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For many years, researchers have tried to glean hints about quantum gravity from black hole
thermodynamics. However, black hole thermodynamics suffers from the problem of universality—
at leading order, several approaches with different microscopic degrees of freedom lead to Bekenstein-
Hawking entropy. We attempt to bypass this issue by using a minimal statistical mechanical model for the
horizon fluid based on the Damour-Navier-Stokes (DNS) equation. For stationary asymptotically flat
black hole spacetimes in general relativity, we show explicitly that, at equilibrium, the entropy of the
horizon fluid is the Bekenstein-Hawking entropy. Further, we show that, for the bulk viscosity of the
fluctuations of the horizon fluid to be identical to Damour, a confinement scale exists for these fluctuations,
implying quantization of the horizon area. The implications and possible mechanisms from the fluid point
of view are discussed.
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Key questions in any theory of quantum gravity concern
which operators to quantize and what is their spectrum?.
Such a problem is prohibitively complicated for a full
theory of quantum gravity. However, it is hoped that one
can make progress when we restrict the spacetimes under
consideration. Black holes are the most promising con-
tenders to make such progress, as they are the some of the
simplest spacetimes.
One promising inroad into this problem has been through

black hole thermodynamics [1], which has shown that the
horizon area is associated to the entropy [2–4] and
suggested that this area could be the appropriate variable
to quantize [5–7]. However, black hole thermodynamics
now has the problem of universality [8]; at leading order,
several approaches using completely different microscopic
degrees of freedom lead to Bekenstein-Hawking entropy
[9]. Currently, it is not possible to identify which are the
true degrees of freedom that are responsible for the black
hole entropy [10].
Alternatively, fluid and gravity correspondence—

projecting the Einstein equations onto the black hole
horizon leads to an equation similar in style to Navier-
Stokes [11–21]—can provide a way to understand these
black hole micro-states from the microscopic degrees of
freedom of the horizon fluid. This is more interesting as we
have a better understanding about the microscopic degrees
of freedom of most fluid systems than gravity. More
specifically, given a horizon fluid equation of state, it is
possible to constrain the microscopic degrees of freedom
and, hence, the problem of universality encountered in
black hole thermodynamics can be curtailed [22–26].
Importantly, it was shown recently that modeling of the

horizon fluid as a Bose-Einstein condensate (BEC) one

may recover Bekenstein-Hawking entropy for the
Schwarzschild, AdS, and Boulware-Deser black holes
[26,27]. Using the theory of fluctuations [28], two of the
current authors constructed [29] a statistical-mechanical
description of the (number) fluctuations of the horizon fluid
and explicitly showed that the coefficient of bulk viscosity
for the horizon fluid corresponding to the four-dimensional
Schwarzschild black hole matches exactly with the value
found from the equations of motion for the horizon fluid
[11]. It is important to note that while the entropy
calculation [27] requires a model of the horizon fluid
(i.e. BEC), the fluctuation dissipation analysis of the
horizon fluid leading to the negative bulk viscosity [29]
is independent of the details of the horizon fluid.
The Schwarzschild black hole is the simple obvious first

test case [27,29]. Since the Schwarzschild solution depends
on the one parameter (the black hole mass), it does not
answer some of the important questions, such as when and
why does the statistical mechanical picture of the horizon
fluid work? Does the statistical mechanical picture of the
horizon fluid and its fluctuations provide any condition on
the microscopic structures of the fluid horizon? The
purpose of this work is to answer these questions by
extending the analyses of [27,29] to the D-dimensional
Schwarzschild and Kerr-Newman black holes.
Using an appropriate quasilocal energy for the black hole

[30–32], and constraint equations between the thermody-
namic variables leads to the correct value of entropy of
the fluid in the above spacetimes. We explicitly evaluate the
number density fluctuations of the horizon fluid in the
corotating frame in these spacetimes and show that in order
for the bulk viscosity of the horizon fluid to match Damour’s
result [11] there must be a confinement scale i.e. fluctuations
exist as bound states, as in diverse condensed matter
models [33–35]. One of the important implications of the*bcropp,swastik,shanki@iisertvm.ac.in
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confinement scale is that the scale implies the quantization
of black hole area as conjectured by Bekenstein [5–7]. To
our knowledge, this is the first evidence that the fluid-
gravity correspondence provides concrete evidence for the
quantization of horizon area.
Horizon fluid constraint equations: Generalizing

Damour’s calculation [11] to D-dimensional spacetime
(see Appendix A), and projecting onto the (D − 2)-
dimensional horizon [36], one recovers an equation similar
to the Navier-Stokes equation describing a viscous fluid.
This construction can be carried out for arbitrary null
surfaces but the correspondence to the normal Navier-
Stokes equation is exact for the stationary spacetimes
considered here. The fluid has pressure (P),

