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An exact solution is obtained for the gravitational bending of light in static, spherically symmetric
metrics which includes the Schwarzschild–de Sitter spacetime and also the Mannheim-Kazanas metric of
conformal Weyl gravity. From the exact solution, we obtain a small-bending-angle approximation for a lens
system where the source, lens, and observer are coaligned. This expansion improves previous calculations
where we systematically avoid parameter ranges that correspond to nonexistent null trajectories. The linear
coefficient γ characteristic to conformal gravity is shown to contribute enhanced deflection compared to the
angle predicted by general relativity for small γ.
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I. INTRODUCTION

Since its first discovery in the 1970s, gravitational
lensing has become an important observational tool in
cosmology and astrophysics. Recently, there has been an
ongoing debate as to whether the cosmological constant
plays a role in gravitational lensing.
In the Schwarzschild–de Sitter (SdS) spacetime, the terms

involving the cosmological constant Λ drop out of the
equations of motion for null geodesics. Hence, conventional
wisdom holds that Λ does not play a role in the motion of
light in this metric, and therefore does not contribute to
lensing. However, Rindler and Ishak [1] argued that this may
not actually be the case. Taking the cosine of the angle to be
the invariant inner product between the photon’s spatial
3-velocity and the optic axis, it does indeed depend on the
metric functions, and therefore Λ as well.
There has yet been no consensus as to whether Λ

contributes to lensing. While there have since been some
supporting arguments in favor of the idea (e.g., [2,3]), more
recently there have been various arguments against Rindler
and Ishak’s proposal [4–8]. Nonetheless, these counter-
arguments do not dispute the validity of the invariant angle
calculation in SdS under static coordinates. Instead, the
disputes are mostly about how to translate the results in
terms of observable quantities [6,8–10]. As the present
established value of the cosmological constant is relatively
small, it might not be noticeable under other effects related
to astrophysical lenses, such as aberration [6,8,10] and the
ambiguities in defining cosmological distances [8].
While this matter remains open, there is some certainty

that with the small magnitude of Λ, any discrepancy in
observation coming from the cosmological constant is
expected to be correspondingly small. However, this is
not the case in current observational data. For example,

there appears to be significant discrepancies in mass
measurements of galaxy clusters from lensing data when
compared to measurements obtained from x-ray observa-
tions [11]. These lensing mass estimates were performed
using equations derived under standard general relativity
(GR). At galactic and cosmic scales, GR is known to be
plagued with the dark-matter and dark-energy problems.
In recent years, conformal Weyl gravity [12–14] has

attracted considerable interest as a compelling alternative to
GR. One of the main appeals of conformal gravity is that
the theory provides a potential resolution to the dark-energy
and dark-matter problems [15]. Unlike GR, this theory is
possibly renormalizable, thus providing interesting
approaches to quantum gravity [16,17]. Therefore it is
worth attempting a lensing analysis under this theory.
Using conformal Weyl gravity (CWG), it was argued

that the theory is able to produce the effective potential
consistent with the observed galactic rotational curves
without the need to introduce dark matter [18–21]. This
feature can already be seen in the spherically symmetric
vacuum solution by Mannheim and Kazanas (MK) [22],

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

with

fðrÞ ¼ 1 −
bð2 − 3bγÞ

r
− 3bγ þ γr − kr2; ð2Þ

where b, γ, and k are integration constants. This solution
bears a strong resemblance to the Schwarzschild–de Sitter
solution with an additional linear potential term γr in
its lapse function. Thus, physical phenomena under CWG
occurring in the regime γr ≪ 1 would reproduce the
traditional observational tests of GR. Therefore, we expect
the term γr to be negligible at Solar System length scales.
At galactic length scales, the γr term should produce the
observed flat galactic rotation curves, at least at the
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qualitative level as far as the (spherically symmetric,
vacuum) solution (1) remains applicable.
A natural question that follows is whether CWGwould be

able to reproduce or explain other astrophysical or cosmo-
logical observations in gravitational lensing.1 As mentioned
above, observations indicate that lensing appears to be
stronger than expected for masses which were determined
from x-ray data [11]. In the GRmodel, this additional lensing
was attributed to the presence of dark matter. The CWG
model is then required to produce the observed lensing
without invoking the presence of additional mass in order
to be consistentwith its description ofgalactic rotation curves.
In other words, for the same lens mass, CWG is expected to
predict stronger lensing compared to GR.
In this paper, we attempt to provide a unified description

of gravitational lensing within the Schwarzschild–de Sitter
and the MK spacetimes. The key step in doing so is to
obtain an exact solution to the geodesic equations and apply
it to the Rindler-Ishak angle procedure. A formula com-
monly sought after in the literature is the small-bending-
angle approximation for a particular lens system in which
the source, lens, and observer are coaligned.
Edery and Paranjape [23] first calculated this deflection

angle in the MK metric. Their results were obtained using
the usual method of calculating the change in the coor-
dinate angle ϕ under geodesic motion. Their results
indicate that in order to produce a stronger deflection than
the GR prediction, the sign of γ has to be the opposite of the
value obtained by fitting of the galactic rotation curve. A
possible resolution of this discrepancy can be found by
making a suitable gauge choice for the metric before
calculating the deflection angle [25]. Using the Rindler-
Ishak method mentioned above, the lensing angle was
recalculated in [26], which again gives the opposite sign of
γ as expected from the galactic rotation curves. However,
Cattani et al. [27], also using the Rindler-Ishak method,
obtained another lensing formula which has the expected
sign of γ, thus negating the need to choose an appropriate
gauge as described by [25]. The seemingly contradictory
results of [26] and [27] deserves further scrutiny, and is one
of the main points to be addressed in this paper.
We will argue that these seemingly contradictory for-

mulas were obtained by possibly erroneous calculations.
We note here that the deflection angle formulas of [26]
and [27] were obtained by performing small-mass and γ
approximations, where the main difference between their
two results stem from the different points in the calculations
where the higher powers of mass and γ are discarded.2 We
show that the small parameter expansions must be done
with care so as to avoid expanding into a parameter range

which corresponds to nonexistent solutions for a null
trajectory that connects a coaligned source and observer.
Upon obtaining the correct expansions, we explicitly check
its agreement with the exact solution.
Other authors have considered lensing by the MK metric

