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The classical approach to spacetime singularities leads to a simplified dynamics in which spatial
derivatives become unimportant compared to time derivatives, and thus each spatial point essentially
becomes uncoupled from its neighbors. This uncoupled dynamics leads to sharp features (called “spikes”)
as follows: particular spatial points follow an exceptional dynamical path that differs from that of their
neighbors, with the consequence that, in the neighborhood of these exceptional points, the spatial profile
becomes ever more sharp. Spikes are consequences of the BKL-type oscillatory evolution towards generic
singularities of spacetime. Do spikes persist when the spacetime dynamics is treated using quantum
mechanics? To address this question, we treat a Hamiltonian system that describes the dynamics of the
approach to the singularity and consider how to quantize that system. We argue that this particular system is
best treated using an affine quantization approach (rather than the more familiar methods of canonical
quantization), and we set up the formalism needed for this treatment. Our investigation, based on this affine
approach, shows the nonexistence of quantum spikes.
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I. INTRODUCTION

It is known through the singularity theorems of Penrose,
Hawking, and others [1] that spacetime singularities are
a general feature of gravitational collapse. However,
these theorems give very little information on the nature
of singularities. It has been conjectured by Belinskii,
Khalatnikov, and Lifshitz (BKL) [2,3] that, as a spacetime
singularity is approached, the dynamics can be well
approximated by neglecting spatial derivatives in the field
equations in comparison to time derivatives. In the course
of performing numerical simulations to test the BKL
conjecture, Berger and Moncrief [4] found a strange
phenomenon: points at which steep features develop and
grow ever narrower as the singularity is approached. These
features were later named “spikes.” Since the work of [4],
much additional analytical and numerical work has been
done on spacetime singularities (see [5] for a review), and
we now have a good understanding of the nature of spikes:
(see [6–12]) rather than being some sort of exception to
the BKL conjecture, spikes can be thought of as a
consequence of that conjecture as follows: the neglect of
spatial derivatives in the field equations mandated by the
BKL conjecture means that the dynamics at each spatial

point is that of a homogeneous spacetime (albeit a different
homogeneous spacetime for each spatial point). The
generic behavior of a homogeneous spacetime consists
of a series of epochs, each well approximated by a different
Bianchi I spacetime. The Bianchi I epochs are connected by
short bounces during which the spacetime is well described
by a Bianchi II spacetime. Though generic homogeneous
spacetimes behave in this way, there are exceptional cases
in which the dynamics is different, remaining in a particular
Bianchi I epoch rather than bouncing into the next one. A
spike occurs at a spatial point when the dynamics at that
point is of this exceptional sort while the dynamics of its
neighbors is of the generic sort. The spike point is then
stuck in the old epoch while all around it, its neighbors are
bouncing into the new epoch.
Because spikes depend on exceptional classical dynam-

ics, it is unclear whether they will continue to exist when
the dynamics is treated using quantum theory. As an
analogy, in the upside-down harmonic oscillator, x ¼ 0
for all time is a classical solution; but this solution does not
persist in a quantum treatment [13,14]. Because the BKL
conjecture allows the dynamics of each spatial point to be
treated separately, the question of whether spikes persist
can (if the approximation suggested by BKL continues to
hold in quantum theory) be treated just using quantum
mechanics rather than quantum field theory or quantum
gravity. Furthermore, because the exceptional classical
dynamics is so delicate as to be easily destroyed, any
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quantum destruction of spikes is likely to take place at
curvatures much less than the Planck curvature. Thus, a
quantum treatment of spikes is likely to be insensitive to
any issues about the ultraviolet behavior of quantum
gravity.
Much of the recent progress on the BKL conjecture

comes from treating the Einstein field equations using a set
of scale invariant variables [15,16]. However, these treat-
ments are done in terms of field equations rather than
Hamiltonian systems, and thus it is not straightforward to
obtain the corresponding quantum dynamics. To address
this difficulty, Ashtekar, Henderson, and Sloan (AHS) [17]
developed a Hamiltonian system using variables similar to
those in [15,16]. This new system is designed to address the
BKL conjecture but in a way that one can also perform a
quantum treatment. In this paper, we will use the system
of [17] to investigate whether spikes persist when treated
using quantum mechanics.
Our paper is organized as follows: In Sec. II, we solve

equations of motion for the natural classical affine variables
and illustrate their temporal behavior leading to classical
spikes. In Sec. III, we present an alternative quantization
process that avoids the need to choose “Cartesian” classical
phase space variables to promote to canonical operators and
instead supports the quantization of affine variables with
the help of affine coherent states. Section IV is devoted to
the construction of the physical Hilbert space. Sections V
and VI concern the equations of the affine and canonical
quantizations. In Sec. VII, we briefly discuss the method of
solving the Hamiltonian constraint. Section VIII presents
analytic solutions of the affine constraint equation and
concludes that these solutions do not support the existence
of quantum spikes. The last section presents a summary of
our results and indicates how they could be extended using
alternative approaches and numerical methods.

II. SPIKES IN THE VARIABLES OF ASHTEKAR,
HENDERSON, AND SLOAN

We begin with a brief description of the variables of
Ashtekar, Henderson, and Sloan and refer the reader to [17]
for the full description. The approach of [17] begins with a
density-weighted triad, its conjugate momentum (which is
essentially the extrinsic curvature), and the spatial con-
nection associated with the triad. As the singularity is
approached, the density-weighted triad is expected to go to
zero, while both the extrinsic curvature and the spatial
connection are expected to blow up. To obtain quantities
that are expected to be well behaved at the singularity, AHS
define quantities Pi

j which are contractions of the density-
weighted triad with the extrinsic curvature and Ci

j which
are contractions of the density-weighted triad with the
spatial connection. In terms of these variables, the BKL
conjecture is that as the singularity is approached, the
spatial derivatives of Pi

j and Ci
j are negligible compared to

their time derivatives; thus, one can consider the dynamics

of the Pi
j andCi

j at a single point. As a consequence of this
form of the BKL conjecture, one finds that the Pi

j and Ci
j

are symmetric and can be simultaneously diagonalized;
thus, the dynamics of these matrices reduces to the
dynamics of their eigenvalues, and [17] introduces quan-
tities PI and CI which are, respectively, essentially the
eigenvalues of Pi

j and Ci
j. Thus, for our purposes, the

approach to the singularity is described by a Hamiltonian
system consisting of the CI and PI, as well as any matter in
the spacetime, for which we will use a scalar field ϕ. A
Hamiltonian system is determined by its Poisson brackets
and its Hamiltonian. For this system, the Poisson brackets
are given by

fPI;PJg¼0¼fCI;CJg; fPI;CJg¼2δIJCJ; fϕ;πg¼1;

ð1Þ

while the Hamiltonian (which is also a Hamiltonian
constraint) is given [17] by

H ¼ 1

2
C2 − CICI þ 1

2
P2 − PIPI −

π2

2
¼ 0; ð2Þ

which leads to the dynamics

_PI ¼ CIðC − 2CIÞ; ð3Þ

_CI ¼ −CIðP − 2PIÞ; ð4Þ

_π ¼ 0; ð5Þ

_ϕ ¼ π; ð6Þ

where P ¼ P1 þ P2 þ P3 and C ¼ C1 þ C2 þ C3.
We now show how spikes form in the vacuum case.

