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Following an intriguing heuristic argument of Bekenstein, many researches have suggested during the
last four decades that quantized black holes may be characterized by discrete radiation spectra. Bekenstein
and Mukhanov (BM) have further argued that the emission spectra of quantized (3þ 1)-dimensional
Schwarzschild black holes are expected to be sharp in the sense that the characteristic natural broadening
δω of the black-hole radiation lines, as deduced from the quantum time-energy uncertainty principle, is
expected to be much smaller than the characteristic frequency spacing Δω ¼ OðTBH=ℏÞ between adjacent
black-hole quantum emission lines. It is of considerable physical interest to test the general validity of the
interesting conclusion reached by BM regarding the sharpness of the Schwarzschild black-hole quantum
radiation spectra. To this end, in the present paper we explore the physical properties of the expected
radiation spectra of quantized (Dþ 1)-dimensional Schwarzschild black holes. In particular, we analyze
the functional dependence of the characteristic dimensionless ratio ζðDÞ≡ δω=Δω on the number Dþ 1

of spacetime dimensions. Interestingly, it is proved that the dimensionless physical parameter ζðDÞ, which
characterizes the sharpness of the black-hole quantum emission spectra, is an increasing function of D. In
particular, we prove that the quantum emission lines of (Dþ 1)-dimensional Schwarzschild black holes in
the regime D ≳ 10 are characterized by the dimensionless ratio ζðDÞ≳ 1 and are therefore effectively
blended together. The results presented in this paper thus suggest that, even if the underlying energy spectra
of quantized (Dþ 1)-dimensional Schwarzschild black holes are fundamentally discrete, as argued by
many authors, the quantum phenomenon of natural broadening is expected to smear the characteristic
emission spectra of these higher-dimensional black holes into a continuum.
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I. INTRODUCTION

While studying the interaction of fundamental fields with
curved black-hole spacetimes, Hawking [1] has reached
the remarkable conclusion that, due to quantum effects,
black holes are actually not completely black. In particular,
Hawking’s seminal analysis has revealed the intriguing fact
that semiclassical black holes, like mundane black-body
emitters, are characterized by continuous emission spectra
with well-defined thermal properties [1,2].
Hawking’s interesting conclusion regarding the thermal

nature of quantum fields in curved black-hole spacetimes
has attracted the attention of both physicists and mathe-
maticians over the last four decades and is certainly one of
the most important predictions of fundamental theoretical
physics. One should bear in mind, however, that the
ground-breaking analysis presented in [1] has a fundamen-
tally asymmetric nature; while the fundamental fields living
in the curved black-hole spacetime are properly treated at
the quantum level, the black hole itself (and, in particular,
its horizon) is treated in [1] as a fixed classical entity.
One should therefore regard the continuous black-hole

radiation spectrum derived by Hawking [1] as an important
prediction of semiclassical general relativity in which
quantized fundamental fields interact with the classical

curved spacetime of a black hole. Taking cognizance of
the fundamental limitations of the semiclassical theory of
general relativity, it is quite natural to expect that some
modifications to the continuous black-hole emission spec-
trum predicted by Hawking [1] may arise within the
framework of a self-consistent quantum theory of gravity,
a theory in which the black-hole spacetime itself (and
not just the matter fields) is properly treated as a quantum
physical entity [3].
One of the most intriguing quantization schemes for the

surface area (or equivalently, for the energy spectra) of
black holes was presented by Bekenstein more than four
decades ago [3]. Following the interesting physical obser-
vation that the surface area of a nonextremal black hole
behaves as a fundamental adiabatic invariant quantity [3,4],
Bekenstein has argued, using the Ehrenfest principle [5],
that the surface area of a quantized black hole should be
characterized by a uniformly spaced discrete spectrum of
the form [3,6]

An ¼ 4γℏ · n; n ∈ Z; ð1Þ

where γ is a dimensionless constant of order unity. The
three most commonly used values of the parameter γ which
appear in the physics literature are γ ¼ 2π [3], γ ¼ ln 2
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[7,8], and γ ¼ ln 3 [9]. Interestingly, the remarkably com-
pact formula (1) suggested by Bekenstein [3] for the
discrete surface area of (3þ 1)-dimensional quantized
black holes has been rederived by several authors who
have used different physically motivated quantization
schemes (see [7–28] and references therein).
Bekenstein has further argued [3] that the uniformly

spaced area spectrum (1) should be associated with a
discrete mass (energy) spectrum fMng for quantized black
holes. In particular, using the simple mass-area relation

A ¼ 16πM2 ð2Þ
for (3þ 1)-dimensional Schwarzschild black holes, one
immediately deduces from (1) a discrete mass spectrum of
the form