without the use of approximations. Villanueva and Olivares
[28] solved the geodesic equations exactly to provide the
coordinate deflection angle. In their analysis of MK geo-
desics, Hoseini et al. [29] provided the deflection angle
under the Rindler-Ishak formalism. However, the focus of
their work was on the geodesic structure of the MK metric,
and it has yet to draw any conclusions as to the sign of γ
pertaining to lensing observations.
The rest of this paper is organized as follows. In Sec. II

we derive the geodesic equations describing the trajectory
of light in the MK metric. We provide a brief review and an
alternate derivation for the deflection of light in Sec. III,
which includes the Rindler-Ishak method. We consider the
effect of the cosmological constant and γ separately in
Sec. IV to see its influence on the bending angle. In Sec. V
we derive simpler expressions for the bending angle under
small-parameter approximations. The paper concludes with
a summary and discussion in Sec. VI.

II. GEODESIC EQUATIONS

A. Metric and equations of motion

Throughout this paper, we will take our spacetime to be a
static, spherically symmetric metric of the form (1). The
SdS spacetime is a solution to the Einstein equation with a
positive cosmological constant Λ with

fðrÞ ¼ 1 −
2m
r

−
Λr2

3
: ð3Þ

On the other hand, as mentioned in Sec. I, the MKmetric of
the form (1) is also a vacuum solution in CWG where fðrÞ
is given by (2). In the following we will find it convenient

to introduce a reparametrization b ¼ 1−
ffiffiffiffiffiffiffiffiffiffi
1−6γm

p
3γ , so that

the MK solution is parametrized in terms of “mass” m,
where (2) is given by

fðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1–6mγ

p
−
2m
r

þ γr − kr2: ð4Þ

Clearly, the SdS solution can be recovered as a special case
of the MK solution by setting γ ¼ 0 and k ¼ Λ

3
. Thus, in the

following it suffices to use (4) in our geodesic equations
without loss of generality.
The motion of a timelike or null particle is described

by a trajectory xμðτÞ, where τ is an appropriate affine
parametrization. The geodesic equations are determined
by the Lagrangian L ¼ 1

2
gμν _xμ _xν, where overdots denote

derivatives with respect to τ. The equations of motion may
be derived using the Euler-Lagrange equation d

dτ
∂L
∂ _xμ ¼ ∂L

∂xμ.

1Besides gravitational lensing, other observational tests that
have been considered include, for instance, radar echo delay [23]
and orbital precession [24].

2We also note that Edery and Paranjape’s results [23] were also
obtained by small-mass and γ approximations.
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Since ∂=∂t and ∂=∂ϕ are Killing vectors of the space-
time, we have the first integrals of motion

_t ¼ E
f
; _ϕ ¼ Φ

r2sin2θ
; ð5Þ

where E and Φ are constants of motion, which we may
interpret as the energy and angular momentum of the
particle, respectively.
The equations of motion for the remaining two coor-

dinates are

̈r ¼ f0

2f2
_r2 þ rf _θ2 −

f0E2

2f
þ fΦ2

r2sin2θ
; ð6Þ

θ̈ ¼ −
2_r _θ
r

þ cos θΦ2

r4sin3θ
; ð7Þ

where primes appearing in f0 denote derivatives with
respect to r. The invariance of the inner product
gμν _xμ _xν ≡ ϵ provides a constraint equation

_r2 þ r2f _θ2 ¼ E2 − V2; ð8Þ

where V2 is the effective potential given by

V2 ¼
�

Φ2

r2sin2θ
− ϵ

�
f: ð9Þ

By appropriately rescaling the parameter τ, the magnitude
of ϵ may be normalized to unity if it is nonzero. Hence,
we have for timelike geodesics ϵ ¼ −1 and for null geo-
desics ϵ ¼ 0.
Because of the spherical symmetry of the spacetime,

all geodesics can be shown to be confined on a two-
dimensional plane. We fix our coordinate system such the
plane is at θ ¼ π=2 and a constant throughout the motion,
so that Eq. (7) becomes trivial. Furthermore we are
interested primarily in null geodesics, where ϵ ¼ 0. In this
case, the energy and angular momentum always appears in
the combination E2

Φ2. It follows from Eq. (8) that

E2

Φ2
¼ fðr0Þ

r20
; ð10Þ

where r ¼ r0 is the “distance of closest approach,” which is
the radial position when _r ¼ 0. With these considerations,
the equations of motion reduce to

�
dr
dϕ

�
2

¼ r4
�
fðr0Þ
r20

−
fðrÞ
r2

�
: ð11Þ

One can prove that any solution to (11) is symmetric about
the point r ¼ r0.
In the plane θ ¼ π=2, we can find circular photon orbits

around the MK spacetime by solving dðV2Þ
dr ¼ 0. One of

these roots give a positive radius, which is

rph ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γm

p
γ

∼ 3m

�
1þ 3

2
mγ þ 9

2
m2γ2 þOðm3γ3Þ

�
: ð12Þ

Thus we see that a positive γ results in a larger photon
sphere when compared to the Schwarzschild case. Similar
to the Scharzschild photon sphere, this circular photon orbit
is unstable as we can see that

d2ðV2Þ
dr2

����
r¼rph

¼ −
2γ4

ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6γm

p Þ4 < 0: ð13Þ

For the range 0 < γ < 1
6m, the possible radii of the photon

sphere range from 3m < rph < 6m.