That is, we consider solutions of Eqs. (2)–(6) with π ¼ 0.
We consider the case with all the PI positive and order them
so that

P1 > P2 > P3: ð7Þ

We assume that, at the initial time, all the CI are small
enough to be negligible. Then it follows from Eq. (4), (2)
and (7) that C2 and C3 are decaying and, therefore, will
remain small enough to be negligible. It then follows from
Eqs. (3) that P2 and P3 are (to this approximation) constant.
Thus, we only need to find the time development of C1 and
P1. With C2 and C3 negligible, Eqs. (3) and (2) become

_P1 ¼ −ðC1Þ2; ð8Þ

−ðC1Þ2 ¼ 2ðP2
1 þ P2

2 þ P2
3Þ − P2: ð9Þ

However, Eq. (9) can be written as
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−ðC1Þ2 ¼ ðP1 − PþÞðP1 − P−Þ; ð10Þ

where the constants P� are given by

P� ¼ P2 þ P3 � 2
ffiffiffiffiffiffiffiffiffiffiffi
P2P3

p
: ð11Þ

We, therefore, find that Eq. (8) becomes

_P1 ¼ ðP1 − PþÞðP1 − P−Þ: ð12Þ

Let P10 be the value of P1 at the initial time t0. Then it
follows from Eq. (12) that

Pþ − P1

P1 − P−
¼ Pþ − P10

P10 − P−
exp½ðPþ − P−Þðt − t0Þ�: ð13Þ

Let C10 be the value of C1 at time t0. Then it follows from
Eq. (10) that

P10 ¼
1

2

�
Pþ þ P− þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ − P−Þ2 − 4C2

10

q �
: ð14Þ

Now define the function fðtÞ by

fðtÞ ¼ 2C10

Pþ − P− þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPþ − P−Þ2 − 4C2

10

p

× exp

�
1

2
ðPþ − P−Þðt − t0Þ

�
: ð15Þ

Then it follows from Eqs. (13)–(15) using straightforward
algebra that

P1 ¼
Pþ þ P−f2

1þ f2
: ð16Þ

It then follows from Eq. (10) that

C1 ¼ ðPþ − P−Þ
f

1þ f2
: ð17Þ

Now consider the case where C10 ≠ 0. By the
assumption that C1 is small at the initial time, it follows
that at that time f ≪ 1. However, from the exponential
factor in Eq. (15) it follows that for sufficiently late times
we have f ≫ 1. It then follows from Eq. (16) that initially
P1 ≈ Pþ but at late times P1 ≈ P−. That is, there is a
bounce where P1 goes from Pþ to P−. It also follows from
Eq. (17) that C1 is small at both early and late times and is
only non-negligible during the bounce.
Now consider the case where C10 ¼ 0. Then f ¼ 0 for

all times and, thus, it follows that P1 ¼ Pþ and C1 ¼ 0.
Finally, consider the dependence on spatial position.

Suppose that at the initial time there is a region where C1

is positive and another region where C1 is negative. Define
a spatial coordinate x such that x ¼ 0 is the boundary

between the two regions. Then by continuity, we have
that C10 ¼ 0 at x ¼ 0. Therefore, we find that for all times
P1 ¼ Pþ at x ¼ 0 while for all other points eventually we
have P1 ¼ P−. The closer to x ¼ 0 a spatial point is, the
smaller the value of C10 and, therefore, the longer a time it
takes until f at that point becomes large. Thus, though
eventually all points near x ¼ 0 bounce, it takes longer for
the nearer points to bounce. Thus, at a given time, a graph
of P1 vs x will show a peak at x ¼ 0 and that curve will
become more and more steep as time goes on. This is
the spike.
As an illustration, consider the case C10 ¼ ϵx with

ϵ ¼ 0.05 and take P2 ¼ 2, P3 ¼ 1 and t0 ¼ 0. Figure 1
shows P1 vs x at t ¼ 3, t ¼ 3.5 and t ¼ 4, while Fig. 2
shows C1 vs x at those same times.

III. ENHANCED QUANTIZATION

Besides canonical quantization, which is discussed in
Sec. IV, we begin with a very different quantization
procedure that avoids the problematic procedure of choos-
ing the right set of canonical variables to promote to
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FIG. 1. P1 vs x at t ¼ 3 (red), t ¼ 3.5 (green), and t ¼ 4 (blue).
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FIG. 2. C1 vs x at t ¼ 3 (red), t ¼ 3.5 (green), and t ¼ 4 (blue).
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canonical operators. The nature of the classical problem
features variables that lead to an affine Lie algebra, which is
then incorporated in the quantum formulation as affine
coherent states. This quantization method is also useful for
addressing the issue of the existence of spikes at a semi-
classical level.

A. Affine algebra

Initially, we propose to quantize the classical system (1)–
(2) by making use of the affine coherent states quantization
method (see [18] and references therein). We begin with
some remarks about use of the affine variables in the
classical formulation of the problem. To connect with
notation that is more common for affine variables, we
make the partial redefinition ðCI; PJÞ ≕ ðCI;−2DJÞ,
which turns the system (1)–(2) into the traditional
Poisson bracket affine formulation,

fDI;DJg ¼ 0 ¼ fCI; CJg;
fCJ;DIg ¼ δIJCJ; ð18Þ

which is called the affine Lie algebra. For the scalar
field, we adopt conventional canonical coordinates with
the standard Poisson bracket

fϕ; πg ¼ 1: ð19Þ

For this problem, the classical Hamiltonian is constrained
to be zero [17], and it is given by

H ¼ 1

2
C2 −

X
I

C2
I þ 2D2 − 4

X
I

D2
I −

1

2
π2 ¼ 0; ð20Þ

where D ¼ D1 þD2 þD3 and C ¼ C1 þ C2 þ C3. Thus,
the dynamics takes the form

_DI ¼ CI

�
CI −

1

2
C

�
; ð21Þ

_CI ¼ 2CIðD − 2DIÞ; ð22Þ

_π ¼ 0; ð23Þ

_ϕ ¼ π: ð24Þ

Unlike the traditional momentum, which serves to
translate the canonical coordinate CI , the variable DI

serves to dilate CI . Thus, the affine algebra divides into
three sectors: (1) CI < 0, (2) CI > 0, and (3) CI ¼ 0. The
first two types are quite similar, while the third type is
relatively trivial. Consequently, we will concentrate on
types (1) and (2). Thus, it is convenient to define the
principal sectors in the kinematical phase space as

ΠI
− ≔ fðCI;DIÞjCI ∈ R−; DI ∈ Rg; ð25Þ

ΠIþ ≔fðCI;DIÞjCI ∈ Rþ; DI ∈ Rg: ð26Þ

B. Kinematical Hilbert space

There are two principal, inequivalent, irreducible self-
adjoint representations of the Lie algebra (18) correspond-
ing to the sectors (25) and (26). They are defined by the
affine quantization principle: CI → ĈI and DI → D̂I, such
that

½ĈI; ĈJ� ¼ 0 ¼ ½D̂I; D̂J�; ½ĈJ; D̂
I� ¼ iℏδIJĈJ: ð27Þ

The operators ĈI and D̂I are conveniently represented by

D̂IfðxIÞ ≔ −iℏ=2ðxI∂=∂xI þ ∂=∂xIxIÞfðxIÞ
¼ −iℏðxI∂=∂xI þ 1=2ÞfðxIÞ; ð28Þ

ĈIfðxIÞ ≔ xIfðxIÞ; ð29Þ

where f ∈ HI ≔ spanfL2ðR−; dxIÞ ⊕ L2ðRþ; dxIÞg, and
where I ¼ 1, 2, 3.
For quantization of the scalar field algebra (19) we use

the canonical variables and the following representation

π̂gðϕÞ ≔ −iℏ
∂
∂ϕ gðϕÞ; ϕ̂gðϕÞ ≔ ϕgðϕÞ; ð30Þ

where g ∈ Hϕ ≔ L2ðR; dϕÞ, so that ½ϕ̂; π̂� ¼ iℏI.
The kinematical Hilbert space H of the entire system is

defined to be

H ≔ spanfH1 ⊗ H2 ⊗ H3 ⊗ Hϕg; ð31Þ

which takes into account the usual quantum entanglement
of all degrees of freedom.