P ¼ κ

8π
¼ kBT

4
; ð1Þ

where T is the Hawking temperature of the black hole. In this
work, we set c ¼ G ¼ ℏ ¼ 1 and therefore must keep kB
explicit, and assume that T > 0 corresponding to nonex-
tremal black holes. The horizon fluid is special in that
besides the above constraint (1), it further obeys an extra
constraint relating the fluid energy and temperature [25].
The fluid has a naturally defined energy density, which

we can integrate over the horizon area to find the total
energy. This procedure bypasses the issue of choosing
amongst notions of quasilocal energy [37–39], and natu-
rally leads to a constraint equation relating E, T, and A.
This energy is identical to one commonly used notion of
quasilocal mass in the literature [30–32]. See Appendix B.
For the D-dimensional Schwarzschild [40], we have

E ¼ M ¼
�
D − 2

D − 3

�
AkBT
4

; ð2Þ

while the Kerr-Newman black hole, the quasilocal mass
evaluated on the outer horizon, obeys [31]

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2

p
¼ 1

2
AkBT: ð3Þ

Note that for D ¼ 4, Eq. (2) leads to Eq. (3).
Beside the constraints, the bulk viscosity of the horizon

fluid is negative [11]. The coefficient of bulk (ζ) and shear
viscosity (η), respectively, are given by

ζ ¼ −
�
D − 3

D − 2

�
1

8π
; η ¼ 1

16π
: ð4Þ

As mentioned earlier, two of the current authors [29] have
systematically obtained negative bulk viscosity from the
fluctuations of the horizon fluid. More importantly, it was
shown that negative sign is due to the teleological nature of
the horizon [12,13], as it leads to an anticausal response to
infalling matter. Indeed, using a local trapping horizon

instead of teleological notion of horizon one recovers a
positive bulk viscosity [41,42].
The above discussion clearly points that the horizon fluid

corresponding to any stationary black hole is an odd
system; the macroscopic parameters P, T, E and A
(volume) are not independent. More importantly, the
constraint equations (1), (2), (3) imply that the physical
mechanism that drives the horizon fluid from an initial
configuration, say, P1, T1, E1, A1 to final configuration P2,
T2, E2, A2, cannot be arbitrary and, hence, the fluctuations
of these macroscopic quantities are also constrained. As we
will show, the constraint equations play a crucial role in the
derivation of the entropy and the bulk viscosity. Setup: We
list below the key ingredients in evaluating the physical
quantities from the horizon fluid:
(1) The macroscopic properties of the horizon fluid

satisfy the black hole constraints (1) and (2) [or (3)].
These macroscopic properties are specified by the N
microscopic degrees of freedom.

(2) Following the results of [25,43], we assume that
there exists some temperature Tc at which all N
microscopic degrees of freedom are in the ground
state, and that the system remains close to the critical
point Tc [22,24,27].

(3) The total energy of the fluid of N particles is [25]

E ∝ Nε ∝ N=rH ¼ NαkBT; ð5Þ
where α is constant.

(4) The above energy should satisfy the constraint
between energy E, A and T. Following (2) and
(3), we have

E ¼ AkBT=γ; ð6Þ
and γ is a dimension-dependent constant. From (5),
we get

N ¼ E=ðαkBTÞ ¼ A=ðγαÞ: ð7Þ
Before we proceed with the main calculations, we would

like to stress the following points: First, our modeling of the
horizon fluid is minimal. At equilibrium, N contains all the
information about the horizon fluid and all the physical
variables are related to N. As we will show, the entropy of
the horizon fluid is proportional to N which leads to the
correct Bekenstein-Hawking entropy. Second, to determine
the transport coefficients of the horizon fluid we need to go
beyond the equilibrium description i.e. study the fluctua-
tions of the horizon fluid (δN) [29]. As we will show, using
the theory of fluctuations [28], it is possible to relate the
bulk viscosity to the auto-correlation function of δN.
Horizon fluid entropy: An immediate consequence of the
above setup is the analytical prediction of the entropy of
the horizon fluid using Mean field theory [44]. Defining the
order parameter (η) of the homogeneous fluid as

η ¼
ffiffiffiffiffiffiffiffi
KN

p
K a positive constant; ð8Þ
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the thermodynamic potential is given by [44]