B. Exact solution for light bending

To calculate the bending angle, we consider photon
trajectories with ϵ ¼ 0 where the particle reaches r ¼ r0
at the initial angle ϕ ¼ ϕ0, as shown in Fig. 1. (We assume
throughout that r0 lies outside the horizon of the space-
time.) Using (11), we may describe light deflection in
MK, SdS, or Schwarzschild spacetimes under appropriate
choices of parameters for f as given by (4). To find an exact
solution it is convenient to introduce the substitution
u ¼ 1=r, so that Eq. (11) becomes

�
du
dϕ

�
2

¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
− 2mþ γr20

r30
− γu

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
u2 þ 2mu3;

¼ 2mðuþ − uÞðu0 − uÞðu − u−Þ: ð14Þ

In the second line above we have factorized the third-order
polynomial where the roots are given by

u0 ¼
1

r0
; u� ¼

r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
− 2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ 2mγr20 þ 4r0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6mγ

p
− 12m2

q
4mr0

: ð15Þ
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Therefore, the equations can be solved by performing the integrationZ
ϕ

ϕ0

dϕ0 ¼ �
Z

u

u0

du0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðuþ − u0Þðu0 − u0Þðu0 − u−Þ

p : ð16Þ

Because the spacetime is invariant under the reflection ϕ → −ϕ, we can, without loss of generality, select the lower sign and
evaluate the integral exactly, giving3

ϕðuÞ ¼ ϕ0 þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðuþ − u−Þ
p F

0
B@sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ − u−Þðu0 − uÞ
ðu0 − u−Þðuþ − uÞ

s
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0 − u−
uþ − u−

r 1
CA;

ð17Þ

where Fðp; qÞ is the incomplete elliptic integral of the first kind. We can express u as a function of ϕ by inverting to obtain

uðϕÞ ¼
uþðu0 − u−Þsn

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðuþ−u−Þ

2

q
ðϕ − ϕ0Þ;

ffiffiffiffiffiffiffiffiffiffi
u0−u−
uþ−u−

q 	2

− u0ðuþ − u−Þ

ðu0 − u−Þsn
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðuþ−u−Þ
2

q
ðϕ − ϕ0Þ;

ffiffiffiffiffiffiffiffiffiffi
u0−u−
uþ−u−

q 	2

− ðuþ − u−Þ
; ð18Þ

where snðp; qÞ is the Jacobi elliptic function of the first
kind. Equation (18) can be verified independently against a
numerical integration of (6) and (5).

III. DERIVATION OF THE
BENDING-ANGLE FORMULA

For a gravitational lens system in SdS and MK space-
times, we consider trajectories depicted in Fig. 1. As
mentioned above, the trajectory is symmetric about the
point r ¼ r0, where it begins from a source S, passes
through the coordinate distance of closest approach r0 to
lens L, and finally reaches the observerOwhich we assume
to be static with respect to the spatial coordinates of (2). In a
MK spacetime of a given m, k, and γ, the possible photon
trajectories are parametrized by r0 and are described by the
solution (18).
Suppose we have an observer located at azimuthal

position ϕobs. We define the optic axis as the line ϕ ¼
ϕobs that connects the lens to the observer. In Fig. 1, this is
the dotted line LO. We then define the observer’s position,
robs, as the intersection between the optic axis and the
photon trajectory, i.e., robs ¼ 1=uðϕobsÞ. For a given ϕobs,
we can calculate robs accordingly using (18).
The difference ϕobs − ϕ0 determines the location of S

relative to the optic axis. It is convenient to denote β as the
angle that parametrizes this alignment, defined by

β ¼ π

2
− ðϕobs − ϕ0Þ: ð19Þ

For the special case β ¼ 0, the source, lens, and observer all
coalign along the optic axis. By rotating the coordinate
system, ϕ0 (or ϕobs) can be freely set to any convenient
constant. For instance, Ref. [1] sets ϕ0 ¼ π

2
, while the

analysis in [23] corresponds to setting ϕ0 ¼ 0. In the
following we shall keep ϕ0 arbitrary so that our results
may accommodate the different conventions.
The observed bending angle depends on the trajectory’s

(spatial) direction as it arrives at the observer’s location.
To determine this, let the photon’s null 4-velocity be written
as _xμ ¼ ð_t; ~vÞ where ~v is the spacelike component of the
4-velocity, which is further split as

FIG. 1. The trajectory of light from source S to observer O,
passing at a distance of closest approach r0 to the lens L. The
asymptotic region r → ∞ is represented by the outer circular
arcs. We assume the trajectory does not cross either the
cosmological or event horizons of the spacetime. Here we have
drawn the angles ϕ0 and ϕobs to be relative to the horizontal
dashed line, implying that this horizontal line is the ϕ ¼ 0 angle.
However this is clearly an arbitrary choice and does not affect the
analysis.

3The integral in the right-hand side of (16) can be found in
3.131-4, p. 254 of [30].
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~v ¼ ~v∥ þ ~v⊥; ~v∥ ¼ _r∂r; ~v⊥ ¼ _θ∂θ þ _ϕ∂ϕ: ð20Þ

When the photon reaches an arbitrary observer at
ðt; r; θ;ϕÞ, we may define a local Euclidean orthonormal
frame at that location as follows:

~eðrÞ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p ∂r; ~eðθÞ ¼
1

r
∂θ; ~eðϕÞ ¼

1

rsinθ
∂ϕ: ð21Þ

The celestial sphere [31] of the observer is parametrized by
angles ψ and η, where

cosψ ¼ ~eðrÞ ·
~v
j~vj ; cos η ¼ ~eðϕÞ ·

~v⊥
j~v⊥j

: ð22Þ

In the above equation, the dot products are understood

as the inner product ~a · ~b ¼ gijaibj, and j~aj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gijaiaj

q
,

where the indices i, j run along the spacelike coordinates.
Here we see that ψ is the “polar angle” of the observer’s
orthonormal frame, or, equivalently, the angle between ~v
and the optical axis. We note that η is the “azimuthal angle”
of the observer’s orthonormal frame, though this angle is
not important for the purposes of the present paper.
Using (22) together with (8), we can derive an expression

for ψ,

rðϕÞ sinψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrðϕÞÞp ¼ r0ffiffiffiffiffiffiffiffiffiffiffi

fðr0Þ
p : ð23Þ

The angle ψ measured by our stationary observerO located
at ϕ ¼ ϕobs is calculated as

sinψ ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrðϕÞÞp

rðϕÞ ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
�����
ϕ¼ϕobs

¼ uðϕÞ
u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1=uðϕÞÞ
fð1=u0Þ

s �����
ϕ¼ϕobs

: ð24Þ

We can also derive another equivalent formula for ψ by
substituting (11) into (24),

sinψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fð1=uðϕÞÞ
fð1=uðϕÞÞ þ 1

uðϕÞ2 u
0ðϕÞ2

s �����
ϕ¼ϕobs

; ð25Þ

where we have denoted u0ðϕÞ ¼ duðϕÞ
dϕ . This alternate

expression, up to trivial applications of trigonometric
identities, is precisely the form originally provided by
Rindler and Ishak [1], and was used by [26] and [27] to
calculate bending in the MK spacetime in the smallm and γ
regime.
The total bending angle α̂ is defined to be equal to 2ψ .