C. Construction of affine coherent states

It is important to observe that the classical Hamiltonian
treats the three C variables, as well as the threeD variables,
in identical fashion in that the Hamiltonian is invariant if
the several variables are permuted among themselves. This
feature of symmetry is worth preserving in introducing
the coherent states for these variables. Thus, the irreducible
components of the affine coherent states corresponding to
each of the two sectors Π− ¼ ⋃IΠI

− and Πþ ¼ ⋃IΠIþ, are
defined as follows

jp;q;−i≔
Y
I

jpI;qI;I;−i

≔ei
P

I
pIĈI=ℏe−i

P
I
lnðjqI j=μÞD̂I=ℏjη;−i for sectorΠ−;

ð32Þ
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jp;q;þi≔
Y
I

jpI;qI;I;þi

≔ei
P

I
pIĈI=ℏe−i

P
I
lnðqI=μÞD̂I=ℏjη;þi for sectorΠþ;

ð33Þ

where p ≔ ðp1; p2; p3Þ and q ≔ ðq1; q2; q3Þ. The so-called
fiducial vectors jη;−i ¼⊗I jη; I−i and jη;þi ¼⊗I jη; Iþi
are defined by the equations

½ðĈI=μÞ þ 1 − iD̂I=ðℏβÞ�jη; I−i ¼ 0; ð34Þ

½ðĈI=μÞ − 1þ iD̂I=ðℏβÞ�jη; Iþi ¼ 0; ð35Þ

where μ > 0 and β > 0 denote two free parameters chosen
the same for each set of variables ĈI and D̂I . (It is also
useful to regard ~β½≡ℏβ� and ℏ as two separate parameters
for each I, especially for approaching the classical limit.)
The role of μ and β can be seen in the expressions

hxjη; Iþi ¼ Mx−1=2ðx=μÞβe−βðx=μÞ; 0 < x < ∞; ð36Þ

hxjη; I−i ¼ Mjxj−1=2ðjxj=μÞβe−βðjxj=μÞ; −∞ < x < 0;

ð37Þ

where M denotes a factor to secure normalization, e.g.,
hη; I � jη; I�i ¼ 1. It follows that

hη;�jĈIjη;�i ¼ �μ; hη;�jD̂Ijη;�i ¼ 0: ð38Þ

It may happen that the appropriate affine coherent
states for our study involve a direct sum of the þ and −
irreducible versions, such as

jp; q; Ii ≔ θðqÞjp; q; I;þi ⊕ θð−qÞjp; q; I;−i; ð39Þ

where θðyÞ ≔ 1 if y > 0 and θðyÞ ≔ 0 if y < 0. In order
to incorporate both the positive and negative spectrum
cases for fĈIg, we shall use the direct sum of vectors,
jηi ≔ jη;þi ⊕ jη;−i, in what follows.
In addition to the affine coherent states, we introduce

canonical coherent states for the scalar field, which are
defined by

jπ;ϕi ≔ e−iϕπ̂=ℏeiπϕ̂=ℏjαi; ð40Þ

where the fiducial vector jαi is chosen (modulo a phase
factor) to be the solution to the equation

ðωϕ̂þ iπ̂Þjαi ¼ 0; ð41Þ

in which ω is a free positive parameter. It follows that

hπ;ϕjπ̂jπ;ϕi ¼ π; hπ;ϕjϕ̂jπ;ϕi ¼ ϕ: ð42Þ

We choose states jyi (previously called jϕi and which
are renamed here to avoid conflicting notation), where
hyjy0i¼δðy−y0Þ and −∞ < y; y0 < ∞, so that hyjϕ̂ ¼ yhyj
as well as hyjπ̂ ¼ −iℏ∂=∂yhyj. Thus,

ðωyþ ℏ∂=∂yÞhyjαi ¼ 0 ð43Þ

leads eventually to (with the usual meaning of π in the first
factor)

hyjπ;ϕi ¼ ðω=πℏÞ1=4 expðiπy=ℏ − ωðy − ϕÞ2=2ℏÞ: ð44Þ

This last equation asserts that hyjπ;ϕi is the y-representation
of the coherent state; likewise, it follows that hπ;ϕjyi½¼
hyjπ;ϕi�� is the coherent-state representation of the y-state.
Introducing

W� ≔
Y3
I¼1

jhη;�jĈ−1
I jη;�ij; ð45Þ

we can get a resolution of unity for each of the two sectors
Π− and Πþ:

Z
jπ;ϕihπ;ϕj ⊗ jp; q;�ihp; q;�j dπdϕd

3pd3q
h4W�

¼ I�

ð46Þ

provided that W� < ∞ (where h denotes Planck’s
constant).

D. Enhanced classical action functional

The use of coherent states as part of the classical/
quantum connection is related to the restricted variation
of vectors in the quantum action functional only to
appropriate coherent states, which then leads to the
enhanced classical action functional, for which ℏ > 0
throughout. We next spell out this connection.
The quantum action functional is given by

AQ ¼
Z

T

0

hψðtÞj½iℏð∂=∂tÞ − Ĥ�jψðtÞidt ð47Þ

and leads to the Schrödinger equation when general
variations are admitted. However, if the variations are
limited to coherent states—including just the variations
that a macroscopic observer could make—it follows [18]
that the so-restricted quantum action functional becomes
(with summation on I implied)
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AQðRÞ ¼
Z

T

0

hpðtÞ; qðtÞ; πðtÞ;ϕðtÞj½iℏð∂=∂tÞ − Ĥ�jpðtÞ; qðtÞ; πðtÞ;ϕðtÞidt

¼
Z

T

0

f−qIðtÞ _pIðtÞ þ πðtÞ _ϕðtÞ −HðpðtÞ; πðtÞ; qðtÞ;ϕðtÞÞgdt; ð48Þ

where jp; q; π;ϕi ≔ ðjp; q;þi ⊗ jπ;ϕiÞ ⊕ ðjp; q;−i ⊗ jπ;ϕiÞ, which according to the principles of enhanced quantiza-
tion [18] can be viewed as the enhanced classical action functional in which ℏ retains its normal positive value. The relation
of the quantum Hamiltonian to the expression

Hðp; π; q;ϕÞ ≔ hp; q; π;ϕjĤðĈI; D̂I; π̂; ϕ̂Þjp; q; π;ϕi
ð49Þ

is known as theWeak Correspondence Principle [19].We can use this relationship to help choose the quantumHamiltonian Ĥ.
An affine quantization that includes the Weak Correspondence Principle does not involve the assumption that the

classical coordinates must be “Cartesian coordinates” as is the case for canonical quantization. This is because in enhanced
quantization the variables p and q are not “promoted” to operators in the quantization process. This difference ensures that
enhanced quantization can provide different physics than that offered by canonical quantization.
It follows that (no summation intended)

Hðp; π; q;ϕÞ ¼ hp; q; π;ϕjĤðĈI; D̂I; π̂; ϕ̂Þjp; q; π;ϕi ¼ hη; αjĤððqI=μÞĈI; D̂I þ pIðqI=μÞĈI; π̂ þ π; ϕ̂þ ϕÞjη; αi; ð50Þ

where jη; αi ≔ jηi ⊗ jαi. If we adopt the naive form of the quantum operator Ĥ suggested by conventional canonical
quantization—applied to the classical Hamiltonian (20)—the result leads to [with hð� � �Þi ≔ hη; αjð� � �Þjη; αi in what
follows]