Φ ¼ Φ0 þ aðPÞðT − TcÞη2 þ BðPÞη4; ð9Þ
where aðPÞ and BðPÞ are to be determined. Splitting into
temperature-dependent and -independent parts and match-
ing the potential Φ ¼ −PA [45] as in [44], we relate P to T
via (1) and equate the terms of order TA to get

a ¼ −
γαkB
4K

: ð10Þ

Unusually compared to most phase transitions, the negative
value of a (as K, α, and γ must all be positive) means that
the system is in the ordered phase for T > Tc an the
disordered phase for T < Tc [44]. In the ordered phase,Φ is
a minimum for

η2 ¼ KN ¼ aðT − TcÞ
2B

: ð11Þ

Now, if wewrite the entropy in the disordered and ordered
phase as S0 and S0 þ ΔS respectively, one may argue that S0
is generically small as in [27] (see Appendix D) and

ΔS≡ −
∂Φ
∂T ¼ −aKN ¼ kB

A
4
: ð12Þ

This is the first key result of this work and validates the
modeling of the horizon fluid as a critical system. Further,
we like to stress the following points regarding this result:
(i) This is a generic result for any D-dimensional stationary
(spherical or axisymmetric) black hole in general relativity,
and (ii) one of the key results from black hole thermody-
namics is that black holes in general relativity have an
entropy S ¼ kBA=4. This is a key test for modeling the
horizon fluid, which has proven difficult for several prior
models [22–24]; the fact that this holds true for a large class
of black holes is encouraging for the success of our model of
horizon fluid. Bulk viscosity of horizon fluid: For the
horizon fluid, the equilibrium state corresponds to the
minimum of the thermodynamic potential (Φ). Transport
phenomena in a fluid can be viewed as nonequilibrium
processes occurring within the fluid, where the deviation
from equilibrium is small. The advantage of this approach is
that it is minimalistic—-indeed we may henceforth discard
the assumptions about the existence of a phase transition
(See Appendix E) Using the theory of fluctuations [28],
transport coefficients can be related to autocorrelation
function of number density fluctuations ðδNÞ. Following
Kubo [28], the coefficient of bulk viscosity is given by

ζ ¼
�
1

n

�
1

AkBT

Z
∞

−∞
dt
X
a

X
b

hJaað0ÞJbbðtÞi; ð13Þ

where, n ¼ TrðδabÞ, a, b run from 1; � � � ðD − 2Þ and the
current Jab is

Jab ¼ δabδðPVÞ ¼ VδPδab: ð14Þ

We can write this as an entropic force—moving the
system back to equilibrium—which, for the horizon fluid,
takes the form

FTh ¼ PAδAθð−tÞ; ð15Þ

where θðtÞ is the theta function, and enforces the anticausal,
teleological nature of the horizon (for a detailed discussion,
see [29]). The bulk viscosity can therefore be rewritten as

ζ ¼ 1

AkBT

Z
∞

−∞
dthFThðtÞFThð0Þi

¼ ðαγÞ2kBT
16A

Z
∞

−∞
dthδNðtÞδNð0Þiθð−tÞ; ð16Þ

using (15), (1) and (5). Since our interest lies in the long
wavelength (fluid) limit, wemay evaluate the viscosity from
the linear response of the horizon fluid [28]:

ζ ¼ lim
ϵ→0

ℑ

�ðαγÞ2kBThδN2ð0Þi
16A

Z
∞

−∞
dt exp½iðω − iϵÞ�θð−tÞ

�
;

ð17Þ

leading to

ζ ¼ −
ðαγÞ2kBT

16A
hδN2ð0Þi

ω
; ð18Þ

where ω corresponds to the lowest energy mode of
the fluctuations that the horizon fluid support and sustain.
Assuming that the fluctuations satisfy Maxwell-Boltzmann
statistics, we get

hδN2ð0Þi ¼ 4A
ðγαÞ2 ; ð19Þ

and the bulk viscosity simplifies to

ζ ¼ −
kBT
4ω

: ð20Þ

As this is the second main result of this work we would like
to stress the following points: (i) Bulk viscosity is indepen-
dent of the constants α, γ; these can only be determined with
the knowledge of the microscopic theory. This is consistent
as the fluid description does not require complete knowledge
of the microscopic degrees of freedom. (ii) Bulk viscosity
depends on the horizon fluid temperature and the lowest
energy mode of the fluctuations. To go about determining
the lowest energymode, itmay be important to get a physical
insight. Let us consider fluctuations that cause a change in
the horizon fluid area from A to Aþ dA. For the horizon
fluid corresponding to Schwarzschild black hole, the change
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in area is only due to the change in the quasilocal energy. In
Ref. [29], this was done by picking the largest wavelength to
be the circumference of the black hole. However, for generic
black holes like theKerr-Newman, the change in the area can
also be due to the change in the electrostatic energy or
quasilocal energy κ × dA [39]. Using the fact that the lowest
energy modes are adiabatic (slowly evolving), and that
the energy and area are strongly constrained, the minimum
energy change can be related to a minimum change in area
through (5) and (7):