Mn ¼
ffiffiffiffiffiffiffiffiffiffiffi
γℏ
4π

· n

r
; n ∈ Z ð3Þ

for these spherically symmetric black holes. Taking cog-
nizance of the discrete energy spectrum (3), Bekenstein
and Mukhanov (BM) [3,7] have raised the intriguing idea
that, within the framework of a quantum theory of gravity,
quantized Schwarzschild black holes may be characterized
by discrete radiation spectra.
In particular, as stressed byBM[3,7], the decay of amacro-

scopic [29] (3þ 1)-dimensional quantized Schwarzschild
black hole of massMn into lower energy levels is expected to
be accompanied by the emission of discrete field quanta
whose characteristic frequencies are given by [30]

ωk ¼
Mn −Mn−k

ℏ
¼ k ·ϖ; k ¼ 1; 2; 3;…; ð4Þ

where the fundamental (smallest possible) frequency ϖ
which characterizes the quantized black-hole emission
spectrum is given by the simple dimensionless relation
[see Eq. (3)]

Mϖ ¼ γ

8π
: ð5Þ

Interestingly, the quantized radiation spectrum (4) advocated
by BM [3,7] for macroscopic [29] (3þ 1)-dimensional
Schwarzschild black holes is characterized by the remarkably
simple constant spacing [31]

Δω ¼ ϖ ð6Þ
between the corresponding frequencies of adjacent black-
hole emission lines.

II. NATURAL BROADENINGOF THEQUANTIZED
BLACK-HOLE EMISSION LINES

In order to establish the discrete nature of the proposed
radiation spectrum (4) of a quantized (3þ 1)-dimensional

Schwarzschild black hole, Bekenstein and Mukhanov [7]
have analyzed the influence of the quantum phenomenon of
natural broadening [5] on the widths of the black-hole
emission lines. In particular, using the time-energy quan-
tum uncertainty principle [5], BM [7] (see also [32,33])
have related the natural frequency broadening δω of the
black-hole quantum emission lines to the reciprocal of the
characteristic finite lifetime τ of the black-hole nth energy
(mass) level [5,34],

δω ¼ 1

τ
: ð7Þ

In the spirit of the Bohr correspondence principle [5],
Bekenstein and Mukhanov [7] have further suggested to
relate the characteristic lifetime τ of the nth energy (mass)
level of a macroscopic [29] quantized (3þ 1)-dimensional
Schwarzschild black hole to the reciprocal of the corre-
sponding semiclassical emission rate which characterizes
the black hole [1,35–38],

τ ¼
�
dN
dt

�
−1
: ð8Þ

The sharpness of the black-hole emission spectrum (4)
can be characterized by the dimensionless ratio δω=Δω
between the natural frequency width of the spectral lines
[see Eq. (7)] and the characteristic frequency spacing
between adjacent radiation lines [see Eqs. (5) and (6)].
In particular, discrete emission spectra are characterized by
the strong inequality δω=Δω ≪ 1, whereas emission spec-
tra which are effectively continuous are characterized by
the strong inequality δω=Δω ≫ 1.
Interestingly, one finds [7,33] that the emission spectrum

of a quantized (3þ 1)-dimensional Schwarzschild black
hole is characterized by the relation [see Eq. (20) below]

ζðD ¼ 3Þ≡ δω

Δω
≪ 1: ð9Þ

As emphasized by BM [7], the small ratio (9) found for the
dimensionless physical parameter ζðD ¼ 3Þ implies that
the discrete eigenfrequencies (4), which according to
Bekenstein [3] (see also [7–28]) are expected to character-
ize the radiation spectra of quantized (3þ 1)-dimensional
Schwarzschild black holes, are unlikely to overlap.

III. THE SPECTRAL EMISSION LINES
OF (Dþ 1)-DIMENSIONAL SCHWARZSCHILD

BLACK HOLES AND THEIR NATURAL
QUANTUM BROADENING

It is of physical interest to test the general validity
of the intriguing conclusion reached by BM [7], according
to which the quantum phenomenon of natural broad-
ening has a negligible effect on the suggested discrete
emission spectra (4) of quantized (3þ 1)-dimensional
Schwarzschild black holes. In particular, one naturally
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wonders whether the strong inequality δω ≪ Δω [see
Eq. (9)], which characterizes the emission spectra of
quantized (3þ 1)-dimensional Schwarzschild black holes,
is a generic property of all (Dþ 1)-dimensional quantized
Schwarzschild black holes.
In order to address this physically interesting question, in

the present paper we shall analyze the functional depend-
ence of the dimensionless physical ratio

ζðDÞ≡ δωðDÞ
ΔωðDÞ ; ð10Þ

which quantifies the sharpness [39] of the black-hole
quantum emission spectra, on the number Dþ 1 of
spacetime dimensions.
It is worth emphasizing that, as extensively discussed in

the literature (see [40–43] and references therein), higher-
dimensional physical theories with extra spatial dimensions
provide intriguing candidates for self-consistent physical
theories unifying the fundamental forces of nature.
Interestingly, the suggested higher-dimensional physical
theories [40–43] may provide an elegant resolution for the
hierarchy problem observed in our Universe. Moreover,
physical theories with extra spatial dimensions predict the
formation of mini black holes in future high-energy accel-
erators [40–43]. Interestingly, these higher-dimensionalmini
black holes are expected to be characterized by quantum
emission spectra. It is therefore of physical interest to
explore the physical properties (and, in particular, the
characteristic quantum emission spectra) of these predicted
higher-dimensional black holes that will hopefully be
observed in future man-made high-energy scattering
experiments.