Hðp; π; q;ϕÞ ¼ 1

2

��X
I

qIðĈI=μÞ
�
2
�
−
X
I

q2I hðĈI=μÞ2i þ 2

��X
I

½D̂I þ pIðqI=μÞĈI�
�

2
�

− 4
X
I

hðD̂I þ pIðqIĈI=μÞ2i −
1

2
h½π̂ þ π2�i; ð51Þ

which may be written in the form

Hðp; π; q;ϕÞ ¼ 1

2

�X
I

qI

�
2

−
X
I

q2I þ 2
X
I;J

pIqIpJqJ − 4
X
I

p2
I q

2
I −

1

2
π2 þ 1

2

X
I:J

qIqJ½hðĈI=μÞðĈJ=μÞi − 1�

−
X
I

q2I ½hðĈI=μÞ2i − 1� þ 2
X
I;J

pIqIpJqJ½h½ðĈI=μÞðĈJ=μÞ�i − 1� − 4
X
I

p2
I q

2
I ½hðĈL=μÞ2i − 1�

þ 2

��X
I

D̂I

�
2
�
− 4

X
I

hD̂I
2i − 1

2
hπ̂2i: ð52Þ

We note that the variables qI and pI are related to the former classical variables according to the relations: qI ≔ CI and
pIqI ≔ DI . Thus, the first line in (52) is the classical Hamiltonian (20), while all the terms in the three remaining lines in
(52) are OðℏÞ (based on using the parameters ~β½≔ ℏβ� and ℏ). These terms constitute quantum corrections to the classical
Hamiltonian generated by the enhanced quantization point of view.
The last line in (52) are constants and can be canceled by subtracting them from Ĥ. The terms on lines two and three

involve quantum corrections to line one and are dealt with by adopting the enhanced Hamiltonian given by

Hðp; π; q;ϕÞ ¼ 1

2

��X
I

qIðĈI=μÞ
�
2
�
−
X
I

q2I hðĈI=μÞ2i þ 2

��X
I

pIqIðĈI=μÞ
�
2
�
− 4

X
I

p2
I q

2
I hðĈI=μÞ2i −

1

2
π2;

ð53Þ
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The terms hðĈI=μÞi ¼ �1 while hðĈI=μÞ2i ¼ 1þ z,
where

z ≔ −1þ
Z

∞

−∞
jðx=μÞj2~β=ℏþ1e−ð2~β=ℏÞjðx=μÞjdx

.
Z

∞

−∞
jðx=μÞj2~β=ℏ−1e−ð2~β=ℏÞjðx=μÞjdx; ð54Þ

which shows that z ¼ OðℏÞ. Equation (53) ensures that the
enhanced classical Hamiltonian is very much like the
traditional classical Hamiltonian, and its enhanced classical
equations of motion involve small corrections to the
traditional classical equations of motion.

IV. PASSING TOTHE PHYSICALHILBERT SPACE

The constraint of the Hamiltonian vanishing is an essential
requirement in the quantum theory as it was in the classical
theory. This has the effect of reducing the kinematical
Hilbert space to the physical Hilbert space. In other words,
we propose to follow the Dirac quantization scheme [20,21]:
first, quantize (in the kinematical Hilbert space) then second,
introduce the constraints (to identify the physical Hilbert
space). We realize this scheme with the help of reproducing
kernel Hilbert spaces (see, e.g., [22,23]).

A. Reproducing kernel Hilbert space

The essence of reproducing kernel Hilbert spaces is
readily explained. For example, as we have seen, the
kinematical Hilbert space is spanned by the set of coherent
states jp; q; π;ϕi. Thus, every vector in that space is given
by

jΨi ¼
X
k

akjpk; qk; πk;ϕki; ð55Þ

provided that

0 ≤ hΨjΨi ¼
X
j;k

a�jakhpj; qj; πj;ϕjjpk; qk; πk;ϕki < ∞:

ð56Þ

Observe that the set of coherent states, fjp; q; π;ϕig, forms
a continuously labeled set of vectors, which spans the
kinematical Hilbert space, but whose elements are, there-
fore, not linearly independent as in a conventional basis set.
Instead, the set of coherent states represents a kind of
“continuous basis” for a separable Hilbert space.
Next, we give a functional representation for every

abstract vector by introducing

Ψðp; q; π;ϕÞ ≔ hp; q; π;ϕjΨi
¼

X
k

akhp; q; π;ϕjpk; qk; πk;ϕki: ð57Þ

Another vector is given by its functional representation as
follows

Φðp; q; π;ϕÞ ¼ hp; q; π;ϕjΦi
¼

X
j0
bj0 hp; q; π;ϕjpj0 ; qj0 ; πj0 ;ϕj0 i; ð58Þ

where the set fpj0 ; qj0 ; πj0 ;ϕj0g for jΦi is generally different
from the set fpk; qk; πk;ϕkg for jΨi. In the reproducing
kernel Hilbert space, the inner product of two such func-
tional representation elements is given by

ðΦ;ΨÞ ≔
X
j0;k

b�j0akhpj0 ; qj0 ; πj0 ;ϕj0 jpk; qk; πk;ϕki; ð59Þ

which is just a functional representative of ðΦ;ΨÞ ¼ hΦjΨi.
Observe that the inner product of two coherent states,

hpj0 ; qj0 ; πj0 ;ϕj0 jpk; qk; πk;ϕki, serves as a reproducing
kernel; if the vector hΦj is chosen as the vector
hp; q; π;ϕj (i.e., bj0 ¼ δj0;1), then the result of the inner
product “reproduces” the expression for hp; q; π;ϕjΨi.
Traditionally, the reproducing kernel is chosen as jointly
continuous in both arguments. In our case, the reproducing
kernel using coherent states is automatically jointly con-
tinuous because the group properties of the affine and
canonical groups ensure continuity. Hence, like all repro-
ducing kernel Hilbert spaces, our reproducing kernel
Hilbert space is composed entirely of continuous functions.

B. Coherent state overlap as a reproducing kernel

The foregoing discussion is based on the general theory
of reproducing kernel Hilbert spaces. However, when
suitable coherent states generate the reproducing kernel,
as in the present case, some additional properties hold true.
In particular, there is an equivalent, second procedure for
the inner product of two functional representatives.
Equation (46) shows that a suitable integral over projection
operators onto coherent states leads to the unit operator in
the kinematical Hilbert space. Choosing the positive
section as an example, the general coherent state matrix
elements of that equation lead to the equation

hp00; q00; π00;ϕ00jp0; q0; π0;ϕ0i

¼
Z

hp00; q00; π00;ϕ00jp; q; π;ϕihp; q; π;ϕjp0; q0; π0;ϕ0i

× dμðp; q; π;ϕÞ; ð60Þ

where dμ represents the integration measure in (46). It
follows from this equation that the inner product of the two
functional representatives Φðp;q;π;ϕÞ¼hp;q;π;ϕjΦi and
Ψðp; q; π;ϕÞ ¼ hp; q; π;ϕjΨi is given by
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hΦjΨi ¼
Z

Φ�ðp; q; π;ϕÞΨðp; q; π;ϕÞdμðp; q; π;ϕÞ:

ð61Þ

In particular, if hΦj ¼ hp00; q00; π00;ϕ00j, this relation leads to
an example of the reproducing kernel property. Indeed, if
one lets fðp; q; π;ϕÞ be a general element of the space
L2ðR8Þ, the reproducing kernel acts as a projection operator
onto a valid vector in the kinematical Hilbert space, e,g.,

Ψfðp0; q0; π0;ϕ0Þ

¼
Z

hp0; q0; π0;ϕ0jp; q; π;ϕifðp; q; π;ϕÞdμðp; q; π;ϕÞ:

ð62Þ

It may well be that dealing with this integral version of the
inner product is more appropriate in special cases.