ΔE ¼ ðΔNÞαT ∝ ðΔAÞT; ð21Þ
and, thus, using (3) the minimum energy mode for any
stationary black hole is

ω ¼ ΔE ¼
�
D − 2

D − 3

�
ΔA

T
4
: ð22Þ

This brings us to the key result of thiswork and indicates that
the existence of the lowest energy mode of fluctuation (δN)
of the horizon fluid relates to the minimum change or
quantization of the horizon area. We will now make several
comments about the result and embed them in a broader
context.
First, the area quantization has long been a key result of

both horizon thermodynamics and various quantum gravity
proposals. The first attempt goes back to Bekenstein [3],
who uses the fact that particles entering the black hole
cannot have zero size, to find the minimum area increase
when one is absorbed by a Kerr-Newman black hole. This
result is very general [25], and in D dimensions leads to

ΔAmin ¼ 8πlD−2
P ; ð23Þ

where we have briefly reinstituted an explicit Planck length
(lP) for clarity. Substituting Bekenstein’s minimum area in
(22), we get

ω ¼ 2π

�
D − 2

D − 3

�
kBT: ð24Þ

Substituting the above form of minimum energy mode in
(20), we get

ζ ¼ −
�
D − 2

D − 3

�
1

8π
: ð25Þ

It is important to note that this is the expression for bulk
viscosity for all asymptotically flat spacetimes in all dimen-
sions and matches exactly the expression from the DNS
equation (see Appendix A). This is a nontrivial result, using
fluctuation-dissipation [28] and the fact that the horizon is
anticausal [29], so it is not possible to obtain the known bulk
viscosity without invoking area quantization.
Second, so far, it has not been necessary to place a value

on α. However, if we take ΔNmin ¼ 1 using (23),

α ¼ 8π; ð26Þ

corresponding to [3]. Naturally, there have been several
alternative proposals from counting black hole microstates
or Bohr’s principle with quasinormal modes [46,47], and
arguments from loop quantum gravity [48], for various
values of α. Note that all these proposals give answers of
the same order of magnitude (see [49,50]).
Third, why should the existence of the long wavelength

mode imply quantization of the horizon area? In other
words, why does the IR cutoff (lowest energy mode) have
anything to do with the Planck-scale physics? One of the
main assumptions in our work is that the horizon fluid is
described by N microscopic degrees of freedom. While we
do not have any information about these microscopic
structures, existence of the largest length scale of the
fluctuation λ leads to the fact that λD−2 ≃ NlD−2

P where
lP physically refers to the separation of the microscopic
structures or the size of the structures themselves. In the
language of Wheeler’s “It from Bit” [51], bits are the N
microscopic structures of the horizon fluid.
Fourth, why should the minimum area condition give a

minimum ω from the horizon fluid? Consider (5), with α as
given in (26). Adding one extra particle to the ground state
of the condensate is the minimum energy we can add to the
system, and corresponds exactly to adding a minimum
of extra area. As this energy is larger than or equal to the
energy of the mode spanning the circumference of the
horizon, the adding of one extra horizon fluid particle is
the minimum energy. This physically motivates picking
the proportionality factor as unity between ω and ΔE
in Eq. (22).
Fifth, what does the minimum energy mode physically

correspond to in the horizon fluid? The existence of a
minimum energy mode implies a confinement scale; i.e.
density fluctuations exist as bound states [33–35]. In other
words, this implies that to add one microscopic constituent
to the horizon fluid will cost that much energy. In the
language of statistical mechanics, the minimal energy mode
can be treated as a chemical potential corresponding to
the excitations in the fluid. In Appendix C, we have
constructed an explicit model that shows μ ∝ T.
Sixth, the status of the third law is unclear in black hole

thermodynamics: while the process version of the third law
seems to hold, the Planck version, stating that the entropy
goes to zero as the temperature does, clearly does not hold
for black holes [9]. It naturally follows from the existence
of a positive chemical potential (see Appendix C) that the
system retains a residual entropy, analogous to that of other
condensed matter systems, and probably implying a
degeneracy in the ground state of the system. The large
entropy of black holes at low temperature can possibly be
viewed as residual entropy.
Finally, the fact that the horizon fluid has a confinement

scale signals the occurrence of a mass gap. There has been a
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long history of possible connection between the general
relativity and Yang-Mills theory, in which mass gap is
known to occur. Specifically, it has been shown that four-
graviton amplitudes with one loop in Einstein gravity are
similar to products of integrands appearing in gauge theory
[52–54]. We suggest here that it might be possible to
understand the connection to Yang-Mills through the
presence of a mass gap for the horizon fluid.
There are a number of ways in which one could extend