A. The emission spectra of quantized
(Dþ 1)-dimensional Schwarzschild black holes

Interestingly, the quantization schemes presented in
[3,9,44] suggest that higher-dimensional Schwarzschild
black holes, like their (3þ 1)-dimensional counterparts,
are expected to be characterized by evenly spaced discrete
emission spectra of the form

ωk ¼ k ·ϖðDÞ; k ¼ 1; 2; 3;…; ð11Þ

where the fundamental radiation frequency of a quantized
(Dþ 1)-dimensional Schwarzschild black hole is given by
the compact physical expression [44,45]

ϖðDÞ ¼ γTBHðDÞ
ℏ

: ð12Þ

Here [46,47]

TBHðDÞ ¼ ðD − 2Þℏ
4πrH

ð13Þ

is the characteristic Bekenstein-Hawking temperature of a
(Dþ 1)-dimensional Schwarzschild black hole of horizon
radius rH.
Note that the quantized radiation spectrum (11),

suggested for macroscopic [29] (Dþ 1)-dimensional
Schwarzschild black holes by the quantization schemes
of [3,9,44], is characterized by the constant frequency
spacing [31]

ΔωðDÞ ¼ ϖðDÞ ð14Þ

between adjacent black-hole spectral lines.

B. Natural broadening and radiation fluxes
of (Dþ 1)-dimensional Schwarzschild black holes

Following the physical procedure suggested by
Bekenstein and Mukhanov [7] (see also [32,33]), we shall
determine the natural frequency broadening δωðDÞ of the
spectral lines (11), which are expected to characterize the
emission spectra of macroscopic (Dþ 1)-dimensional
quantized Schwarzschild black holes, from the character-
istic relation [see Eqs. (7) and (8)]

δωðDÞ ¼ dN
dt

; ð15Þ

where dN=dt is the corresponding (Dþ 1)-dimensional
semiclassical emission rate (that is, the number of quanta
emitted per unit of time) of the higher-dimensional
Schwarzschild black hole [1,35–38,48].
Below we shall consider the emission of massless grav-

itons and photons [1,35,49,50]. In particular, in the present
analysis we shall assume that the radiating (Dþ 1)-
dimensional Schwarzschild black holes are macroscopic in
the sense that the emission of massive particles in the regime
μ · rH ≫ D2ℏ is exponentially suppressed [35,49]. [Note, in
particular, that an emitted massive particle can reach spatial
infinity only if its proper energy satisfies the inequality
ℏω ≥ μ. The exponential factor ωD−1=ðeℏω=TBH − 1Þ that
governs the radiation flux of a (Dþ 1)-dimensional
Schwarzschild black hole [see Eq. (16) below] implies that
the corresponding radiation rate of massive quanta in the
regime ℏω ≥ μ ≫ D2ℏ=rH is exponentially suppressed].
Furthermore, it should be noted that had we considered an
extended set of emitted particles (which includes massive
particles along with massless fields), we would have found
shorter lifetimes for the metastable (radiating) black-hole
states. Thus, extending the family of emitted field modes
would merely strengthen our final conclusion [see Eqs. (21)
and (23) below] that, in the large-D regime, the quantum
phenomenon of natural broadening [5] is expected to smear
the characteristic emission spectra of radiating (Dþ 1)-
dimensional Schwarzschild black holes into a continuum.
The semiclassical radiation flux out of a (Dþ 1)-

dimensional Schwarzschild black hole for one massless
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bosonic degree of freedom is given by the expression
[1,35,49,50]

dN
dt

¼ 1

2D−1πD=2ΓðD=2Þ
X
j

Z
∞

0

Γ
ωD−1

eℏω=TBH − 1
dω; ð16Þ

where j denotes the angular harmonic parameters of
the emitted field quanta. The absorption probabilities
Γ ¼ Γðω; j; DÞ (known as the black-hole-field greybody
factors) [35] that appear in the integral relation (16)
quantify the linearized interaction of the emitted field
modes with the effective gravitational potential of the
curved (Dþ 1)-dimensional Schwarzschild black-hole
spacetime. These characteristic black-hole-field reflection
coefficients are determined by solving a standard problem
of wave scattering in the curved black-hole spacetime.
In particular, the linearized interaction (scattering) of the
emitted field modes with the curved black-hole spacetime
is governed by the generalized (Dþ 1)-dimensional
Regge-Wheeler equation [1,35,49,50]