C. Projection operators for reducing
the kinematical Hilbert space

Let E represent a projection operator (hence,
E2 ¼ E† ¼ E). If E is smaller then the unit operator, it
follows that hp; q; π;ϕjEjp0; q0; π0;ϕ0i serves as a repro-
ducing kernel for a subspace of the original Hilbert space. In
particular, we suppose that E is a projection operator onto the
subspace where the Hamiltonian vanishes, i.e., E ¼
EðĤ ¼ 0Þ. The Hamiltonian operator consists of two parts
one with ĈI and D̂I and the other with π̂2=2. Let us assume
that the first part of Ĥ has a discrete spectrum fEn ≥ 0g and
that the second part has a continuous spectrum 0 ≤
y2=2 < ∞. Thus, the eigenfunctions jEn; yi ¼ jEni ⊗ jyi,
satisfy ĤjEn; yi ¼ ðEn − y2=2ÞjEn; yi and hEn; xjEm; yi ¼
δnmδðx − yÞ. Suppose the full spectrum of Ĥ implies that
Σn

R∞
0 jEn; yihEn; yjdy is the unit operator. In such a case

we have

hp; q; π;ϕjEjp0; q0; π0;ϕ0i
¼

X
n

hp; qjEnihEnjp0; q0ihπ;ϕj
ffiffiffiffiffiffiffiffi
2En

p
ih

ffiffiffiffiffiffiffiffi
2En

p
jπ0;ϕ0i:

ð63Þ

It follows that Eq. (63) defines a valid representation of a
reproducing kernel that includes only the subspace where
Ĥ ¼ 0. Therefore, a functional representation for every
vector ΨE of our physical Hilbert is given by

ΨEðp; q; π;ϕÞ ¼ hp; q; π;ϕjΨEi
¼

X
k

akhp; q; π;ϕjEjpk; qk; πk;ϕki: ð64Þ

Operators for the kinematical Hilbert space lead to
generally different operators for the physical Hilbert space.

Since the affine coherent state vectors fjp; q; π;ϕig span
the kinematical Hilbert space, it follows that the projected
coherent state vectors fEjp; q; π;ϕig span the physical
Hilbert space, as described above. In like fashion, an
operator Â that applies to the kinematical Hilbert space
leads to an operator ÂE ≔ EÂE that applies to the physical
Hilbert space. Sometimes a general property of Â is not
preserved by ÂE, such as being self-adjoint. If Â ≥ 0, then
ÂE ≥ 0 as well, and if Â is self-adjoint then ÂE can also be
chosen to be self-adjoint. On the other hand, if Q̂ and P̂
(with ½Q̂; P̂� ¼ iℏI) are both self-adjoint and a projection
operator F is such that FQ̂F is self-adjoint and strictly
positive, then it follows that F P̂F can never be self-adjoint.
This is just the situation that is overcome by choosing the
affine variables Q̂ and D̂ ≔ ð1=2Þ½Q̂ P̂þP̂ Q̂� (with
½Q̂; D̂� ¼ iℏQ̂) for which Q̂ > 0 and D̂ are both self-
adjoint.
Note that elements of the physical Hilbert space enjoy

the same integral representation of inner products as noted
earlier since

hΦjEjΨi ¼
Z

Φ�
Eðp; q; π;ϕÞΨEðp; q; π;ϕÞdμðp; q; π;ϕÞ;

ð65Þ

where, as before, ΨEðp; q; π;ϕÞ ≔ hp; q; π;ϕjEjΨi.
The development with time (t) in the kinematical Hilbert

space follows traditional expressions, such as if ĤðtÞ
denotes the (possibly time dependent) Hamiltonian oper-
ator that acts on an operator ÂðtÞ for which the time
dependence is only that caused by the Hamiltonian, i.e., for
which ∂AðtÞ=∂t ¼ 0, then the Heisenberg equation of
motion iℏdÂðtÞ=dt ¼ ½ÂðtÞ; ĤðtÞ� holds as usual. On the
other hand, for the physical Hilbert space, one must impose
the projection operator after forming the commutator such
as iℏEdÂðtÞ=dtE ¼ E½ÂðtÞ; ĤðtÞ�E and not by imposing
the projection operator before forming the commutator in
the form iℏdEÂðtÞE=dt ¼ ½EÂðtÞE;EĤðtÞE�. Not only
does the latter equation involve a different number of
projection operators (E) on each side of the equation, but,
as we expect in the current problem, the physical Hilbert
space is such that EĤðtÞE ¼ 0. Consequently, for the
former equation of motion, the operators EÂðtÞE evolve
properly within the physical Hilbert space for suitable
choices of the operator ÂðtÞ.
It is noteworthy that the energy eigenstates for the first

part of the Hamiltonian (i.e., only with Ĉ and D̂) are
degenerate leading to the possibility that there may be
various energy eigenstates for a single energy value. This is
likely to be true as well for the energy value E ¼ 0. Thus,
there could be a family of zero-energy eigenstates for which
π̂2=2 is not required to ensure that Ĥjm∶ðE ¼ 0Þi ¼ 0,
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m ∈ f1; 2; 3;…g. In such a case only affine coherent states,
jp; qi, are necessary and no canonical coherent states,
jπ;ϕi, are needed. To find the states jm∶ðE ¼ 0Þi requires
solving the zero-energy Schrödinger equation Ĥjm∶ðE ¼
0Þi ¼ 0. It is important to understand that the form of the
differential equation leading to zero-energy solutions in the
canonical quantization scheme in the following section is
entirely different from the differential equation leading to
zero-energy solutions in the affine quantization scheme
as the latter equation is shown in the following section.
Besides that difference in formulation, there is one advan-
tage that an affine quantization offers in that the proper
subtraction terms can be decided so that the enhanced
classical Hamiltonian has the form given in (53) such that,
even when ℏ > 0, the enhanced classical solutions follow
when the enhanced classical Hamiltonian is constrained to
vanish.

V. AFFINE QUANTIZATION

Let us try to define Ĥ by making use of the classical form
of H defined by Eq. (20). Since there are no products of
CI and DI in (20), and due to (27), the mapping of the
Hamiltonian (20) into a Hamiltonian operator is straight-
forward. We get

Ĥ ¼ 1

2

�X
I

xI

�
2

−
X
I

x2I − 2ℏ2

�X
I

�
xI

∂
∂xI þ 1=2

��
2

þ 4ℏ2
X
I

�
xI

∂
∂xI þ 1=2

�
2

þ 1

2
ℏ2

∂2

∂ϕ2

¼ ℏ2

�
−
3

2
þ 2

X
I

x2I
∂2

∂x2I − 4
X
I<J

xIxJ
∂2

∂xI∂xJ
�

þ
X
I<J

xIxJ −
1

2

X
I

x2I þ
ℏ2

2

∂2

∂ϕ2
≕ Ĥg þ Ĥϕ; ð66Þ

where Ĥϕ ¼ ℏ2

2
∂2
∂ϕ2, and where Ĥg is the gravitational

contribution.
One can show (see Appendix) that the operator Ĥ is

Hermitian on a dense subspace of L2ðR3; d3xÞ of the
functions satisfying suitable boundary conditions.

