q where the conditions from the case (a) are met we have

A ¼ Aðy1;…; yD−nÞ and α ¼ αðz1;…; znÞ:

Using the theorem 5 from [40] we can narrow down the
form of the phase α even further.
Theorem VI.1.—Let the spacetime ðM; gab;ϕÞ be an o-t

symmetric solution of (1) of order n with the energy-
momentum tensor (40), such that the complex scalar field ϕ
has symmetry inheriting amplitude A. Then the most
general form of the symmetry noninheriting phase is

α ¼ c0 þ
Xn
i¼1

cizi; ð44Þ

where fc0; c1;…; cng are some real constants.
As the constant part of the phase, given by c0, is

irrelevant, we may always choose c0 ¼ 0. The rest of
the constants ci may be constrained in the presence of a
black hole. If the spacetime contains a Killing horizonH½χ�
as defined in IV.1, then (31) implies that

Xn
i¼1

bi£ξðiÞα ¼ 0: ð45Þ

More concretely, if the Killing vector χa is given by (32),
then the following relation holds:

£kαþ
Xl
i¼1

Ωi£mðiÞα ¼ 0: ð46Þ

This equation generalizes the “resonance condition” [64]
(see also [65]) for the hairy five-dimensional Myers-Perry
black holes (MPBHsSH). As it represents the threshold
between the decaying and the superradiant regimes, this
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was recognized [34,35] as a hint for the existence of the
new type of the black hole scalar hair.
One might expect from the relation (46) that the HR

solution [34,35] has no symmetry noninheriting static limit
Ωi → 0, since this would imply £kα ¼ 0. However, we may
still have the angular dependence of the phase (£mðiÞα ≠ 0

for some ma
ðiÞ) in a static axially symmetric spacetime with

the nonrotating Killing horizon H½k�, see e.g. [66,67].
Symmetry inheriting phase. On any open subset of Q

where the conditions from the case (b) are met we have

A ¼ Aðz1;…; znÞ and α ¼ αðy1;…; yD−nÞ:

Furthermore, from the fact that ξaðiÞ and Ya
ðAÞ commute, it

follows that

£ξðiÞEðYðAÞ; YðAÞÞ ¼ 0: ð47Þ

Using this in the equation of motion (1) and the energy-
momentum tensor (40), we have

�
α02 þ YA

D − 2

∂V
∂ðA2Þ

�
A _A ¼ 0; ð48Þ

where YA ≡ gabYa
ðAÞY

b
ðAÞ. So, if there is at least one

ξaðiÞ ∈ TpN such that _A ≠ 0 (otherwise, we would have

the complete symmetry inheritance), then the expression in
the parenthesis must vanish.
Here we have two possibilities: Either all Ya

ðAÞ are null

(YA ¼ 0), in which case the phase α is necessarily a
constant and the energy-momentum tensor (40) takes the
form of a real scalar field (which was analysed in the
previous section), or there is at least one non-null Ya

ðAÞ, in
which case we can express ∂V=∂ðA2Þ with α0 and YA, both
symmetry inheriting quantities (invariant with respect to all
ξaðiÞ). In the latter case ∂V=∂ðA2Þ has to be constant, which

means that under given assumptions we necessarily have
the simplest, mass term potential V ¼ μ2A2! Detailed
analysis of the symmetry inheritance of the complex scalar
field with such a potential has been perfomed in [40]. In
order to have the symmetry noninheriting amplitude,
_A ≠ 0, which is either bounded or periodic function, the
associate Killing vector ξaðiÞ has to be a spacelike, hyper-

surface orthogonal and its norm gabξaðiÞξ
b
ðiÞ a constant.

If any such a solution exists, it would need to pass
through a very narrow window left by the constraints
obtained above. For example, suppose we have a static
spacetime with the associated hypersurface-orthogonal
Killing vector field ka (timelike at infinity), containing
the associated Killing horizonH½k�. Is it possible to have an
ergoregion where ka becomes spacelike, allowing at least
in principle the existence of the complex scalar field with

the time-dependent amplitude and the time-independent
phase? The Vishveshwara-Carter’s theorem [43,68] (see
also [69] for a technically polished version of the proof)
guarantees that ergosurfaces, consisting of points where
ka becomes null vector field, coincide with the Killing
horizon H½k�, i.e. there are no ergoregions in the domain of
outer communications ⟪Mext⟫ (for a definition, see [2]).
Therefore, there are no such a complex scalar field in a
static spacetime with the nonrotating black hole.
Strictly sni fields. On any open subset S ⊆ Q where the

conditions from the case (c) or (d) are met (which don’t
reduce to the previous cases (a) or (b)), we have