�
d2

dx2
þ ω2 − V

�
ϕ ¼ 0; ð17Þ

where the radial coordinate x is related to the Schwarzschild
coordinate r by the differential relation dx=dr ¼
½1 − ðrH=rÞD−3�−1. For a massless perturbation field of
harmonic index l, the effective (Dþ 1)-dimensional
black-hole curvature potential in (17) is given by the
cumbersome expression [50]

Vðr;DÞ ¼
�
1 −

�
rH
r

�
D−3

�

×

�
lðlþD − 2Þ þ ðD − 1ÞðD − 3Þ=4

r2

þ ð1 − p2ÞðD − 1Þ2rD−2
H

4rD

�
: ð18Þ

Here one should take the values p ¼ f0; 2; 2=ðD − 1Þ;
2ðD − 2Þ=ðD − 1Þg for the distinct cases of gravitational
tensor fields, gravitational vector fields, electromagnetic
vector fields, and electromagnetic scalar fields, respectively
[50] [It should be noted that the effective radial potential in
the generalized (Dþ 1)-dimensional Regge-Wheeler equa-
tion (17) for the case of gravitational scalar perturbation
fields is characterized by a rather complicated expression
which is given in [50]].

IV. SHARPNESS OF THE (Dþ 1)-DIMENSIONAL
SCHWARZSCHILD BLACK-HOLE EMISSION
SPECTRA: NUMERICAL AND ANALYTICAL

RESULTS

In the present section we shall explore the functional
dependence of the dimensionless physical parameter
ζðDÞ≡ δωðDÞ=ΔωðDÞ [see Eqs. (14) and (15)], which

characterizes the sharpness [39] of the black-hole quantum
emission spectra, on the number Dþ 1 of spacetime
dimensions.

A. The (3þ 1)-dimensional Schwarzschild black hole

The total emission rate of massless gravitons and photons
from a macroscopic (3þ 1)-dimensional Schwarzschild
black hole is given by [35] dN=dt≃ 1.6 × 10−4M−1.
Using the characteristic relation (15), one finds

δωðD ¼ 3Þ≃ 1.6 × 10−4M−1 ð19Þ

for the natural frequency broadening which characterizes the
emission lines of the quantized (3þ 1)-dimensional
Schwarzschild black holes.
Taking cognizance of Eqs. (5), (6), and (19), one finds

that the emission spectra of quantized (3þ 1)-dimensional
Schwarzschild black holes are characterized by the remark-
ably small dimensionless ratio [51,52]

ζðD ¼ 3Þ≡ δωðD ¼ 3Þ
ΔωðD ¼ 3Þ≃ 4 × 10−3 ≪ 1: ð20Þ

The extremely small value (20) found for the dimensionless
physical parameter ζðD ¼ 3Þ implies that the quantum
phenomenon of natural broadening has a negligible effect
on the expected emission spectra of quantized (3þ 1)-
dimensional Schwarzschild black holes. In particular, as
emphasized by BM [7], the characteristic strong inequality
δωðD ¼ 3Þ ≪ ΔωðD ¼ 3Þ implies that the discrete emis-
sion frequencies (4), which according to Bekenstein [3]
(see also [7–28]) are expected to characterize the radiation
spectra of quantized (3þ 1)-dimensional Schwarzschild
black holes, are unlikely to overlap.

B. (Dþ 1)-dimensional Schwarzschild black holes:
Intermediate D values

In the previous subsection we have seen that (3þ 1)-
dimensional quantized Schwarzschild black holes are
characterized by a remarkably small value of the physical
parameter ζðD ¼ 3Þ. In the present subsection we shall
explicitly prove that the fundamental dimensionless ratio
ζðDÞ, which characterizes the sharpness [39] of the black-
hole quantum emission spectra, is an increasing function of
the spacetime dimension Dþ 1.
The emission rates of massless gravitons and photons

from (Dþ 1)-dimensional Schwarzschild black holes were
computed numerically in [50]. In Table I we display, for
intermediate values of the black-hole spacetime dimension
Dþ 1, the numerically computed values of the dimension-
less physical parameter ζðDÞ≡δω=Δω [see Eqs. (12)–(15)]
[51]. The data presented in Table I reveal the intriguing
fact that the physical parameter ζðDÞ, which quantifies
the sharpness of the quantized (Dþ 1)-dimensional
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Schwarzschild black-hole emission spectra, is an increasing
function of the number Dþ 1 of spacetime dimensions.
In particular, one finds from Table I that higher-

dimensional Schwarzschild black holes in the regime
D≳ 10 are characterized by the inequality [53]

δω≳ Δω for D≳ 10: ð21Þ
The relation (21) strongly suggests that, due to the quantum
phenomenon of natural broadening [5], the characteristic
spectral lines (11) of quantized higher-dimensional
Schwarzschild black holes are expected to be effectively
blended together in the regime D≳ 10.