VI. CANONICAL QUANTIZATION

Though we think that the form of the Poisson brackets
given in Eqs. (1) indicates that our system is best treated
with affine quantization methods, we nonetheless briefly
consider how this system might be treated using the more
usual canonical quantization methods. Recall that in
canonical quantization one begins with classical configu-
ration variables XI and momentum variables PI having
Poisson brackets,

fPI; XJg ¼ δIJ: ð67Þ

One then realizes the kinematical Hilbert space as
L2ðR; dXIÞ and the operator PI as PI ¼ iℏð∂=∂XIÞ.
Now consider the case where all CI are positive and

define the XI by XI ¼ ð1=2Þ lnCI. Then it follows from
Eq. (1) that PI and XI satisfy the canonical Poisson bracket
given in Eq. (67).
The Hamiltonian constraint [Eq. (2)] written in terms of

XI then becomes

ðe2X1 þ e2X2 þ e2X3Þ2 − 2ðe4X1 þ e4X2 þ e4X3Þ
þ ðP1 þ P2 þ P3Þ2 − 2ðP2

1 þ P2
2 þ P2

3Þ − π2 ¼ 0:

ð68Þ

The physical Hilbert space is obtained by replacing PI
by iℏð∂=∂XIÞ and then imposing the Hamiltonian con-
straint as an operator acting on the wave function ψ . We,
thus, obtain the following equation:

ℏ2
∂2ψ

∂ϕ2
¼ ℏ2

�X
I≠J

∂2ψ

∂XI∂XJ
−
X
I

∂2ψ

∂X2
I

�

þ
�X

I

e4XI −
X
I≠J

e2ðXIþXJÞ
�
ψ : ð69Þ

The rhs of Eq. (69) defines an Hermitian operator on a
dense subspace of L2ðR3; d3XÞ of the functions satisfying
suitable boundary conditions.

VII. METHODS OF IMPOSING THE
HAMILTONIAN CONSTRAINT

In order to find the quantum fate of spikes, we will need
to impose the Hamiltonian constraint, possibly using
numerical methods, and examine the properties of the
resulting wave function ψ . Note that in ordinary quantum
mechanics the Hamiltonian operator generally involves
the Laplacian, and the energy eigenvalue equation
(“time-independent Schrödinger equation”) is an elliptic
equation. However, it is a general property of quantum
cosmology that the quantum Hamiltonian constraint equa-
tion is a hyperbolic equation. (This strange property is
essentially due to the conformal degree of freedom of the
metric behaving differently from the other metric degrees
of freedom.) In contrast to elliptic equations, which lead to
boundary value problems, hyperbolic equations lead to
initial value problems. To pose the initial value problem,
one must choose a timelike coordinate T and choose initial
data on a surface of constant T.
For the case of canonical quantization and the imposition

of (69), a convenient choice of coordinates is the following:

T ≔ X1 þ X2 þ X3; ð70Þ

Y ≔ X1 − X2; ð71Þ
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Z ≔
1

2
ðX1 þ X2Þ − X3; ð72Þ

which turns (69) into

ℏ2

�
−
∂2ψ

∂T2
þ 4

3

∂2ψ

∂Y2
þ ∂2ψ

∂Z2
þ 1

3

∂2ψ

∂ϕ2

�

þ 1

3
eð4=3ÞðTþZÞ½2ð1þ eY−2Z þ e−ðYþ2ZÞÞ

− ðe2Y þ e−2Y þ e−4ZÞ�ψ ¼ 0; ð73Þ

where ψ ∈ L2ðR4; dTdYdZdϕÞ. Equation (73) has explic-
itly a hyperbolic form, suitable for numerical simulations,
with T playing the role of an evolution parameter.
For the case of affine quantization, the Hamiltonian

defined by Eq. (66) yields an equation analogous to
Eq. (69), which is defined in L2ðR4; d3xdϕÞ and reads

ℏ2
∂2ψ

∂ϕ2
¼ 4ℏ2

�X
I≠J

xIxJ
∂2ψ

∂xI∂xJ −
X
I

x2I
∂2ψ

∂x2I þ 3

4
ψ

�

þ
�X

I

x2I −
X
I≠J

xIxJ

�
ψ : ð74Þ

The solution ψ of Eq. (74) has, potentially, a very different
physical interpretation than that of the solution of Eq. (69).
One can diagonalize Eq. (74) in a similar way as

Eq. (69). Introducing the variables,

T ≔ x1x2x3; ð75Þ

Y ≔
x1
x2

; ð76Þ

Z ≔
ffiffiffiffiffiffiffiffiffi
x1x2

p
x3

; ð77Þ

enables rewriting (74) in the following form:

4ℏ2

�
−T2

∂2ψ

∂T2
þ4

3
Y2

∂2ψ

∂Y2
þZ2

∂2ψ

∂Z2
þ 1

12

∂2ψ

∂ϕ2

−4T
∂ψ
∂Tþ4

3
Y
∂ψ
∂YþZ

∂ψ
∂Z−

3

4
ψ

�

þ1

3
ðTZÞ2=3

�
ðY2þY−2þZ−4Þ−2

�
1þ Y

Z2
þ 1

YZ2

��
ψ ¼0:

ð78Þ

In this hyperboliclike equation, suitable for numerical
simulations, the variable T plays the role of an evolution
parameter.

VIII. EXPLORING THE AFFINE
CONSTRAINT EQUATION

We recall the affine Hamiltonian constraint equation (74)
and set the left-hand side to zero seeking a solution with
only fxIg variables. It follows that a “near solution” to the
resulting constraint equation is given by

Ψðx1; x2; x3Þ ≔ ð2ℏÞ−3=2 exp
	
−ð1=2ℏÞ

�X
I

jxIj
�


; ð79Þ

and, as presented, Ψ is normalized, i.e.,
R jΨðx1; x2; x3Þj2

d3x ¼ 1. If we now put the remaining zero-point energy
[appearing as 3ℏ2 in (74)] as part of the original
Hamiltonian, this solution satisfies the equation ĤΨ ¼ 0
and, thus, (79) represents a solution of the quantum
constraint. At first sight, it seems strange that a function
that has a discontinuous derivative—thanks to jx1j, etc.—
can satisfy the modified (74). In fact, all eight independent
solutions of the modified affine Hamiltonian constraint (74)
have a similar form given by

Ψðx1; x2; x3; J�Þ
≔ ðℏÞ−3=2ΠIf½Jþ;IθðxIÞ þ J−;Iθð−xIÞ�e−ð1=2ℏÞjxI jg;

ð80Þ
where θðyÞ ≔ 1 for y > 0 and θðyÞ ≔ 0 for y < 0, and
jJþ;Ij2 þ jJ−;Ij2 ¼ 1 for each I. This form of the wave
function contains finite jumps at xI ¼ 0when jJþ;Ij ≠ jJ−;Ij,
for one or more I. The solution (80) is valid even though
there are terms of the form x2Iδ

0ðxIÞ as well as xIxJδðxIÞδðxjÞ
for I ≠ J, all of which vanish. The factor 8½¼ 23� arises from
the variety available from the eight inequivalent terms
J�;1J�;2J�;3. Hereafter, to simplify the notation in this
section, we assume that the plain symbol Ψ (or Φ) denotes
any vector in the eight-dimensional physical Hilbert space
with the form given in (80).
It is noteworthy that certain operators can be simplified

when they are confined to act on vectors in the physical
Hilbert space. Clearly, the relation ĈIΨ ¼ xIΨ holds, and it
follows that

D̂IΨ ¼ −iℏ½xI∂=∂xI þ 1=2�Ψ ¼ ði=2Þ½xI − ℏ�Ψ
¼ ði=2Þ½ĈI − ℏ�Ψ; ð81Þ

which shows that the action of D̂I is effectively multipli-
cative in nature. Indeed, it follows that