Although Eqs. (24) and (25) are equivalent to each other,

the former is more convenient to use because it does not
involve any derivatives. Thus for the rest of the paper we
will calculate the bending angle using the formula

α̂≡ 2ψ ¼ 2sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðϕÞ2fð1=uðϕÞÞ

u20fð1=u0Þ

s �����
ϕ¼ϕobs

; ð26Þ

where no approximation has been made, giving the exact
bending angle for a spacetime of any m, k, and γ.
At this stage, it is important to note that Eq. (26) only

holds for uðϕobsÞ > uh ≥ 0, where r ¼ 1=uh is the location
of the cosmological horizon [fð1=uhÞ ¼ 0], and the latter
inequality is saturated when k → 0 (corresponding to the
removal of the cosmological horizon). This condition is
equivalent to the statement that a null geodesic passing
through r0 is able to intersect the optic axis before crossing
beyond the cosmological horizon. Because it is this
intersection that defines the location of the observer
uðϕobsÞ, our lensing system is valid with the source and
observer being causally connected.

IV. EFFECT OF PARAMETERS k AND γ
ON THE BENDING ANGLE

With the exact expression (26), we will demonstrate
explicitly in this section that the presence of k introduces a
diverging effect on a lens system of mass m. Furthermore,
we will also demonstrate that the conformal gravity
parameter γ enhances the lensing for small values, while
it reduces lensing for larger values. For concreteness, we
shall focus on the case β ¼ 0, or, equivalently,
ϕ0 − ϕobs ¼ π

2
. As described in the previous section, this

corresponds to the case where the source, lens, and
observer are coaligned.

A. Lensing in the Schwarzschild–de Sitter metric

We begin with the case γ ¼ 0, corresponding to the
Schwarzschild–de Sitter case. For a given ϕ0 and m, a
typical behavior of α̂ is shown in Fig. 2 for varying values

FIG. 2. Plot of the bending angle α̂ vs k in units of r0, for
m ¼ 0.01r0, γ ¼ 0, and β ¼ 0. The horizontal red line corre-
sponds to the Schwarzschild deflection value.
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of k. The parameter r0 can be fixed as the length scale of
the system. From the figure, we easily see that any k ≠ 0
gives a deflection less than its pure Schwarzschild (k ¼ 0)
counterpart, showing how a cosmological constant defo-
cuses light passing near the lens.
For fixed r0, if m is decreased relative to k, the bending

effect continues to diminish. Therefore, trajectories that
pass through r0 intersects the optic axis further from the
lens and closer to the cosmological horizon. There will be a
critical value mcrit where the trajectory intersects the optic
axis precisely on the horizon. Further decreasing the mass
beyond m < mcrit the trajectory will not be able to intersect
the optic axis before crossing the horizon. This is depicted
by the curve S0O0 in Fig. 3. In such a case, there is no path
connecting a source and observer which are coaligned
along the optic axis.
Because k determines the location of the horizon, the

critical value mcrit can be regarded as a function of k.
The explicit relation is hard to obtain. At small kr20, an
approximate relation between mcrit and k is found to be

mcritðkÞ
r0

∼
1

2

ffiffiffi
k

p
r0 −

�
−
1

2
þ 15

64
π

�
kr20

þ
�
−

75

128
π þ 225

1024
π2
�
k3=2r30

þOðk2r40Þ: ð27Þ

Figure 4 shows the dependence ofmcrit on k. The shaded
regions are the range of parameters where m > mcrit where
trajectories exist for a source, lens, and observer are
coaligned along the optic axis. As k increases, mcrit
increases monotonically. We can interpret this as the
increase of k bringing the horizon closer to the lens,
and, hence, a larger mass is required to bend the light
towards the optic axis before it crosses the horizon.

B. Lensing in the MK metric with k = 0

Turning to the case k ¼ 0, we now consider the effect of
the parameter γ on the bending angles. For a given ϕ0 and

m, a typical behavior of α̂ is shown in Fig. 5 for varying γr0.
As before, the parameter r0 can be fixed as the length scale
of the system. For values of γ from zero up to a certain γ�,
the angle α̂ is greater than the Schwarzschild value α̂Sch (the
horizontal line in Fig. 5), thus giving the result that
conformal gravity predicts larger deflection at the range
of 0 < γ < γ�. The plot shown in Fig. 5 shows the results
for the choice m ¼ 0.01r0, β ¼ 0, and k ¼ 0. For these
parameters, this gives γ� ≃ 1.6657 × 10−3r−10 . If γ is
increased further until a certain value γcrit, the bending
diminishes until uðϕobsÞ ¼ 0, implying that the trajectory
only intersects the optic axis at r → ∞. For the parameters
of Fig. 5, γcritr0 ≃ 0.042 083 123.
In Fig. 6, we provide a plot similar to the above, but for

the casem ¼ 10−6r0. This smaller lens mass corresponds to
a more realistic range of parameters corresponding to
galaxies and galaxy clusters. The qualitative behavior of
the bending angle is similar to the casem ¼ 0.01r0, but the

FIG. 4. Plot ofm=r0 vs kr20. The shaded region shows the range
of parameters where the deflected light is able to reach the
observer at rðϕobsÞ < rh.

FIG. 5. Plot of α̂ vs γr0, for m ¼ 0.01r0, k ¼ 0, and β ¼ 0.
The horizontal red line corresponds to the Schwarzschild
deflection value. In this case, we find that the deflection is
greater than the Schwarzschild case for the range 0 < γ < γ�,
where γ� ≃ 1.6657 × 10−3r−10 .