C. (Dþ 1)-dimensional Schwarzschild black holes:
The large-D regime

In the previous subsection we have used numerical data
to reveal the interesting fact that the dimensionless physical
parameter ζ ¼ ζðDÞ, which quantifies the sharpness of
the black-hole quantum emission lines, is an increasing
function of the number Dþ 1 of spacetime dimensions.
In the present subsection we shall use analytical results in
order to prove that this fundamental physical parameter is
characterized by the asymptotic behavior ζðD ≫ 1Þ ≫ 1.
It has recently been demonstrated explicitly [54] that

the semiclassical radiation spectra [1,35–38] of (Dþ 1)-
dimensional Schwarzschild black holes in the asymptotic
large-D regime are described remarkably well by the
eikonal (short-wavelength) approximation. In particular,
using the geometric-optics approximation, one finds [54]
the remarkably compact analytical formula

dN
dt

× rH ¼ ð4πÞ2
e

�
D
4π

�
Dþ3

for D ≫ 1 ð22Þ

for the dimensionless semiclassical radiation flux of a
(Dþ 1)-dimensional Schwarzschild black hole in the
asymptotic large-D regime.
Taking cognizance of Eqs. (12), (13), (14), (15), and

(22), one deduces that the emission spectra of quantized

higher-dimensional Schwarzschild black holes in the
large-D regime are expected to be characterized by the
dimensionless asymptotic relation [55,56]

ζðDÞ ¼ ð4πÞ2
γe

�
D
4π

�
Dþ2

for D ≫ 1: ð23Þ

The characteristic strong inequality δω ≫ Δω found in the
large-D regime [see Eqs. (10) and (23)] strongly suggests
that the quantum phenomenon of natural broadening [5]
would effectively smear the corresponding radiation lines
of these higher-dimensional Schwarzschild black holes into
a continuum.

V. SUMMARY AND DISCUSSION

Following the highly influential work of Bekenstein [3],
many researches (see [7–28] and references therein) have
argued during the last four decades that, within the frame-
work of a self-consistent quantum theory of gravity [57],
black holes should be characterized by discrete radiation
spectra with evenly spaced spectral lines [see Eq. (4)].
Furthermore, using the quantum time-energy uncertainty

principle [5], Bekenstein and Mukhanov [7] have reached
the important physical conclusion that the charac-
teristic radiation spectra of quantized (3þ 1)-dimensional
Schwarzschild black holes are expected to be sharp in the
sense that the characteristic natural broadening δω [see
Eqs. (7) and (8)] of the black-hole quantum emission lines
is much smaller than the characteristic spacing Δω ¼
OðTBH=ℏÞ [see Eqs. (5) and (6)] between adjacent emission
lines of the quantized black holes. It was therefore con-
cluded by BM [7] that, for quantized (3þ 1)-dimensional
Schwarzschild black holes, the characteristic discrete spec-
tral lines (4), as predicted in [3,7–28], are unlikely to
overlap.
One naturally wonders whether the strong inequality

δωðD ¼ 3Þ ≪ ΔωðD ¼ 3Þ [7], which characterizes the
expected spectral lines (4) of quantized (3þ 1)-
dimensional Schwarzschild black holes, is a generic prop-
erty of all quantized (Dþ 1)-dimensional Schwarzschild
black holes? In order to address this physically interesting
question, in the present paper we have studied the
characteristic radiation spectra of (Dþ 1)-dimensional
quantized Schwarzschild black holes. In particular, we
have analyzed the functional dependence of the character-
istic dimensionless ratio ζðDÞ≡ δω=Δω on the spacetime
dimensionDþ 1 of the quantized black hole. Interestingly,
we have explicitly proved that the dimensionless physical
parameter ζðDÞ, which quantifies the natural broadening
(the sharpness) of the black-hole quantum emission lines, is
an increasing function of the number Dþ 1 of spacetime
dimensions (see Table I).
In particular, we have shown that the quantum emission

lines of (Dþ 1)-dimensional Schwarzschild black holes in
the regime D≳ 10 are characterized by the dimensionless

TABLE I. The dimensionless physical parameter ζðDÞ≡
δω=Δωwhich quantifies the sharpness of the (Dþ 1)-dimensional
Schwarzschild black-hole quantum emission spectra. Here δω is
the natural broadening of the black-hole quantum emission
lines [see Eq. (15)], and Δω [51] is the characteristic frequency
spacing between adjacent emission lines of the quantized (Dþ 1)-
dimensional Schwarzschild black holes [see Eqs. (12)–(14)].
One finds that the dimensionless physical parameter ζðDÞ is an
increasing function of the numberDþ 1 of spacetime dimensions.
In particular, we find that higher-dimensional Schwarzschild black
holes in the regime D ¼ Oð10Þ are characterized by the relation
δω=Δω ¼ Oð1Þ [53].
Dþ 1 5 6 7 8 9 10 11