D̂IĈ
p
I Ψ ¼ f½D̂I; Ĉ

p
I � þ Ĉp

I D̂IgΨ
¼ f−iℏpĈp

I þ ði=2ÞĈp
I ½ĈI − ℏ�gΨ: ð82Þ

Although these equations are correct, it follows that
while Ψ is a vector in the physical Hilbert space, it is a fact
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that Ĉp
I Ψ, for p > 0, is not a vector in the physical Hilbert

space. To address that situation, we can obtain the part of
that vector in the physical Hilbert space by taking the inner
product with another vector Φ in the physical Hilbert space,
which leads to ðΦ; Ĉp

I ΨÞ. In the eight-dimensional physical
Hilbert space, this inner product, for I ¼ 1, becomes

ðΦ; Ĉp
1ΨÞ ¼ ℏ−1

Z
½K�

þ;1θðx1Þ þ K�
−;1θð−x1Þ�

× ½Jþ;1θðx1Þ þ J−;1θð−x1Þ�xp1e−jx1j=ℏdx1
¼ p!ℏp½K�

þ;1Jþ;1 þ ð−1ÞpK�
−;1J−;1�; ð83Þ

where J�;1 refers to Ψ and K�;1 refers to Φ.
This simplification of the form taken by the operator D̂I

leads to a simplification of the equation of motion. The
classical equations _CI ¼ CI½DI − 2D� transform, for the
kinematical Hilbert space, to the operator equation

_̂CI ¼ ð1=2ÞĈI½D̂I − 2D̂� þ ð1=2Þ½D̂I − 2D̂�ĈI: ð84Þ

To fit it into the physical Hilbert space, this equation
becomes

ðΦ; _̂CIΨÞ ¼ ð1=2ÞðΦ; fĈI½D̂I − 2D̂� þ ½D̂I − 2D̂�ĈIgΨÞ;
ð85Þ

which becomes an equation involving only the fĈIg
operators, namely

ðΦ; _̂CIΨÞ ¼ ð1=2Þ
�
Φ;

	
−iℏĈI þ iĈIðĈI − ℏÞ

þ 2
X
L

½iℏĈL − iĈLðĈL − ℏÞ�


Ψ

�
: ð86Þ

It follows that higher-order time derivatives of Ĉ can be
developed leading to an expression of the form

ĈIðtÞ ¼ ĈIð0Þ þ t _̂CIð0Þ þ ðt2=2Þ ̈ĈIð0Þ þ � � � ; ð87Þ

which leads to the general expression given by

ðΦ; ĈIðtÞΨÞ ¼ ðΦ;MIðt; ĈLð0ÞÞΨÞ ð88Þ

which introduces the time dependent, 8 × 8 matrix,
MIðt; ĈLð0ÞÞ.
Observe that the matrixMI itself does not depend on any

specific vector in the physical Hilbert space. The vectors in
the physical Hilbert space are distinguished by the factors
J�;I that signify the coefficients that define a given vector
Ψ. To discuss position dependence in real space, as was the
case in Sec. II in order to study the position dependence of
potential spikes, we let x̄1 represent a position in real space.

For us, dealing with the physical Hilbert space, the position
parameter appears in the choice of the parameters J�;I in
the physical Hilbert space vectors; the position parameter
x̄1 does not appear in the matrix MIðt; ĈLð0ÞÞ. Let us first
choose the initial position of a vector to be at position
x̄1 ¼ 0 in space. This we can accommodate by choosing
Jþ;1 ¼ J−;1 ¼ 1=

ffiffiffi
2

p
. If, instead, we want to be at a small,

nonzero position 0 < x̄1 < ℏ, we can choose Jþ;1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ x̄1=ℏÞ=2
p

and J−;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − x̄1=ℏÞ=2

p
so that

ðℏÞ−1
Z

½jJþ;1j2θðx1Þ

þ jJ−;1j2θð−x1Þ�x1 exp½−jx1j=ℏ�dx1 ¼ x̄1: ð89Þ

Using the several tools discussed above, let us consider
some general properties of the expression for
ðΨðx̄1Þ; ĈðtÞΨðx̄1ÞÞ, focusing on the influence of the space
position x̄1. With Ψð0Þ ≔ Ψðx̄1 ¼ 0Þ, we observe that

jðΨðx̄1Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨð0ÞÞj
¼ jðΨðx̄1Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨð0ÞÞ
þ ðΨð0Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨðx̄1ÞÞj

≤ jðΨðx̄1Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨðx̄1ÞÞj
þ jðΨð0Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨð0ÞÞj

≤ jjΨðx̄1Þ −Ψð0ÞjjjjĈ1ðtÞΨðx̄1jj
þ jjΨðx̄1Þ −Ψð0ÞjjjjĈ1ðtÞ†Ψð0Þjj; ð90Þ

where jjΨjj denotes the norm of the vector Ψ. Finally, with
the vectors Ψ normalized to unity, we find that

jðΨðx̄1Þ; Ĉ1ðtÞΨðx̄1ÞÞ − ðΨð0Þ; Ĉ1ðtÞΨð0ÞÞj
≤ 2jjΨðx̄1Þ −Ψð0ÞjjjjĈ1ðtÞjj; ð91Þ

in which jjĈ1ðtÞjj now denotes the operator norm of the
8 × 8 matrix representation of the physical Hilbert space
form, i.e., M1ðt; ĈLð0ÞÞ, of the given operator. Moreover,
this equation provides a bound on the hypothetical quantum
spike, and with the temporal and spacial portions bounded
and completely separated, we believe that quantum spikes
do not exist. In other words, these solutions do not support
the existence of quantum spikes since they prohibit the
temporal and spatial behavior characteristic of the classical
spike behavior.
To achieve the eight solutions of the quantum

Hamiltonian constraint we had to subtract a numerical
term that was proportional to ℏ2. This is not unlike using
normal ordering to find solutions of a quantum problem,
e.g., removing the zero-point energy in a free field when it
is composed of a set of harmonic oscillators. Although our
problem has been treated as a quantum mechanics problem,
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it should be appreciated that such a problem applies to
every spatial point and, thus, the overall zero-point energy
diverges. The solutions we have obtained for the physical
Hilbert space are its least energy states simply because they
do not cross the axis and change sign just as ground-state
wave functions traditionally behave.

IX. CONCLUSIONS

We have set up a formalism to treat the question of
whether spikes persist in a quantum treatment of spacetime
singularities. We argue that a promising method for
addressing this question is to treat the quantum dynamics
of individual spatial points using the Hamiltonian system of
Ashtekar, Henderson, and Sloan. We further note that the
form of the Poisson brackets of this system indicates that
the affine approach to quantization would be more natural
for this system than the usual canonical quantization
method. As shown in the previous section, an exploration
of the physical Hilbert space using the affine analysis leads
to the conclusion that quantum spikes do not exist.
We now consider particular ways to apply the formalism

developed in this paper to extend our results on the effect of
quantum mechanics on spikes. Recall from Sec. II that
classical spikes occur because the dynamics at a particular
point (the center of the spike) is of an exceptional sort,
different from the dynamics of all neighboring points. Thus,
the question of whether quantum effects destroy spikes is
essentially the question of whether quantum effects destroy
these exceptional classical trajectories in the physical phase
space. Though quantum corrections are small (at least far
from the Planck scale) nonetheless, the unstable nature of the
exceptional trajectories means that they might be destroyed
by even such small effects. The simplest form of this
question is to retain the classical phase space, but to replace
the classical Hamiltonian with the enhanced Hamiltonian of
Sec. III D, and to see whether this change alone is enough to
destroy the exceptional trajectory. More generally, we would
consider wave packets that start out peaked around the
exceptional classical trajectory and see whether quantum
uncertainty makes those wave packets spread so that at later
times they are no longer peaked around the classical
trajectory. These wave packets would need to satisfy the
Hamiltonian constraint that the wave function is annihilated
by the quantum Hamiltonian operator (Eq. (78) in the affine
case or (73) for the canonical case). Since wave packets are
known to have tendency to spread during an evolution, we
propose to examine this issue quite independently bymaking
use of the reproducing kernel Hilbert space technique of
Sec. IV. In Sec. VIII, we found all such affine quantum states
that are finite in the usual L2 norm. However, the so-called
problem of time in quantum gravity leads one to consider
alternative normalization choices, such as those given in
[24–26]. In particular, as we have shown, the quantum
Hamiltonian constraint equation leads to a hyperbolic
equation that is more like the wave equation than the usual