FIG. 3. A sketch of trajectories with m > mcrit (the path SO)
and m < mcrit (the path S0O0), for fixed r0. If m > mcrit, there
exists a trajectory passing through r0 that intersects the optic axis
within the cosmological horizon. On the other hand, for
m < mcrit, the trajectory passing through r0 experiences less
bending, and does not intersect the optic axis before crossing the
cosmological horizon.
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scale is much smaller. In this case, we find that
γ� ≃ 1.62 × 10−10r−10 .
In the previous paragraphs, we see that the quantities γ�

and γcrit changes according to m. We could get a better
intuitive interpretation by inverting our description such
that for a given γ, there are two quantities m� and mcrit
which we regard as a function of γ. If m > m� we have
enhanced deflection that results in a bending angle larger
than the Schwarzschild angle α̂Sch, in accordance with the
expectation of conformal gravity replacing the need for
dark matter. However for mcrit < m < m�, we get reduced
deflection compared to α̂Sch. At m ¼ mcrit, the bending is
diminished such that the trajectory passing through r0
could only intersect the optic axis at the infinity (or on the
cosmological horizon for the case with k > 0). For small
γr0, the mcrit is found to have the asymptotic behavior

mcritðγÞ
r0

∼
1

4
γr0 −

�
1

8
þ 15

256
π

�
γ2r20

þ
�
1

16
þ 15

1024
π þ 225

8192
π2
�
γ3r30

þOðγ4r40Þ: ð28Þ

If the mass is further decreased beyond m < mcrit, the
trajectory no longer intersects the optic axis before crossing
the horizon. Typical trajectories corresponding tom > mcrit
and m < mcrit can be depicted in a sketch similar to Fig. 3,
with u ¼ uh replaced by u ¼ 0.

V. APPROXIMATE SOLUTIONS

While our exact expression for the bending angle is
applicable for a wide range of m, k, and γ, its behavior is

buried under various trigonometric and elliptic functions.
In this section we will find a perturbative expression that
allows us to see clearly the relationship between α̂ and,
say, γ without having to resort to numerical exploration. It
would therefore be useful to find a perturbative expansion
for α̂ for small spacetime parameters.

A. Lensing in the Schwarzschild–de Sitter spacetime

We first consider small-angle approximations for bend-
ing in the Schwarzschild–de Sitter spacetime. We set γ ¼ 0

and attempt to expand (26) in small m=r0 and kr20. For a
given kr20, the critical value mcrit=r0 constitutes a lower
bound of the lens mass such that a lensing event can take
place for a coaligned source-lens-observer system. This
gives us an indication that if we were to find a perturbative
expression of α̂ for a given coaligned system, expanding
aboutm ¼ 0 is ill defined. This is because perturbing about
m ¼ 0, or more specifically any m < mcrit, implies an
expansion about a nonexistent trajectory.
In Ref. [1], the photon trajectories were expanded about

a “straight line” r sinϕ ¼ constant, but for an arbitrary β.
Thus, the Rindler-Ishak bending angle remains well
defined even with the zeroth-order straight-line solution.
However, to obtain a perturbative expression showing a
leading-order contribution of lensing due to the cosmo-
logical constant, a small m and k expansion was made, and
β was set to zero. Hence, there was a tacit assumption that
the observer is located at the “region of transition between
Schwarzschild and de Sitter geometry” [1]. Thus, any
contribution coming from Λ (or k) is due to the small
influence creeping in from the de Sitter side.
In using their approximate expression for α̂, this

assumption has to be enforced by hand. For a given
trajectory specified by r0 deflected by a mass m, one
has to ensure that the corresponding choice of k does not
result in rðϕobsÞ being located beyond the horizon.
Furthermore, ifm and k are treated as independent variables
and expanded separately, the result might violate the above
assumption if k is not chosen appropriately.
With our exact trajectory (18) and bending angle (26),

we can build in a consistent machinery to ensure the
existence of a trajectory that connects a source coaligned
with the observer. The parameter space that allows such
trajectories is represented by the shaded region in Fig. 4.
Performing a small-m expansion means that we are
expanding about a small neighborhood around m ¼ 0.
(This would be the small region close to the origin of
Fig. 4.) That neighborhood consists of two regions
separated by a curve m ¼ mcrit. The region m > mcrit is
the shaded region where a null trajectory intersects the
optic axis before crossing the horizon. Conversely, for the
other regionm < mcrit, there is no trajectory that intersects
the optic axis before crossing the horizon; hence, an
observer will not be able to see a source that lies on the
optic axis.

FIG. 6. Plot of α̂ − 0.000004 vs γr0, for m ¼ 10−6r0, k ¼ 0,
and β ¼ 0. The horizontal red line corresponds to the Schwarzs-
child deflection value. Here, the value 0.000004 is subtracted
out of α̂ to show the numerical variation of α̂ more clearly;
i.e., the Schwarzschild deflection angle here is α̂Sch ¼
0.000 004 000 007 780 982. We find that the deflection is greater
than the Schwarzschild case for the range 0 < γ < γ�, where
γ� ≃ 1.62 × 10−10r−10 .
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To remain within that region when performing a small-m
expansion, we note that k has to diminish at a rate fast
enough so that m does not overtake mcritðkÞ. From the
asymptotic behavior ofmcritðkÞ in (27), we learn that kmust
diminish at the rate of at least k ∝ m2. In light of this, we
reparameterize k by setting

kr20 ≡ κ
m2

r20
: ð29Þ

Physically, we do expect k to be independent ofm, and this
is reflected by the independence of κ. However, expressing
k using (29) and considering κ to be of order Oð1Þ or less
ensures that the parameters lie within the regime m > mcrit,
and we remain within the shaded region of Fig. 4.
With this parametrization, we substitute (29) into (26)

and expand in powers of m=r0. The result is, up to third
order in m=r0,

α̂ ∼ 2
ffiffiffiffiffiffiffiffiffiffiffi
4 − κ

p m
r0

þ 1ffiffiffiffiffiffiffiffiffiffiffi
4 − κ

p
�
−8þ 15

2
π − 2κ

�
m2

r20

þ 1

ð4 − κÞ3=2
�
784

3
− 60π −

�
88 − 30π þ 225

64
π2
�
κ

− κ2 þ 2

3
κ3
�
m3

r30
þOðm4=r40Þ; ð30Þ

Clearly the above expansion only holds for κ < 4, which is
consistent with the leading behavior in (27) as well as our
requirement that κ ≲Oð1Þ.
The accuracy of the this approximate result can be

compared against the exact expression in (26), as shown
in Fig. 8(a). In Fig. 8(a), we compare (30) to the exact result
given in Eq. (26) (shown as the solid curve) form ¼ 0.01r0.
The dashed line is the plot of (30) keeping up to first order
in m=r0 only; hence, we see that the bending angle
underestimates the exact result by around ∼0.0007.
However the rate of change with respect to k follows the
exact curve quite closely, as no approximation in κ has been
made in Eq. (30). When the higher-order terms are included
(dotted line for up to m2=r20 and dash-dotted line for up to
m3=r30) the bending angle has excellent agreement with the
exact result.4