ζðDÞ≡ δω=Δω 0.046 0.151 0.310 0.645 1.036 2.153 3.639
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ratio ζðDÞ≳ 1 [see Eq. (21)]. Moreover, we have proved
that the emission spectra of quantized (Dþ 1)-dimensional
Schwarzschild black holes are characterized by the large-D
asymptotic behavior ζðD → ∞Þ → ∞ [see Eq. (23)] [55].
These intriguing findings imply, in particular, that the
characteristic emission lines of these higher-dimensional
quantized black holes are effectively blended together.
The results presented in the present paper therefore

suggest that, even if the underlying energy spectra of
quantized (Dþ 1)-dimensional Schwarzschild black holes

are fundamentally discrete, as argued by many authors
[3,7–28], the quantum phenomenon of natural broadening
[5] is expected to smear the characteristic emission spectra
of these higher-dimensional black holes into a continuum.

ACKNOWLEDGMENTS

This research is supported by the Carmel Science
Foundation. I thank Yael Oren, Arbel M. Ongo, Ayelet
B. Lata, and Alona B. Tea for stimulating discussions.

[1] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[2] It is worth emphasizing the fact that the characteristic

thermal emission spectra of semiclassical black holes are
partially distorted by the effective curvature (gravitational)
potentials [see Eq. (18)] which quantify the linearized
interaction of the emitted field modes with the correspond-
ing curved black-hole spacetimes.

[3] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); Lett. Nuovo
Cimento 11, 467 (1974).

[4] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970); D.
Christodoulou and R. Ruffni, Phys. Rev. D 4, 3552 (1971).

[5] M. Born, Atomic Physics (Blackie, London, 1969).
[6] We shall use natural units in which G ¼ c ¼ kB ¼ 1.
[7] J. D. Bekenstein and V. F. Mukhanov, Phys. Lett. B 360, 7

(1995).
[8] S. Hod, Classical Quantum Gravity 23, L23 (2006).
[9] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).

[10] V. Mukhanov, JETP Lett. 44, 63 (1986).
[11] Y. I. Kogan, JETP Lett. 44, 267 (1986).
[12] P. O. Mazur, Phys. Rev. Lett. 57, 929 (1986).
[13] M. Maggiore, Nucl. Phys. B429, 205 (1994).
[14] C. O. Lousto, Phys. Rev. D 51, 1733 (1995).
[15] Y. Peleg, Phys. Lett. B 356, 462 (1995).
[16] J. Louko and J. Mäkelä, Phys. Rev. D 54, 4982 (1996).
[17] A. Barvinsky and G. Kunstatter, Phys. Lett. B 389, 231

(1996).
[18] H. A. Kastrup, Phys. Lett. B 385, 75 (1996).
[19] J. Mäkelä and P. Repo, Phys. Rev. D 57, 4899 (1998).
[20] S. Hod, Phys. Rev. D 59, 024014 (1998).
[21] S. Hod, Gen. Relativ. Gravit. 31, 1639 (1999).
[22] M. Bojowald and H. A. Kastrup, Classical Quantum Gravity

17, 3009 (2000).
[23] D. V. Ahluwalia, Int. J. Mod. Phys. D 08, 651 (1999).
[24] R. Garattini, Nucl. Phys. B, Proc. Suppl. 88, 297 (2000).
[25] R. Garattini, Int. J. Mod. Phys. D 11, 635 (2002).
[26] G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003).
[27] M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008).
[28] U. Keshet and S. Hod, Phys. Rev. D 76, 061501(R) (2007).
[29] Here we use the term “macroscopic black hole” to describe a

black hole whose surface area is characterized by the strong
inequality An ≫ ℏ [that is, n ≫ 1, see Eq. (1)].

[30] Here one assumes that the integer k, which characterizes the
energy transition of the quantized black hole, satisfies the

relations 1 ≤ k ≪ n [note that n ≫ 1 for macroscopic black
holes, see Eq. (1) and [29]].

[31] The characteristic frequency spacing between adjacent
emission lines is given by Δω≡ ωkþ1 − ωk [see Eq. (4)].

[32] J. Mäkelä, Phys. Lett. B 390, 115 (1997).
[33] S. Hod, Phys. Lett. A 299, 144 (2002); Phys. Lett. B 749,

115 (2015).
[34] That is, τ is the average time (as measured by asymptotic

observers) between physical transitions (quantum leaps) of
the black hole from a given energy (mass) level to a lower
energy level.

[35] D. N. Page, Phys. Rev. D 13, 198 (1976); 14, 3260
(1976).