and generalize this result: These calculations were carried
out using the natural split between space and timegiven to us
by the fluid picture, but one can make alternative choices,
and it may be elucidating to check what changes in the
analysis when performed in a different frame. Possible
extensions to other theories of gravity, including super-
symmetric theories where we have a better understanding of
microscopic degrees of freedom could be elucidating.
Further exploration into the nature of the fluid and the
mechanism generating the IR cutoff may provide further
avenues for such insights. The statistical mechanical picture
of the horizon fluid developed over the past few years can
provide a new and exciting window into the nature of
gravity, and hints towards quantum gravity.
Coming back to the problem of universality, it is clear

that reproducing the black hole entropy is only one test of a
microscopic model of black hole physics, and that the
viscosities in the DNS equation can help us choose between
the multitude of different scenarios.
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APPENDIX A: DAMOUR-NAVIER-STOKES
EQUATION IN ARBITRARY DIMENSIONS

Closely following the procedure adopted in [17], take a
D-dimensional spacetime. We will use small latin letters
for indices running over all D dimensions, greek letters for
ðD − 1Þ-dimensional null surface, and capital latin for
(D − 2) spacelike dimensions.
Start with the Einstein equations,

Rab −
1

2
gab ¼ 8πTab; ðA1Þ

and consider a null surface, which is therefore traced out by
null geodesics. These are described by the geodesic
equation (in this case with a nonaffine parametrization),

la∇alb ¼ κlb: ðA2Þ
We can, without loss of generality, choose coordinates
such that

l ¼ ∂t þ vA∂A; la ¼ ð1; vA; 0Þ: ðA3Þ

We can also, for convenience, construct another null vector,
k, such that k · l ¼ −1.
The metric on the ðD − 2Þ-dimensional surface, denoted

by qAB, for which

ds2 ¼ qABðdxA − vAdtÞðdxB − vBdtÞ;
qab ¼ gab þ laka þ lbka: ðA4Þ

It can explicitly be seen that

qablb ¼ qabkb ¼ 0: ðA5Þ

The Damour-Navier-Stokes (DNS) equation is a conse-
quence of the contracted Codazzi equation formed with l
and qAB,

Rmnlmqna ≡ RmAlm ¼
�
1

2
gab þ 8πTab

�
lmqna

¼ 8πTablmqna: ðA6Þ

Here the last equality is through (A5). We rewrite the lhs of
(A6) as

RmAlm ¼ RμA ¼ ∇μð∇AlμÞ − ∂Að∇μlμÞ: ðA7Þ

We expand both terms of the rhs of (A7) in terms of
expansion, shear and the velocity vA.
Define

χβα ¼ ∇αlβ ðA8Þ

and

ωα ¼ χ0α; ðA9Þ

which is the energy-momentum vector of the horizon fluid.
As in equation (21) of [17] we expand out the second

term of the rhs,

∂Að∇μlμÞ ¼ ∇AlA þ∇0l0 ¼ θ þ ωAvA þ ω0 ¼ θ þ κ;

ðA10Þ

and is independent of D.
The other term of equation (A7),

∇μð∇AlμÞ ¼ ∇μχ
μ
A; ðA11Þ

can be evaluated by taking a frame where we neglect
Christoffel symbols (see discussion in [17]), so that

∇μχ
μ
A ¼ ∂μχ

μ
A ¼ ∂0ωA þ ∂Bχ

B
A: ðA12Þ

Now use the fact that
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χAB ¼ ΘAB þ ωAvB; ðA13Þ

and we can further split ΘAB into trace and traceless parts

ΘAB ¼ σAB þ
�

1

D − 2

�
θδAB: ðA14Þ

Note the dimensional-dependent prefactor, ensuring
trðΘÞ ¼ θ.
Putting all this together into Eq. (A7),

RmAlm ¼ ð∂0 þ vB∂BÞωA − ∂Aðκ þ θÞ

þ ∂B

�
σBA þ 1

D − 2
θδBA

�
; ðA15Þ

so that

8πTmAlm ¼ ð∂0 þ vB∂BÞωA þ ∂Bσ
B
A − ∂Aκ −

D − 3

D − 2
∂Aθ

ðA16Þ
or, equivalently,

−
ð∂0 þ vB∂BÞωA

8π
¼ −

∂
∂xA

�
κ

8π

�
þ 2

1

16π
σBAjB − laTaA

−
�
D − 3

D − 2

�
1

8π

∂θ
∂xA ; ðA17Þ

where −ωA=ð8πÞ is the momentum density of the fluid.
We, thus, arrive at a Navier-Stokes equation with