If the parameter k is small such that κ ≪ 1, the power
expansion in κ is justifiable,

α̂ ∼
4m
r0

þ
�
−4þ 15

4
π

�
m2

r20
þ
�
98

3
−
15π

2

�
m3

r30

þ
�
−

m
2r0

−
�
3

2
−
15π

32

�
m2

r20

−
�
−
5

4
−
15

16
π þ 225

512
π2
�
m3

r30

�
κ

þ
�
−

m
32r0

þ
�
−

7

32
þ 45

512
π

�
m2

r20

−
�
27

64
−
135

256
π þ 675

4096
π2
�
m3

r30

�
κ2 þOðm4=r40; κ

3Þ:

ð31Þ

The comparison between Eqs. (31) and (26) is shown in
Fig. 8(b). Since the former is also a small-k expansion, we
see the expected result that the curve deviates away from
the exact result as k increases. As expected, if higher orders
of k are included, the deviation is smaller.
The first line on the right-hand side of Eq. (31) is

obviously the Schwarszchild light bending in GR. Let us
denote it as α̂Sch. If we restore κ in terms of k ¼ Λ

3
, we

obtain that the leading correction due to the cosmological
constant is negative,

α̂ ∼ α̂Sch −
Λr30
6m

; ð32Þ

which is precisely the correction due to the cosmological
constant obtained in Ref. [1]. The additional terms in
Eq. (31) provide the higher-order corrections of the bend-
ing angle.

B. Lensing in the MK spacetime with k= 0

We now consider the contribution of the γ term in lensing
in the MK metric. Thus we now fix k ¼ 0. As we have
seen in Sec. IV, for γ > γ�, the bending angle is diminished
as γ increases. Thus we have a similar situation to the
Schwarzschild–de Sitter case in which the diminished
bending angle causes the path to intersect the optic axis
further away from the lens. Beyond γ > γcrit, the null
trajectory passing through r0 no longer intersects the axis
before crossing the horizon.
Our approach here is similar to the Schwarzschild–de

Sitter case. To find an approximate expression for the
bending angle, we have to perform a small-m and γ
expansion with care. In this case, we need to expand while
still remaining in the m > mcrit region, depicted as the
shaded region in Fig. 7.
Because the leading behavior of mcritðγÞ in Eq. (28) is

linear, the parameter γ must diminish at the rate of at least
as γ ∝ m. Therefore we reparametrize γ by setting

4A similar treatment to the singular perturbation theory has
been applied in various areas of physics, for example, in the
strong coupling expansions [32,33], in general mathematical
physics [34], and in the continuum limit of lattice approximations
in boundary-layer theory [35,36], just to name a few.
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γr0 ≡ w
m
r0
; ð33Þ

where w is a dimensionless parameter taken to be of order
Oð1Þ or less. Substituting (33) into (26) and expanding in
powers of m=r0 gives

α̂ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − w2

p m
r0

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − w2

p

×

�
−16þ 15π þ 8w − w2 þ 1

2
w3

�
m2

r20

þ 1

ð16 − w2Þ3=2
�
6272

3
− 480π þ ð−256þ 240πÞw

−
�
176 − 60π þ 225

32
π2
�
w2 − ð−32þ 30πÞw3

−
25

2
w4 þ w5 þ 1

3
w6

�
m3

r30
þOðm4=r40Þ: ð34Þ

In this case, we see that the expression only holds for
w < 4, which is consistent with the requirement that
w≲Oð1Þ. In Fig. 9(a), we compare the accuracy of the
approximate formula (34) with the exact one given in
Eq. (26) for the case m ¼ 0.01r0. The solid blue and red
lines represent the exact and Schwarzschild bending angles,
respectively. The dashed line corresponds to Eq. (34)
plotted only up to leading order, and we see that the curve
underestimates the curve by around ∼m2=r20. When the
higher-order terms are included (dotted curve for up to
m2=r20 and dashed-dotted curve for up to m3=r30), the
approximate bending angle has better agreement with
the exact results. We can also see that in the approximate
bending angles break down at γr0 ¼ 4m=r0 due to the
factors of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − w2

p
in the coefficients, which is consistent

with mcritðγÞ in Eq. (28).
If the parameter γ is small such that w ≪ 1, we may

expand in the powers of w,

α̂ ∼
4m
r0

þ
�
−4þ 15

4
π

�
m2

r20
þ
�
98

3
−
15

2
π

�
m3

r30

þ
�
2m2

r20
þ
�
−4þ 15

4
π

�
m3

r30

�
w

þ
�
−

m
8r0

−
�
3

8
−

15

128
π

�
m2

r20

−
�
−

5

16
−
15

64
π þ 225

2048
π2
�
m3

r30

�
w2 þOðm4=r40; w

3Þ:

ð35Þ

We can also compare this approximate result to the exact
one. In Fig. 9(b), we plot (35) up to various orders in the
case m ¼ 0.01r0. Because Eq. (35) is a perturbative
expansion in γ, we see that it agrees well with the exact
angles for small γ. The right panel of Fig. 9(b) zooms in on
a smaller domain near γ ¼ 0, where we see that the bending
angle initially increases with γ. Here we can see that up to

FIG. 8. Comparison of the approximate bending angle with the exact formula, for the case m ¼ 0.01r0, γ ¼ 0, and β ¼ 0. The solid
blue line corresponds to the exact bending angle calculated with (26), and the horizontal solid red line is the exact bending angle in the
Schwarzschild case. (a) The dashed, dotted, and dashed-dotted curves are calculated from (30) plotted up to increasing orders in m=r0.
(b) The dashed, dotted, and dashed-dotted curves are calculated from (31) plotted up to increasing orders in kr20.