[36] It is worth emphasizing that the present physical procedure
for the calculation of the average lifetime τ of the nth energy
(mass) level of a macroscopic [29] quantized (Dþ 1)-
dimensional Schwarzschild black hole is based on the Bohr
correspondence principle [5]. This physical approach is
known to yield accurate results in other areas of physics
[37,38]. For instance, using the classical laws of electro-
magnetic radiation fields [37,38] together with the Bohr
correspondence principle, one can obtain remarkably accu-
rate estimates for the radiative lifetimes of excited atoms
[37,38]. Furthermore, it is worth emphasizing the fact that
the agreement between the approximated (semiclassically
calculated) lifetimes of the excited energy levels and
the exact (quantum-mechanically calculated) lifetimes of the
excited energy levels improves with increasing values of the
atomic quantum number n [37,38]. (In fact, it is well known
that for atomic systems the quantum-classical agreement,
which is based on the Bohr correspondence principle,
becomes perfect in the asymptotic n → ∞ limit). We expect
a similar quantum-classical correspondence to hold true in
the physics of macroscopic [that is, n ≫ 1 in Eq. (1)]
(Dþ 1)-dimensional black holes.

[37] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1999), 3rd ed.

[38] M.W. Horbatsch, E. A. Hessels, and M. Horbatsch, Phys.
Rev. A 71, 020501(R) (2005).

[39] Note, in particular, that sharp (discrete) black-hole emission
spectra are characterized by the relation ζ ≪ 1, whereas
continuous black-hole emission spectra are characterized by
the opposite relation ζ ≫ 1.

SHAHAR HOD PHYSICAL REVIEW D 95, 024012 (2017)

024012-6

http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02762768
http://dx.doi.org/10.1007/BF02762768
http://dx.doi.org/10.1103/PhysRevLett.25.1596
http://dx.doi.org/10.1103/PhysRevD.4.3552
http://dx.doi.org/10.1016/0370-2693(95)01148-J
http://dx.doi.org/10.1016/0370-2693(95)01148-J
http://dx.doi.org/10.1088/0264-9381/23/4/L01
http://dx.doi.org/10.1103/PhysRevLett.81.4293
http://dx.doi.org/10.1103/PhysRevLett.57.929
http://dx.doi.org/10.1016/S0550-3213(94)80047-2
http://dx.doi.org/10.1103/PhysRevD.51.1733
http://dx.doi.org/10.1016/0370-2693(95)00874-K
http://dx.doi.org/10.1103/PhysRevD.54.4982
http://dx.doi.org/10.1016/S0370-2693(96)01261-0
http://dx.doi.org/10.1016/S0370-2693(96)01261-0
http://dx.doi.org/10.1016/0370-2693(96)00846-5
http://dx.doi.org/10.1103/PhysRevD.57.4899
http://dx.doi.org/10.1103/PhysRevD.59.024014
http://dx.doi.org/10.1023/A:1026753914838
http://dx.doi.org/10.1088/0264-9381/17/15/311
http://dx.doi.org/10.1088/0264-9381/17/15/311
http://dx.doi.org/10.1142/S0218271899000456
http://dx.doi.org/10.1016/S0920-5632(00)00789-1
http://dx.doi.org/10.1142/S0218271802001445
http://dx.doi.org/10.1103/PhysRevLett.90.161301
http://dx.doi.org/10.1103/PhysRevLett.100.141301
http://dx.doi.org/10.1103/PhysRevD.76.061501
http://dx.doi.org/10.1016/S0370-2693(96)01376-7
http://dx.doi.org/10.1016/S0375-9601(02)00013-0
http://dx.doi.org/10.1016/j.physletb.2015.07.068
http://dx.doi.org/10.1016/j.physletb.2015.07.068
http://dx.doi.org/10.1103/PhysRevD.13.198
http://dx.doi.org/10.1103/PhysRevD.14.3260
http://dx.doi.org/10.1103/PhysRevD.14.3260
http://dx.doi.org/10.1103/PhysRevA.71.020501
http://dx.doi.org/10.1103/PhysRevA.71.020501


[40] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys.
Lett. B 429, 263 (1998).

[41] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370
(1999); 83, 4690 (1999).

[42] M. Casals, S. R. Dolan, P. Kanti, and E. Winstanley, J. High
Energy Phys. 06 (2008) 071.

[43] D. M. Eardley and S. B. Giddings, Phys. Rev. D 66, 044011
(2002).

[44] G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003).
[45] Note that the expression (12) for the fundamental emission

frequency of a quantized (Dþ 1)-dimensional Schwarzs-
child black hole reduces to (5) in the familiar (3þ 1)-
dimensional case.

[46] F. R. Tangherlini, Nuovo Cimento 27, 636 (1963).
[47] Note that a spherically symmetric (Dþ 1)-dimensional

Schwarzschild black hole is characterized by an horizon
radius of the form rH ¼ ½16πM=ðD − 1ÞAD−1�1=ðD−2Þ [46],
whereM is the black-hole mass and AD−1 ¼ 2πD=2=ΓðD=2Þ
is the generalized surface area of a unit (D − 1)-dimensional
sphere.