pressure

P ¼ κ

8π
¼ kBT

4
; ðA18Þ

shear viscosity

η ¼ 1

16π
; ðA19Þ

and bulk viscosity

ξ ¼ −
�
D − 3

D − 2

�
1

8π
: ðA20Þ

As noted in [17], there are some differences between the
DNS and the usual Navier-Stokes (NS) equation in the case
of a general null surface. Firstly, the shear vector is not
constructed solely from the velocity of the fluid, having an
additional term. In the case of a stationary horizon, the extra
term, ∂0qAB goes to zero and the shear tensor has the usual
form. Secondly, in the DNS equation there is a Lie
derivative rather than a convective derivative in the normal
fluid case, consisting of an additional term of the form
ωBDAvB. Again, for stationary spacetimes, this term goes
to zero as the velocity is a constant.

In deriving (A17), we have worked with a particular
coordinate system. One may wonder how the equation is
affected when changing to another coordinate system, in
particular changing to a different time coordinate. Examining
(A17), one may see that the difference is that the first term
ð∂0 þ vB∂BÞωA will change. As long as we work with the
class of transformations such that we do not introduce an
explicit time dependence in the definitions of the spacelike
coordinates, vA will remain constant, and the ωBDAvB term
will not reappear. The DNS equation will transform in the
same way as changing coordinates in the NS equation, in a
similar manner to looking at a normal laboratory fluid in a
boosted frame.
We could consider this from a different angle, and ask, for

a general null surface, is our analysis of the bulk viscosity
coefficient independent of the boost frame chosen? We
answer here the question in the affirmative and sketch an
argument below why. For processes concerning only the
bulk viscosity, we need only consider the part of the free
energy that comes from its volume. Thus the part of the free
energy that is dependent on the velocity of the horizon fluid
does not play any role in the processes solely involving
changes in the bulk of the fluid. The extra term that comes
due to going over to a boosted inertial frame, is for a general
null surface, ωBDAvB, but this term does not affect calcu-
lations relating to the bulk viscosity. The change in the
volume of the cross section of the horizon does affectω. This
can be seen from the fact that the rate of the change of the
volume, the scalar θ is given by the divergence of the null
normal to the horizon. This means as we boost the frame, ω
can change but θ would remain the same. Therefore the
term in DNS equation, which makes it different from the
standard Navier-Stokes equation need not be considered
when looking at processes involving change in the bulk of
the fluid only. Thus whichever frame we do the calculation
in, it would give us the same result as whenwe calculated the
free energy in the frame comovingwith the horizon fluid. So
our analysis does not depend on the boost.

APPENDIX B: CONSTRAINT EQUATIONS
AND HORIZON FLUID ENERGY

To understand thermodynamic relations for the horizon
fluids, we must first define the appropriate notion of the
fluid energy. There are several definitions of energy in
general relativity [37–39]. Here we want a quasilocal
notion to associate to the black hole horizon. Various
competing definitions exist, but our task is simplified by the
fact that we have a naturally defined fluid energy density on
horizon, given by ω0

8π, where

ω0 ≡∇0l0 ¼ κ ðB1Þ

and the equality follows from (A10), noting that as the
vAωB is antisymmetric, its trace is automatically zero.
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The total energy of the horizon is now simply

E ¼ 1

8π

Z
κdA; ðB2Þ

where both κ and A are functions of all the black hole
variables (M,Q, a). This gives the natural value ofM in the
D-dimensional Schwarzschild.
In fact, from Eqs. (12.5.33)–(12.5.37) in [39], one can

see that this is exactly

E ¼ 1

8π

Z
κdA ¼ 1

8π

I
S
dSμν∇μlν; l ¼ ∂t þ vA∂A;

ðB3Þ

when vA is the rotational velocity at the horizon, making l
the standard combination considered when evaluating, e.g.
the surface gravity of black holes. This corresponds to a
quasilocal mass frequently used in the literature [30,31],
evaluated on the horizon. This is almost equal to the well-
known Komar mass, the difference being the replacement
∂t → l. Physically this corresponds to a quasilocal energy
in the corotating frame [32], the appropriate choice for the
fluid that co-rotates with the horizon, as ours does.
Explicitly, for the Kerr-Newman we find

E ¼ rþ − r−
2

: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2

p
ðB4Þ

The black hole is an odd system in many ways, as P, T, E
and A are not independent. Instead they obey P ¼ T=4 and
an extra constraint equation. The form of this equation
varies depending on the class of black holes. We derive this
relation for the D-dimensional Schwarzschild black hole
and the four-dimensional Kerr-Newman black hole.