FIG. 7. Plot of m=r0 vs γr0, where k ¼ 0. The shaded regions
shows the range mcrit < m < m� which gives reduced deflection,
while the darker-shaded regions correspond to m > m� which
gives enhanced deflection.
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the linear term, the rate of change with respect to γ follows
the exact value very closely.

C. Lensing in the MK spacetime with k ≠ 0

Knowing the leading behavior of mcrit in terms of k
and γ,

mcritðγ; kÞ
r0

∼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ 4k

q
; ð36Þ

we can now attempt to find the approximate bending angle
in the general case where k ≠ 0 and γ ≠ 0. Using (29) and
(33) in (26) and performing an expansion in m=r0, we find

α ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 4κ − w2

p m
r0

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16 − 4κ − w2

p
�
−16þ 15π þ 8w − w2 þ 1

2
w3 − 4κ þ 2κw

�
m2

r20

þ 1

ð16 − 4κ − w2Þ3=2
�
6272

3
− 480π þ ð−256þ 240πÞwþ

�
−176þ 60π −

225

32

�
w2 þ ð32 − 30πÞw3

−
25

2
w4 þ w5 þ 1

3
w6 þ

�
−704þ 240π −

225

8
π2 þ ð192 − 120πÞw − 52w2 þ 4w3 þ 3w4

�
κ

− 8ð1 − w2Þκ2 þ 16

3
κ3
�
m3

r30
þOðm4=r40Þ: ð37Þ

If we further expand in terms of κ and w, to leading order in each parameter we have

α ∼
4m
r0

þ 2m2w
r20

−
mκ

2r0
¼ 4m

r0
þ 2mγ −

kr30
2m

: ð38Þ

FIG. 9. Comparison of the approximate bending angle with the exact formula, for the case m ¼ 0.01r0, k ¼ 0, and β ¼ 0. The solid
blue line corresponds to the exact bending angle calculated with (26), and the horizontal solid red line is the exact bending angle in the
Schwarzschild case. (a) The dashed, dotted, and dashed-dotted curves are calculated from (34) plotted up to increasing orders in m=r0.
(b) The dashed, dotted, and dashed-dotted curves are calculated from (35) plotted up to increasing orders in γr0. The right panels for
each case shows the details at small γr0, which are not visible in the left panels where the full ranges are plotted.
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VI. CONCLUSION

In this paper we have derived an exact expression for
the bending of light in the SdS and MK spacetime using
the Rindler-Ishak method. Special emphasis has been
made to obtain the bending angle for a coaligned source-
lens-observer lensing system. By considering numerical
and perturbative methods, we found that the m → 0 is a
singular limit for a generic nonvanishing k or γ. This is
because for certain ranges of m where m < mcrit, there are
no null trajectories connecting a coaligned source and
observer. This behavior guides our approach in finding
the correct perturbative expansion for the bending
angle, in which we ensure that m > mcrit throughout
the analysis.
The exact solutions also reveal a feature that was

unnoticed by previous works, namely that for a small
range 0 < γ < γ�, the deflection angle is actually larger
than the Schwarzschild value in general relativity. Thus,
if the value of γ obtained by the fitting of galactic rotation
curve falls within this range, it would be possible to be
consistent with the corresponding observed bending
angles.
Since most of the literature pertaining to the Rindler-

Ishak angle debate makes use of the small-angle formula, it
would be interesting to look for updated results with the
improved expressions given in Eq. (26). This might be
especially useful for further applications such as the
“vacuole method” considered in [37]. With the exact
expression there will be no need to keep track of small
angles in addition to the small spacetime parameters. It is
worth noting that Ref. [6] has shown that with the
appropriate transformation from the SdS to the
Friedman-Robertson-Walker in gauge-independent repre-
sentations, the cosmological constant does not contribute to
lensing at the linear regime.
A similar approach can be considered for the CWG,

where a natural extension of this work would be to check
against observational data using the exact bending angles
found above. Previously, this has been done by Cutajar
and Adami [38] using the deflection formulas obtained by
[23,26,27]. More recently, an analysis inspired by [37] was
conducted by [39]. Since we have updated these formulas
to exact expressions, it would be worthwhile to revisit the
observational data using Eq. (24), and further take into
account other physical effects considered by [6].
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APPENDIX A: DERIVATION OF EQ. (27)

In this appendix, we derive the critical mass as a function
of k in Eq. (27). Recall that here we are considering the case
γ ¼ 0, and we set β ¼ 0. A photon trajectory with fixed r0
and k will intersect the optic axis at robs ¼ 1=uobs, where

uobs ¼ uðϕobsÞ: ðA1Þ

Generally speaking, robs increases as the lens mass m
decreases, since we have a weaker gravitational force to
pull the photon back towards the optic axis. There will be a
critical value m ¼ mcrit, where robs ¼ rh, where fðrhÞ ¼ 0.
In other words, rh is the cosmological horizon correspond-
ing to the larger positive root of fðrÞ ¼ 0, given by

rh ¼
2ffiffiffiffiffi
3k

p cos

�
1

3
cos−1ð−3m

ffiffiffiffiffi
3k

p
Þ
�
: ðA2Þ

To derive an approximate expression of mcrit, we propose
thatmcritðkÞ has a power expansion when the parameter kr20
is small,

mcritðkÞ
r0

¼
X∞
n¼1

Knðkr20Þn=2; ðA3Þ

where Kn are dimensionless coefficients. There is no
constant term in the expansion because mcritðkÞ diminishes
with k as k → 0. This expansion is validated by the
consistency of the following asymptotic analysis.
To the leading order,

mcritðkÞ
r0

∼ K1

ffiffiffi
k

p
r0; ðA4Þ

and the second argument of the incomplete elliptic integral
Fðp; qÞ in Eq. (17) is small,

q2 ≡ u0 − u−
uþ − u−

∼ 4K1

ffiffiffi
k

p
r0: ðA5Þ

When m ¼ mcrit, the position ϕobs is located on the
cosmological horizon. Therefore, we invert Eq. (A1) to find
ϕobs ¼ ϕðuhÞ ¼ ϕ0 þ π