A ¼ Aðz1;…; znÞ and α ¼ αðz1;…; znÞ:

Again, using the fact that ξaðiÞ and Ya
ðAÞ commute, it follows

that

0 ¼ £ξðiÞTðYðAÞÞa ¼
2A _A
D − 2

∂V
∂ðA2ÞYðAÞa: ð49Þ

Note that at each point p ∈ S where Ya
ðAÞ ≠ 0 and

∂V=∂ðA2Þ ≠ 0, we have _A ¼ 0 for all ξaðiÞ ∈ TpN [leading

again to the case (a)]. As the zeros of the vector fields Ya
ðAÞ

are typically just a zero measure set, the only possibly
interesting subcase here is that of the constant potential V
(e.g. the massless complex scalar field with V ¼ 0).
Assuming that V is a constant, for any triple ξaðiÞ, ξ

a
ðjÞ,

and ξaðkÞ of Killing vector fields, we have

0 ¼ £ξðkÞTðξðiÞ; ξðjÞÞ ¼ £ξðkÞCij; ð50Þ

where we have introduced an abbreviation

Cij ≡ ð£ξðiÞAÞð£ξðjÞAÞ þ A2ð£ξðiÞαÞð£ξðjÞαÞ: ð51Þ

As under the given assumptions we also have C0
ij ¼ 0

for any Ya
ðAÞ, it follows that all Cij are in fact constants.

Furthermore, in the presence of the Killing horizon H½χ�
introduced in IV.1, using the condition (31), we may
deduce that another constraint,

Xn
i¼1

Xn
j¼1

bibjCij ¼ 0; ð52Þ

holds on any subset of S which intersects the horizon H½χ�.
If we introduce a n × n symmetric matrix B, with entries
Bij ¼ bibj, and two column matrices,

u ¼ ð£ξð1ÞA � � � £ξðnÞAÞT and v ¼ ð£ξð1Þα � � � £ξðnÞαÞT;

then Eq. (52) can be rewritten in the matrix form as
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uTBuþ A2vTBv ¼ 0: ð53Þ

The matrix B has two distinct eigenvalues, zero (with
multiplicity n − 1) and b21 þ � � � þ b2n (with multiplicity 1),
hence it is positive semidefinite matrix. Thus, (53) implies
that

uTBu ¼ 0 ¼ vTBv; ð54Þ

and from here follows that both Bu and Bv are zero
matrices. In other words,

£χA ¼ 0 ¼ £χα: ð55Þ

For example, if we have a static spacetime with the
nonrotating Killing horizon H½k�, then it follows that both
the amplitude and the phase have to inherit the stationary
symmetry, £kA ¼ 0 ¼ £kα. However, in the rotating case
(32), these constraints are not sufficient to exclude the
existence of the strictly sni scalar black hole hair.
General sni field with synchronized A and α. If the field

ϕ doesn’t belong to any of the (a)–(d) cases, it is difficult to
give some more concrete conclusions about the symmetry
inheritance and the existence of the associated black
hole hair.

VII. FINAL REMARKS

We have shown that at least for the restricted (yet
abundant) orthogonal-transitive class of the gravitational
field equations and associated symmetric spacetimes, one
can provide a detailed classification of the symmetry
noninheriting scalar fields. Building upon this, we have
explored the extent of the no-hair theorems in the domain
of sni scalar fields. While the real scalar sni black hole hair
can be pretty much excluded, in the complex case the form
of such a hair is heavily constrained. An important open
question is whether a black hole can support a complex
scalar hair which breaks the symmetries in both the
amplitude and the phase. On the formal side, it would
be interesting to find other examples of the gravitational
field equations belonging to some of the o-t classes, apart
from those mentioned in this paper, as well as the
nonexamples, apart from the gravitational Chern-Simons
terms. Finally, as the physically more realistic spacetimes
will possess only the approximate symmetries, definition of
which undoubtedly brings in a certain amount of ambi-
guity, it is important to find the rules of the approximate
symmetry inheritance (a recent progress in this direction
has appeared in [70]).
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