[48] It should be noted that, in order to estimate the characteristic
emission rate of a (3þ 1)-dimensional Schwarzschild
black hole, BM [7] have used an approximated approach
in which the radiating black hole was modeled as a
perfect black-body emitter. In the present paper we shall
consider the exact radiation fluxes of (Dþ 1)-dimensional
Schwarzschild black holes, taking into account the partial
reflection of the emitted field modes by the gravitational
potential [see Eq. (18) below] of the curved black-hole
spacetime.

[49] W. H. Zurek, Phys. Rev. Lett. 49, 1683 (1982); D. Page,
Phys. Rev. Lett. 50, 1013 (1983); P. Kanti, Int. J. Mod. Phys.
A 19, 4899 (2004); S. Hod, Phys. Rev. D 93, 104027
(2016).

[50] V. Cardoso, M. Cavaglia, and L. Gualtieri, J. High Energy
Phys. 02 (2006) 021; R. A. Konoplya and A. Zhidenko,
Phys. Rev. D 82, 084003 (2010); C. Harris and P. Kanti,
J. High Energy Phys. 10 (2003) 014.

[51] Here we have used the value γ ¼ 1. This order of magnitude
for the dimensionless physical parameter γ is consistent with
the values most commonly used in the physical literature for
this fundamental coefficient, see [3,7–9].

[52] See [33] for the analysis of the natural broadening phe-
nomenon which is expected to characterize the emission
spectra of quantized rapidly rotating (3þ 1)-dimensional
Kerr black holes.

[53] Note that the exact number Dþ 1 of spacetime dimensions
for which ζðDÞ ¼ 1 depends on the chosen value [3,7–9] of
the dimensionless physical parameter γ.

[54] S. Hod, Classical Quantum Gravity 28, 105016 (2011);
Phys. Lett. B 746, 22 (2015); Eur. Phys. J. C 75, 329 (2015);
Phys. Lett. B 756, 133 (2016); 757, 121 (2016).

[55] It is worth emphasizing the fact that, from the analytically
derived expression (23), one finds the asymptotic behavior
ζðD → ∞Þ → ∞ for the fundamental physical parameter ζ.
Note, in particular, that this characteristic asymptotic
behavior of the dimensionless ratio δω=Δω is independent
of the value of the dimensionless constant γ.

[56] It is worth noting that the analytically derived asymptotic
formula (23), which is based on the geometric-optics
(eikonal) approximation in the asymptotic large-D regime,
provides the correct order of magnitude for the dimension-
less physical parameter ζðDÞ already for D ¼ 10. Specifi-
cally, one finds from (23) ζanalyticalðD ¼ 10Þ ¼ 3.746 [51],
which is a factor ∼1.03 larger than the corresponding
numerically computed value ζnumericalðD ¼ 10Þ≃ 3.639
(see Table I).

[57] The term “quantum theory of gravity” is used here to
describe a symmetric self-consistent theory in which both
the black hole and the fundamental fields are properly
quantized. This should be contrasted with the fundamentally
asymmetric nature of the seminal semiclassical analysis of
Hawking [1], in which the fundamental fields that live in the
curved black-hole spacetime are properly analyzed at the
quantum level, but the black hole itself (and, in particular, its
horizon) is treated as a fixed classical entity.

NATURAL BROADENING IN THE QUANTUM EMISSION … PHYSICAL REVIEW D 95, 024012 (2017)

024012-7

http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://dx.doi.org/10.1103/PhysRevLett.83.4690
http://dx.doi.org/10.1088/1126-6708/2008/06/071
http://dx.doi.org/10.1088/1126-6708/2008/06/071
http://dx.doi.org/10.1103/PhysRevD.66.044011
http://dx.doi.org/10.1103/PhysRevD.66.044011
http://dx.doi.org/10.1103/PhysRevLett.90.161301
http://dx.doi.org/10.1007/BF02784569
http://dx.doi.org/10.1103/PhysRevLett.49.1683
http://dx.doi.org/10.1103/PhysRevLett.50.1013
http://dx.doi.org/10.1142/S0217751X04018324
http://dx.doi.org/10.1142/S0217751X04018324
http://dx.doi.org/10.1103/PhysRevD.93.104027
http://dx.doi.org/10.1103/PhysRevD.93.104027
http://dx.doi.org/10.1088/1126-6708/2006/02/021
http://dx.doi.org/10.1088/1126-6708/2006/02/021
http://dx.doi.org/10.1103/PhysRevD.82.084003
http://dx.doi.org/10.1088/1126-6708/2003/10/014
http://dx.doi.org/10.1088/0264-9381/28/10/105016
http://dx.doi.org/10.1016/j.physletb.2015.04.051
http://dx.doi.org/10.1140/epjc/s10052-015-3554-y
http://dx.doi.org/10.1016/j.physletb.2016.03.002
http://dx.doi.org/10.1016/j.physletb.2016.03.071