2
, where uh ¼ 1=rh. For small kr20,

the first argument of Fðp; qÞ has the form

sinp≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ − u−Þðu0 − uÞ
ðu0 − u−Þðuþ − uÞ

s �����
u¼uh

∼
1ffiffiffi
2

p −
1 − 3K1

2
ffiffiffi
2

p ffiffiffi
k

p
r0:

ðA6Þ

Because p is not small, we must use the asymptotic
expansion of the incomplete elliptic integral Fðp; qÞ for
small q and arbitrary p,
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Fðp; qÞ ∼ pþ 1

4

�
p −

1

2
sin 2p

�
q2

þ 9

64

�
p −

2

3
sin 2pþ 1

12
sin 4p

�
q4

þ 25

256

�
p −

3

4
sin 2pþ 3

20
sin 4p −

1

60
sin 6p

�
q6

þOðq8Þ: ðA7Þ

All together, we have

ϕðuhÞ ∼ ϕ0 þ
π

2
− ð1 − 2K1Þ

ffiffiffi
k

p
r0: ðA8Þ

Because at the cosmological horizon ϕðuhÞ ¼ ϕ0 þ π
2
, this

leads to

K1 ¼
1

2
: ðA9Þ

Having determined the leading-order coefficient, we
proceed to the sub-leading-order term,

mcritðkÞ
r0

∼
1

2

ffiffiffi
k

p
r0 þ K2kr20: ðA10Þ

Expanding p and q to subleading order gives

sinp ∼
1ffiffiffi
2

p þ 1

4
ffiffiffi
2

p ffiffiffi
k

p
r0 −

3ð7–16K2Þ
32

ffiffiffi
2

p kr20;

q2 ∼ 2
ffiffiffi
k

p
r0 − ð3–4K2Þkr20: ðA11Þ

The critical bending at the cosmological horizon leads to

K2 ¼
1

2
−
15

64
π: ðA12Þ

Similarly, to the next order,

mcritðkÞ
r0

∼
1

2

ffiffiffi
k

p
r0 þ

�
1

2
−
15

64
π

�
kr20 þ K3k3=2r30; ðA13Þ

and

sinp ∼
1ffiffiffi
2

p þ 1

4
ffiffiffi
2

p ffiffiffi
k

p
r0 þ

3ð4–15πÞ
128

ffiffiffi
2

p kr20

þ 148þ 285π þ 768K3

512
ffiffiffi
2

p k3=2r30;

q2 ∼ 2
ffiffiffi
k

p
r0 −

�
1þ 15

16
π

�
kr20

þ
�
2þ 45

16
π þ 4K3

�
k3=2r30: ðA14Þ

By solving the critical bending at the cosmological horizon,
we get

K3 ¼
75

128

�
−1þ 3

8
π

�
π: ðA15Þ

Substituting the values of K1, K2, and K3 into Eq. (A3),
we get Eq. (27).

APPENDIX B: DERIVATION OF EQ. (28)

In this appendix, we derive the critical mass as a function
of γ in Eq. (28). Recall that we are considering the MK
metric with k ¼ 0 and β ¼ 0. The method is very similar to
that in Appendix A, except in this case mcrit corresponds to
the limit where uobs ¼ 0. First, we propose that mcritðγÞ has
a power expansion when the parameter γr0 is small,

mcritðγÞ
r0

¼
X∞
n¼1

Γnðγr0Þn; ðB1Þ

where Γn are dimensionless coefficients. As in Eq. (A3),
there is no constant term. This expansion is validated by the
consistency of the following asymptotic analysis.
To the leading order,

mcritðγÞ
r0

∼ Γ1γr0; ðB2Þ

and the second argument of the incomplete elliptic integral
Fðp; qÞ in Eq. (17) is small,

q2 ≡ u0 − u−
uþ − u−

∼ 4Γ1γr0: ðB3Þ

Because k ¼ 0 in this calculation, there is no cosmo-
logical horizon. When m ¼ mcrit, we have ϕðuobs ¼ 0Þ ¼
ϕ0 þ π

2
. For small γr0, the first argument of Fðp; qÞ has the

form

sinp≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ − u−Þðu0 − uÞ
ðu0 − u−Þðuþ − uÞ

s ������
u¼0

∼
1ffiffiffi
2

p −
1–6Γ1

4
ffiffiffi
2

p γr0: ðB4Þ

Again the same leading term as in Eq. (A6) indicates the
critical bending. Using the same asymptotic expansion of
Fðp; qÞ in Eq. (A7), we get

ϕðu ¼ 0Þ ∼ ϕ0 þ
π

2
−
�
1

2
− 2Γ1

�
γr0: ðB5Þ

The critical bending leads to
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Γ1 ¼
1

4
: ðB6Þ

To subleading order,

mcritðγÞ
r0

∼
1

4
γr0 þ Γ2γ

2r20; ðB7Þ

and

sinp ∼
1ffiffiffi
2

p þ 1

8
ffiffiffi
2

p γr0 þ
ð19þ 192Γ2Þ

128
ffiffiffi
2

p γ2r20;

q2 ∼ γr0 −
�
1

4
− 4Γ2

�
γ2r20: ðB8Þ

The critical bending leads to

Γ2 ¼ −
1

8
−

15

256
π: ðB9Þ

Similarly, to the next order,

mcritðγÞ
r0

∼
1

4
γr0 −

�
1

8
þ 15

256
π

�
γ2r20 þ Γ3γ

3r30; ðB10Þ

and

sinp ∼
1ffiffiffi
2

p þ 1

8
ffiffiffi
2

p γr0 −
5ð4þ 9πÞ
512

ffiffiffi
2

p γ2r20

þ −76þ 105π þ 6144Γ3

4096
ffiffiffi
2

p γ3r30;

q2 ∼ γr0 − 3

�
1

4
þ 5

64
π

�
γ2r20 þ

�
3

4
þ 15

64
π þ 4Γ3

�
γ3r30:

ðB11Þ

By solving the critical bending at uobs ¼ 0, we get

Γ3 ¼
1

16
þ 15

1024
π þ 225

8192
π2: ðB12Þ

Plugging in the values of Γ1, Γ2, and Γ3 to the expansion
in Eq. (B1), we get Eq. (28).
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