1. D-dimensional Schwarzschild

The D-dimensional Schwarzschild, also known as a the
Schwarzschild-Tangherlini black hole [40], has the form

ds2 ¼ −
�
1 −

�
rH
r

�
D−3

�
dt2 þ dr2

1 − ðrHr ÞD−3 þ r2dΩ2
D−2;

ðB5Þ

where

ΩD−2 ¼
2π

D−1
2

ΓðD−1
2
Þ : ðB6Þ

The horizon “area” is now given by

A ¼ ΩD−2rD−2
H ; ðB7Þ

and the standard temperature is

T ¼ D − 3

4πkBrH
: ðB8Þ

Here the horizon radius is related to the mass of the black
hole by

rH ¼
�

16πM
ðD − 2ÞΩ2

D−2

� 1
D−3

: ðB9Þ

This M is the energy of the horizon fluid, so (B7)–(B9)
combine to give a constraint equation

E ¼
�
D − 2

D − 3

�
kBAT
4

: ðB10Þ

2. Kerr-Newman

The charged, rotating black hole,

ds2 ¼ −ðdt − asin2θdϕÞ2 Δ
ρ2

−
�
dr2

Δ
þ dθ2

�
ρ2

þ ððr2 þ a2Þdϕ − adtÞ2 sin
2θ

ρ2
ðB11Þ

where

ρ2 ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2MrþQ2 þ a2:

ðB12Þ

has inner and outer horizons given by

r� ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2 − a2

p
ðB13Þ

We will only be concerned by the physically relevant outer
horizon.
The horizon area and black hole temperature can be

easily seen to be

A ¼ 4πðr2þ þ a2Þ; T ¼ 1

2π

rþ − r−
2kBðr2þ þ a2Þ : ðB14Þ

And the energy on horizon is [31]

E ¼ rþ − r−
2

: ðB15Þ

Combining these results we can see that

E ¼ 1

2
kBAT: ðB16Þ

Note that this energy is associated here first and foremost
to the horizon fluid, rather than the energy contained
within the horizons, and therefore different to the similar
relation in [36]. This is identical to the expression for the
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four-dimensional expression for the D-dimensional black
hole, though the forms of A and T are very different. These
constraint equations play a crucial role in the derivation of
the entropy and the bulk viscosity.

APPENDIX C: CHEMICAL POTENTIAL AND
IR CUTOFF FOR THE DENSITY WAVES

IN THE HORIZON FLUID

Here we shall point out that there is another way to view
the physical condition imposed by the IR cutoff in the
frequency of the perturbations. Consider density wave
excitations, which are bosons. The presence of such a
cutoff signals the existence of a positive chemical potential,
μ for these excitations. In fact the presence of a positive
chemical potential ensures that there can be no excitation
with frequency Ω such that Ω < μ. This can be seen by
considering the expression for the occupation number of
such excitations with frequency Ω. Let us denote the
occupation number by nΩ. Then, for degeneracy gΩ,

nΩ ¼ gΩ
exp ðμþ βΩÞ − 1

: ðC1Þ

It is seen from (C1) that nΩ > 0 only if Ω > μ. In our case,
μ ¼ ΩIR, hence density waves have a frequency minimum
given by that value.
There are two important physical implications of the fact

μ ∝ T for the horizon fluid.
(i) The fluctuations in the area of the horizon fluid

are quantized [44]. To see how this comes about,
let us note that from thermodynamic relations, one
can write

μδn ¼ −TδS: ðC2Þ
If μ ¼ CT, then we have, δS ¼ Cδn. Since,
δS ¼ 1

4
δA, it follows that

δA ¼ 4Cδn; ðC3Þ
which tells us that area is quantized in terms of an
unit, whose value is given by 4C. Here, C is positive.
From (C2), we see that this makes δS < 0.
The change in entropy is negative because we are

dealing with the system moving towards equilib-
rium, the higher entropy state, only obtaining
equilibrium in the future. So if there are fluctuations
in the system, i.e. it is excited, then it has less
entropy. This shows us that the area quantization can
also be viewed as a consequence of ΩIR ∝ T.

(ii) The entropy density of the perturbations of the
horizon fluid has a constant term. Like the previous
result, this one is also a direct consequence of μ ∝ T.
A similar case is that of liquid helium He3 close to
zero temperature (see chapter 21, in [55]). This

constant entropy term is referred to as the residual
entropy in the literature [56]. Typically it occurs
because at very low temperatures, the systems have
degeneracy at the configurational level [57,58].Well-
known systems with this property are the carbon
monoxide gas, where the residual entropy is present
due to a degeneracy in the molecular arrangement
[56], and the liquid helium He3, where the residual
entropy results due to the disordered orientation of
the nuclear spins of He atoms [55]. In analogy with
the known cases, residual entropy can be thought of
as due to some unknown configurational degeneracy
in the horizon fluid. These configurations correspond
to unknown physics presumably corresponding to
some kind of underlying discrete structure of
black holes.