Schrödinger equation of standard quantum mechanics.
Under such circumstances, it is argued in [25] that it is
more natural to use the Klein-Gordon norm rather than the
standard L2 norm. It is possible that for the processes
relevant for the formation of spikes, the quantum
Hamiltonian constraint can be approximately solved in
closed form. But if not, then standard numerical methods
used to treat hyperbolic equations could be used instead.
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APPENDIX: HERMITICITY OF THE AFFINE
HAMILTONIAN CONSTRAINT

Here, we give an outline of the proof that the operator
ĤC, defined in Eq. (66), is symmetric on the space of
functions satisfying suitable boundary conditions or having
compact support in R3.
It is clear that the most problematic terms in (66) are the

ones with the second partial derivatives, i.e., the second and
the third terms of the first line of (66). One can easily show
that when taken separately, each of them is not symmetric.
In what follows, we show that the sum of them has however
this property. To demonstrate this, we make use of the
following identity,

X
I

x2I
∂2

∂x2I −
X
I≠J

xIxJ
∂2

∂xI∂xJ ¼
X
I

HI −
X
I≠J

HIJ; ðA1Þ

where

HI ≔ x2I
∂2

∂x2I þ 2xI
∂
∂xI ðA2Þ

and

HIJ ≔ xIxJ
∂2

∂xI∂xJ þ xI
∂
∂xI : ðA3Þ

The proof consists in showing that
X
I

½hfjHIgi − hHIfjgi� ¼ 0 ¼
X
I≠J

½hfjHIJgi − hHIJfjgi�:

ðA4Þ
Making use of the identities:

x2I
∂2f�

∂x2I g ¼ ∂
∂xI

�
x2I

∂f�
∂xI g

�
− 2xI

∂f�
∂xI g − x2I

∂f�
∂xI

∂g
∂xI ;

ðA5Þ
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x2I f
� ∂2g
∂x2I ¼

∂
∂xI

�
x2I f

� ∂g
∂xI

�
− 2xIf�

∂g
∂xI − x2I

∂f�
∂xI

∂g
∂xI ;

ðA6Þ

and

xIxJ
∂2f�

∂xJxI g¼
∂
∂xJ

�
xIxJ

∂f�
∂xI g

�
−xI

∂f�
∂xI g−xIxJ

∂f�
∂xI

∂g
∂xJ ;
ðA7Þ

xIxJf�
∂2g
∂xIxJ¼

∂
∂xI

�
xIxJf�

∂g
∂xI

�
−xJf�

∂g
∂xJ−xIxJ

∂f�
∂xI

∂g
∂xJ ;
ðA8Þ

one can find that the integrants of (A4) consist entirely of
the factors:

∂
∂xI

�
x2I

�∂f�
∂xI g − f�

∂g
∂xI

��
and

∂
∂xJ

�
xIxJ

∂f�
∂xI g

�
−

∂
∂xI

�
xIxJf�

∂g
∂xI

�
: ðA9Þ

Due to Eq. (A9) it is easy to show that Eq. (A4) is satisfied
in the subspace of functions with compact support
C0ðR3Þ ⊂ L2ðR3; d3xÞ, or in the subspace of functions
satisfying suitable boundary conditions. In the rhs of (A1)
we have the cancellation of the linear terms of (A2) and
(A3), which leads to the lhs of (A1).

[1] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Spacetime (Cambridge University Press, Cambridge,
England, 1973).

[2] V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz,
Oscillatory approach to the singular point in relativistic
cosmology, Sov. Phys. Usp. 13, 745 (1971).

[3] V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz,
Oscillatory approach to a singular point in the relativistic
cosmology, Adv. Phys. 19, 525 (1970); A general solution
of the Einstein equations with a time singularity, Adv. Phys.
31, 639 (1982).

[4] B. K. Berger and V. Moncrief, Numerical investigation of
cosmological singularities, Phys. Rev. D 48, 4676 (1993).

[5] B. K. Berger, Numerical approaches to spacetime singular-
ities, Living Rev. Relativ. 5, 1 (2002).

[6] B. K. Berger and D. Garfinkle, Phenomonology of the
Gowdy Universe on T3 × R, Phys. Rev. D 57, 4767
(1998).

[7] A. D. Rendall and M. Weaver, Manufacture of Gowdy
spacetimes with spikes, Classical Quantum Gravity 18,
2959 (2001).

[8] D. Garfinkle andM.Weaver, High velocity spikes in Gowdy
spacetimes, Phys. Rev. D 67, 124009 (2003).

[9] D. Garfinkle, The fine structure of Gowdy spacetimes,
Classical Quantum Gravity 21, S219 (2004).

[10] W. C. Lim, L. Andersson, D. Garfinkle, and F. Pretorius,
Spikes in the Mixmaster regime of G(2) cosmologies, Phys.
Rev. D 79, 123526 (2009).

[11] J. M. Heinzle, C. Uggla, and W. C. Lim, Spike oscillations,
Phys. Rev. D 86, 104049 (2012).

[12] A. Coley andW. C. Lim, Spikes and matter inhomogeneities
in massless scalar field models, Classical Quantum Gravity
33, 015009 (2016).

[13] A. Guth and S. Pi, Quantum mechanics of the scalar field in
the new inflationary universe, Phys. Rev. D 32, 1899 (1985).

[14] G. Barton, Quantum mechanics of the inverted oscillator
potential, Ann. Phys. (N.Y.) 166, 322 (1986).

[15] C. Uggla, H. van Elst, J. Wainwright, and G. F. R. Ellis, Past
attractor in inhomogeneous cosmology, Phys. Rev. D 68,
103502 (2003).

[16] D. Garfinkle, Numerical simulations of generic singular-
ities, Phys. Rev. Lett. 93, 161101 (2004).

[17] A. Ashtekar, A. Henderson, and D. Sloan, Hamiltonian
formulation of the Belinskii-Khalatnikov-Lifshitz conjec-
ture, Phys. Rev. D 83, 084024 (2011).

[18] J. R. Klauder, Enhanced Quantization: Particles, Fields and
Gravity, (World Scientific, Singapore, 2015).

[19] J. R. Klauder, Weak correspondence principle, J. Math.
Phys. (N.Y.) 8, 2392 (1967).

[20] P. A. M. Dirac, Lectures on Quantum Mechanics (Belfer
Graduate School of Science Monographs Series, New York,
1964).

[21] M. Henneaux and C. Teitelboim, Quantization of Gauge
Systems (Princeton University Press, Princeton, NJ, 1992).

[22] J. R. Klauder, Fundamentals of quantum gravity, J. Phys.
Conf. Ser. 87, 012012 (2007).

[23] N. Aronszajn, Theory of reproducing kernels, Trans. Am.
Math. Soc. 68, 337 (1950).
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