APPENDIX D: ENTROPY OF THE
DISORDERED PHASE

This discussion will follow very closely that of [27]. The
horizon fluid has a low energy in the disordered phase, as in
this phase T < Tc. For simplicity, we assume that the
system can be described by a scalar field, ϕ, but this is not a
key feature of the derivation.
In the disordered phase, the partition function can be

expressed by

Z ¼
Z
pLow

Dϕ exp

�
−
β

2

Z
d2xϕðxÞð−∇2 þm2ÞϕðxÞ

�

¼ Det½βð−∇2 þm2Þ�−1=2; ðD1Þ

where pLow indicates we are only integrating over low-
momentum modes. Standard calculations lead to

lnZ ¼ A
Z
pLow

d2p
ð2πÞ2 ln ½βð−∇

2 þm2Þ�: ðD2Þ

If pLow is zero, this entropy would also be zero. However,
this will not be zero, due to the presence of the minimum
area change. Then

lnZ ¼ A lnðm2βÞ p2
min

ð2πÞ2 ≈ A lnðβÞ p2
min

ð2πÞ2 : ðD3Þ

Now, using pmin ¼ ω

lnZ ¼ AðkBTÞ2
�
D − 2

D − 3

�
2

ln

�
1

kBT

�
; ðD4Þ

which is small. In the case of Kerr, for instance, when
a ≪ M, lnZ ∼ lnðrþÞ as in the Schwarzschild case, while
for a ≈M, T2 dominates over lnð1=TÞ and S0 goes to zero.
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APPENDIX E: MODEL-INDEPENDENT
DERIVATION OF COEFFICIENT OF

BULK VISCOSITY

In the main body of the paper, we have explicitly used
N ∝ A, which is a natural consequence of the horizon
fluid being in its ground state. Here we will show that the
fluctuation-dissipation analysis of the bulk viscosity of
the horizon fluid is independent of such details, and of the
microscopic the structure of the fluid, as had been noted
in [29].
The horizon fluid has two constraints, between P and T;

and relating E, A and T. We see explicitly that the volume
of the horizon fluid contributes to its free energy. For the
processes corresponding only to the changes in the bulk,
only this part of the free energy need be considered, so only
this part will concern us. Thus, we can make the choice to
go over to the rest frame of the fluid and write down the free
energy relevant for the bulk viscosity. It is important to note
that the analysis can be performed where the ’kinetic’
energy of the fluid constituents also contributes to the total
energy E (as discussed in section I), as we only need the
relevant part of the energy.
For the highly constrained system of the horizon-fluid, it

turns out that ðP;E; T; AÞ are all related to each other to
the extent that the free energy can be expressed in terms of
the variation of a single variable. This univariability of the
horizon fluid was seen for the Schwarzschild black hole in
[29] and has now been found to persist in the generalizations
made here. The variable A is a good physical choice and the
free energy of the horizon fluid can be expressed in its
terms. For example, this is what we have done in the specific
model for the fluid, and can be seen from the relations

Φ ¼ Φ0 þ aðPÞðT − TcÞη2 þ BðPÞη4; ðE1Þ

η ¼
ffiffiffiffiffiffi
k
2α

r ffiffiffiffi
A

p
: ðE2Þ

Here a, B are parameters as defined in the main body of
the paper.
To describe transport processes, we need to consider the

fluid at a state slightly away from equilibrium, the mini-
mum value of the free energy. We can express the
fluctuation in free energy as

δΦ ¼ 1

8
ðT − TcÞ

δA2

A
: ðE3Þ

Here we note that whichever variable we choose to express
the free energy in, the lowest order fluctuation in the free
energyof thehorizon fluid has to be quadratic in that variable.
This quadratic dependence, δΦ ∝ δX2 is the key relation we
need and does not depend on the specific relation of (E2),
merely coming from the fact that the free energy is propor-
tional to the convenient variable we are working with. Now
any fluid is composed of microscopic dof, whose total
number,N however, can be treated as amacroscopic variable.
So it is possible to express the free energy in terms of N as
well. Hence the change in the free energy, δΦ is quadratic in
δN, the fluctuation in the variable N. In that case, it follows
that δN ∝ δA. It is to be emphasized here that we obtain this
result here without assuming any proportionality between N
and A as in the case of the BEC model of the horizon fluid.
One can now proceed in the same way as shown in the

paper and evaluate the coefficient of bulk viscosity as
shown in the main body of the paper.
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